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Introduction

Non-invasive neuroimaging techniques offer the unique 
opportunity to investigate the active human brain without 
surgery. The two most popular non-invasive neuroimaging 
techniques are electroencephalography (EEG) and functional 
magnetic resonance imaging (fMRI) (Michel and Murray 
2012; Norris 2006). EEG measures electrical brain activity, 
whereas fMRI measures blood oxygenation level changes 
in the brain (Niedermeyer and Lopes da Silva 2005; Ogawa 
et al. 1990). These two techniques have partly complemen-
tary properties. For example, the time resolution of EEG 
is in the millisecond range, whereas it is in the range of 
seconds for fMRI. A second example is the spatial resolu-
tion of the techniques, which is commonly in the range of 
millimeters for fMRI and in the range of centimeters for 
EEG (Laufs 2012; He et al. 2011). The combing of EEG 
and fMRI was proposed to benefit from the best of both 
worlds. The combined simultaneous application of these 
two techniques allows comprehensive studies of the same 
brain activity from the electrophysiological and from the 
metabolic/vascular point of view. Examples of such studies 
include the combined or joint analysis of EEG and fMRI 
data such as e.g. in EEG-informed fMRI, the localization 
of transient brain activity, and also the analysis of the inter-
action of electrophysiology and metabolism (Huster et al. 

Abstract Simultaneous electroencephalography (EEG) 
and functional magnetic resonance imaging (fMRI) allow us 
to study the active human brain from two perspectives con-
currently. Signal processing based artifact reduction tech-
niques are mandatory for this, however, to obtain reasonable 
EEG quality in simultaneous EEG-fMRI. Current artifact 
reduction techniques like average artifact subtraction (AAS), 
typically become less effective when artifact reduction has 
to be performed on-the-fly. We thus present and evaluate a 
new technique to improve EEG quality online. This tech-
nique adds up with online AAS and combines a prototype 
EEG-cap for reference recordings of artifacts, with online 
adaptive filtering and is named reference layer adaptive fil-
tering (RLAF). We found online AAS + RLAF to be highly 
effective in improving EEG quality. Online AAS + RLAF 
outperformed online AAS and did so in particular online in 
terms of the chosen performance metrics, these being spe-
cifically alpha rhythm amplitude ratio between closed and 
opened eyes (3–45% improvement), signal-to-noise-ratio 
of visual evoked potentials (VEP) (25–63% improvement), 
and VEPs variability (16–44% improvement). Further, we 
found that EEG quality after online AAS + RLAF is occa-
sionally even comparable with the offline variant of AAS 
at a 3T MRI scanner. In conclusion RLAF is a very effec-
tive add-on tool to enable high quality EEG in simultaneous 
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2012; Uludag and Roebroeck 2014; Debener et al. 2006; Rit-
ter and Villringer 2006). This combination is often referred 
to as simultaneous EEG-fMRI.

Unfortunately, these two techniques influence each other 
and deteriorate the data quality of the respective other. The 
additional EEG equipment inside the MRI scanner interferes 
with the static magnetic field and with the radio frequency 
field of the scanner. This interference generates field inho-
mogeneities and signal losses, which in turn degrade the 
fMRI data quality. Studies demonstrate that the data quality 
loss in fMRI varies between negligible and severe, but is 
never prohibitive (Bonmassar et al. 2010; Luo and Glover 
2012; Jorge et al. 2015a). The effect of fMRI data acquisi-
tion on the EEG data quality is however critical (Mulert and 
Lemieux 2010; Mullinger and Bowtell 2011a). Over the past 
years, a variety of fMRI related artifacts in EEG of simulta-
neous EEG-fMRI have been described. Below, we give an 
overview, sorted by the usual magnitudes of the artifacts.

The most prominent artifact is the so-called gradient arti-
fact (GA), sometimes also referred to as the scanner artifact 
(Allen et al. 2000). It has amplitudes up to 1000 times higher 
than the EEG (Allen et al. 2000; Mullinger et al. 2011b). 
The switching of the scanner gradient during fMRI data 
acquisition causes this artifact by electromagnetic induc-
tion in the leads of the EEG electrodes. It repeats whenever 
a new volume acquisition starts. Although techniques to 
reduce this artifact are known, it is not possible yet to avoid 
it completely (Mullinger et al. 2011b; Jorge et al. 2015a; 
Assecondi et al. 2016). Various signal processing based 
methods have thus been developed to reduce the impact of 
this artifact. Average artifact subtraction (AAS) is one of 
them and probably the most widely used one (Allen et al. 
2000). AAS exploits the repetitive and deterministic nature 
of the GA. A separate artifact template is compiled for each 
single artifact epoch of each EEG channel by averaging over 
adjacent epochs. This template is subsequently subtracted 
from the EEG. By averaging over adjacent artifact epochs, 
AAS can cope with slow changes of the GA, but not with 
brisk changes, due to e.g. motion of the study participant. 
Hence, although AAS reduces the GA largely, residuals of 
the GA are still present and they can be in the same order of 
magnitude as the EEG.

Reducing the GA unveils a second artifact, the pulse 
artifact (PA), which is repetitive with the cardiac-pulse 
cycle. PA amplitudes have the same order of magnitude as 
the EEG amplitudes and they increas with the strength of 
the static magnetic field (Allen et al. 1998; Debener et al. 
2007, 2008). The PA itself is mainly caused by motion of 
EEG electrodes, due to cardiac-pulse driven head nodding 
and due to expansion of blood vessels below the respective 
EEG electrode (Bonmassar et al. 2002). A second con-
tributor to this artifact is voltage induction in EEG elec-
trodes due to the acceleration of blood below the electrode. 

Blood is electrically conductive and therefore surrounded 
by an electromagnetic field, when accelerated in a static 
magnetic field. The proportion of this second contributor 
is relatively small, however, when compared to the first 
motion related component (Mullinger et al. 2013a). Signal 
processing based methods are the only option to reduce 
the artifact and its impact on EEG. AAS is again the most 
common method to tackle this artifact (Allen et al. 1998). 
PA epochs are defined by additional electrocardiogram 
recordings. An individual pulse artifact template per PA 
epoch and EEG channel is computed by averaging over 
adjacent PA epochs and subsequently subtracted from the 
current PA epoch. The cardiac cycle is, however, inher-
ently varying. Hence, the artifact template is only an 
approximation of the PA and significant PA residuals are 
often present, particularly at higher static magnetic field 
strengths of 3T or more. The frequency range of these 
residuals is usually including the alpha and beta range of 
EEG and can completely obscure these important brain 
rhythms.

Other known artifacts in EEG of simultaneous EEG-
fMRI are vibration related artifacts like the helium pump 
artifact (HPA) and the ventilation artifact (VA) (Mullinger 
et al. 2013b; Nierhaus et al. 2013). Both are caused by MRI 
scanner systems and are therefore presumably specific to a 
scanner model. The HPA is mainly generated by vibrations 
from the cooling system of the MRI scanner, in particular 
from the helium pump (Nierhaus et al. 2013; Rothlübbers 
et al. 2014). The VA is caused by vibrations of the patient 
ventilation system of the MRI scanner (Nierhaus et al. 2013). 
Both artifacts can be circumnavigated by disabling the sys-
tems temporarily. However, both systems are important for 
a safe and comfortable usage of the MRI scanner and disa-
bling them can be unwanted or not possible. Further, both 
artifacts are so far not well investigated and artifact reduction 
techniques are available for the HPA only (Rothlübbers et al. 
2014; Kim et al. 2015).

The motion artifact (MA) is another very problematic 
artifact. It is caused by EEG electrode and cable motion 
in the static magnetic field of the MRI scanner (Van Der 
Meer et al. 2010). It is problematic in two senses. First, it 
is non-repetitive, non-stationary, and typically not predict-
able. Hence, there is no way to reduce the MA with signal 
processing based methods that exploit repetitive structures 
in the artifact. Second, motions change the shape of the GA 
and the PA. Hence, the AAS approach fails to reduce these 
artifacts well, since the AAS template is not a good rep-
resentation of the respective artifact anymore. Many MA 
reduction techniques have been proposed (Bonmassar et al. 
2002; Masterton et al. 2007, Van Der; Meer et al. 2010; 
Abbott et al. 2014; Jorge et al. 2015b). However, best prac-
tice is to prevent them by restricting possible motions of the 
study participants.



