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Introduction

Simultaneous electroencephalography (EEG) and functional magnetic

resonance imaging (fMRI) combines advantages of both methods: high

temporal resolution of EEG and high spatial resolution of fMRI. EEG

recordings are, however, afflicted by severe artifacts caused by fMRI

scanners. Average artifact subtraction (AAS) is a common method to

reduce those artifacts [1]. Recently, we introduced an add-on method

that uses a reusable reference layer EEG cap prototype in combination

with adaptive filtering, to improve EEG data quality substantially [2, 3].

The methods applies adaptive filtering with reference layer artefact data

to optimize artefact subtraction from EEG and is named reference layer

adaptive filtering (RLAF).

Methods

The reference layer cap was developed by GUGER TECHNOLOGIES

OG, Austria, see Figure 1 panel A, B and C. It consists of 30 double-

layer electrode pairs and 2 additional ECG electrodes. 29 electrode

pairs are capturing EEG and one electrode pair serves as common

ground/reference electrode. The reference layer itself is a system of

saline-water filled tubes and galvanically isolated from the scalp except

at the common ground/reference electrode.

Figure 1: A - Rendering of the reference layer cap prototype. B - The reference
layer cap in use. C - Schematics of the double layer electrode pairs.

The experiment was designed to evaluate visual evoked potentials

(VEPs) and alpha-rhythm changes between opened and closed eyes.

The two participants underwent inverse checker-board stimuli to trig-

ger VEPs (1200 inversions). Subsequently, 10min of resting EEG during

closed eyes was recorded.

The signal processing is depicted in Figure 2 and included a 1Hz high-

pass, AAS of the gradient artefact (GA, 50 epochs for averaging), down-

sampling to 250Hz, AAS of the pulse artefact (PA, 50 epochs), a 50Hz

notch filter and finally the adaptive filtering.
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Figure 2: Signal processing scheme.

We optimized the step width of the adaptive filtering to guarantee sta-

bility and fast convergence of the method (7 · 10−6 to 1.5 · 10−4).

Results

We used a similar evaluation procedure as used by Jorge et al. [4]. All

results are depicted in Figure 3.
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Figure 3: A - EEG time course comparison after artefact reduction in partici-
pant 1. B - Adaptive filter coefficients’ course over time. C - Alpha power spatial
distribution. D - Selected single and average VEPs of participants 1 and 2.

Discussion

The adaptive filter scaling values are changing over time, which indicates

the necessity of adaptive filtering. Our results demonstrate that RLAF

reduces artefacts while it preserves EEG phenomenons as evoked poten-

tials and the occipital alpha rhythm. Hence, RLAF is able to improve

the quality of EEG of simultaneous EEG-fMRI experiments.
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