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a b s t r a c t

Let {Yk, k ∈ Z} be a d-dimensional stationary process, and g(d) = (g1(Y1, . . . Yn), . . . ,
gd(Y1, . . . Yn))

t be a collection of estimators for some parameter Ψ (d) ∈ Rd. Based on the
weighted CUSUMprocess, we discuss several procedures to detect possible changes inΨ (d),
where we explicitly allow d = dn to increase with the sample size n. It is demonstrated
that an increase in dn (as n increases) may both lead to a loss or gain in power for testing
procedures.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let Y1, Y2, . . . , Yn denote some collected observations. Structural stability is a very important topic in statistics and
econometrics, excellent surveys can be found in Banerjee and Urga [5] and Perron [39], for deepermathematical insights we
refer to Csörgo and Horváth [14] and Csörgő and Horváth [16]. Many authors studied testing for the stability of the mean
µi = E(Yi), 1 ≤ i ≤ n in case of independent and dependent observations, whereas others considered tests for a change in
variance or some other parameters, see for instance [2,4,3,7,23,26,28] and the references therein. A very popular method to
detect possible changes are so called CUSUM statistics, which are based on the CUSUM process defined by

Sn(t) ≡

n−1/2
[(n+1)t]

i=1


Yi − Y n


, if 0 ≤ t < 1,

0, if t = 1,
(1.1)

where Xn = n−1n
i=1 Yi. Usually, the point where the statistic reaches itsmaximum is considered as the change point, if the

test statistic exceeds a certain critical value. Naturally, these quantiles arise from the asymptotic distribution of the CUSUM
process Sn(t). If a functional limit theorem holds for the processMn(t) = n−1/2[nt]

i=1 Yi, i.e.

Mn(t)
D[0,1]
−−−→ σWt , 0 ≤ t ≤ 1,

where Wt is a Brownian motion and D[0, 1] stands for the space of càdlàg functions on [0, 1], then it follows for instance
that

sup
0≤t≤1

σ−1
Sn(t) w

−→ sup
0≤t≤1

Bt
, (1.2)
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where Bt denotes a Brownian Bridge, and
w
−→ stands for weak convergence. It is well established in the literature (cf. [16,15])

that aweight function v(t)will increase the power of testing procedures against certain alternatives. In particular theweight
functionw(t)1/2 =

√
t(1 − t)has received considerable attention due to its natural scaling property of the Brownian Bridge,

we refer to [16,14] and the references there formore details on the subject. A theoretical drawback ofweight functions is that
usually a functional limit theorem is no longer sufficient to determine the asymptotic distribution, more refined methods
need to be used, such as strong or almost sure approximations, often also called strong invariance principles, for details
see [9,35,36,42,50,57] and the references there. Based on these methods, under appropriate assumptions, one may obtain
that

sup
0<t<1

σ−1

Mn(t)


v(t)
w
−→ sup

0<t<1

Bt


v(t)
. (1.3)

In higher dimension, testing for changes is amuch less studied problem, in particular in nearlymost cases the dimension d is
fixed, see for instance [37,22,27,16,14] and the references there. Notable exceptions are [2,6], which are based on a principal
component approach, and Aue et al. [4], who established a framework to test for changes in the covariance structure for
d-dimensional processes. Among other things, they also studied the sequential limit of their test statistics Λn,d, Ωn,d, i.e;
they showed that as the dimension d increases, it holds that

Λ∗

d
w
−→ N (0, 1), Ω∗

d
w
−→ N (0, 1),

where N (0, 1) denotes a standard normal random variable, andΛ∗

d ,Ω
∗

d correspond to the weak limits of limn→∞Λn,d resp.
limn→∞Ωn,d, and n denotes the sample size of the underlying process. The problem of handling a statistic that depends on
more than one quantity that tends to infinity arises naturally whenever dealingwith high dimensional data and parameters,
and the concept of the sequential limit is one way to resolve it. However, its lack is obvious. The sequential limit only implies
the existence of a sequence dn → ∞ such that

Ωn,dn
w
−→ N (0, 1), Ωn,dn

w
−→ N (0, 1) as n → ∞,

(cf. [33]), which we refer to as the joint limit. Recently, a number of authors have studied the joint limit of various statistics
(mainly involving the covariance structure), see for instance [31–33,51,55]. The aim of this paper is to contribute to this
scenery by reconsidering the approach of Aue et al. [4], in particular, we wish to establish a joint limit result with an explicit
relation between the sample size n and the dimension d = dn as an increasing function in n. Moreover, wewill also consider
possible weighted versions of the underlying statistics. A particularly interesting result is that the power of the tests may
vary with the dimension dn, we may both encounter a decrease or increase in power.

The setting is quite general and includes a large class of d-dimensional stationary processes

Yk

k∈Z =


Yk,1, . . . , Yk,d

t ,
such as ARMA, ARCH and GARCH models. In this context, the dependence structure is very important. To motivate the
general notation, consider the following example. Let


ϵk

k∈Z be a d-dimensional IID sequence. A d-dimensional linear

process

Yk

k∈Z can then be constructed by letting

Yk =

∞
i=0

Aiϵk−i,

where Ai is a sequence of d × d dimensional matrices with absolutely summable components. We may thus write Yk,h =

gh

ϵk, ϵk−1, . . .


, for some function gh


·

. This notion allows for the very powerful concept of m-dependent approximations,

whichwewill explainmore fully in Section 2. If one is interested in studying changes in the underlying covariance structure,
then one has to deal with processes of the type of Xk,i,j = Yk,rYk+i,r+j = gi,j


ϵk+i, ϵk+i−1, . . .


, which increases the level of

complexity. More generally, we may say that we have the collection of stationary processes Xk,h = gh

ϵk+d, ϵk+d−1, . . .


,

k ∈ Z and 1 ≤ h ≤ d, with

E

Xk,h


= µh, µd =


µ1, . . . , µd

t
∈ Rd. (1.4)

We then wish to test for changes in the vector µd, which may reflect any kind of multivariate statistic that fits into this
framework.

The paper is structured as follows. In Section 2 we present the setting and some notation, alongside some comments
and remarks. The main results are given in Section 3, together with some examples. Numerical illustrations are provided in
Section 4. Based on a general approximation result, the proofs are given in Section 5. In Section 6, the approximation results
are presented, which may have interest in themselves.

2. Notation and preliminary remarks

Throughout this paper, we will use the following notation. For a random variable X , we denote with
Xp = E


|X |

p
1/p

the Lp norm. For a vector x ∈ Rd, we put
x2 for the usual euclidian norm, and max

x for the maximum norm. Let
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A =

ai,j


1≤i≤r,
1≤j≤s

, r, s ∈ N be an r × smatrix. Then we denote with

max
A = max


Ax | x ∈ Rs,max |x| = 1


= max

1≤i≤r

s
j=1

|ai,j| (2.1)

the usual induced matrix norm. We will now discuss the dependence structure in more detail. To this end, let

Xk,h


k,h≥1 be

a collection of random variables such that for each h0,

Xk,h0


k≥1 is a stationary sequence, and we put

φi,h = Cov

Xk,h, Xk+i,h


, k ∈ Z, 1 ≤ h ≤ d.

Given an RZ valued sequence

ϵk

k∈Z of independent and identically distributed random variables, we define the following

two σ -algebras.

Fk = σ

ϵj, j ≤ k


, F k+m

k−m = σ

ϵj, k − m ≤ j ≤ k + m


. (2.2)

We will always assume that

Xk,h


k,h≥1 is adapted to Fk+d, more specifically, we assume that Xk,h is Fk+d measurable for

each k, h ≥ 1. Hence we implicitly assume that Xk,h can be written as a function

Xk,h = gh

ϵk+d, ϵk+d−1, . . .


.

For convenience, we will write gh(ξk+d), with ξk = (ϵk, ϵk−1, . . .). The class of processes that fits into this framework is
large, and contains a variety of linear and nonlinear processes including ARCH, GARCH and related processes, see for instance
[21,40,46,47]. A very nice feature of the representation given above is that it allows to give simple, yet very efficient and
general dependence conditions. Following Wu [52], let


ϵ′

k


k∈Z be an independent copy of


ϵk

k∈Z on the same probability

space, and define the ‘filters’ ξ (m,
′)

k , ξ (m,∗)k as

ξ
(m,′)
k = (ϵk, ϵk−1, . . . , ϵ

′

k−m, ϵk−m−1, . . .)

and

ξ
(m,∗)
k = (ϵk, ϵk−1, . . . , ϵ

′

k−m, ϵ
′

k−m−1, ϵ
′

k−m−2, . . .).

Note that in ξ (m ,
′)

k , only the element ϵk−m is replaced, but in ξ (m,∗)k the whole past up to k − m gets replaced. We put ξ ′

k =

ξ
(k,′)
k = (ϵk, ϵk−1, . . . , ϵ

′

0, ϵ−1, . . .) and ξ ∗

k = ξ
(k,∗)
k = (ϵk, ϵk−1, . . . , ϵ0, ϵ

′

−1, ϵ
′

−2 · · · ). In analogy, we put X (m,
′)

k,h = gh

ξ
(m,′)
k+d


and X (m,∗)k,h = gh


ξ
(m,∗)
k+d


, in particular we have X ′

k,h = X (k+d,′)
k,h and X∗

k,h = X (k+d,∗)
k,h .

As a dependence measure, one may now consider the quantities
Xk,h − X ′

k,h


p or

Xk,h − X∗

k,h


p, p ≥ 1. For example, if

we define the linear processes Xk,h =


∞

i=0 αi,hϵk−i, the condition
∞
k=0

Xk,h − X ′

k,h


2 < ∞ (2.3)

amounts to


∞

i=0 |αi,h| < ∞ if E

ϵ20

< ∞. Dependence conditions of type (2.3) are often quite general and easy to verify

in many cases, see for instance [8,17,19,50] and the references there.
A very important feature of the above representation is that it allows to quantify approximations with m-dependent

variables. To this end, for d ≤ m let

Y (≤m)
k,h = E


Xk,h | F k+m

k−m


, Y (>m)

k,h = Xk,h − Y (≤m)
k,h . (2.4)

Then one can show (cf. Proposition 5.3), thatY (>m)
k,h


p ≤ C

∞
i=0

Xm+i,h − X ′

m+i,h

2
p,

hence we can quantify the approximation error in terms of the dependence measures.
In order to formulate the relevant statistics for the change point analysis, introduce the following notation. Put w(t) =

t(1 − t), 0 ≤ t ≤ 1, for the weight function and

S(n,l)h =

l
k=1

Xk,h, M(n)
t,h = n−1/2


[nt]
k=1

Xk,h − t
n

k=1

Xk,h


, (2.5)

for the partial sum and the corresponding CUSUM statistic. For 0 < l < 1/2, we denote the weighted version ofM(n)
t,h with

Z (n,l)h = sup
l≤t≤1−l

 M(n)
t,h


√
t(1 − t)


. (2.6)
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We use the abbreviation S(n)h = S(n,n)h , and we denote the corresponding random vectors with S(n) =

S(n)1 , S(n)2 , . . . , S(n)dn

t ,
M(n)

t =

M(n)

t,1 ,M
(n)
t,2 , . . . ,M

(n)
t,dn

t , and Z(n)l =

Z (n,l)1 , Z (n,l)2 , . . . , Z (n,l)dn

t . We formally define the variance as

ψh = lim
n

n−1E

S(n)h S(n)h


, (2.7)

and for 1 ≤ i ≤ j ≤ dn the sample correlation

ρ
(n)
i,j = Cov


S(n)i S(n)j

 
Var

S(n)i


Var

S(n)j

−1/2
. (2.8)

In addition, let B(∗)t =

B(∗)t,1, B

(∗)
t,2, . . . , B

(∗)
t,dn

t
, where


B(∗)t,h


0≤t≤1,1≤h≤dn

are independent Brownian Bridges. Similarly, put

Bt =

Bt,1, Bt,2, . . . , Bt,dn

t
, where Bt,h = Wt,h − tW1,h, 1 ≤ h ≤ dn is a sequence of Brownian Bridges, where the

dn-dimensional Brownian motionW(dn)
t =


Wt,1,Wt,2, . . . ,Wt,dn

t has the covariance matrix ΓW(dn) .