Brain Topogr 

1 3

These variety of artifacts in EEG of simultaneous EEG-
fMRI recordings and the need to improve EEG quality, have 
led to the development of many different methods for reduc-
ing artifacts. Beside the standard AAS approach, particularly 
the optimal basis set (OBS) approach and the independent 
component analysis (ICA) approach are frequently used 
(Niazy et al. 2005; Srivastava et al. 2005; Briselli et al. 2006; 
Mantini et al. 2007; Ritter et al. 2007; Vanderperren et al. 
2010; Abreu et al. 2016). Other methods, for example based 
on beam former, singular value decomposition, linear pre-
dictors, independent vector analysis and dictionary learning, 
were introduced too and can outperform the aforementioned 
methods under certain conditions (Brookes et al. 2008; Liu 
et al. 2012; Ferdowsi et al. 2013; Acharjee et al. 2015; Abol-
ghasemi and Ferdowsi 2015).

Apart from the interest in techniques that improve EEG 
quality of simultaneous EEG-fMRI in general, there is also 
growing interest in special techniques that reduce the above-
mentioned artifacts on-the-fly. Specifically, in order to carry 
out experiments, where online processing of the measured 
data is required. In this context, online processing of data 
means timely signal processing without knowing the future 
data, hence signal processing that relies on the past data 
only, also known as causal signal processing. Some exam-
ples for experiments of this kind are: (1) Triggering visual 
stimulation depending on ongoing EEG and investigating the 
effects with fMRI (Becker et al. 2011). (2) Locating cerebral 
generators of epilepsy spikes online (Gotman et al. 2006). 
(3) Investigating brain activity with fMRI during the use 
of EEG neurofeedback (Zotev et al. 2014; Zich et al. 2014, 
2015). (4) The construction of a new type of brain-computer 
interfaces (BCIs) that rely on the online feedback of two 
neuroimaging modalities, hence simultaneous EEG and 
fMRI feedback, to generate control signals for an application 
or for the paradigm itself (Brunner et al. 2015; Mano et al. 
2017; Perronnet et al. 2017). Unfortunately, most of the MRI 
artifact reduction methods rely on non-causal signal process-
ing, hence knowledge of upcoming data is required and they 
can therefore only be applied offline, after the experiment. 
This situation led to the development of online applicable 
artifact reduction techniques. Brain Products (Brain Products 
GmbH, Gilching, Germany) provide an online version of 
AAS for GA and PA reduction in their commercial RecView 
tool. Other online artifact reduction methods, for example 
based on windowed versions of OBS and ICA, have also 
been developed (Wu et al. 2016; Mayeli et al. 2016; Wen 
et al. 2016).

The EEG data quality of simultaneous EEG-fMRI is 
often mediocre. For example, Zich et al. carried out a BCI 
experiment based on the classification of sensorimotor 
rhythms and they report a drop in average classification 
accuracy by approximately 10% when moving from out-
side the scanner to inside the scanner (Zich et al. 2015). 

In a similar experiment with a single participant, we found 
the classification accuracy to be 22% lower inside the scan-
ner compared to outside the scanner (Steyrl et al. 2013). 
One reason for the poorer EEG data quality can be found 
in the artifact reduction methods. Both studies used AAS 
and as mentioned above, AAS is susceptible to brisk arti-
fact changes and inherently varying artifacts. Moreover, 
AAS also depends on reliable detection of artifact periods. 
And naturally, AAS is only able to reduce repetitive arti-
facts such as the GA and the PA. Unfortunately, switching 
to another artifact reduction method is not necessarily a 
solution. The limitations of AAS also hold for the OBS 
method. ICA based methods on the other hand are partly 
able to reduce other artifact types too, however, they rely 
on the basic assumption that artifacts, or components, are 
stationary in space, which is particularly violated for PAs 
(Debener et al. 2007).

We recently presented a new add on technique for artifact 
reduction in EEG of simultaneous EEG-fMRI, which uses 
a completely different approach. This technique is based on 
the idea of recording artifacts independently of, but simulta-
neously with EEG, at a reference layer that is isolated from 
the scalp. Adaptive filters use those independent reference 
recordings to reduce the artifacts in the EEG. This technique 
is therefore named reference layer adaptive filtering (RLAF) 
(Steyrl et al. 2015, 2017; Chowdhury et al. 2014; Dunseath 
and Alden 2009; McGlone et al. 2009). In our previous 
works, we presented a reusable EEG-cap prototype that is 
equipped with a saline-water based reference layer to allow 
the aforementioned independent reference recordings (Steyrl 
et al. 2017). We showed that RLAF is most effective when 
artifacts have already been reduced using another technique 
such as AAS in a pre-processing step. We reported on arti-
fact reduction results of data recorded at a spherical fMRI 
phantom, as well as on artifact reduction results of human 
EEG (Steyrl et al. 2015, 2017). Our results demonstrate that 
RLAF tackles all artifacts that occur, as long as they are rep-
resented in the reference layer, which leads to a substantially 
improved EEG quality compared to predecessor techniques 
(Steyrl et al. 2017).

In this work, we introduce RLAF for the online artifact 
reduction in EEG of simultaneous EEG-fMRI. As in our 
previous work, RLAF is applied as an add on after AAS and 
in this case after online AAS. The evaluation of EEG artifact 
reduction techniques is generally tricky, since a basic truth 
in this issue remains an unknown factor. Several sugges-
tions for evaluation strategies have been made, but despite 
this a gold standard has not emerged yet. For this work, we 
decided to focus on the evaluation of what can be assumed as 
the best known and most widely analyzed EEG phenomena. 
We analyze alpha rhythm amplitude differences between 
opened and closed eyes, and visual evoked potentials (VEP). 
We compare the online version of AAS + RLAF with: the 
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online version of AAS, the offline version of AAS, and EEG 
recorded outside the MRI scanner.

Materials and Methods

Participants

The experiment was performed in accordance with the 
Declaration of Helsinki and was approved by the local 
ethics committee. Seven participants (all male, students, 
age 21–26 years) volunteered in this experiment. One was 
excluded, because he felt uncomfortable inside the scanner 
and aborted the experiment. Participants had medical his-
tories free of neurological abnormalities and gave written 
informed consent for participation before the experiment. 
They received a monetary compensation of 20 €.

Experiment Description

The aim of the present work was to record EEG, specifi-
cally alpha rhythm amplitude differences and evoked brain 
responses and to compare those from measurements inside 
and outside the MRI scanner. Hence, each participant per-
formed the experiment twice. First, recordings were per-
formed outside the MRI scanner, in the room where the 
EEG cap was prepared and then a second time inside the 
MRI scanner. We used a modified version of the experi-
ment in our last RLAF work (Steyrl et al. 2017). The experi-
ment itself was divided into two parts. During the first part, 
evoked brain responses were recorded. Participants had 
their eyes opened and were looking at a computer monitor, 
where a checkerboard was presented. The checkerboard had 
8 × 8 black and white square fields with a small red dot in 
the center. The black and white fields were inverted every 
0.5–0.6 s to trigger visual evoked potentials (VEP). 600 
VEPs were collected per experiment. In the second part 
of the experiment, participants closed their eyes and were 
instructed to relax, but not to fall asleep, to provoke changes 
in the alpha rhythm. The experiments outside and inside the 
scanner differed in three points: (1) Outside the scanner, par-
ticipants were upright sitting in a chair. Inside the scanner, 
participants were lying in supine position. (2) The distance 
between monitor and eyes was about 1 m in the experiments 
outside the scanner (visual angle 20°), and approximately 
2.5 m in the experiments inside the scanner (visible angle 
15°). (3) Outside the scanner, the environment was quiet. 
Inside the scanner, we used earplugs to reduce the scan-
ner noise. One experiment lasted in total about 12 min with 
approximately 6 min opened eyes and 6 min closed eyes. 
The overall time per participant was about 2 h with 20 min 
for instructions and information, 40 min cap preparation 
and testing, 12 min experiment outside, 20 min preparation 

inside scanner, 10 min testing inside scanner, 12 min experi-
ment inside scanner, and 5 min for removing the equipment 
from the participant.

