

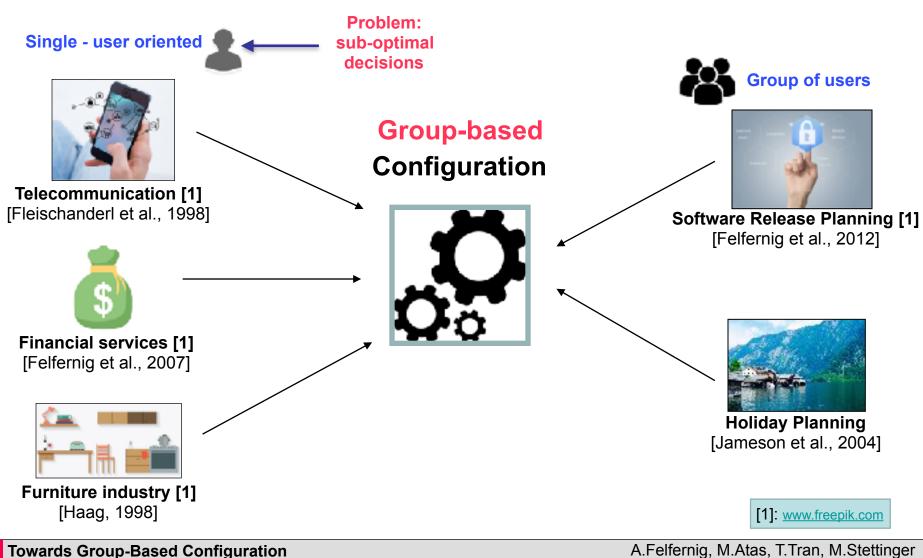
International Workshop on Configuration Toulouse, France, 2016

Towards Group-Based Configuration

Alexander Felfernig, Muesluem Atas, Trang Tran, Martin Stettinger

Institute for Software Technology Graz University of Technology, Austria

{alexander.felfernig,muatas,ttrang,mstettinger}@ist.tugraz.at



Overview of the talk

- Introduction and motivation
- Group-based Configuration
- Resolving inconsistencies in group preferences
- Conclusion and future work

Configuration technologies

Group-Based Configuration

Group-based Configuration Task

- **A group-based configuration task** can be defined on the basis of a Constraint Satisfaction Problem CSP(*V*, *D*, *C*) [Tsang, 1993] where:
 - *V* is a set of variables.
 - *D* represents the corresponding domain definitions.
 - $C = PREF \cup CKB$ represents a set of constraints.
 - $PREF = \bigcup PREF_i$ is the union of customer preferences.
 - *CKB* represents a configuration knowledge base.

E. Tsang, Foundations of Constraint Satisfaction, Academic Press, London, 1993.

Towards Group-Based Configuration

Group-based configuration task: Example

• A group-based configuration task from the *software release planning* domain:

$$\begin{split} V &= \{req_1, ..., req_9\} \\ D &= \{dom(req_1) = [1..3], ..., dom(req_9) = [1..3]\} \\ PREF_1 &= \boxed{pref_{11}: req_1 = 1}, pref_{12}: req_2 = 1, pref_{13}: req_3 = 1, \\ pref_{14}: req_5 = 2, pref_{15}: req_8 = 3\} \\ PREF_2 &= \{pref_{21}: req_3 = 1, pref_{22}: req_4 = 2, pref_{23}: req_6 = 3, \\ pref_{24}: req_7 = 3\} \\ PREF_3 &= \{pref_{31}: req_5 = 2, pref_{32}: req_6 = 3, pref_{33}: req_8 = 3, \\ pref_{34}: req_9 = 2\} \\ CKB &= \{c_1: req_1 < req_5 \ c_2: req_2 < req_8, c_3: req_3 < req_6, \\ c_4: req_3 \neq req_4\} \end{split}$$

Group-based Configuration

• A group-based configuration for a group-based configuration task is a complete set of assignments $CONF = \bigcup a_i : v_i = v_{ai}$ to the variables $v_i \in V$ such that $CONF \cup PREF \cup CKB$ is consistent.

• **Example:** A constraint solver could determine the following solution: $CONF = \{a_1 : req_1 = 1, a_2 : req_2 = 1, a_3 : req_3 = 1, a_4 : req_4 = 2, a_5 : req_5 = 2, a_6 : req_6 = 3, a_7 : req_7 = 3, a_8 : req_8 = 3, a_9 : req_9 = 2\}$

Inconsistencies in Group Preferences

- Group-based configuration scenario: The preferences of individual users differ.
- In Release Planning scenarios:
 - Stakeholders have different preferences regarding the implementation of specific requirements.
 - A stakeholder has no preferences or does not understand the requirements in detail.

How to resolve inconsistencies?

How to resolve inconsistencies?

Showing inconsistent preferences to stakeholders

Minimal *conflict sets* are determined [Junker, 2004]

Stakeholders decide which changes should be performed

Conflict resolution is performed by users manually

Conflicts between requirements can be resolved **automatically** by calculating *minimal diagnoses* for minimal conflict sets.

U. Junker, 'QuickXPlain: Preferred Explanations and Relaxations for Over-Constrained Problems', in 19th National Conference on AI (AAAI04), pp. 167–172, San Jose, CA, (2004).

Towards Group-Based Configuration

What is a conflict set?