3. Main results

3.1. Approximations and limit theorems

In this section, we present approximation results that can be used to detect changes in time series. To this end, denote
with Γ S(n) the covariance matrix of the vector n−1S(n), defined in (2.5), and letΓ S(n) be a consistent estimator. Let dn ≥ 1 be
a positive, monotone increasing sequence. We will work under the following assumption.

Assumption 3.1. Assume that for p > 8, dn = O

(log n)δ


, δ > 0

(i) suph ∥X1,h∥p < ∞,E

Xk,h


= µh,

(ii) max1≤h≤dn

Xk,h − X ′

k,h


p = O


k−β


, where β > (3 +

√
3)(2

√
3 − 2)−1

≈ 3.232 · · · ,

(iii) P

max

Γ S(n) − Γ S(n)
 ≥ n−χ


= O


1

, χ > 0,

(iv) The smallest eigenvalue σmin

Γ S(n)


of the matrix Γ S(n) satisfies σmin


Γ S(n)

−1
= O


dκn

, κ > 0.

Let us briefly discuss the assumptions. As already mentioned, conditions (i), (ii) are very general dependence conditions,
which allow for a large class of processes. Examples are provided in Section 3.2, which consist of linear and nonlinear time
series. Also note that onemayweaken themoment assumption by strengthening the dependence condition (cf. Aue et al. [4]).
This is accomplished by considering the transformation Uk,h = |Xk,h|

ρ , and then using Uk,h instead. Indeed one obtains that
for ρ ∈ (0, 1] it holds thatUk,h − U ′

k,h


p ≤

Xk,h − X ′

k,h

ρ
p ρ, (3.1)

which is a stronger condition for the dependence assumption. For example, let Xk =


∞

i=0 αiϵk−i with


∞

i=0 |αi| < ∞, where
ϵk is an IID sequence with E


|ϵk|

p

< ∞, but E


|ϵk|

p+δ


= ∞ for δ > 0, p ≥ 1. Clearly, we have ∥Xk − X ′

k∥p = O

|αk|


.

Consider now Uk =
√

|Xk|. Then we obtain from (3.1) thatUk − U ′

k


2p ≤

Xk − X ′

k

1/2
p = O


|αk|


,

which is a slower decay rate than |αk|, since |αk| → 0 as k → ∞.
Condition (iii) is a mild convergence assumption for potential covariance estimators. Put X(dn)k =


Xk,1, . . . , Xk,dn

t , and
note that if dn = d remains fixed, then by Aue et al. [4, Theorem A.2], it holds that

n−1/2S(n) w
−→ W(d)

t ,

where the covariance matrix ΓW(d) =

γ|i−j|


1≤,i,j≤d satisfies

ΓW(d) =


k∈Z

Cov

X(n)k ,X

(n)
0


.

Under very general conditions (cf. [4,13]), it holds that Bartlett-type estimators satisfy the relation
Γ S(n) − ΓW(d)

 = Op(1)
for fixed d. Using similar arguments and conditions (i), (ii), onemay show that (iii) is indeed valid for some χ > 0. This issue
will be more thoroughly discussed in Section 3.2.

Condition (iv) is needed to control the approximation error for the inverse of the covariance matrix Γ S(n) . Note that
for fixed d, condition (iv) is redundant since every regular positive definite matrix ΓW(d) has strictly positive eigenvalues.
Unfortunately, this is no longer sufficient in case of a strictly increasing sequence dn, and in general, no simple lower bounds
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are available for σmin

Γ S(n)


. Using the well-known Gershgorin Theorem (cf. [49]), it follows that σmin


Γ S(n)


> 0, uniformly

in n, provided that ψh = C for all 1 ≤ h ≤ dn (one may weaken this condition) and

lim sup
n→∞

max
1≤h≤dn

dn
i=1,
i≠h

ρ(n)h,i

 < 1. (3.2)

This, however, is a rather restrictive condition. Another well known approach in this context is based on the following
Lemma, which is a special case of Section 5.2 in Grenander and Szego [24] (see also [56]).

Lemma 3.2. Let f be a continuous symmetric function on [−π, π] with m and M being its minimum and maximum. Define
γh =

 π
−π

f (x)e−
√

−1h xdx, and the d × d matrix ΓW(d) =

γ|i−j|


1≤,i,j≤d. Then

2πm ≤ σmin

ΓW(d)


≤ σmax


ΓW(d)


≤ 2πM,

where σmin

Γ S(n)


and σmin


Γ S(n)


denote the minimum and maximum eigenvalues.

In many cases it turns out that the function f (x) is the spectral density function of some underlying process.
Unfortunately, proving that m > 0 in this case is very difficult in general. In special cases (cf. Example 3.15) this can be
accomplished though.

Under Assumption 3.1, the following approximation results are valid.

Theorem 3.3. Assume that Assumption 3.1 holds. Then on a possible larger probability space, we have that sup
λ/n≤t≤1−λ/n

w(t)−1M(n)
t
tΓ −1

S(n)M
(n)
t

− sup
λ/n≤t≤1−λ/n

w(t)−1
dn
h=1


B(∗)t,h

2 = Op


dn

,

where λ > 0 and the dimension satisfies dn = O

(log n)δ


for arbitrary δ > 0.

Theorem 3.4. Under the same conditions as in Theorem 3.3, it holds that1n
⌈n−λ⌉

k=⌈λ⌉+1

w(k/n)−1M(n)
k/n

tΓ −1
S(n)M

(n)
k/n −

dn
h=1

 1−λ/n

λ/n
w(t)−1B(∗)t,h

2dt = Op


dn

.

Remark 3.5. Note that condition (iv) does not impose any conditions on δ, as long as we have dn = O

(log n)δ


. However,

a closer look at the proof of Theorems 3.3 and 3.4 reveals that analogue versions are valid for dn = O

nδ

, for some δ > 0,

in which case condition (iv) does impose restrictions on the choice of δ. The bound for δ is however far from tractable, see
in particular Theorem 6.4. Also, it is clear from the proofs that setting w(t) ≡ 1 will allow for a larger growth rate for dn in
this case.

Let us briefly elaborate on the weight function w(t). In order to increase the power of test-statistics at edge points,
weight functions have proven to be a very efficient method (cf. [7,16,14] and the references there). The specific choice
w(t)1/2 =

√
t(1 − t) is particularly interesting, since it standardizes the Brownian Bridge Bt = Wt − tW1, for details on this

subject, we refer to [16,14]. In this context, the choice of λ in Theorem 5.4 is important. It is reported in [14] that choosing a
sequence λ = λn = (log n)3/2 yields good results in practice. One may also work with weight functions v(t) satisfying the
following conditions.

• v(t) is a function on (0, 1) increasing in a neighborhood of 0, and decreasing in a neighborhood of 1,
• infc≤t≤1−c v(t) > 0 for all 0 < c < 1/2,
• the function I(v, c) =

 1
0

1
t(t−1) exp(−

cv2(t)
t(t−1) )dt is finite for some 0 < c < 1/2.

It is then possible (cf. [7,15]) to establish analogue versions of Theorems 3.3 and 3.4, where w(t) is replaced with v(t),
satisfying the conditions above. In particular, one may also choose v(t) = 1, i.e. no weight function at all.

Since dn may become large as n increases, it is interesting to derive asymptotic expressions for the approximating
quantities presented in Theorems 3.3 and 3.4. To this end, denote with

Ωn = sup
λ≤t≤1−λ

w(t)−1M(n)
t
tΓ −1

S(n)M
(n)
t , (3.3)

and

Λn =
1
n

⌈n−λ⌉
k=⌈λ⌉

w(k/n)−1M(n)
k/n

tΓ −1
S(n)M

(n)
k/n. (3.4)
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If we have indeed w(t) = v(t) = 1, then Theorems 3.3 and 3.4 together with Remark 2.1 in [4] imply that both Ωn and
Λn, appropriately normalized, weakly converge to a standard Gaussian random variable. If we consider the weight function
w(t) = t(1 − t), the following asymptotic expansion is valid.

Corollary 3.6. Assume that Assumption 3.1 holds, and let 0 < λ < 1. Then

(2dn)−1/2 sup
λ≤t≤1−λ

w(t)−1M(n)
t
tΓ −1

S(n)M
(n)
t − dn

 w
−→ sup

0≤s≤log u(λ)

Vs
, u∗(λ) =

1 − λ2

λ(1 − λ)
,

where Vs is a zero mean Ornstein–Uhlenbeck process with Cov

V (t), V (s)


= exp(−|t − s|), and we may choose dn =

O

(log n)δ


, for arbitrary δ > 0.

Unfortunately, there is no known simple formula for the distribution function of sup0≤s≤log u(λ)

Vs
. On the other hand, one

may obtain the Laplace transform, and a numerical inversion gives rise to selected values of the distribution function of
sup0≤t≤log u(λ)

Vt
 (cf. [18,34]). It turns out however (cf. [15]), that the following tail approximation of Vostrikova [48] works

rather well even for moderate values of x.

Lemma 3.7. For all fixed T > 0 we have

P


sup
0≤t≤T

V (t) ≥ x


=
x exp(−x2/2)

√
2π


T −

T
x2

+
4
x4

+ O

x−4 ,

as x → ∞.

In view of this result, it would be interesting to determine the limit distribution ofΩn. Theorem A.3.2 in [15] suggests that

anΩn − bn
w
−→ G, for appropriate sequences an, bn,

where G is an extreme value distribution. However, establishing this result is beyond the scope of the present paper and
will be dealt with elsewhere. Fortunately, the situation is much simpler in case ofΛn. We introduce the following quantity.
Let

σ 2
=


R3

x2y2


1
2π(1 − e−|u|)

exp


−
x2 + y2 − 2e−|u|/2xy

2π(1 − e−|u|)


− ϕ(x)ϕ(y)


dxdydu,

where ϕ(x) denotes the density of a standard Gaussian distribution function.

Corollary 3.8. Assume that Assumption 3.1 holds, and put un = n2/λ2 − n/λ+ 1 with λ > 0. Then

(dnσ 2 log un)
−1/2


1
n

⌈n−λ⌉
k=⌈λ⌉

w(t)−1M(n)
k/n

tΓ −1
S(n)M

(n)
k/n −

√
πdn


w
−→ N (0, 1),

and the dimension satisfies dn = O

(log n)δ


for arbitrary δ > 0.