Reference Layer Cap Prototype

In this work, we used the second version of a reference layer 
cap prototype, developed by GUGER TECHNOLOGIES 
OG, Austria (patents pending). This prototype cap offers 
the opportunity of dedicated reference recordings from a 
separate layer. The new cap version has Ag/AgCl sinter-
pellets as electrode contact areas instead of pure Ag. For a 
description and an evaluation of the first version please see 
(Steyrl et al. 2015, 2017). A rendering of the cap is depicted 
in Fig. 1a and see Fig. 1b for a photo of the new cap ver-
sion. The cap size is optimized for a head circumference 
of about 58 cm. However, the cap is flexible enough for 
head circumferences between 56 and 58 cm. To use this 
cap with larger heads is not recommended, because in that 
case the cap can cause pain due to high contact pressure. 
The cap is equipped with 29 double-layer EEG electrode 
pairs, a common ground/reference electrode, and connectors 
for two additional self-adhesive MRI compatible electro-
cardiogram (ECG) electrodes at the participants back. Each 
double-layer EEG electrode is made of a pair of Ag/AgCl 
sinter-pellets with a diameter of approximately 2 mm and a 
thickness of approximately 1 mm. The pellets are glued with 
conductive epoxy to both sides of an approximately 1 mm 
thick printed circuit board (PCB). One pellet connects to the 
scalp via conductive EEG gel and the other to the reference 
layer. The PCB with sinter-pellets is fixed into an isolating 
plastic housing. The whole electrode is about 8 mm thick 
and has a diameter of approximately 14 mm. For a sche-
matic of a double layer electrode see Fig. 1c. The reference 
layer itself is a grid of silicon tubes filled with physiological 
saline solution and is electrically isolated from the scalp, 
except at the common ground/reference electrode. At this 
electrode, the scalp is connected to the reference layer to 
pull them at the same potential. Electrodes are connected 
to the EEG amplifier via thin copper cables. 5kOhm current 
limiting resistors were placed between the sinter-pellets and 
the cables, and additional 5kOhm resistors were placed at 
the end of the cables before a coupling board connects to 
the EEG amplifiers via a flat ribbon cable. ECG connectors 
are equipped with 10kOhm current limiting resistors at the 
electrodes. The cable length is approximately 50 cm. The 
electrode arrangement is according to the international 10/20 
system and depicted in Fig. 1d. We put foam pads between 
the occipital EEG electrodes to prevent pain from lying on 
a few small electrodes, see Fig. 1e. Temperature measure-
ments were carried out during SAR intensive sequences to 
rule out a harmful heating of the electrodes.
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fMRI Scanner and EEG Recording System

Functional MRI data were acquired at a Siemens Skyra 3.0T 
(Siemens, Erlangen, Germany) at the MRI-Lab Graz (Aus-
tria) using a 20 channel head coil. The helium pump was 
active and the ventilation was set to the lowest level possible. 
A standard EPI sequence was implemented (TR = 2250 ms, 
TE = 28 ms, base resolution = 64, 3.5 × 3.5 × 3.5mm3 voxel 

size, 0.4 mm gap, 36 slices, field of view = 224 × 224). EEG 
and ECG was recorded with a 64 channel MRI compatible 
EEG system (BrainAmp MR plus, Brain Products GmbH, 
Gilching, Germany). The EEG system was positioned 
inside the borehole at the head end of the MRI scanner on a 
wooden panel. Cables and amplifiers were fixed with sand 
bags. All amplifier settings were chosen according to the 
manufacturer’s recommendations. Hence, the sampling 

Fig. 1  Reference layer cap prototype. a Rendering of the cap pro-
totype, b cap mounted on a head, c schematics of a reference layer 
electrode pair, d cap layout with electrode positions in the extended 

10/20 system. Available electrode positions are colored orange. The 
common ground/reference electrode is colored yellow. The ECG elec-
trodes are colored red, e cap equipped with foam pads for comfort
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rate was set to 5 kHz, the cut-off frequency of the hardware 
high pass filter to 0.016 Hz and the cut-off frequency of the 
hardware low pass filter to 250 Hz. The voltage range was 
set to ± 16.384 mV, resulting in a resolution of 0.5 μV/bit. 
The EEG system clock was synchronized with the gradient 
clock of the MRI scanner via the Brain Products SyncBox 
device to ensure a highly accurate GA sampling. Sync status 
has been monitored. BrainVision Recorder (Brain Products 
GmbH, Gilching, Germany) software version 1.21.0102 was 
used for EEG data recording. The two ECG channels were 
treated like EEG channels, hence, EEG settings also apply 
to ECG recordings. We carefully prepared the electrode skin 
contact with abrasive electrode gel, but we were not able to 
control the skin impedances. It would appear that separate 
ground and reference electrodes must be mandatory to meas-
ure impedances with that EEG system.

Pre-processing Procedure of Outside-MRI-Scanner 
EEG

After the experiments, outside-MRI-scanner EEG record-
ings were down-sampled from 5000–250 Hz, using the 
“Change sampling rate” transformation in the BrainVision 
Analyzer software (Brain Products GmbH, Gilching, Ger-
many, version 2.1.1.327). That included a 112.5 Hz low-
pass anti-aliasing filter with 24 dB/oct damping before the 
down-sampling. The down-sampling itself is based on spline 
interpolation. See also Fig. 2a for a summary of the pre-
processing procedure. We refer to the EEG after this pro-
cedure of outside-MRI-scanner EEG recording and offline 
EEG pre-processing, when we write of “outside EEG” in 
upcoming chapters.

Offline AAS Artifact Reduction Procedure 
of Inside-MRI-Scanner EEG

BrainVision Analyzer was used to perform artifact reduc-
tion offline and included the following steps: (1) Removing 
signal offsets with a high-pass filter (Butterworth zero phase, 
cut-off at 1 Hz, 4th order). (2) The next step was GA reduc-
tion with AAS as implemented in BrainVision Analyzer. The 
MRI scanner was sending TTL level triggers during the data 
recording, to mark new volumes. These markers were used 
to divide the EEG recordings into GA epochs. GA templates 
have been calculated separately for each epoch by averaging 
over 100 adjacent artifact epochs, 50 before and 50 after the 
current epoch. Subsequently, GA templates were subtracted 
from EEG recordings and all recordings were down sam-
pled to 250 Hz (low-pass anti-aliasing filter, 112.5 Hz cutoff 
frequency, 24dB/oct damping). (3) AAS was carried out a 
second time for PA reduction. To divide the EEG record-
ings into PA epochs, the semiautomatic R-peak detection 
mode of the BrainVision Analyzer software was used. In that 

mode, R-peaks are detected automatically in separate ECG 
recordings, manually readjusted and subsequently used as 
markers. As in the GA reduction step, a separate template 
for subtraction was computed for each PA epoch. 50 adjacent 
PA epochs, 25 epochs before and 25 epochs after each PA, 
have been averaged to obtain the PA templates. The proce-
dure is summarized in Fig. 2b. The number of epochs for 
averaging is a crucial parameter in AAS. It determines the 
adaptiveness of AAS templates as well as the EEG residuals 
in the AAS templates. Unfortunately, no gold standard has 
emerged yet for determining the number of epochs. We base 
our choice on the following argument: In one of the original 
papers on AAS (Allen et al. 2000), the aim was to obtain a 
clean artifact template, in which small events in the EEG 
are not covered by EEG residuals. They authors assumed 
that small EEG events have an amplitude of 10 µV and large 
EEG events have an amplitude of 250 µV, which leads to 
the use of 25 epochs (Allen et al. 2000). Beside the events 
argument, using 25 epochs implies that the RMS amplitude 
of the residual EEG in the template is reduced to 20% of the 
original RMS amplitude of the EEG, since the RMS ampli-
tude is reduced by a factor of 

√

number of epochs. Our goal 
was to at least maintain that level of residual EEG in two 
subsequent applications of AAS. Therefore, a reduction to 
14% of the original RMS amplitude is necessary in each sin-
gle step to maintain an overall reduction to 20%. 50 epochs 
for averaging are necessary to achieve that reduction to 14% 
and was therefore our choice for the minimum number of 
epochs. We name the EEG after this procedure of inside-
MRI-scanner EEG recording and subsequent offline AAS, 
as “offline AAS EEG” throughout this work.

