

Separation by Design Towards Simulation Guided Engineering of Coiled Channels for Precise Particle Separation

Jakob D. Redlinger-Pohn, Federico Municchi, and <u>Stefan Radl</u>

Institute of Process and Particle Engineering Graz University of Technology

Coiled Channel Separation | Secondary Motion

- Pipe, or channel of diameter d_H coiled around a centre of radius R
- Centrifugal forces acting on a flowing suspension [1,2]
 - cause deflection of the velocity maximum to the outer bend, and
 - lead to pressure differences resulting to a secondary motion = Dean flow

Coiled Channel Separation | Secondary Motion

Features and Applications from Literature

- Critical Reynolds number Re_c, where fluid motion turns chaotic increases with κ [3]
- Particles suspended in coiled tube/pipe flow are picked up by the secondary motion
- Residence time distribution is narrower [4]
- Mixing time is reduced benefiting mass transfer and reactions [5]

[3] I. DiPiazza, J. Fluid Mech., 2011
[4] J.A. Koutsky, Can. J. Chem. Eng. 1964
[5] S. Vashisth, et al., Ind. Eng. Chem. Res. 47, 2008

Coiled Channel Separation | Secondary Motion

Agenda

- Motivation and Introduction
- Literature on Coiled Channels
 - Diverse effects for coiled channel suspension flow
- Simulations Studies on Coiled Suspension Flow
 - Flow, and Secondary Motion
 - Separation of Particles in Non-Circular Cross Section
- Conclusion and Outlook
 - Research Application and Future Focus

Coiled Channel Separation | Literature

- Literature hints to particle separation for non-circular cross section. Why?
- Larger particles are found to accumulate at
 - outer bend [7]
 - inner or outer bend [8]
- **Ookawara et al. [7]**, Euler-Euler Simulation Concentration field | *Re* **450** | *κ***0.014**

Jakob D. Redlinger-Pohn | Institute of Process and Particle Engineering | Graz University of Technology

[7] Ookawara, et al., Chem. Eng. Sci., 2006 | [8] Guan, et al., Sci Rep, 2013

Guan et al. [8], Experiment Particle Accumulation $| Re \le 400 |$ Archimedean Spiral κ 0.018 to 0.006

Coiled Channel Separation | Stationary Flow

- Flow field in dependence on
 - **Reynolds** number
 - Curvature
 - **Cross Section Shape**

[7] Ookawara, et al., Chem. Eng. Sci., 2006 | [8] Guan, et al., Sci Rep, 2013

U_{sec} | Secondary Motion

0.1

0.2

0.3

0

0.0

Re 4985

0.1

Coiled Channel Separation | Stationary Flow

- Flow field in dependence on
 - Reynolds number
 - Curvature
 - Cross Section Shape
- Unresolved simulation approach [9], forces considered: shear-induced lift, Re-number dependend drag, springdashpot for wall collisions, pressure gradient (buoyancy)
- Answers from CFD-DEM Simulation
 - Particle size dependent accumulation
 - History of forces on particles

Jakob D. Redlinger-Pohn | Institute of Process and Particle Engineering | Graz University of Technology

[9] Vigolo et al., PNAS, 111, 4770-4775, 2014

Coiled Channel Separation | Particle Motion

- CFD Simulation to provide fluid flow field (OpenFOAM[®])
 - Channel aspect ratio 3.3
 - High curvature (computational limitations)
 - Re 100 | κ0.17 | Da 41.2
- CFD-DEM Simulation (software: CFDEM[®]coupling)
 - approx. 1000 particles per type
 - *d_p* / *H_{channel}* 0.194 | 0.122 | 0.072
 - $\rho_{Particle}/\rho_{Fluid}$ 0.95
 - No particle-particle interactions

Coiled Channel Separation | Particle Motion

Large particles accumulate at the outer bend

Coiled Channel Separation | Channel Shape

Impact of the cross section shape on fractionation (at 360°, one full cicle)

8

Coiled Channel Separation | Lift Force

- Lift force model: shear-induced lift as summarized by Loth and Dorgan [10]: points away from wall
- Strength of normalized
 lift force (relative to reference drag force) increases
 with increasing d_p.

Jakob D. Redlinger-Pohn | Institute of Process and Particle Engineering | Graz University of Technology

[10] E. Loth, A.J. Dorgan, Environ Fluid Mech, 2009

9

Coiled Channel Separation | Lift Force

- Particle motion in the channel cross section
 - *d_p* 0.072 : orbit with the secondary motion in the cross section
 Some depletion of particles near inner bend
 - $d_p 0.194$: particles are strongly deflected from the walls Focusing near the outer bend $\frac{1}{10^3}$ Lift force normal to wall

process engineering Graz

Coiled Channel Separation | Conclusion

- Separation of particles in non-circular coiled tubes is possible
- Lift force is found to cause particle deflection from channel wall
- Consequently, particles become trapped near the outer Dean vortex
- "Trapping strength" is controlled by lift force, and hence shear and relative speed
 t⁺ = 155
 t⁺ = 8.5

Jakob D. Redlinger-Pohn | Institute of Process and Particle Engineering | Graz University of Technology

10

Particle Separation Phenomena in Coiled Channel

Thank you! Questions?