3.2. Testing for change-points

In this section, we will discuss how to apply the results of the previous section for change-point detection. To this end,
denote with µ

(n)
k =


µk,1, . . . µk,dn

t
=

E

Xk,1


, . . .E


Xk,dn

t the vector of the means. To test for changes in µ
(n)
k , we

formulate a null hypothesis as

H0 : µ
(n)
1 = µ

(n)
2 = · · · = µ(n)n ,

and the alternative

HA : µ
(n)
1 = µ

(n)
2 = · · · = µ

(n)
k∗ ≠ µ

(n)
k∗+1 = · · · = µ(n)n

where 1 ≤ k∗
≤ n denotes the change-point. Theorem 3.3 and Corollaries 3.6 and 3.8 provide us with parameter free

asymptotic expressions forΩn andΛn if H0 holds. A natural question is what one may expect of the power of the involved
statistics. Note that bothΩn andΛn essentially ‘sum up’ all local discrepancies, and can therefore be viewed as a global quality
measure. This means that if a change affects all or most of the involved processes M(n)

t,h , 1 ≤ h ≤ dn then the power of tests
based onΩn andΛn can be expected to be high. Contrarily, if only a few of theM(n)

t,h are affected, the power can be expected
to be rather low. In order to bemore precise, suppose that the alternativeHA is valid. As is common practice in the literature,
we assume that k∗

= ⌈τn⌉, τ ∈ (0, 1) depends on n. Let

S(n) = S(≤⌈τn⌉)
+ S(>⌈τn⌉), (3.5)

where S(≤⌈τn⌉) denotes the pre-change vector, and S(>⌈τn⌉) the post-change vector, and define M(≤⌈τn⌉)
t , M(>⌈τn⌉)

t in an
analogue manner.
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Theorem 3.9. Assume that lim supn→∞ max1≤i≤dn
dn

j=1

ρ(n)i,j

 < ∞ and Assumption 3.1 are both valid for

Xk,h


1≤h,1≤k≤k∗

and

Xk,h


1≤h,k∗<k. Then

lim inf
n→∞

χ−1
n sup

λ≤t≤1−λ

w(t)−1M(n)
t
tΓ −1

S(n)M
(n)
t

 > 0,

in probability, where χn = O

n

µ
(n)
k∗+1

t
µ
(n)
k∗+1


.

Remark 3.10. An analogue version is valid forΛn.

Note that

µ
(n)
k∗+1

t
µ
(n)
k∗+1 essentially gives the number of changes that have occurred. In particular, if


µ
(n)
k∗+1

t
µ
(n)
k∗+1 =

O

d1/2+ηn


, η > 0, then Theorem 3.9 together with Corollaries 3.6 and 3.8 shows that we have an increase in power as

dn increases. On the other hand, if

µ
(n)
k∗+1

t
µ
(n)
k∗+1 = O


d1/2n


, then we have a decrease in power as dn increases. Simulation

results given in Section 4 highlight this effect.
We now give examples on how to apply the results of the previous sections to test for changes in the underlying

sequence. The focus lies on testing for changes in the mean and covariance structure. Given a d-dimensional time series
Yk

k∈Z =


Yk,1, . . . , Xk,d

t , we thus want to test for

(i) changes in the mean µd, where µd =

µ1, . . . , µd

t
∈ Rd, E


Xk,h


= µh,

(ii) changes in the covariance matrix


d =

Cov


Xk,i, Xk,j


1≤i,j,≤d.

To this end, let d = d(d + 1)/2, Id =

(i, j) | 1 ≤ i, j ≤ d


. Put

• X (1)k,h = Yk,i − µi, 1 ≤ i ≤ d,
• X (2)k,h = Yk,iYk,j − E


Yk,iYk,j


for all (i, j) ∈ Id, 1 ≤ h ≤ d.

For the usage of Corollaries 3.6 and 3.8, we need to reconsider Assumption 3.1, in particular, we require an estimatorΓW(d)

for the covariance matrix ΓW(d) . The literature (cf. [1,13,25]) provides many potential candidates to estimate the long run
covariance matrix ΓW(d) =


γ|i−j|


1≤i,j≤d. A popular estimator for γh is Bartlett’s estimator, or more general, estimators of

the form

γ 2
h =


|j|≤ln

ω(k/r)γj,h (3.6)

with weight function ω(x), where γj,h = E

X0,hXj,h


and γj,h = n−1n−j

k=1 Xk,hXk+j,h. Considering the triangular weight
function ω(x) = 1 − |x| for |x| ≤ 1 and ω(x) = 0 for |x| > 1, one recovers the Bartlett estimator in (3.6). One may also use
the plain plug in estimate

γ 2
h = γ0,h + 2

ln
i=1

γi,h, (3.7)

see for instance [43,44]. In particular, based on Wu [51, Proposition 1] (see also [53]), we can present the following result.

Proposition 3.11. Let ln ∈ N, ln → ∞ as n increases with ln = O

n1/2−χ


, χ > 0. If Assumption 3.1(i), (ii) holds, then

P

max

ΓW(d) − ΓW(d)
 ≥ n−χ


= O


1

,

whereΓW(d) is constructed via (3.7). A similar result holds if one uses Bartlett-based estimators.

We now list a few examples of popular processes together with explicit conditions such that Assumption 3.1 is valid. In case
of the Garch-type model (Example 3.13), we borrow heavily from the findings of Aue et al. [4].

Example 3.12 (Linear Processes). We first reconsider the example from the introduction, namely a linear d-dimensional
process


Y

k∈Z Let


ϵk

k∈Z be a d-dimensional I.I.D. sequence, where we denote the single elements with ϵk,h, 1 ≤ h ≤ d.

Define the d-dimensional linear process

Y

k∈Z as

Yk =

∞
i=0

Aiϵk−i, (3.8)

where Ai =

a(i)r,s

1≤r,s≤d is a sequence of d × d dimensional matrices. We need to verify Assumption 3.1 for X (1)k,h , and X (2)k,h .

It holds that
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max
1≤h≤d

X (1)k,h − X (1) ,
′

k,h


p ≤

max
Ak(ϵk − ϵ′

k)
 

p ≤ 2
max

Akϵk
 

p

≤ 2 max
1≤r≤d

d
s=1

|a(k)r,s | max
1≤h≤d

ϵ0,hp = 2max
Ak
 max
1≤h≤d

ϵ0,hp,
hence we thus require that
• d = O


(log n)δ


, for some δ > 0,

• max1≤h≤d
ϵ0,hp < ∞ for p > 8,

• max
Ak
 = max1≤r≤d

d
s=1 |a(k)r,s | = O


k−β


, where β > (3 +

√
3)(2

√
3 − 2)−1

≈ 3.232 · · · ,
and conditions (i)–(iii) of Assumption 3.1 are satisfied. As mentioned earlier in Section 2, verifying Assumption 3.1(iv) is
very difficult, and indeed providing a general, simple verifiable condition for thematrix sequence Ai seems to be impossible.
We now turn to X (2)k,h . Suppose that (i, j) ∈ Id corresponds to h. Then the Cauchy–Schwarz inequality impliesX (2)k,h − X (2) ,

′

k,h


p ≤

X (1)k,j (X
(1)
k,i − X (1) ,

′

k,i )

p +

X (1)k,i (X
(1)
k,j − X (1) ,

′

k,j )

p

≤ 2 max
1≤h≤d

X (1)k,h


2p max

1≤h≤d

X (1)k,h − X (1) ,
′

k,h


2p.

Hence the conditions remain the same, except that we require max1≤h≤d
ϵ0,hp < ∞ for p > 16. Using the general theory

of multivariate ARMA models (cf. [13,1]), one readily provides conditions based on those for linear processes.

Example 3.13 (GARCHModel). Arch and GarchModels have been introduced by Engle [20] and Bollerslev [11], and have had
a major impact on economic time series analysis. Bollerslev [12] suggested the following constant conditional correlation
(CCC) model as a generalization to the multivariate case. Denote with ◦ the Hadamard product, and let


ϵk

k∈Z be a

d-dimensional I.I.D. sequence, where we denote the single elements with ϵk,h, 1 ≤ h ≤ d. Define the process

Y

k∈Z as

Yk = σk ◦ ϵk, (3.9)

σk ◦ σk = µ +

p∗
j=1

αj ◦ αk−j ◦ σk−j +

q∗
j=1

βj ◦ Yk−j ◦ Yk−j, (3.10)

where µ is coordinate wise strictly positive, α1, . . . ,αp∗ and β1, . . . ,βq∗ are coordinate wise nonnegative d-dimensional
vectors, and p∗, q∗ > 0. The process


Yk

k∈Z reflects the structure of an univariate GARCH(p∗, q∗) time series, and in fact

each coordinate represents a one-dimensional GARCH equation, whose orders are at most (p∗, q∗). Let αi =

αi,1, . . . , αi,d

t
andβi =


βi,1, . . . , βi,d

t . Proceeding as in the proof of Theorem4.2 in [4] combinedwith the computations in Example 3.12,
one derives the conditions
• d = O


(log n)δ


, for some δ > 0,

• max1≤h≤d
ϵ0,hp < ∞, p > 8.

• max1≤h≤d
max{p∗,q∗

}

j=1

αj,h + βj,hϵ
2
0,h


p/2 < 1 for p > 8,

where αi =

αi,1, . . . , αi,d

t and βi =

βi,1, . . . , βi,d

t , and possible undefined spots are filled up with zeros. These
conditions ensure the validity of Assumption 3.1(i)–(iii) in case of X (1)k,h . As in the previous Example 3.12, one only needs
to replace the condition p > 8 with p > 16 to deal with X (2)k,h , and similarly it seems to be impossible to give general, easy
verifiable conditions to ensure the validity of Assumption 3.1(iv).

An extension of the CCC-GARCH model was introduced by Jeantheau [30] by replacing the vectors αi, βi with matrices
Ai, Bi. As before one can derive sufficient conditions by following the proof of Theorem 4.3 in [4] combined with the
computations in Example 3.12.

Example 3.14 (Iterative Random FunctionModel). Elton and Diaconis and Freedman introduced the following generalization
of the AR(1) process. Let


ϵk

k∈Z be a d-dimensional I.I.D. sequence, where we denote the single elements with ϵk,h,

1 ≤ h ≤ d, and Rh

,

be a collection of functions from R × RZ

→ R. We define the iterated random process as

Yk,i = Rh

Yk−1,i, ϵk


, k ∈ Z, 1 ≤ h ≤ d. (3.11)

Denote with

Lϵ,h = sup
x≠y

Rh

x, ϵ

− Rh


y, ϵ

x − y


the Lipschitz coefficient, and suppose that
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• max1≤h≤d
Y (1)0,h


p < ∞, for p > 8,

• max1≤h≤d
Lϵ,h


p ≤ r < 1.