Online AAS Artifact Reduction Procedure 
of Inside-MRI-Scanner EEG

Inside-MRI-scanner EEG recordings were stored with 
BrainVision Recorder and were simultaneously sent to 
BrainVision RecView with the remote data access option 
of the BrainVision Recorder. Online artifact reduction in 
RecView included the following steps: (1) High-pass filter-
ing to remove offsets (Butterworth filter, 1 Hz cut-off fre-
quency, 24 dB/oct damping). (2) Online GA reduction with 
AAS. The TR was used to divide the past EEG into artifact 
epochs. The first 10 epochs per channel were averaged to 
compute initial individual GA templates. New epochs were 
added to the templates if the correlation of the new epoch 
with the current template exceeded a predefined threshold of 
0.975. Subsequently, the current templates were subtracted 
online from the artifact afflicted EEG. (3) Subsequently, the 
EEG was down-sampled to 250 Hz (Butterworth low-pass 
anti-aliasing filter, 112.5 Hz cutoff, 24 dB/oct damping). 
(4) PAs were tackled with online AAS too. The past EEG 
was divided into epochs of PAs via online R-peak detection. 
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Online R-peak detection in RecView is based on a template 
correlation approach. The method searches for a prototypical 
ECG epoch and subsequently compares it with the ongoing 
EEG. If certain thresholds are exceeded an epoch is found 
(settings: minimal pulse period 650 ms, minimal correlation 
0.6, minimal amplitude 0.6, maximal amplitude 1.2). Sepa-
rate PA templates were computed per channel by averaging 

over the last 50 PA epochs of the respective channel. The 
current templates were subtracted online from the artifact 
afflicted EEG. For an overview of this procedure see Fig. 2c. 
It can be assumed that this online artifact reduction proce-
dure has a maximum delay of 150 ms. It takes 80–100 ms 
until the EEG data are available in RecView, including the 
hardware delay of the EEG system, transport of the EEG 

Fig. 2  Signal processing overview. a Outside-MRI-scanner EEG was 
low-pass filtered and down-sampled, b processing of inside-MRI-
scanner EEG to reduce fMRI related artifacts. Average artifact sub-
traction (AAS) was applied twice. First to reduce the gradient artifact 

(GA) and second to reduce the pulse artifact (PA), c Processing pipe-
line to reduce fMRI related artifacts online by applying online AAS 
twice, d Additional adaptive filtering step after online AAS to reduce 
fMRI related artifacts further
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data via USB and the delay of the BrainVision Recorder 
software. The actual online artifact reduction in RecView 
is carried out sample-by-sample and hence, only a small 
additional delay is added. We assume that this delay is below 
50 ms. We abbreviate the EEG after this artifact reduction 
procedure of inside-MRI-scanner recording and online AAS, 
with “online AAS EEG” in the following chapters.

Online AAS + RLAF Artifact Reduction Procedure 
of Inside-MRI-Scanner EEG

In accordance with previous works, we implemented the 
adaptive filtering as an additional processing step after 
GA and PA reduction with AAS (Chowdhury et al. 2014; 
Steyrl et al. 2017). Online AAS artifact reduction was car-
ried out in BrainVision RecView (see description above). 
Subsequently, EEG data were transmitted to MATLAB 
(Mathworks Inc., Natick, MA, USA, Version 2012b) via the 
BrainVision RecView BCI2000 bridge. This bridge opens a 
TCP/IP server and the data can be received with any TCP/
IP client. Brain Products recommends the pnet TCP/IP cli-
ent from the TCP/UDP/IP Toolbox for receiving the data 
in MATLAB. Brain Products provide sample code on their 
homepage on how to use pnet. In MATLAB, the EEG data 
were adaptively filtered. The adaptive filtering was directly 
implemented in MATLAB with the following equations, 

where “n” is the current time sample, “eeg” is the signal of a 
scalp electrode, “ref” is the signal of the respective reference 
electrode, “weight” is the respective scaling factor, which 
we initialized with 1, and “eegadaptive” is the adaptively fil-
tered EEG. “weight” can change its value over time, whereas 
“step” defines the speed of change. Finding a suitable value 
for “step” is a trade-off between speed of adaptation (large 
value) and preventing over-fitting (small value). Based on 
our experience, we choose a rather small value for “step” of 
8 × 10e−7. Our implementation establishes first order mod-
els, hence the reference signals are scaled, but no bandwidth 
limiting filters are learned. The procedure is depicted in 
Fig. 2d. From here on we term the EEG after this procedure 
of inside-MRI-scanner recording and online AAS combined 
with online RLAF as “online AAS + RLAF EEG”.

Analysis and Performance Metrics

After a visual inspection of an EEG example, we analyze 
two very common EEG phenomena that were already used 

(1)
Subtraction step eeg(n)adaptive = eeg(n) − weight(n) ⋅ ref (n)

(2)Weight update step weight(n + 1) = weight(n) + step ⋅ eeg(n)adaptive ⋅ ref (n)

as performance criteria for artifact reduction methods in 
other publications (Chowdhury et al. 2014; Vanderperren 
et al. 2010). Namely, alpha rhythm amplitude changes and 
evoked potentials (EPs).

Alpha Rhythm Amplitude Changes

Oscillatory EEG components often show a brain activity 
related relative difference in their amplitude compared to a 
baseline. A prominent example is the occipital alpha rhythm. 
The amplitude at occipital EEG electrodes rises when one 
closes his/her eyes. The typical frequency range of that rise 
is 8–13 Hz. To visualize the amplitude changes, we com-
puted spectra for the opened eyes period and the closed eyes 
period of the experiment respectively (Welch approach, win-
dow length 5 s, overlap 50%). We report the average spectra 
over the occipital channels (P3, Pz, P4, POz, O1, O2) sepa-
rate for each participant.

To obtain a performance metric that describes the ampli-
tude change of the alpha rhythm, we calculated the ratios of 
alpha amplitude between closed and opened eyes with the 
following equation 

in which  Aclose8−13Hz is the amplitude during the closed eyes 
period and  Aopen8−13Hz is the amplitude during the opened 

eyes period. We report the average of the alpha amplitude 
ratio over occipital EEG channels (P3, Pz, P4, POz, O1, O2) 
separate for each participant.

Artifacts or noise in the EEG can cover the amplitude 
change. Hence, one expects that clean EEG shows a higher 
alpha amplitude ratio than artifact afflicted EEG. This is gen-
erally the case, however, the ratio metric can be distorted 
by artifacts that (1) have the same frequency range and (2) 
change with closed and opened eyes. This may apply to PAs. 
Their frequency range is overlapping with the alpha rhythm 
and if the PA detection rate is different between opened eyes 
and closed eyes, then omitted PA artifacts distort the alpha 
ratio metric. One can avoid this problem in offline PA reduc-
tion with AAS, since it is possible to manually search for 
omitted PAs and to mark them for PA reduction. However, it 
becomes a problem in online AAS, where a manual interven-
tion is not possible. Therefore, we analyzed the PA detection 
rate in the online EEG data, and computed the percentage of 
detected PAs during opened eyes and closed eyes separately 
for each participant.

(3)ratio
�
=

Aclose8−13Hz

Aopen8−13Hz
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With regard to the alpha amplitude ratio metric, it is 
important to asses its topological distribution. We show the 
spatial distribution of the metric in separate topo-plots for 
each participant.

Visual Evoked Potentials

Evoked potentials are often investigated with respect to their 
amplitude. We computed the average visual evoked potential 
(VEPs) of each participant for all different artifact reduc-
tion procedures. The depicted channels were selected by 
the highest outside EEG VEP amplitude of the respective 
participant.

The VEP signal-to-noise-ratio (SNR) and the similarity 
of single VEPs to the respective mean VEP are important 
metrics to quantify VEP quality. We calculated both metrics. 
The SNR was calculated for each EEG channel separately 
using 

where VEP  SNRdb is the signal-to-noise-ratio in dB,  Asignal 
is the amplitude of the signal, and  Anoise is the amplitude of 
the noise. We defined the signal amplitude  (Asignal) as the 
peak-to-peak amplitude of the first and the second peak in 
the average VEP. Average VEPs were calculated by averag-
ing band-limited (1–15 Hz) EEG over the VEP trials of the 
respective EEG channel. We defined the noise amplitude 
 (Anoise) as the root-mean-square (RMS) amplitude of the 
band-limited (1–15 Hz) plus-minus (±) reference of the EEG 
signal of the respective EEG channel (Schimmel 1967). For 
the (±) reference, odd and even VEPs were averaged sepa-
rately and subsequently, the average odd VEP was subtracted 
from the average even VEP. This difference is an estima-
tor of the residual noise in the EEG (Schimmel 1967). The 
RMS amplitudes of  Asignal and  Anoise and therefore the SNR 
too, are dependent on the bandwidth of the EEG. A smaller 
bandwidth implies a smaller RMS amplitude and hence a 
higher SNR, as long as the EP amplitude stays constant. 
However, the choice of the bandwidth is not crucial as long 
as it is the same for all calculations, since our intention is to 
unveil relative differences between the methods. We report 
the average SNR over occipital EEG channels (POz, O1, O2) 
separately for each participant.

