
D I A M O N D
 EU’s 7th FP IST Collaborative Project

Diagnosis, Error Modelling and Correction

for Reliable Systems Design

Abstract

FoREnSiC – An Automatic Debugging

Environment for C Programs
Roderick Bloem¹ Rolf Drechsler² Görschwin Fey² Alexander Finder²

Georg Hofferek¹ Robert Könighofer¹ Jaan Raik³ Urmas Repinski³ André Sülflow²

forensic@lists.iaik.tugraz.at

¹ Graz University of Technology ²University of Bremen ³Tallinn University of Technology

FoREnSiC is short for Formal Repair Environment for Simple

C and represents an extensible environment for automatic

error detection, localization, and correction in C programs. It

implements different debugging methods in a unified way.

Currently, a scalable simulation-based back-end, a back-end

using symbolic execution, and a formal back-end to verify

equivalence between a C program and a hardware design are

available. FoREnSiC is designed as an extensible framework.

Its infrastructure includes a powerful front-end and interfaces

to logic problem solvers and can be reused for implementing

new program analysis and debugging methods.

Bibliography
• http://www.informatik.uni-bremen.de/agra/eng/forensic.php
• A. Sülflow, U. Kühne, G. Fey, D. Große, and R. Drechsler. WoLFram – a word level

framework for formal verification. In International Workshop on Rapid System
Prototyping, pages 11–17, 2009.

• R. Könighofer and R. Bloem. Automated error localization and correction for imperative
programs. In International Conference on Formal Methods in Computer Aided Design,
pages 91 – 100, 2011.

C Program

Front-End FoREnSiC

Back-End 2 …

Model

Diagnoses, Repairs

Back-End 1 Back-End n

All

tests
passed

No
more

bugs
found

Symbolic
Back-End

unsigned ref(unsigned a, b){

 if(a == 0) return b;

 while(b != 0) {

 if(a > b) a = a - b;

 else b = b - a;

 }

 return a;

}

Reference in C

unsigned gcd(unsigned u, v){

 unsigned sh = 0, res;

 if(u == 0 || v == 0){

 res = 0;

 return res;

 }

 while(((u | v) & 1) == 0){

 u >>= 1;

 v >>= 1;

 ++sh;

 }

 while ((u & 1) == 0)

 u >>= 1;

 do {

 while ((v & 1) == 0)

 v >>= 1;

 if (u <= v) {

 v += u;

 } else {

 unsigned diff = u - v;

 u = v;

 v = diff;

 }

 v >>= 1;

 } while (v != 0);

 res = u << sh;

 return res;

}

Algorithm in C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Replace the „0“
in Line 4 by

u + v or u | v

Simulation-Based
Back-End

gcd(0,0) = 0

gcd(0,1) = 1

gcd(1,0) = 1

gcd(2,4) = 2

gcd(6,9) = 3

… and so on

Test Cases

Replace the
+= in Line 18

by -=

Equivalence-Checking
Back-End

module gcd(clk, reset, rdy, i_u,

 i_v, ret_val);

 input wire clk;

 input wire reset;

 input [31:0] i_u;

 input [31:0] i_v;

 output rdy;

 output [31:0] ret_val;

 reg rdy;

 … and so on

Verilog Implementation

Equivalent!

Architecture

Example

Symbolic Back-End

• Symbolic execution and SMT-solving

• Model-based diagnosis

• Template-based repair

Simulation-Based Back-End

• Simulation-based verification and

 error localization

• Mutation-based repair

Equivalence-Checking Back-End

• Simulation-based cutpoint detection

• SAT-based verification

• Cutpoint-based diagnosis

http://www.informatik.uni-bremen.de/agra/eng/forensic.php