Since for k > 0X (1)k,h − X (1) ,
′

k,h


p ≤

Lϵk,h

p

X (1)k−1,h − X (1) ,
′

k−1,h


p ≤ · · ·

≤

k−1
j=0

Lϵk−j,h

p

X (1)0,h − X (1) ,
′

0,h


p ≤ Crk

Y (1)0,h


p,

it follows that conditions (i)–(iii) of Assumption 3.1 are satisfied. As in the previous examples, we cannot give simple yet
general conditions that ensure the validity of Assumption 3.1(iv). As before one only needs to replace the condition p > 8
with p > 16 to deal with X (2)k,h .

Example 3.15 (Another Linear Model). Finally, we present a model where Assumption 3.1(iv) is verifiable via a simple
condition. Consider the following multivariate MA(∞) process: Let

Xk,h =

∞
i=0

aiLk−i,h + µh, (3.12)

whereµh ∈ R,

Lk,h

k∈Z is anR∞ valued I.I.D. sequence, and


Lk,h

h∈Z is an AR(d) processwith parameter ζ =


1, ζ1, . . . , ζd


for every fixed k, i.e.

Lk,h = ζ1Lk,h−1 + · · · + ζdLk,h−d + ϵk,h, (3.13)

where

ϵk,h

h∈Z is a zero mean white noise sequence, i.e. it holds that E


ϵk,iϵk,j


= 0 for i ≠ j. Clearly, for fixed k ∈ Z, the

single components Xk,i, Xk,j are dependent, and we have

n−1Cov

S(n)i , S(n)j


= n−1

n
k=1

∞
r,s=0,

1≤k−r+s≤n

arasE

L0,iL0,j


,

where S(n)h =
n

k=1 Xk,h. Suppose in addition that L = limn→∞ n−1n
k=1


∞

r,s=0,
1≤k−r+s≤n

aras ≠ 0 and
q

j=1 |ζj| ≤ ϑ < 1.

Then we obtain from [13, Theorem 4.4.2] that the spectral density function fL(λ) is given as

fL(λ) =
σ 2

2π
ζ e−iλ

2 ,
where ζ (s) = 1 −

q
j=1 ζjs

j. Since ζ

e−iλ


= 1 −

q
j=1 ζie

−iλj, it holds that

0 <

1 −

q
j=1

|ζj|


2

≤
ζ e−iλ2 ≤

1 +

q
j=1

|ζj|


2

< ∞,

hencewe obtain from Lemma 3.2 that the eigenvalues of the covariancematrix ΓW(d) are uniformly positively bounded from
below and above. Hence if we assume that

• d = O

(log n)δ


, for some δ > 0,

• max1≤h≤d
ϵ0,hp < ∞, p > 8.

• L ≠ 0,
ak = O


k−β


, where β > (3 +

√
3)(2

√
3 − 2)−1

≈ 3.232 · · · ,
•
q

j=1 |ζj| < 1,

then Assumption 3.1(i)–(iv) is valid in case of X (1)k,h . As before, we only need to replace condition p > 8 with p > 16 to deal
with X (2)k,h .

Example 3.16 (Additional Examples).Mimicking the proofs in [4], one readily provides additional examples such as Dynamic
factor models and Multivariate exponential Garch models.

4. Numerical examples

In this section, we present a short simulation study to some of the examples discussed before. The focus of this study is
to investigate the relation of the dimension dn and the power of Λn, Ωn. We do not present results comparing weighted
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Table 1
Simulation of a d-dimensional CCC GARCH(1,1) with 1000 repetitions.

µk∗ FULL n = 200
d = 10 d = 20 d = 50
α = 10% α = 5% α = 1% α = 10% α = 5% α = 1% α = 10% α = 5% α = 1%

0 7.7 4.6 0.7 8.1 4.4 0.8 7.2 4.2 1
0.01e 12.1 8.6 0.9 16.2 10.1 0.9 5.8 3.6 1.2
0.02e 13.8 8.8 1.1 18.3 12.1 0.8 4.3 1.6 3
0.03e 22.9 14.7 1.2 29.7 16.7 1.4 5.5 2.7 2.9

Table 2
Simulation of a d-dimensional CCC GARCH(1,1) process with 1000 repetitions.

µk∗ FULL n = 500
d = 10 d = 20 d = 50
α = 10% α = 5% α = 1% α = 10% α = 5% α = 1% α = 10% α = 5% α = 1%

0 9.6 4.8 0.6 8.3 4.9 0.7 9.2 4.2 0.8
0.01e 11.8 6.3 0.78 17.1 5.8 0.9 18.5 4.0 1.4
0.02e 29.4 18.1 4.7 35.2 19.4 5 40.5 21.6 7.1
0.03e 54.5 48.3 20.7 63.7 55.8 23.8 80.7 59.3 27.8

statistics to non-weighted ones, as the literature provides numerous examples (cf. [16,14,7]) on this subject. We will
therefore always set w(t) ≡ 1, and only consider the case where the time of change is the ‘middle’, i.e; τ = 1/2. Similarly,
we do not provide examples to illustrate the rate of convergence in Corollaries 3.6 and 3.8. We just mention that the rate
significantly depends on the choice of λn, for details we again refer to [16,14,7] and the references therein.

Due to theweak dependence of the underlying processes, we use a Bartlett-estimator for the long-run covariancesmatrix
ΓW(d) with window length ln = ⌈log n⌉. We do not use any parametric or semi-parametric methods. The critical values for
the corresponding statistics are empirical quantiles, which were obtained by sampling from a d-dimensional sequence of
independent Gaussian zero mean random vectors Zk, where Cov


Zk, Zk


= I, where I denotes the identical d × d matrix.

As our first example, we consider the CCC GARCHmodel of Example 3.13, with specifications p∗
= q∗

= 1, α1,h = β1,h =

0.1. We let ϵk ∼ N (0,

) be Gaussian, where


:=


1 0.5 0 · · · · · ·

0.5 1 0.5 · · · · · ·

0 0.5 1 0.5 · · ·

...
...

...
. . .

. . .

 ,
which thus imposes a slight dependence among the component-wise GARCH-processes. To assess the power, we introduce
several alternatives. At the change point τ = 1/2, the drift µ∗

k = δ e is added, where δ ∈ {0, 0.01, 0.02, 0.03} and
e =


1, . . . , 1

t . The simulations are carried out for the dimensions d ∈ {10, 20, 50}, with a sample size of n = 200 or
n = 500. For each scenario, the experiment was repeated a thousand times, and a burn-in phase of 500 iterations was used.
The results are shown in Tables 1 and 2, where we only display the results of the statistic Ωn. The results of Λn are quite
similar, slight differences can only be observed in case of d = 50, whereΛn performs a little better. This difference is worked
out more thoroughly in our next experiment. As can be seen from the results in Tables 1 and 2, we observe an increase in
power as the dimension and sample size increase, which is in accordance with the theory. A notable exception is the case
d = 50, n = 200, where the statistic Λn performs rather poor. This can be explained by the relatively large dimension
d = 50, compared to the sample size n = 200 and the changes µ∗

k .
In Tables 3 and 4, the corresponding results are displayed in case of e =


1, . . . , 1, 0, . . . , 0

t , where only the first ⌈log n⌉
elements are non-zero. This clearly leads to a decrease in power as the dimension d increases.

For the second experiment, we consider a d-dimensional AR(1) process

Yk = AYk−1 + ϵk, k = 1, . . . , n,

where A = 0.1I, ϵk ∼ N

0, I

, where I denotes the d × d identity matrix. Again, we introduce several alternatives. At the

change point τ = 1/2, the matrix A changes to A∗
= 0.1I + δE, where δ takes on values which depend on the dimension d,

and E denotes the d × d matrix for which all entries are equal to 1, thus introducing a correlation structure. This example
is also considered in Aue et al. [4] for d = 4. As outlined in Section 3.2, testing for changes in the cross-sectional covariance
structure for a d-dimensional process results in a d = d(d+ 1)/2 dimensional statistic. We consider the cases d ∈ {4, 6, 10}
which results in d ∈ {10, 21, 55}, and a sample size of n = 200. The results are displayed in Tables 5 and 6. As can be seen,
we clearly have an increase in power as the dimension d increases. Note that δ varies for each d, and becomes smaller as the
dimension d increases. This is necessary since otherwise the process {Yk}k∈Z is no longer stationary under the alternative
matrix A∗.
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Table 3
Simulation of a d-dimensional CCC GARCH(1,1) process 1000 repetitions.

µk∗ SPARSE n = 200
d = 10 d = 20 d = 50
α = 10% α = 5% α = 1% α = 10% α = 5% α = 1% α = 10% α = 5% α = 1%

0 7.7 4.6 0.7 8.1 4.4 0.8 7.2 4.2 1
0.03e 21.4 10.1 1.2 13.8 6.2 1.1 6.4 3.6 1.8
0.04e 24.1 14.2 3.4 15.5 7.8 3.5 6.5 4.2 2.6
0.05e 31.6 22.7 6.1 20 9.3 3.9 7.1 3.8 2.8

Table 4
Simulation of a d-dimensional CCC GARCH(1,1) process with 1000 repetitions.

µk∗ SPARSE n = 500
d = 10 d = 20 d = 50
α = 10% α = 5% α = 1% α = 10% α = 5% α = 1% α = 10% α = 5% α = 1%

0 9.6 4.8 0.6 8.3 4.9 0.7 9.2 4.2 0.8
0.03e 36.2 25.1 9.3 31.6 22.8 4.1 15.4 6.6 2.8
0.04e 57.4 48.5 24.9 53.1 36.5 11.3 28.5 17.4 3.7
0.05e 84.7 75.3 48.8 72.7 55.2 29.9 34.2 25.8 8.2

Table 5
Simulation of a d-dimensional AR(1) process with 1000 repetitions.

Ωn FULL n = 200
d = 4 d = 6 d = 10
δ \ α 10% 5% 1% δ \ α 10% 5% 1% δ \ α 10% 5% 1%

0 8 3.5 0.8 0 9 4.8 0.9 0 8.7 4.6 0.45
0.1 10.7 5.1 2.2 0.1 23.4 13.8 1.3 0.03 10.7 5.9 3.4
0.15 33.5 24.3 9.1 0.125 37.4 27.7 10 0.05 13.9 8.6 5.1
0.2 64 52.2 34.6 0.135 50.1 36.6 15.7 0.07 13.8 9.6 4.9
0.22 82.2 78.3 58.5 0.15 74.8 66.3 55.1 0.09 39.7 9.2 6.3

Table 6
Simulation of a d-dimensional AR(1) process with 1000 repetitions.

Λn FULL n = 200
d = 4 d = 6 d = 10
δ \ α 10% 5% 1% δ \ α 10% 5% 1% δ \ α 10% 5% 1%

0 9.5 4.5 0.6 0 9.5 4.9 0.7 0 9.2 4.7 0.8
0.1 14.6 7.2 2.1 0.1 29.9 12.3 2.4 0.03 12.8 7.5 1.3
0.15 34.8 23.3 9.2 0.125 48.4 32.7 14 0.05 14.3 10.7 1.6
0.2 63.4 52.7 35.2 0.135 57.3 40.7 26.6 0.07 20.1 9.3 2.8
0.22 79.6 72.1 54.8 0.15 76.4 64.3 59.1 0.09 54.9 41.7 3.1

It is interesting to note that for d = 10, the test based on Λn significantly outperforms the one based onΩn. Looking at
the critical values, one finds that the tails of the distribution function P


Ωn ≤ x


are much heavier than those of P


Λn ≤ x


.