The root-mean-square (RMS) distance of single VEPs to 
the average VEP measures the similarity of single VEPs to 
the respective average VEP. This similarity to the average 
VEP is equivalent to the variability of single VEPs. The 
variability has two causes: noise in EEG and the inher-
ent variability of VEPs. One cannot separate these two. 
However, offline AAS EEG, online AAS EEG and online 
AAS + RLAF EEG used the same raw EEG data, hence, the 

(4)VEPSNRdb = 20 ⋅ log10

(

Asignal

Anoise

)

underlying inherent VEP variability was the same. Which 
means that a variability reduction was caused by the artifact 
reduction method that either reduces the noise in EEG or 
the inherent VEP variability, or both. It is important to keep 
in mind, that comparing the RMS distances of inside MRI 
scanner recordings with outside EEG is problematic since 
changes in distance could be caused by differences in the 
inherent VEP variability. RMS distances were normalized 
to the amplitude of the respective average VEP, since RMS 
distances are dependent on the absolute signal amplitudes. 
The distances were calculated per participant and per EEG 
channel with 

where NRMS distance is the average RMS distance divided 
by the amplitude of the respective average VEP. The “RMS 
distance” of the jth VEP to the average VEP was calculated 
using Eq. (5), where “n” is the nth time sample and “N” is 
the total number of time samples of the EEG data epochs. 
EEG data epochs had a length of half a second. We report 
the average NRMS distance over occipital EEG channels 
(POz, O1, O2) separate for each participant.

Results

EEG Example

Figure 3 shows a representative example of what EEG of 
simultaneous EEG-fMRI looks like after the different arti-
fact reduction procedures. The example was taken from par-
ticipant 3 at electrode POZ and covers the time from 330 to 
336 s after starting the paradigm, hence, from the closed 
eyes part of the experiment. EEG after offline AAS(GA) is 
depicted in the upper row. GAs were removed and are no 
lonfer visible, but PAs are clearly identifiable. Maximum 
PA amplitudes are higher than the usual amplitudes of the 
EEG. The remaining three rows depict EEG after PA reduc-
tion procedures. All procedures are effective to some extent. 
PA residuals are noticeable after online AAS (GA + PA) 
e.g. PA residual at second 334. PA residuals are less present 
after offline AAS (GA + PA) and are hardly noticeable after 
online AAS + RLAF. The EEG example includes a period 
of increased alpha activity, which is highlighted in Fig. 3. 
The period is visible after any of the three artifact reduc-
tion procedures. EEG amplitudes differ between the arti-
fact reduction procedures. Highest amplitudes are usually 

(5)RMS distancej =

√

√

√

√
1

N

N
∑

n=1

(

avgVEP(n) − VEPj(n)
)2

(6)NRMS distance =
avgRMS distance

VEPamplitude
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present in online AAS EEG, and smallest amplitudes in 
online AAS(GA + PA) + RLAF EEG.

Alpha Rhythm Amplitude Changes

Figure 4 presents spectra in the frequency range of 1–30 Hz, 
the alpha range of 8–13 Hz is highlighted. In the spectra 
of outside EEG, a clear alpha peak with closed eyes and a 
smaller or no alpha peak with opened eyes are the expected 
results, but the characteristics of the participants’ alpha 
peaks vary.

During closed eyes sessions, the alpha peaks vary in 
terms of magnitude (e.g. factor of 4 between participants 
4 and 6) and latitude (factor of 5 between participants 2 
and 4). Nevertheless, the alpha peak, at least a small one, 
is recognizable for all six participants in the outside EEG 
during closed eyes sessions. This is not the case for inside 
the scanner EEG. In offline AAS EEG, distinct alpha peaks 
are hardly noticeable in participants 5 and 6 and are very 

small in participants 1 and 2. Only participants 3 and 4 show 
clear alpha peaks. In online AAS EEG, participants 2, 3 and 
4 all appear to have a distinct alpha peak. The alpha peak 
is hardly noticeable in EEG of participants 1, 4, and 5. In 
online AAS + RLAF EEG, it seems that there are distinct 
alpha peaks in EEG of participants 2, 3, 4, and 5, while the 
alpha peak is hardly noticeable for participants 1 and 6.

During opened eyes, only participant 5 shows the alpha 
peak in the outside EEG. Small alpha peaks are noticeable 
in participants 1, 2, 3, and 6. No alpha peak is noticeable 
in participant 4. Again the results are different in inside the 
scanner EEG. In offline AAS EEG, small alpha peaks are 
noticeable in participants 1, 3, and 5. In the other partici-
pants, almost no alpha peak is present. In online AAS EEG, 
participants 1, 3, and 4 seems to have a distinct alpha peak. 
In participants 2, 5, and 6, an alpha peak is scarcely notice-
able. In online AAS + RLAF EEG, it appears that there are 
distinct alpha peaks in EEG of participants 2, 3, 4, and 5. 

Fig. 3  Six second EEG exam-
ple of participant 3 at electrode 
POZ, recorded inside the MRI 
scanner during the closed eyes 
part of the experiment, 330 to 
336 seconds after the start of 
the paradigm. Pronounced alpha 
rhythm activity is highlighted. 
Upper row: EEG after offline 
average artifact subtraction 
(AAS) of the GA. Arrows mark 
pulse artifacts. Second row: 
EEG after offline AAS of the 
GA and the PA. Third row: EEG 
after online AAS (GA+PA). 
Bottom row: EEG after online 
AAS (GA+PA) and subsequent 
online reference layer adaptive 
filtering (RLAF)
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Fig. 4  Per participant individual average spectra of EEG at occipi-
tal electrode positions (P3, Pz, P4, POz, O1, O2) for opened eyes 
and closed eyes after different pre-processing and artifact reduction 
methods (average artifact subtraction AAS, reference layer adaptive 

filtering RLAF). In boxes, pulse artifact (PA) detection rates of online 
AAS relative to the pulse artifact detection of offline AAS, separately 
for opened eyes and closed eyes and the respective difference. The 
8–13 Hz frequency range is highlighted

Table 1  Average alpha 
amplitude ratio of closed eyes 
to opened eyes at occipital EEG 
channels (P3, Pz, P4, POZ, O1, 
O2)

EEG was recorded outside the scanner (outside) and inside the MRI scanner simultaneously with fMRI. 
Different artifact reduction procedures were applied to the inside-MRI-scanner EEG. Average artifact sub-
traction (AAS) was applied to the EEG after the recording (offline) or online during the recording (online). 
Reference layer adaptive filtering (RLAF) was applied online as an additional step after online AAS. 
Higher values are better

Alpha ratio (AU) Outside EEG Inside offline AAS 
EEG

Inside online AAS 
EEG

Inside online 
AAS + RLAF

Participant 1 1.71 1.06 1.01 1.04
Participant 2 1.12 1.10 1.61 1.50
Participant 3 2.53 1.36 1.06 1.39
Participant 4 3.62 1.57 1.09 1.58
Participant 5 1.04 0.96 1.08 1.02
Participant 6 1.27 1.22 1.08 1.12
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Again, in participants 1 and 6 there is almost no alpha peak 
noticeable.

Alpha rhythm amplitude changes between closed eyes 
and opened eyes are also different in terms of artifact reduc-
tion procedures and participants. Table 1 lists the alpha 
amplitude ratios for all participants and all artifact reduction 
procedures. The outside EEG alpha ratios are the highest 
among methods in participants 1, 3, 4, and 6, second-highest 
in participant 5 and they are third-highest in participant 2. 
The offline AAS EEG alpha ratios are second-highest for 
participants 1 and 6, third-highest for participants 3 and 4, 
and they are lowest for participants 2 and 5. The online AAS 
EEG alpha ratios are the highest among methods for partici-
pants 2 and 5, and are lowest for participants 1, 3, 4, and 6. 
Alpha ratios of online AAS + RLAF EEG are second-highest 
among methods for participants 2, 3, and 4, and they are 
third-highest for participants 1, 5, and 6.

The online PA detection rate was not stable in all par-
ticipants. In Fig. 4, the differences in online PA detection 
rate between opened eyes and closed eyes are noted in extra 
boxes. Negative differences of − 26, − 21, and − 13 percent 
points were found in participants 2, 5, and 6. A negative dif-
ference implies that the PA detection rate was higher during 
opened eyes and it is likely that the respective alpha ratio is 
increased by artifacts that are not reduced. It can be assumed 
that the increase of the alpha ratio is proportional to the dif-
ference in percent points. No differences in the PA detection 
rate was found in participants 1, and 4. A small positive 
difference was found in participant 3. A positive difference 
implies that the PA detection rate was higher during closed 
eyes and hence it is likely that the alpha ratio is decreased 
by artifacts that are not reduced.