- A conflict set $CS \subseteq \bigcup REQ_i$ is a minimal set of requirements such that *inconsistent(CS)*.
- A conflict set CS is **minimal** if there does not exist a conflict set CS' and $CS' \subset CS$

Diagnosis

- Minimal conflict sets can be exploited for determining the corresponding **diagnoses** [Reiter, 1987].
- $\bigcup PREF_i \cup CKB$ is inconsistent, a minimal diagnosis represents a minimal set of requirements that has to be deleted from $\bigcup PREF_i$ such that a solution can be found for the remaining constraints.

R. Reiter, 'A theory of diagnosis from first principles', AI Journal, 23(1), 57–95, (1987).

Resolving inconsistencies: Example

• A group-based configuration task from *software release planning* domain:

$V = \{req_1,, req_9\}$										
$D = \{ dom(req_1) = [13],, dom(req_9) = [13] \}$										
$CKB = \{c_1 : req_2 > req_1 \ c_2 : req_2 < req_8, c_3 : req_3 < req_6, \ c_4 : req_3 \neq req_4\}$										
	Stake- holder	req_1	req_2	req_3	req_4	req_5	req_6	req_7	req_8	req_9
	1	$pref_{11}:$ $req_1 = 2$	$pref_{12}:$ $req_2=1$	$pref_{13}: \ req_3 = 1$		$pref_{14}:$ $req_5 = 2$			$pref_{15}:$ $req_8=3$	
	2				$pref_{22}:$ $req_4=3$		$pref_{23}:$ $req_6=3$		1	
	3					$pref_{31}:$ $req_5=2$	$pref_{32}:$ $req_6=3$		$pref_{33}:$ $req_8=3$	$pref_{34}:$ $req_9=2$

Resolving inconsistencies: Example

• A group-based configuration task from *software release planning* domain:

 $V = \{req_1, ..., req_9\}$ $D = \{dom(req_1) = [1..3], .., dom(req_9) = [1..3]\}$ $CKB = \{c_1 : req_2 > req_1, c_2 : req_2 < req_8, c_3 : req_3 < req_6, c_4 : req_3 \neq req_4\}$

$$CS_1 = \{pref_{11}, pref_{12}\}$$
 $CS_2 = \{pref_{13}, pref_{21}\}$
 $pref_{11}: pref_{12}:$
 $req_1 = 2$ $req_2 = 1$ $pref_{13}: pref_{21}:$
 $req_3 = 1$ $req_3 = 2$

Corresponding set of alternative diagnoses (hitting sets):

$$\Delta_{1} = \{ pref_{11}, pref_{13} \} \qquad \Delta_{3} = \{ pref_{12}, pref_{13} \} \\ \Delta_{2} = \{ pref_{11}, pref_{21} \} \qquad \Delta_{4} = \{ pref_{12}, pref_{21} \}$$

Which diagnoses should be recommended first to the group?

Recommending diagnoses to the group

- Consider the impact of the different diagnoses on the preferences of stakeholders/users.
- Apply group decision heuristics [Masthoff, 2011] to figure out alternatives acceptable for the whole group.
 - Least Misery
 - Average
 - Most pleasure

J. Masthoff, 'Group recommender systems', Recommender Systems Handbook, 677–702, (2011).

Towards Group-Based Configuration

The impact of different diagnoses on stakeholders' preferences

stakeholder	$\Delta_1 = \{pref_{11}, pref_{13}\}$	$\Delta_2 = \{pref_{11}, pref_{21}\}$	$\Delta_3 = \{pref_{12}, pref_{13}\}$	$\Delta_4 = \{pref_{12}, pref_{21}\}$
1	2	1	2	1
2	0	1	0	1
3	0	0	0	0

•
$$\underbrace{\operatorname{Costalliseured}}_{\#users} \underbrace{\operatorname{costalliseured}}_{s \in users} pref_{\delta}(s, \Delta) = dd$$

Evaluation of the different diagnoses using group decision heuristics

stakeholder	$\Delta_1 = \{pref_{11}, pref_{13}\}$	$\Delta_2 = \{pref_{11}, pref_{21}\}$	$\Delta_3 = \{pref_{12}, pref_{13}\}$	$\Delta_4 = \{pref_{12}, pref_{21}\}$	
least misery	2	1	2	1	
average	0.67	0.67	0.67	0.67	
most pleasure	0	0	0	0	

Use ranking criteria "*less is better*" for selecting diagnoses

Towards Group-Based Configuration	
-----------------------------------	--

Conclusion

- Introduce a basic definition for Group-based Configuration task.
- How to deal with inconsistent preferences of group members.
- How to integrate decision heuristics into diagnosis selection processes.

Future work

- Consensus in Group Decision Making:
 - Enrich user interfaces to allow basic negotiation mechanisms among users.
- Fairness in Group Decision Making:
 - The preferences of users discriminated in previous decisions should have a higher emphasis in the new decision.
- Intelligent User Interfaces:
 - Support group-based configuration tasks in a distributed and asynchronous fashion.
- Horizon (2017-2019):
 - Intelligent Recommendation & Decision Technologies for Community-Driven Requirements Engineering.

M. Stettinger, 'Choicla: Towards domain-independent decision support for groups of users', in 8th ACM Conference on Recommender Systems, pp. 425–428, (2014).

Towards Group-Based Configuration

CHOICLA group decision support environment [Stettinger, 2014]

Thank you for your listening!