This can also be deduced from Remark 2.1 in [4]. Also note that the power is largest for d = 10 (d = 55), which is in contrast
to the results of Table 1. This is because the changes in the cross-sectional covariance structure in this experiment have a
much larger numerical and structural impact on the process {Yk}k∈Z. For example, for the pairs (d = 4, δ = 0.22), (d = 6,
δ = 0.15), and (d = 10, δ = 0.09), the process {Yk}k∈Z is ‘close’ to non-stationarity under the alternative matrix A∗.

In Tables 7 and 8, we display the corresponding results under a ‘sparse’ alternative matrix A∗
= 0.1I + δE∗, where

δ ∈ {0, 0.3, 0.35, 0.4, 0.45}, and E∗ denotes the d × d matrix

E∗
:=


1 1 0 0 · · ·

0 1 1 0 · · ·

0 0 1 0 · · ·

...
...

...
. . .

. . .

 .
In case of Ωn, we observe a decrease of power in Table 7 as d increases. However, in case of Λn (Table 8) we first observe
a slight increase in power from d = 10 to d = 21, before it drops below both previous levels for d = 55. In addition, its
performance is significantly better than the test based onΩn, particularly in the case d = 55. Again, this is due to the fact of
the heavier tails of the distribution function P


Ωn ≤ x


.
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Table 7
Simulation of a d-dimensional AR(1) process with 1000 repetitions.

Ωn SPARSE n = 200
d = 4 d = 6 d = 10
δ \ α 10% 5% 1% δ \ α 10% 5% 1% δ \ α 10% 5% 1%

0 8 3.5 0.8 0 9 4.8 0.9 0 8.7 4.6 0.45
0.3 40.5 23.4 6.6 0.3 31.8 17.9 6.1 0.3 12.3 4.3 1
0.35 59.3 43.5 19.1 0.35 52.2 33 11.7 0.35 13.7 4.6 1.7
0.4 66.2 50.9 28.3 0.4 76.9 54.3 23.4 0.4 14 4.5 1.6
0.45 87.8 75.7 48.6 0.45 86.3 65.6 39.8 0.45 18.3 5.1 1.9

Table 8
Simulation of a d-dimensional AR(1) process with 1000 repetitions.

Λn SPARSE n = 200
d = 4 d = 6 d = 10
δ \ α 10% 5% 1% δ \ α 10% 5% 1% δ \ α 10% 5% 1%

0 9.5 4.5 0.6 0 9.5 4.9 0.7 0 9.2 4.7 0.8
0.3 43.8 27.2 13.1 0.3 40 30.5 11.6 0.3 30.2 12.5 2.5
0.35 62.6 49.3 25.4 0.35 63.8 51 27.8 0.35 47.7 20.8 2.3
0.4 69.8 55.7 36.9 0.4 81.1 76.5 43.4 0.4 57.4 31.3 3.4
0.45 85.3 74.8 55.6 0.45 92.6 83.3 60.5 0.45 74.1 44.5 4.8

5. Proofs and ramifications

Throughout the proofs, C denotes a generic constant thatmay vary fromone formula to another. The proofs are essentially
based on Theorem 5.4 given below, whose proof is based on results given in Section 6. We make the following assumption.

Assumption 5.1. Form = mn = O

nθ

, 0 < θ < 1, d = dn = O


nδ

, δ > 0 we suppose that

(i) sup
h

∥X1,h∥p < ∞, for some p > 8, E

Xk,h


= µh, for all 1 ≤ h ≤ dn,

(ii) sup
h

∞
j=0

j|φj,h| < ∞,

(iii) lim sup
n→∞

max
1≤h≤dn

max
1≤l≤n

 l
j=1

Y (>mn)
j,h


p

= O (1) , p > 8.

Remark 5.2. Note that Assumption 5.1(ii) implies that

ψ2
h = lim

n
n−1Var

 
1≤k≤n

Xk,h


< ∞, (5.1)

and in particular suph ψ
2
h < ∞.

The link between Assumptions 3.1 and 5.1 is provided by the following proposition.

Proposition 5.3. Suppose that max1≤h≤dn

Xk,h − X ′

k,h


p = O


k−β


, with θ ≥

2
2β−1 , θ ≥ δ, p > 8, where β > 5/2.

Then Assumption 5.1(ii), (iii) are valid. If dn = O

(log n)δ


, we do not require that θ ≥ δ.

We can now present the main approximation result.

Theorem 5.4. Suppose that Assumption 5.1(i)–(iii) holds, and let Γ n be a sequence of regularmatrices such that max |Γ −1
n | ≤ Ln

for some sequence Ln. Then on a possible larger probability space, we have that

(i)
 sup
λn/n≤t≤1−λn/n

w(t)−1M(n)
t
t

Γ −1
n M(n)

t

− sup
λn/n≤t≤1−λn/n

w(t)−1Bt
tΓ

−1
n Bt

 = Op


dn

,

(ii) sup
λn/n≤t≤1−λn/n

w(t)−1M(n)
t
t

Γ −1
n M(n)

t − w(t)−1Bt
tΓ

−1
n Bt

 = Op


dn

.
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The dimension dn = O

nδ

must satisfy the relation

θ ≤ δ < min


4(p − 2ν)
(−4 + 3p)ν

,
2 + p − 2(1 + θ)ν

(2 + 4θ + p(4 + θ))ν


, (5.2)

where we require p > 4ν and Lnd
1/2
n = O


(log n)−κ


, for some κ > 0. Moreover, it holds that max

Γ S(n) − ΓW(n)
 = O


n−γ


,

for some γ > 0. Alternatively, if one sets dn = O

(log n)δ


, for arbitrary δ > 0, then we require

2 < min


4 + 2p
4 + 4θ + pθ + 4θ2 + pθ2

,
2

1 − 2θ
, p/4


, (5.3)

and Lnd
1/2
n = O


(log log n)−κ


, for some κ > 0.

Remark 5.5. Conditions (i) and (iii) of Assumption 5.1 can in fact be weakened to p > 4. This, however, leads to a less
tractable bound for δ.

Before proving the results of Section 3, we will show the validity of Proposition 5.3.

Proof of Proposition 5.3. First, note that condition θ ≥ δ is only needed to ensure that Xk,d isFk+m-measurable. Clearly this
is no longer necessary if dn = O


(log n)δ


, since then Xk,d is Fk+m-measurable for large enough n. Let F ′

k = σ(ϵ′

k, ϵ
′

k−1, . . .).
Then for any p ≥ 1 we have by Jensen’s and the triangular inequalityY (>mn)

k,h


p ≤

Xk,h − X (mn+1,∗)
k,h


p +

E

Xk,h − X (mn+1,∗)

k,h | σ

F

k+mn
k−mn

∪ F ′

k−mn−1


p

≤ 2
Xk,h − X (mn+1,∗)

k,h


p,

where we also used the fact that

X (mn+1,∗)
k,h − E


X (mn+1,∗)
k,h | F

k+mn
k−mn


= E


X (mn+1,∗)
k,h − Xk,h | σ


F

k+mn
k−mn

∪ F ′

k−mn−1


.

By [54, Theorem 1(iii)] we have for p ≥ 2

X1,h − X (mn+1,∗)
1,h

2
p ≤ C

0
i=−∞

Xmn+1−i,h − X ′

mn+1−i,h

2
p = O


m1−2β

n


, (5.4)

which leads toY (>mn)
k,h


p = O


m1/2−β

n


. (5.5)

Consequently, using the triangular inequality and the above, we obtain that

max
1≤l≤n

 l
j=1

Y (>mn)
j,h


p

≤

n
k=1

Y (>mn)
k,h


p = O


nm1/2−β

n


= O(1),

which proves Assumption 5.1(iii). In order to show (ii), note that the Cauchy–Schwarz inequality impliesE(Xk,h − µh)(X0,h − µ0)
 =

E(Xk,0 − µ0)E

(Xk,h − µh) | Fd

 ≤ 2
X0,h


2

E

(Xk,h − µh) | Fd


2

≤ 2
X0,h


2

Xk,h − X (k,∗)k,h


2,

and it follows from (5.4) that

∞
j=0

j|φj,h| ≤ C
∞
j=0

j
Xj,h − X (j,∗)j,h


2 = O


∞
j=1

j3/2−β


= O(1). �

5.1. Proofs of Section 3

The proof of Theorem 3.3 will be developed in a series of Lemmas. The difficulty mainly consists of controlling the error
of max

Γ −1
S(n) − Γ −1

W(n)

. To this end, we require the following Lemma.

Lemma 5.6. Let A, B be two regular d × d dimensional matrices, such that

• max
A − B

 = O

d−γ


, for some γ > 0,
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• The smallest eigenvalue σmin

A

of A is positive and satisfies σmin


A
−1

= O

dκ

, κ > 0, such that dκ+1/2

= O

dγ

.

Then for large enough d, it holds that
(i) max

A = O

dκ+1/2


,

(ii) max
A−1

− B−1
 = O


d2κ+1−γ


.

We are now ready to prove Theorem 3.3.
Proof of Theorem 3.3. First note that by Proposition 5.3, the assumptions of Theorem 5.4 are validated. For a function f (t),
we denote with |f |∗n := supλ/n≤t≤1−λ/nw(t)−1

f (t), wherew(t) = t(1 − t). Define the random vector

Bw,n =

B(λ/n)1 , B(λ/n)2 , . . . , B(λ/n)dn

t
,

where B(λ/n)h =
Bt,h

∗
n .

Next, notice that|M(n)
t Γ −1

S(n)M
(n)
t |

∗

n −|M(n)
t Γ −1

S(n)M
(n)
t |

∗

n

 ≤
|M(n)

t (Γ
−1
S(n) −Γ −1

S(n))M
(n)
t |

∗

n


≤ dn max

Γ −1
S(n) −Γ −1

S(n)
max

Zn
2. (5.6)

We have max
Γ S(n) − ΓW(n)

 = O

n−γ


, and combining this with Assumption 3.1(iii), (iv), we obtain from Lemma 5.6

(a slight adaption is necessary)

P

max

Γ −1
S(n) − Γ −1

W(n)

 ≥ d2κ+1
n n−(γ∧χ)


= O(1). (5.7)

Hence (5.6) implies that for ϵ > 0 and large enough n

P
|M(n)

t Γ −1
S(n)M

(n)
t |

∗

n −|M(n)
t Γ −1

W(n)M
(n)
t |

∗

n

 > 
dnϵ


≤ O(1)+ P

max

Zn
2 ≥ ϵd−2κ−3/2

n nγ∧δ


≤ O

1

+ dnP

Z (λ/n,n)1

2 ≥ ϵd−2κ−3/2
n nγ∧χ


.

Moreover, since d−2κ−3/2
n nγ∧χ

= O

nη

for some η > 0, Theorem 5.4(i) implies that

P

max

Zn
2 ≥ ϵd−2κ−3/2

n nγ∧χ


≤ Op


dn

+ P


max

Bw,n2 ≥ ϵd−2κ−3/2
n nγ∧χ


.