To visualize the topographic distribution of alpha ampli-
tude ratios, we mapped the ratios to 2D electrode positions 
in Fig. 5. The first column depicts the alpha amplitude ratios 
of outside EEG for all six participants. As expected the 
alpha amplitude ratios at occipital electrode positions are 
commonly larger than those on central or frontal positions. 
However, differences between participants in ratio sizes and 
spatial distribution are obvious. Column two shows the alpha 
ratio topo-plots of offline AAS EEG. The aforementioned 
pattern is not present in all participants anymore. For exam-
ple, participant 1 and participant 5 shows only small changes 
in alpha amplitude between closed and opened eyes and par-
ticipant 6 shows a pattern where the highest alpha ratios are 
present in central electrodes. Online AAS EEG alpha ratio 
topo-plots are presented in in column 3. No participant has 
the expected pattern of higher ratios at occipital electrodes. 
For example, participants 2, 5 and 6 have their highest alpha 
ratios at central or frontal electrodes. The topo-plots of the 
online AAS + RLAF alpha ratios in the last column shows 
higher occipital alpha ratios in participants that exhibited 
almost no changes in alpha amplitude in online AAS EEG 

(participants 1, 3, 4). In those participants with highest 
alpha ratios in central or frontal electrodes (participants 2, 
5, 6), online AAS + RLAF was able to reduce those ratios. It 
appears that the topo-plots of online AAS + RLAF are often 
more similar to the topo-plots of offline AAS EEG than to 
the topo-plots of online AAS EEG.

Visual Evoked Potentials

Figure 6 shows single participant VEPs for all different pre-
processing and artifact reduction procedures. The respective 
channel was selected because of the highest outside EEG 
VEP amplitude of the participant. The VEP amplitudes were 
normalized by the RMS noise amplitudes of the (±) refer-
ence. VEP amplitudes are highest in outside EEG among all 
6 participants. In offline AAS EEG VEP amplitudes are sec-
ond-highest in participants 1 and 6 and third-highest in par-
ticipants 3, 4, and 5. In online AAS EEG, VEP amplitudes 
are third-highest in participant 2. In online AAS + RLAF 
EEG, VEP amplitude are second-highest in participants 2, 
3, 4, and 5, and they are third-highest in participants 1 and 6. 
In all 6 participants, VEP amplitudes in online AAS + RLAF 
EEG are higher than in online AAS EEG.

For VEPs, the signal-to-noise-ratio describes the ratio of 
the VEP amplitude to the respective residual noise ampli-
tude, hence, the distinctness of the VEPs. Table 2 collects 
the SNRs of all pre-processing and artifact reduction pro-
cedures and all participants. All SNRs are positive, indi-
cating that VEP amplitudes are higher than the residual 
noise. In outside EEG, the VEP SNR is highest for all 6 
participants. In offline AAS EEG, the SNR is second-highest 
in participants 1, 4, 5, and 6 and third-highest in partici-
pants 2 and 3. In online AAS EEG, the SNR is lowest for 
all 6 participants. In online AAS + RLAF EEG, the SNR is 
second-highest in participants 2, 3, and 5 and third-highest 
in participants 1, 4, and 6. A pattern is noticeable. High-
est SNRs in outside EEG, second-highest SNRs in offline 
EEG or in online AAS + RLAF EEG with small differences 
only, and lowest SNRs in online AAS EEG. SNRs in online 
AAS + RLAF EEG are higher than in online AAS EEG for 
each participant.

Another performance metric that describes VEP quality 
is VEP variability. This criterion describes how similar sin-
gle VEPs are to the respective average VEP. Similarity is 
measured with the normalized root-mean-square distance of 
single VEPs to the respective average VEP. Table 3 presents 
the average VEP distance (NRMS distance) at occipital EEG 
channels for all pre-processing and artifact reduction proce-
dures and all participants. A smaller value denotes a smaller 
distance, hence a lower variability or a higher similarity. 
Offline EEG showed the lowest NRMS distance, hence, VEP 
variability in all 6 participants. Offline AAS EEG showed 
the second-lowest variability in participants 1 and 5 and 
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the third-lowest in participants 2, 3, 4, and 6. Online AAS 
EEG showed the highest variability in all single participants. 
Online AAS + RLAF EEG showed the second-lowest vari-
ability in participants 2, 3, 4, and 6, and the third-lowest in 
participants 1 and 5. The same pattern as with VEP SNR is 
visible. Lowest variability in outside EEG, second-lowest 

variability in offline EEG or in online AAS + RLAF EEG, 
and highest variability in online AAS EEG. Variability in 
online AAS + RLAF EEG is lower than in online AAS EEG 
for each participant.

We exemplify VEP similarity in Fig. 7. The upper row 
depicts the single VEPs of participant 4 at electrode POZ for 

Fig. 5  Per participant topological mapping of the respective alpha 
amplitude ratios (8–13  Hz) after different pre-processing and arti-
fact reduction methods (average artifact subtraction AAS, reference 

layer adaptive filtering RLAF). Alpha ratios were calculated between 
closed and opened eyes, hence, higher values imply higher changes. 
Please note the different scalings
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all pre-processing and artifact reduction procedures. In our 
example, single VEPs are most distinctive in outside EEG, 
followed by online AAS + RLAF EEG and offline AAS 
EEG. In online AAS EEG, single VEPs are hardly notice-
able. These differences are also present in the average VEPs 
in the bottom row of Fig. 7. The peak-to-peak amplitude of 
the normalized average VEP is highest in outside EEG, fol-
lowed by online AAS + RLAF EEG and offline AAS EEG. 
It is lowest in online AAS EEG.

Discussion

We start the discussion with a comparison of online AAS 
artifact reduction with its offline variant, hence a diagnosis 

of the state-of-the-art. Subsequently, we discuss improved 
EEG quality through the additional RLAF step after online 
AAS in the main part of the discussion. Thereafter, we com-
ment on EEG quality differences between inside and outside 
the MRI scanner recorded EEG, we share our experience 
with the new EEG-cap prototype and finally, we discuss 
limitations of this work.

Current State: Offline AAS Versus Online AAS

Effective artifact reduction in EEG of simultaneous EEG-
fMRI is hard to achieve in general. It is even harder to 
achieve, when the artifact reduction has to be performed 
online. We have included offline AAS in this work to 

Fig. 6  Single participant VEPs for different EEG recording and pre-
processing procedures [average artifact subtraction (AAS), reference 
layer adaptive filtering (RLAF)]. Channels were selected by the high-

est VEP amplitude of outside EEG. All VEPs were normalized by the 
RMS amplitudes of the respective (±) reference. Please be aware of 
the different scaling of the y axis
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illustrate the performance differences between offline and 
online AAS.

In the visual inspection of the EEG example, we found 
larger artifact residuals in online AAS EEG than in offline 

AAS EEG. The artifact at second 334 gives a good impres-
sion of the difference. Changes in the alpha range showed 
two different patterns. (1) Participants that showed a stable 
PA artifact detection rate in online AAS (participants 1, 3, 4) 
have larger changes in the alpha range of offline AAS EEG 
than of online AAS EEG. This visual finding is supported 
by the alpha amplitude ratios and also depicted in the topo-
plots, where we find the same pattern. Participant 6 exhibits 
also larger changes in the alpha range of offline AAS EEG 
although the PA detection rate between closed and opened 
eyes was different, however, the topo-plots shows that these 
are presumably caused by artifacts. (2) Participants with dif-
ferences in the PA detection rate (participants 2 and 5) show 
a different pattern. They have smaller changes in the alpha 
range of offline AAS EEG than of online AAS EEG. These 
smaller changes do not imply, however, that online AAS 
performed better than offline AAS in those participants, but 
mean that omitted PAs had a stronger influence than the 
change in alpha rhythm. In the context of VEPs, the SNR 
is higher in offline AAS EEG than in online AAS EEG and 
the NRMS distance of VEPs is smaller in all participants. 
That relation is also visible in the VEP similarity example 
in Fig. 7, where single VEPs are noticeable in offline AAS 
EEG, but not in online AAS EEG.

Both offline and online AAS, are based on the same idea, 
namely to create an artifact template through averaging over 
adjacent artifact epochs and to subtract the template from 
the EEG to remove the artifact. However, offline and online 
AAS naturally differ due to the available EEG data in the 
respective technique. In offline AAS, it is possible to con-
sider future artifact epochs to construct templates. Those 
future artifact epochs are also useful to detect PA epoch 
onsets and it is possible to adjust epoch onsets manually. 
This is not possible in online AAS. We have been observ-
ing periods of up to a minute without working PA epoch 
detection in online AAS EEG of participant 6. Omitted PAs, 
however, cannot fully explain the performance differences 
found between offline and online AAS, since the online PA 
detection worked almost perfectly in participants 1 and 4 and 
the online AAS performance was still lower than the offline 
AAS performance. Hence, the difference in artifact template 
construction must also be responsible.

In summary, a clear pattern is present in our data, namely 
that online AAS is less effective than offline AAS.

Online AAS EEG Quality Improvement Through 
Additional Online RLAF

In our last work on EEG artifact reduction in simultaneous 
EEG-fMRI, we compared reference layer adaptive filtering 
with (1) its direct predecessor, which is termed reference 
layer artifact subtraction (RLAS), and with (2) plain AAS 

Table 2  Average signal-to-noise-ratio (SNR) of visually evoked 
potentials (VEP) at occipital EEG channels (POZ, O1, O2)

EEG was recorded outside the scanner (outside) and inside the MRI 
scanner simultaneously with fMRI. Different artifact reduction proce-
dures were applied to the inside-MRI-scanner EEG. Average artifact 
subtraction (AAS) was applied after the recording (offline) or online 
during the recording (online). Reference layer adaptive filtering 
(RLAF) was applied online as an additional step after online AAS. 
Higher values are better

SNR in dB Outside 
EEG

Inside 
offline AAS 
EEG

Inside 
online AAS 
EEG

Inside online 
AAS + RLAF

Participant 
1

20.7 10.2 6.9 8.6

Participant 
2

13.7 5.7 3.6 6.6

Participant 
3

20.1 15.5 12.4 17.4

Participant 
4

24.2 14.7 8.9 14.5

Participant 
5

23.1 15.5 12.0 15.5

Participant 
6

23.6 11.5 7.3 11.1

Table 3  Average normalized root-mean-square-distances (NRMSD) 
of single visual evoked potentials (VEP) to the respective mean VEP 
at occipital EEG channels (POZ, O1, O2)

EEG was recorded outside the MRI scanner (outside) and inside the 
MRI scanner simultaneously with fMRI. Different artifact reduction 
procedures were applied to the inside-MRI-scanner recorded EEG. 
Average artifact subtraction (AAS) was applied after the record-
ing (offline) or online during the recording (online). Reference layer 
adaptive filtering (RLAF) was applied online as an additional step 
after online AAS. Smaller values are better

NRMSD 
AU

Outside 
EEG

Inside 
offline AAS 
EEG

Inside 
online AAS 
EEG

Inside online 
AAS + RLAF

Participant 
1

1.2 3.1 4.5 3.8

Participant 
2

2.8 7.0 9.5 5.3

Participant 
3

0.7 2.3 3.1 2.1

Participant 
4

0.8 2.0 3.5 1.9

Participant 
5

0.9 2.2 3.6 2.4

Participant 
6

0.7 6.9 9.6 3.0
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as the assumed most common artifact reduction technique 
(Steyrl et al. 2017). Among these techniques, we found that 
RLAF is the most effective one, if RLAF is applied as an 
additional signal processing step after AAS. This result con-
cerning the order of technique combination has also been 
reported by Chowdhury et al. for RLAS (Chowdhury et al. 
2014). Due to this experience and due to the need for higher 
EEG quality in online artifact reduction, we extended RLAF 
to be applicable online.

The EEG example illustrates the effect of online RLAF on 
EEG. Three main effects are visible: (1) Generally, smaller 
amplitudes are an obvious effect of RLAF. Peak-to-peak 

amplitudes dropped from approximately ± 50 to ± 0 µV. This 
effect comes from the adaptive subtraction and was already 
reported by Chowdhury et al. in their work about RLAS and 
in our last work on RLAF (Chowdhury et al. 2014; Steyrl 
et al. 2017). (2) Residual artifacts are hardly identifiable in 
online AAS + RLAF EEG, but are visible in online AAS 
EEG. (3) The period of enhanced alpha activity is present 
in both online AAS EEG and online AAS + RLAF EEG.

In the spectra, we once again found two patterns of ampli-
tude changes in the alpha range and they are the same as 
for offline AAS versus online AAS. (1) Participants with a 
stable PA artifact detection rate in online AAS (participants 

Fig. 7  Representative examples of visually evoked potentials (VEPs) 
for different pre-processing and artifact reduction procedures (average 
artifact subtraction AAS, reference layer adaptive filtering RLAF). 
Examples are from participant 4 at electrode POZ. Upper row: sin-

gle VEPs at electrode POZ (1–15  Hz). Bottom row: average VEPs 
at electrode POZ scaled to the EEG noise amplitude. Hence, VEP 
amplitude divided by the root-mean-square value of the (±) reference
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1, 3, 4) exhibit larger changes in the alpha range of online 
AAS + RLAF EEG than of online AAS EEG. Participant 
6 again showed the same pattern. (2) Participants with 
an unstable PA detection rate (participants 2 and 5) again 
showed the opposite pattern, hence smaller changes in the 
alpha range of online AAS + RLAF EEG than of online AAS 
EEG. This visual finding is reflected in the alpha ampli-
tude ratios in Table 1 too. Both the larger and smaller alpha 
amplitude ratio results, however, imply that RLAF is remov-
ing residual artifacts and is improving the EEG quality for 
those participants. RLAF shows a different behavior because 
the main cause of the amplitude changes differs in those 
participants. In participants 1, 3, 4, and 6, the PA detection 
ratio between closed and opened eyes was stable or relatively 
stable and the main cause for amplitude changes was thus 
the alpha rhythm. RLAF was able to sharpen that amplitude 
change by removing residual artifacts and therefore, alpha 
amplitude ratios are larger in online AAS + RLAF EEG than 
in online AAS EEG for those participants. On the other 
hand, in participants 2 and 5, the PA detection ratio between 
closed and opened eyes was not stable, and hence omitted 
PAs were the main cause for amplitude changes. RLAF is 
reducing these artifacts, and hence the alpha amplitude ratios 
are smaller in online AAS + RLAF EEG than in online AAS 
EEG for those participants. These considerations are sup-
ported by the offline AAS results. Alpha amplitude ratios of 
offline AAS EEG are not afflicted by the stability of the PA 
detection rate, since we manually corrected omitted PAs. 
The following pattern can be seen: RLAF improves the alpha 
amplitude ratio towards the alpha ratios of offline AAS for 
all participants, with improvements from 3 to 45%.

A change in alpha amplitude at occipital EEG channels 
between closed and opened eyes is expected in the topo-
plots, hence a larger alpha amplitude ratio at these channels. 
Such patterns are hardly noticeable, however, in online AAS 
EEG. Nonetheless, they are visible in offline AAS EEG, 
which indicates, that changes actually do occur in alpha 
amplitudes as expected. In online AAS + RLAF EEG on 
the other hand, alpha amplitude changes are visible and in 
single participants even more pronounced than in offline 
AAS EEG. These patterns are often more similar to the pat-
terns of offline AAS EEG than to the patterns of online AAS 
EEG and as a result these topo-plots give the impression that 
online RLAF is able to unveil the alpha amplitude changes 
from online AAS EEG.

We found a straight-forward pattern in the single partici-
pants VEPs. The VEP amplitudes are larger for all partici-
pants in online AAS + RLAF EEG than in online AAS EEG, 
whereby the VEP shapes are hardly changed. The shapes 
are also similar to outside EEG VEP shapes, but with lower 
amplitudes.

The VEP SNRs of online AAS + RLAF EEG are also 
higher in all single participants than the VEP SNRs of online 

AAS EEG, with SNR gains between 25 and 63%. (V)EP 
experiments typically require numerous repetitions, since 
averaging is commonly the method of choice for getting rid 
of the ongoing EEG and residual artifacts and consequently 
to make EPs visible. The starting SNR and the number of 
repetitions define the resulting EP quality, hence the final 
SNR after averaging. A higher starting SNR makes it pos-
sible to reduce the number of repetitions while maintaining 
a specific (V)EP SNR or it allows for higher (V)EP SNR 
within the same experiment duration. Both options are 
greatly welcomed by neuroscientists.