Let un = n2/λ2n − n/λn + 1. Then it holds that (cf. [15, A.3.19])

B(λn/n)h
d
= sup

0≤t≤log un

Vh(t)
, 1 ≤ h ≤ dn, (5.8)

where Vh(t) is a zeromeanOrnstein–Uhlenbeck processwith Cov

Vh(t), Vh(s)


= exp(−|t−s|/2). Due to Theorem1 in [41],

it holds that for p ≥ 1 sup
0≤t≤log un

Vh(t)
(2 log log un)

−1/2

p

≤ Cp, (5.9)

where Cp does not depend on n. Hence the Markov inequality and (5.9) imply that

P

max

Bw,n2 ≥ ϵd−2κ−3/2
n nγ∧χ


≤ dn max

1≤h≤dn
P


sup
0≤t≤log un

Vh(t)
 ≥ ϵ1/2 d−κ−3/4

n n(γ∧χ)/2


≤ ϵ−p/2dn

 sup
0≤t≤log un

Vh(t)
(2 log log un)

−1/2
p
p


(2 log log un)

1/2dκ+3/4
n n−(γ∧χ)/2p

= O

1

.

Since d−2κ−3/2
n nγ∧χ

= O

nη

for some η > 0, we can thus choose a sequence ϵn that tends to zero such that

P
|M(n)

t Γ −1
S(n)M

(n)
t |

∗

n −|M(n)
t Γ −1

W(n)M
(n)
t |

∗

n

 > ϵn

dn


= O

1

. (5.10)

Moreover, Theorem 5.4(i) implies that sup
λn/n≤t≤1−λn/n

w(t)−1M(n)
t
t

Γ −1
W(n)M

(n)
t

− sup
λn/n≤t≤1−λn/n

w(t)−1
dn
h=1


B(∗)t,h

2
 = Op


dn

, (5.11)

provided that (2κ + 1/2)δ < (1/2− 1/ν)λ. It thus remains to evaluate the bounds provided by Theorem 5.4. The condition
θ < 1/2(

√
3 − 1) implies that we may choose θ > (3 +

√
3)(2

√
3 − 2)−1, which completes the proof. �
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The proof of Theorem 3.4 hinges on the following Lemma.

Lemma 5.7. Put w(t) = (t(1 − t)), and let 0 < l(n) < r(n) < 1. Then
 r(n)

l(n)

B2
t

w(t)
dt −

1
n

⌈r(n)n⌉
k=⌈l(n)n⌉

B2
k/n

w(k/n)


1

= O

n−1/2(log u(n))2


,

where u(n) =
1−l(n)r(n)
l(n)(1−r(n)) .

Proof of Theorem 3.4. Due to Theorem 5.4(ii), we have1n
⌈n−λ⌉
k=⌈λ⌉

w(k/n)−1M(n)
k/n

tΓ −1
S(n)M

(n)
k/n −

dn
h=1

1
n

⌈n−λ⌉
k=⌈λ⌉

w(k/n)−1B(∗)t,h

2 = Op(1).

Setting l(n) = λ/n, r(n) = 1 − λ/n, Lemma 5.7 now yields the claim. �

Proof of Corollary 3.6. It holds that (cf. [14, A.3.19])

sup
λ≤t≤1−λ

w(t)−1
dn
h=1


B(∗)t,h

2 d
= sup

0≤t≤log u∗(λ)

dn
h=1

V 2
t,h, u∗(λ) =

1 − λ2

λ(1 − λ)
,

where

Vt,h


t∈R are independent zero mean Ornstein–Uhlenbeck process with Cov


Vt,h, Vs,h


= exp(−|t − s|/2). Hence it

suffices to establish that

(dn2)−1/2


dn
h=1

V 2
t,h − dn


w
−→ V (t)

on the space C[0, log u∗(λ)]. This, however, is provided by Ronzhin [41, Theorem 2]. �

Proof of Corollary 3.8. Let u(n) =
1−l(n)r(n)
l(n)(1−r(n)) . Due to Theorem 3.4, it suffices to establish that

(dnσ 2 log un)
−1/2


dn
h=1

 1−λ/n

λ/n
w(t)−1B(∗)t,h

2
−

√
πdn


w
−→ N (0, 1).

However, [15, TheoremA.3.5] implies that Xh,n =
 1−λ/n
λ/n w(t)−1


B(∗)t,h

2
−

√
π is an array of I.I.D zeromean random variables

with variance Var(Xh,n) = σ 2 log un + O

log un


. Hence the claim follows e.g. from [29, Theorem VII.2.35]. �

Proof of Lemma 5.6. For a matrix A, denote with
A2 the induced l2-norm. It then holds that

max
A−1

 ≤
√
d
A−1


2 =

√
dσmin


A
−1

= O

dκ+1/2 ,

which proves (i). Let E = B − A, and note that for sufficiently large d, we have

max
Emax

A−1
 < 1.

Equation 1.5 in [45] then implies that

max
A−1

− B−1
 = max

A−1
− E + A−1

 ≤
max

Emax
A−1

2
1 − max

Emax
A−1

 = O

d2κ+1−γ  . �

Proof of Lemma 5.7. Put u(n) =
1−l(n)r(n)
l(n)(1−r(n)) . It holds that (cf. [15, A.3.19])

B2
tw(t)

−1
l(n)≤t≤r(n)

d
=

V (t)2


0≤t≤u(n), (5.12)

where V (t) is a zero mean Ornstein–Uhlenbeck process with Cov

V (t), V (s)


= exp(−|t − s|/2). Denote with Vn(t) =

V (k/n), k log u(n) ≤ t ≤ (k+1) log u(n). Note that by using the properties ofV (t), one readily verifies that
V (t)−Vn(t)


2 =

O

n−1/2 log u(n)


. Using this together with the Cauchy–Schwarz inequality, one obtains log u(n)

0
V 2(t)− V 2

n (t)dt

1

≤

 log u(n)

0
E
(V (t)− Vn(t))(V (t)+ Vn(t))

dt
≤ C

 log u(n)

0

V (t)− Vn(t)

2dt = O


n−1/2(log u(n))2


. �
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Proof of Theorem 3.9. As in the proof of Theorem 3.3 one derives thatΓ −1
S(n) = τΓ −1

S(n,1) + (1 − τ)Γ −1
S(n,2) + Op


1

,

where thematricesΓ S(n,1) ,Γ S(n,2) denote the pre respectively post-change covariancematrices. Since lim supn→∞ max1≤i≤dndn
j=1

ρ(n)i,j

 < ∞, we have that σmax

Γ S(n,1)


, σmax


Γ S(n,2)


< ∞, uniformly in n. Since both Γ S(n,1) , Γ S(n,2) are clearly

symmetric, we have a corresponding system of orthogonal eigenvectors, and we thus obtain
µ
(n)
k∗+1

t
τΓ −1

S(n,1) + (1 − τ)Γ −1
S(n,2)


µ
(n)
k∗+1 ≥


σmax


Γ S(n,1)

−1
τ + σmax


Γ S(n,2)

−1
(1 − τ)


µ
(n)
k∗+1

t
µ
(n)
k∗+1


.

Using Theorem 3.3 and Corollary 3.6, one thus obtains

sup
λn/n≤t≤1−λn/n

w(t)−1M(n)
t
tΓ −1

S(n)M
(n)
t

 ≥ OP

n

µ
(n)
k∗+1

t
µ
(n)
k∗+1


,

hence the claim follows. �

Proof of Proposition 3.11. Using Boole’s inequality, one may proceed exactly as in the proof of Proposition 1 in [51]. �

6. Gaussian approximation

Let

Xk,h


k,h≥1 be a collection of random variables such that for each h0,


Xk,h0


k≥1 is a zero mean stationary sequence.

Throughout the proofs, C denotes a generic constant that may vary from one formula to another. Recall the notation

Y (≤m)
k,h = E


Xk,h | F k+m

k−m


, (6.1)

Y (>m)
k,h = Xk,h − Y (≤m)

k,h = Xk,h − E

Xk,h | F k+m

k−m


. (6.2)

The Gaussian approximation is obtained under the following Assumption.

Assumption 6.1. Form = mn = nθ , 0 < θ < 1, d = dn = nδ , 0 < δ, ψh > 0 we suppose that

(i) lim sup
n→∞

max
1≤h≤dn

Y (≤m)
k,h


p < ∞, p > 8,

(ii) lim sup
n→∞

max
1≤h≤dn

max
1≤l≤n

 l
j=1

Y (>mn)
j,h


p

= O (1) , p > 8,

(iii) lim sup
n→∞

max
1≤h≤dn

Var


n
k=1

Xk,h


− ψhn

 < ∞.

Remark 6.2. If the above assumptions hold for some m = mn = (log n)λ, one can set θ = 0 in all the conditions given
below that involve θ .

Lemma 6.3. Suppose that suph


∞

j=0 j|φj,h| < ∞. Then Assumption 6.1(iii) holds, and ψh = φ0,h + 2


∞

j=1 φj,h.

Proof of Lemma 6.3. We have

Var


n

i=1

Xi,h


=


1≤i,j≤n

φ|i−j|,h =

n
i=1

n−i
j=1−i

φ|j|,h = nψh + O


∞
i=0

∞
j=i

|φj,h|



= nψh + O


sup
h

∞
j=0

j|φj,h|


= nψh + O(1). �

For a dn-dimensional Brownianmotion

W(n)

t

t≥0 =


W (n)

t,h


t≥0,

0≤h≤dn
, we denote the covariancematrixwithΓ

(n)
W , and similarly,

we write Γ
(n)
S for the covariance matrix of the vector n−1/2S(n). The main Theorem is formulated below.

Theorem 6.4. Suppose that Assumption 6.1 is valid. Then for each n and ν ≥ 2, on a possible larger probability space, there exists
a dn-dimensional Brownian motion


W(n)

t

t≥0 =


W (n)

t,h


t≥0,

0≤h≤dn
such that for some q > 1

P


max

1≤h≤dn
max
1≤i≤n

 i
k=1

Xk,h − ψhW
(n)
i,h

 ≥ n1/ν


= O


n−q ,
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where 0 < ψ2
h = limn n−1Var


1≤i≤n Xk,h


< ∞, and

θ ≤ δ < min


4(p − 2ν)
(−4 + 3p)ν

,
2 + p − 2(1 + θ)ν

(2 + 4θ + p(4 + θ))ν


,

where we require p > 4ν . In addition, we have that max
Γ (n)

W − Γ
(n)
S

 = O

n−γ


, for some γ > 0. Alternatively, if one sets

dn = O

(log n)δ


, for arbitrary δ > 0, then we require

ν < min


4 + 2p
4 + 4θ + pθ + 4θ2 + pθ2

,
2

1 − 2θ
, p/4


.

Remark 6.5. Note that by setting θ = 0 and letting p → ∞, we obtain the upper bound δ < 1/9. In addition, we point out
that conditions (i), (ii) of Assumption 6.1 can be weakened to p > 4, which however leads to a less tractable bound for δ.

Based on this result, we can derive the following two Theorems.