Normalized-root-mean-square-distances of single VEPs 
are lower in online AAS + RLAF EEG than in online AAS 
EEG for each single participant, with differences between 
− 16 and − 44%. The variability reduction is caused by either 
noise reduction, including artifact residuals, or reduction of 
the inherent VEP variability, or both. A reduction of the 
inherent VEP variability implies a loss in VEP signals and 
is therefore unwanted. However, since VEP shapes are not 
altered in online AAS + RLAF and VEP SNRs are simul-
taneously improved, we argue that the VEP signal loss is 
only minor and that online RLAF is mainly reducing noise 
and artifacts.

Single VEPs are hardly noticeable in online AAS EEG 
of Fig. 7. The variability in this EEG is too high. In con-
trast, single VEPs are visible in online AAS + RLAF EEG, 
because of the lower variability. It is noteworthy that the 
bandwidth was the same for both.

Several possible causes are apparent as to why RLAF 
improves EEG quality over online AAS EEG. (1) RLAF is 
able to reduce PAs that were omitted by the online PA detec-
tion, and hence, were not reduced in AAS. (2) Residual PAs 
are present after AAS and they mask the EEG. For example, 
participant 4 had an exceptionally high alpha power ratio, 
as unveiled with offline AAS. However, this high ratio is 
not visible in online AAS EEG and for this participant in 
particular, we observed significant PA residuals over the 
whole experiment duration, although the PA detection 
rate was about 100%. RLAF reduced the PA residuals and 
unveiled the alpha power changes. (3) RLAF reduces other 
artifacts or residuals of other artifacts too, as long as they 
are represented in the reference layer of the cap. None of 
these possible causes alone can explain all of the EEG qual-
ity improvements. Hence, we assume that a combination of 
them is responsible for the observed quality improvement.

Occasionally, online AAS + RLAF can even compete with 
offline AAS. e.g. in participants 1, 3, and 4, alpha amplitude 
ratios in online AAS + RLAF EEG are on eye level with 
ratios in offline AAS EEG. In participants 2, 3, 4, 5, and 6, 
the VEP SNRs in online AAS + RLAF EEG are on eye level 
with SNRs in offline AAS EEG. Online AAS + RLAF can 
keep up with offline AAS even at 3T MRI scanners, also 
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when comparing the example of raw EEG, the alpha power 
ratio mapping, and the VEP variability.

A practical advantage of the RLAF technique is its low 
demand on computing power. The complete system consists 
of (1) the BrainProducts software that takes on the record-
ing and the online AAS, (2) a Matlab script that handles the 
paradigm control and the adaptive filtering and (3) the com-
munication required between these components. The system 
was running on a laptop with an Intel Core i7 mobile CPU at 
2.4 GHz and 8 GB RAM. Windowing or storing of old data 
is not required in the online RLAF part, adaptive filtering 
steps are computed sample-by-sample. Hence, the additional 
RLAF step only adds a delay of one sample for processing 
and the delay of the network communication to the artifact 
reduction process of the BrainProducts system. However, a 
block processing scheme is also entirely feasible, that would 
be able to speed up the computation at higher sampling rates.

In summary, our performance metrics document that 
online RLAF is able to effectively reduce residual MRI 
related artifacts in online AAS.

EEG of simultaneous EEG-fMRI compared to EEG 
from outside the MRI

We did not yet comment on the general EEG quality loss 
of simultaneous EEG-fMRI compared to EEG that was 
recorded outside the MRI scanner. Such comparisons have 
been made already, particularly in the papers of Allen et al. 
in which they invented the AAS technique (Allen et al. 1998, 
2000). However, such a comparison was still missing for 
the reference layer cap prototype and in addition we are not 
aware of a comparison between outside EEG and online 
AAS EEG.

Our performance metrics show that in any terms of 
comparison, the inside MRI scanner EEG quality never 
reaches that of outside EEG. The differences are substan-
tial. For example, alpha amplitude ratios are higher in out-
side EEG than in any EEG of simultaneous EEG-fMRI if 
the alpha amplitude changes were not caused by artifacts. 
Other examples are SNRs of VEPs and NRMS distances 
of VEPs, where we see the same: Simultaneous EEG-fMRI 
recording comes at the cost of EEG quality. Nevertheless, 
simultaneous EEG-fMRI enables us to address new research 
questions about the human brain, which cannot be answered 
without this combination of techniques. Hence, this gap in 
EEG quality demonstrated how important new techniques 
are that improve the quality of inside MRI scanner recorded 
EEG, such as the one we present here in this work with the 
RLAF technique.

Reference Layer Cap Prototype

The old reference layer cap prototype, that was used in our 
last work on RLAF, became unusable after several applica-
tions (Steyrl et al. 2017). The electrode contact areas were 
made of copper and coated with silver. Unfortunately the 
abrasive electrode gel removed the silver coating and the 
underlying copper was revealed. The copper formed a half 
cell potential with the remaining silver, leading to a high off-
set voltage that caused permanent saturation at the amplifier. 
The new reference layer cap prototype overcomes this major 
drawback by using Ag/AgCl sinter pellets as electrode con-
tact areas. The pellets are about 1 mm thick and as a result 
can resist the abrasive gel much longer. We did not notice 
a degradation of the pellets after 20+ (test) measurements. 
We assume that the durability of the electrodes of the new 
prototype cap will be similar to standard EEG electrodes. 
The advantages of the old cap prototype are valid for the 
new cap too. It is compatible with available EEG amplifier 
systems, which allows the upgrading for existing systems, its 
preparation and handling times are similar to standard EEG 
caps, no additional susceptibility artifacts are noticeable in 
fMRI recordings, and EEG of reasonable quality became 
visible after AAS.

Limitations

It is not possible to compare our results statistically, due 
to the limited number of participants. Hence, all compari-
sons imply a numerical difference only. Nevertheless, as 
described above, our results show very similar patterns in 
the performance metrics among all participants: (1) online 
AAS + RLAF superior to online AAS and (2) occasionally at 
eye level with offline AAS. (3) outside MRI scanner record-
ings superior to all inside scanner techniques. These patterns 
were stable among participants, with only two exceptions. 
The alpha amplitude ratios of participant 2 and 5 were high-
est in online AAS EEG, and lowest in offline AAS EEG. We 
assume that the reason for this deviation from the pattern is 
the unstable detection of PA epoch onsets. The onset detec-
tion failed more often during the eyes closed part of the 
experiment. This was visible in the spectrum as a higher 
power in lower frequency ranges, including the alpha range. 
We thus attribute the deviation of participants 2 and 5 to 
the higher number of PAs that are not reduced in the eyes 
closed part of the experiment. This behavior of the alpha 
amplitude ratios demonstrates one weakness of this metric, 
it is depending on a constant performance of the artifact 
reduction over the whole experiment duration.

Regarding our choice of the number of epochs for aver-
aging in AAS, it is important to note that another number 
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possibly leads to better results of AAS. We did not optimize 
that number via e.g. a pre-study.

The online artifact reduction procedure is not of course 
instantaneous. The maximum delay of online AAS can be 
assumed to be 150 ms and RLAF adds a marginally delay 
only. Nevertheless, the overall delay needs to be determined 
accurately in a future work, since this delay is crucial for 
experiment design.

Another limitation of this work concerns the inside/out-
side MRI EEG comparison. It must be noted that although 
the experiment was the same inside and outside the MRI 
scanner and the cap stayed in place between the two experi-
ments, the recordings are not necessarily comparable, since 
the environment parameters changed. For example, the dis-
tance to the screen was different inside and outside the scan-
ner, participants were in sitting position outside and in lying 
position inside and outside it was quiet but inside it was 
loud. Hence, natural changes of the EEG over time cannot 
be ruled out as a source of differences, since the order of 
inside and outside EEG measurements was not randomized.

Conclusion

EEG quality is generally impaired when simultaneously 
acquired with fMRI. This impairment is even more pro-
nounced, when artifact reduction techniques have to be per-
formed online. Our results document this behavior for AAS, 
namely that online AAS is less effective than offline AAS. 
We extended the technique RLAF from offline to online use 
in order to improve online artifact reduction. We showed 
that online AAS + RLAF achieves higher numerical perfor-
mance in all metrics when compared to online AAS. Further, 
we demonstrated that online AAS + RLAF is occasionally 
even comparable with the offline AAS artifact reduction 
technique at 3T MRI scanners. Based on these results, we 
believe online RLAF to be an add on technique after AAS, 
which has the potential to become a very important tool in 
the field of simultaneous EEG-fMRI and that will allow us 
to carry out simultaneous EEG-fMRI experiments at a new 
level of EEG quality.
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