Theorem 6.6. Assume that the assumptions of Theorem 6.4 hold. Then, for each n,we can define two independent dn-dimensional
Brownian motions


W(1,n)

t,h


t≥0 =


W (1,n)

t,h


t≥0,

0≤h≤dn
,

W(2,n)

t,h


t≥0 =


W (2,n)

t,h


t≥0,

0≤h≤dn

P


max

1≤h≤dn
sup

1≤x≤n/2


1≤i≤x

Xi,h − ψhW
(n)
x,h




x1/ν


= O(1),

and

P


max

1≤h≤dn
sup

1≤x≤n/2

 
n−x≤i≤n

Xi,h − ψhW
(n)
x,h




x1/ν


= O(1),

with ν > 2.

Theorem 6.7. Assume that the assumptions of Theorem 6.4 hold, and let λ > 0. Then, for each n, we can define a dn-dimensional
Brownian Bridge


B(n)t


t≥0 =


B(n)t,h


0≤t≤1,
0≤h≤dn

such that

max
1≤h≤dn

sup
λ≤t n≤n−λ

M(n)
t,h − ψhB

(n)
t,h


t(1 − t)

1/2 = OP

1

,

for ν ≥ 2.

Remark 6.8. Note that in both Theorems 6.6 and 6.7 we still have the relationmax
Γ (n)

W −Γ
(n)
S

 = O

n−γ


, for some γ > 0,

for the corresponding Brownian motion. Moreover, it follows immediately from the proof of Theorem 6.4 that one may
replace the norm max0≤h≤dn

·with the l2 norm
·2 in Theorems 6.4, 6.6 and 6.7.

The proof of Theorem 6.4 follows [7, Theorem 4.1] in broad brushes, with some (essential) changes in the details. To this
end, we require some preliminary results. The following coupling inequality is due to Berthet and Mason [10].

Lemma 6.9 (Coupling Inequality). Let X1, . . . , XN be independent, mean zero random vectors in Rn, n ≥ 1, such that for some
B > 0, |Xi|2 ≤ B, i = 1, . . . ,N. If the probability space is rich enough, then for each δ > 0, one can define independent normally
distributed mean zero random vectors ξ1, . . . , ξN with ξi and Xi having the same variance/covariance matrix for i = 1, . . . ,N,
such that for universal constants C1 > 0 and C2 > 0,

P

 N
i=1

(Xi − ξi)


2

> δ


≤ C1n2 exp


−

C2δ

Bn2


.

Lemma 6.10. There is an absolute constant C such that

E


l≤i≤k

Y (≤m)
k,h


p

≤ C

(k − l + 1)⌈m + 1⌉

p/2
.

Proof of Lemma 6.10. Put K = 2⌈m + 1⌉, and denote with ∥ · ∥p = (E| · |
p)1/p. Then per construction, we can rewrite

l≤i≤k

Y (≤m)
k,h = R1 + · · · + RK ,
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where Ri is a sum of independent random variables with at most (k − l + 1)/K terms. Minikowski’s inequality gives us

∥R1 + · · · + RK∥p ≤ ∥R1∥p + · · · + ∥RK∥p.

By Rosenthal’s inequality and Assumption 6.1(i), we have

E
Ri
p ≤ C


(k − l + 1)/K

p/2
= C ((k − l + 1)/K)p/2 ,

hence
l≤i≤k

Y (≤m)
k,h


p

p

≤ C

(k − l + 1)K

p/2
. �

Proof of Theorem 6.4. The proof is based on a blocking and truncation argument, which requires us to have numbers
β, δ, κ, θ, p, q, ν that satisfy the following conditions

(A) max{θ, δ} < β(β + 1)−1,
(B) ν−1

− β(2 + 2β)−1
− κ − 3δ > 0,

(C) ν−1
− (1 − β)(2 + 2β)−1 > 0,

(D) ν−1
− (β/4 + 1/p)(1 + β)−1

− δ/4 − (1 + δ)/p > 0,
(E) 1 < ν−1

+ pκ/2 − δ − θβ(1 + β)−1(p/4 + 1)− θ,
(F) p > 4ν,
(G) β(2(1 + β))−1

= γ + δ.

Whichwewill use as reference, and therefore they are not completely simplified. If we fix γ , θ, p, ν, and suppose that θ ≤ δ,
then using the above inequalities we obtain

ν − 2
ν + 2

< β < min


−2(2 + p − 2ν + 2γ ν + 3γ pν − 2θν)
4 + 2p − 6ν + 4γ ν − 4pν + 6γ pν − 8θν − pθν

,
−16ν + 8γ ν + 8p + 2γ νp

12ν − 8γ ν + 8p − 3νp + 2γ νp
∨ ∞


,

where x∨ y = min(x, y) if x, y ≥ 0, and x∨ y = y if x < 0. Using relation (G) one thus obtains a bound for δ. Note that if we
just require γ > 0, then the above simplifies to

ν − 2
ν + 2

< β < min


−2(2 + p − 2ν − 2θν)
4 + 2p − 6ν − 4pν − 8θν − pθν

,
−16ν + 8p

12ν + 8p − 3νp
∨ 0


.

Alternatively, if we set dn = O

(log n)δ


, then we may set δ = 0 in (A)–(G), and an evaluation amounts to

ν < min


4 + 2p
4 + 4θ + pθ + 4θ2 + pθ2

,
2

1 − 2θ
, p/4


.

We will now construct an approximation for the random variables R(h)i . To this end, we first divide the set of integers
{1, 2, . . .} into consecutive blocks H1, I1,H2, I2 · · · . The blocks are defined by recursion. Fix β > 0. If the largest element
of Ii−1 is ki−1, then Hi = {ki−1 +1, . . . , ki−1 + iβ} and Ii = {ki−1 + iβ +1, . . . , ki}, where ki = min{l : l− (Υ dn)∨mn −1 ≥

ki−1 + iβ}, for some constant Υ > 0, where x ∨ y = max(x, y) for x, y ∈ R. Let | · | denote the cardinality of a set. It
follows from the definition of Hi, Ii that |Hi| = iβ and |Ii| ≥ dn + 1. Note that the total number of blocks is approximately
cn = n1/(1+β), due to (A). For 1 ≤ h ≤ dn, let

U (m,1)k,h =


i∈Hk

Y (≤m)
i,h and U (m,2)k,h =


i∈Ik

Y (≤m)
i,h ,

V (m,1)k,h =


i∈Hk

Y (>m)
i,h and V (m,2)k,h =


i∈Ik

Y (>m)
i,h ,

and define the vectors

U(m,i)k =

U (m,i)k,1 ,U (m,i)k,2 , . . . ,U (m,i)k,dn

T
,

V(m,i)k =

V (m,i)k,1 , V (m,i)k,2 , . . . , V (m,i)k,dn

T
, i ∈ {1, 2}.

Throughout this proof, we will always assume that m = mn = nθ . For a random variable X , let IXB = 1(X){|X |≤B} for B > 0,
and similarly, IXBc = 1 − IXB = 1(X){|X |>B}. In addition, we put EX

B = E

X IXB


. Let

ξ
(m)
k,h = U (m,1)k,h I

U(m,1)k,h
Bn − E

U(m,1)k,h
Bn , η

(m)
k,h = U (m,2)k,h I

U(m,2)k,h
Bn − E

U(m,2)k,h
Bn ,

and define the random vectors

ξ
(m)
j =


ξ
(m)
j,1 , ξ

(m)
j,2 , . . . , ξ

(m)
j,dn

t
, η

(m)
j =


η
(m)
j,1 , η

(m)
j,2 , . . . , η

(m)
j,dn

t
.
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As a first step, we will show that the truncation error is negligible, more precisely, we will show that

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1

U (m,1)j,h + U (m,2)j,h − ξ
(m)
j,h − η

(m)
j,h

 ≥ n1/ν


= O


n−q . (6.3)

To this end, let x > 0. Then the Markov and Lévy’s maximal inequality imply that

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1

U (m,1)j,h − ξ
(m)
j,h

 ≥ x


≤ Cx−2dn max

1≤h≤dn

cn
i=1

U (m,1)i,h − ξ
(m)
i,h

2
2.

Using the Cauchy–Schwarz inequality, we obtain

max
1≤h≤dn

U (m,1)i,h − ξ
(m)
i,h

2
2 ≤

U (m,1)i,h

2
4

IU(m,1)i,h
B

2
4 ≤

U (m,1)i,h

2
4

U (m,1)i,h

p/2
p B−p/2,

which, by Lemma 6.10, is of the magnitude O

(m iβ)p/4+1B−p/2


. We thus obtain that

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1

U (m,1)j,h − ξ
(m)
j,h

 ≥ x


≤ Cx−1dn mp/4+1B−p/2

cn
i=1

(iβ)p/4+1

= O

x−1dn cβ(p/4+4)+1

n B−p/2 .
Setting x = 2n1/ν and B = Bn = nκ , we find that relation (E) establishes O


x−1dn c

β(p/4+4)+1
n B−p/2


= O


n−q


.

By the same argument, one also establishes that

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1

U (m,2)j,h − η
(m)
j,h

 ≥ x


= O


n−q , (6.4)

which together with the previous result gives us (6.3).
Note that per construction and relation (A), choosing the constant Υ big enough, we have that


ξ
(m)
j


j∈N and


η
(m)
j


j∈N

are sequences of independent random vectors. In addition, we have the boundξ(m)j


dn

≤ dn Bn
η(m)j


dn

≤ dn Bn. (6.5)

Hence, by Lemma 6.9, we can define a sequence of independent normal random vectors ξ
(m,∗)
j =


ξ
(m,∗)
j,1 , ξ

(m,∗)
j,2 , . . . , ξ

(m,∗)
j,dn

t ,
such that for x > 0

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1


ξ
(m)
j,h − ξ

(m,∗)
j,h

 ≥ x


≤

dn
h=1

cn
i=1

P

 i
j=1


ξ
(m)
j,h − ξ

(m,∗)
j,h

 ≥ x



=

dn
h=1

cn
i=1

P

 i
j=1


ξ
(m)
j,h − ξ

(m,∗)
j,h


2

≥ x



≤

dn
h=1

cn
i=1

P

 i
j=1


ξ
(m)
j,h − ξ

(m,∗)
j,h


2

≥ x



≤ C1

cn
i=1

d3n exp


−
C2x

2d3nBn


≤ C1cnd3n exp


−

C2x
2d3nBn


.

Hence due to (B), we obtain

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1


ξ
(m)
j,h − ξ

(m,∗)
j,h

 ≥ n1/ν


= O


n−q , (6.6)

for q > 1. Similar arguments show that under the same conditions as above, there exists a sequence of independent normal
random vectors η

(m,∗)
j =


η
(m,∗)
j,1 , η

(m,∗)
j,2 , . . . , η

(m,∗)
j,dn

t , such that

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1


η
(m)
j,h − η

(m,∗)
j,h

 ≥ n1/ν


= O


n−q ,
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for q > 1. By Lévy’s maximal inequality, we have

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1

η
(m,∗)
j,h

 ≥ n1/ν


≤ 2

dn
h=1

P

 cn
j=1

η
(m,∗)
j,h

 ≥ n1/ν


.

By Lemma 6.10, we have that Var

η
(m,∗)
j,h


≤ Cd2n for all j ≤ cn, h ≤ dn. Hence if (D) holds, by known properties of the tails of

a normal cdf, we obtain that

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1

η
(m,∗)
j,h

 ≥ n1/ν


= O


n−q , (6.7)

for q > 1. This yields

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1


ξ
(m)
j,h + η

(m)
j,h − ξ

(m,∗)
j,h

 ≥ n1/ν


= O


n−q , (6.8)

for q > 1.
Let η(m,∗∗)

j =

η
(m,∗∗)
j,1 , η

(m,∗∗)
j,2 , . . . , η

(m,∗∗)
j,dn

t be an independent copy of η(m,∗)j such that η(m,∗)j and ξ
(m,∗∗)
j are independent.

Proceeding as in the proof of [7, Theorem 4.1], by enlarging the probability space if necessary, there exists a dn-dimensional
Brownian motion


Wt

t≥0 =


W (h)

t


t≥0,
0≤h≤dn

, such that

W (h)
ki

=


1≤j≤i

d(h)j


ξ
(m,∗)
j,h + η

(m,∗∗)
j,h


,

where d(h)j is chosen such that
d(h)j (ξ

(m,∗)
j,h + η

(m,∗∗)
j,h )

2
2 = |Hj| + |Jj|.

We will now establish that
d(h)j

2
= 1/ψh(1 + O(j−β)). (6.9)

To this end, note that per constructionξ (m,∗)j,h + η
(m,∗∗)
j,h

2
2 =

ξ (m,∗)j,h

2
2 +

η(m,∗∗)
j,h

2
2 =

ξ (m)j,h

2
2 +

η(m)j,h

2
2.

In addition, Assumption 6.1(ii) implies thatU (m,1)j,h + V (m,1)j,h


2 −

ξ (m)j,h


2

 ≤
ξ (m)j,h − U (m,1)j,h


2 +

V (m,1)j,h


2


=
ξ (m)j,h − U (m,1)j,h


2 + O


1

.

Moreover, it follows from computations performed when establishing (6.3) that
ξ (m)j,h − U (m,1)j,h


2 = O


1

, henceU (m,1)j,h + V (m,1)j,h


2 −

ξ (m)j,h


2

 = O

1

.

Similarly, one gets thatU (m,2)j,h + V (m,2)j,h


2 −

η(m)j,h


2

 = O

1

.

Hence Assumption 6.1(iii) implies that(ξ (m,∗)j,h + η
(m,∗∗)
j,h )

2
2 = ψH


|Hj| + |Jj|


+ O


1

,

and thus (6.9) follows. Relation (6.9) implies that

Var


cn
j=1

(1 − ψhd
(h)
j )(ξ

(m,∗)
j,h + η

(m,∗∗)
j,h )


= O


cn
j=1

j−β


= O

n(1−β)/(1+β)


.

Hence by Lévy’s maximal inequality, it follows from (C) that

P


max

1≤h≤dn
max
1≤i≤cn

 i
j=1


ξ
(m,∗)
j,h + η

(m,∗∗)
j,h


− ψhW

(h)
ki

 ≥ n1/ν



≤ 2
dn
h=1

P

 cn
j=1


ξ
(m,∗)
j,h + η

(m,∗∗)
j,h


(1 − ψhd

(h)
j )

 ≥ n1/ν


≤ CdnP


Zn ≥ n1/ν

= O

n−q



156 M. Jirak / Journal of Multivariate Analysis 111 (2012) 136–159

for q > 1, where Zn is a mean zero Gaussian random variable with Var(Zn) = O

n(1−β)/(1+β)


. Next, it is shown that.

P


max

1≤h≤dn
max
1≤i≤cn

max
ki≤l≤ki+1

 l
j=ki+1

Y (≤m)
j,h

 > n1/ν


= O


n−q , (6.10)

and

P


max

1≤h≤dn
max
1≤i≤cn

sup
ki≤s≤ki+1

W (h)
s − W (h)

ki

 > n1/ν


= O


n−q . (6.11)

To this end, note that by Lemma 6.10 and Moricz et al. [38, Theorem 3.1], it holds that

E

 max
ki≤l≤ki+1

 l
j=ki+1

Y (≤m)
j,h


p/2
 ≤ C


ki+1 − ki

p/4m + 1
p/4 (6.12)

= O

(iβm)p/4


. (6.13)

Using the Markov inequality, we thus obtain

P


max

1≤h≤dn
max
1≤i≤cn

max
ki≤l≤ki+1

 l
j=ki+1

Y (≤m)
j,h

 > n1/ν


≤

dn
h=1

cn
i=1

P


max

ki≤l≤ki+1

 l
j=ki+1

Y (≤m)
j,h

 > n1/ν



≤ Cn−p/ν
dn
h=1

cn
i=1


ki+1 − ki

p/4dn + 1
p/4

≤ C n−p/ν d(p+4)/4
n

cn
i=1

iβp/4 = O

n−p/νc(βp+4)/4

n d(p+4)/4
n


= O


n−p/ν+(βp+4)/(4+4β)+δ(p+4)/4 ,

which proves (6.10) due to relation (D). The same argument also of applies to (6.11), by replacing the maximal inequality of
Moricz et al. [38] by the corresponding results for the increments of theWiener process in Csörgo and Horváth [14]. Piecing
everything together, we obtain that

P


max

1≤h≤dn
max
1≤i≤cn

sup
ki≤s≤ki+1

ψhW (h)
s −

i
j=1

U (m,1)j,h + U (m,2)j,h

 > n1/ν


= O


n−q . (6.14)

Suppose now that

P


max

1≤h≤dn
max
1≤i≤cn

max
ki≤l≤ki+1

 l
j=0

Y (>m)
j,h

 > n1/ν


= O


n−q . (6.15)

This together with (6.10) yields

P


max

1≤h≤dn
max
1≤i≤cn

max
ki≤l≤ki+1

 l
r=0

Xr,h −

i
j=1

U (m,1)j,h + U (m,2)j,h

 > n1/ν


= O


n−q , (6.16)

which together with (6.14) gives the desired approximation result. Hence we need to verify (6.15). To this end, note that
Assumption 6.1(ii) implies that

P


max

1≤h≤dn
max
1≤i≤cn

max
ki≤l≤ki+1

 l
j=0

Y (>m)
j,h

 > n1/ν


≤ Cdncnn−p/ν+1Λn,p, (6.17)

whereΛn,p = max1≤l≤n
l

j=1 Y
(>m)
j,h

p
p. We thus require 1/ν − 2/pδ− p−1(β + 1)−1

− (q+ 1)/p > 0. Using condition (A),
this is true if 1/ν− (2β+1)(pβ+p)−1

− (1+ q)/p > 0. Since by (F) p > 4ν, we can choose a q > 1 such that p > (3+ q)ν,
and it follows that

(2 + q)ν − p
p − (3 + q)ν

< 0 < β, (6.18)

hence this imposes no additional restriction, and (6.15) thus holds.
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Regarding the covariance structure of

Wt

t≥0, note that the blocking and truncation argument has slightly changed the

covariance structure. In order to quantify the error, note first that by stationarity, the covariance structurewithin the vectors
ξ
(m)
j and η

(m)
j is the same for all j, and hence this is also true for the approximations ξ

(m,∗)
j and η

(m,∗∗)
j . Put Ik,i :=


r∈Hk

Xr,i

and IIk,i :=


r∈Ik
Xr,i, and define I(∗)k,i , II

(∗)
k,i in the same manner. Then the Cauchy–Schwarz inequality impliesE


l

k=1

(Ik,i + IIk,i)
l

k=1

(Ik,j + IIk,j)


− E


l

k=1

(I(∗)k,i + II(∗)k,i )

l
k=1

(I(∗)k,j + II(∗)k,j )


≤

Var


l

k=1

Ik,i


Var


l

k=1

IIk,j


+

Var


l

k=1

Ik,j


Var


l

k=1

IIk,i



= O


 l

k=1

|Ik|

l
k=1

|Hk|

 = O

lβ/2+1


mn ∨ dn


= O


n

2+β
2(1+β)


mn ∨ dn


,

which gives us an upper bound for the error which stems from the blocking argument. Using the bound given in (6.3), a
similar argument shows that the error which arises from the truncation of the random vectors U(m,i)k,h ,V(m,i)k,h , i ∈ {1, 2} is

of the magnitude O

n

2+β
2(1+β)−1/4√mn ∨ dn


. Finally, the error which comes from the conditioning argument is of the order

O

n

2+β
2(1+β)


, this follows again by a similar argument as before, using Assumption 6.1(ii). Combining all bounds, we obtain

that the total error is of the magnitude O

n

2+β
2(1+β)

√
mn ∨ dn


. Using relation (G) completes the proof. �

Proof of Theorem 6.6. Using Theorem 6.4, one can proceed exactly as in the proof of [7, Theorem 4.2]. �

Proof of Theorem 6.7. Using Theorem 6.4, one can proceed exactly as in the proofs of Theorems 4.3 and 4.4 in [7]. �

Proof of Theorem 5.4. First note that without loss of generality, we may assume that µh = 0, 1 ≤ h ≤ d, since the
means µh always cancel per construction in M(n)

t . Using the same notation as in the proof of Theorem 3.3, recall that
|f |∗n := supλn/n≤t≤1−λ/nw(t)−1

f (t), wherew(t) = t(1 − t), and

Bw,n =

B(λn/n)1 , B(λn/n)2 , . . . , B(λn/n)dn

t
,

where B(λn/n)h =
Bt,h

∗
n . We will only show (i) in case of dn = O


nδ

, since the other cases (including (ii)) follow in an

analogue manner. We have that|M(n)
t Γ −1

n M(n)
t |

∗

n −|BtΓ
−1
n Bt |

∗

n

 ≤
|(M(n)

t − Bt)
tΓ −1

n Bt |
∗

n

+ |Bt
tΓ

−1
n (M

(n)
t − Bt) |

∗

n


+
|(M(n)

t − Bt)
tΓ −1

n (M
(n)
t − Bt) |

∗

n

.
Using that max |Γ −1

n | ≤ Ln, this is further smaller than|M(n)
t Γ −1

n M(n)
t |

∗

n −|BtΓ
−1
n Bt |

∗

n

 ≤ CLndn

max

Zn − Bw,n
 max

Bw,n+ CLndn

max

Zn − Bw,n
2 .

By Theorem 6.7, we have that max
Zn − Bw,n

 = Op (1). Let ϵ > 0. Since we have Lnd
1/2
n = O


(log n)−κ


, we obtain the

bound

P
|M(n)

t Γ −1
n M(n)

t |
∗

n −|BtΓ
−1
n Bt |

∗

n

 ≥ ϵ

dn


≤ O

1

+ 2P


max

Bw,n ≥ C(log n)κ


≤ O

1

+ dnP


B(λn/n)1 ≥ C(log n)κ


,

for C, κ > 0. Arguing as in the proof of Theorem 3.3, one obtains

dnP

B(λn/n)1 ≥ C(log n)κ


= O(1).

Hence we can choose a sequence ϵn that tends to zero as n increases, such that

P
|M(n)

t Γ −1
n M(n)

t |
∗

n −|BtΓ
−1
n Bt |

∗

n

 ≥ ϵn

dn


= O

1

, (6.19)

hence the claim follows. �
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