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Abstract

To determine and compare the performance of different classifiers applied to four-class EEG
data is the goal of the present letter. The EEG data were recorded with 60 electrodes from five
subjects performing four different motor-imagery tasks. The EEG signal was modeled by an
adaptive autoregressive (AAR) process whose parameters were extracted by Kalman filtering.
By these AAR parameters four classifiers were obtained, namely minimum distance analysis
(MDA )—for single-channel analysis, and linear discriminant analysis (LDA), k-nearest-
neighbor classifier (kNN) as well as support vector machine (SVM) classifiers for
multi-channel analysis. The performance of all four classifiers was quantified and evaluated by
Cohen’s kappa coefficient, an advantageous measure we introduced here to BCI research for
the first time. The single-channel results gave rise to topographic maps that revealed the
channels with the highest level of separability between classes for each subject. Our results of
the multi-channel analysis indicate SVM as the most successful classifier, whereas kNN

performed worst.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The growing interest toward brain—computer interfaces (BCI)
is most likely linked to one of their core functions, to establish
a direct connection between the human brain and electronic
or mechanical devices. Recently obtained results underlined
that the application of BCI helps humans to restore their
motor function and communication ability lost through injury
or disease (Birbaumer er al 2003, Pfurtscheller et al 2003,
Wolpaw et al 2002). In order to establish a successful
BCI system, several key components have to be taken into
account, in particular high-quality EEG recordings, subjects’
motivation and involvement, most accurate and fast ways of

signal analysis to discriminate and characterize different brain
states reflected by the ongoing EEG.

In the face of the great variety of different methods
within BCI research that are used to analyze and classify
EEG signals, the comparison of these different approaches
means a necessary evaluation of their potential impact.
For this reason a general competition between several BCI
research groups was initiated so that each participating group
could prove the performance of their approaches. The start
of such a competition means to make a certain data set
available to all participants so that they are able to apply and
adjust their methods. After each group has submitted their
developed classification methods, their individual approaches
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Figure 1. Position of EEG electrodes (a) and timing of the training paradigm (b).

are evaluated by applying them on a new, up to then
(to the participants) unknown ‘test’ data-set. Finally, the
submitted classification methods are ranked based on their
performance. Such a competition is a fair comparison between
different methods and provides important impetus to the
development of BCI research. In the last BCI competition,
held in 2003 (Blankertz et al 2003), the dataset from the
Graz group contained two classes and requested continuous
classification. The 60-channel data set from Graz for the 2005
BCI competition resulted from a four-class classification task.
The current report addresses three main points:

1. Description of the data set (IIla) made available for the
BCI competition 2005.

2. Comparison of the several classification approaches: i.e.
linear discriminant analysis (LDA), minimum distance
analysis (MDA), k-nearest-neighbor (kKNN) classifier and
support vector machines (SVM).

3. Introduction of kappa as an advantageous criterion for
BCI data classification with multiple classes.

2. Data acquisition, preprocessing and
classification methods

2.1. Data acquisition

The data sets were recorded from five subjects, K3, K6, L1,
P19 and Q5 by using a 64-channel Neuroscan EEG amplifier.
The left mastoid served as reference and the right mastoid
as ground. The EEG was sampled with 250 Hz and filtered
between 1 and 50 Hz. A notch filter was enabled to suppress
line noise. The 60 EEG channels recorded were placed
according to the scheme in figure 1.

In fact our training paradigm consisted of a sequential
repetition of cue-based trials. The subjects were seated in a
relaxing chair with armrests and instructed to perform imagery
movements prompted by a visual cue. Each trial started with
an empty black screen; at time point # = 2 s a short beep
tone was presented and a cross ‘+’ appeared on the screen
to raise the subject’s attention. Then at second 3 (f = 3 s)
an arrow appearing for 1.25 s pointed either to the left, right,
upwards or downwards. Each position indicated by this arrow
instructed the subject to imagine either a left hand, right
hand, tongue or foot movement, respectively. The respective
movement imagination should be performed until the cross
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Table 1. Overview of the number of trials for each recording.

Number Number Left Right
Subject  of runs of trials hand hand Foot Tongue
K3 9 360 90 90 90 90
K6 6 240 60 60 60 60
L1 6 240 60 60 60 60
P19 6 240 60 60 60 60
Q5 8 320 80 80 80 80

disappeared at + = 7 s (see figure 1(a) and 2). The next
trial started after a 3.24 s second resting period, while the
EEG was continuously recorded. Each of the four types of
cues was displayed ten times within each run in a randomized
order. No feedback was provided to the subject. The data set
recorded from subject K3 consisted of 9 runs, whereas the data
set of K6 and L1 consisted of 6 runs each. The numbers of
runs and trials recorded from each subject are summarized in
table 1. For the sake of subsequent analysis the data of all runs
were concatenated and converted to the GDF format. Three
data sets (K3, K6 and L1) have been already used for the BCI
competition 2005.

2.2. Preprocessing: feature extraction by estimating
AAR parameters

First, the raw EEG data were down-sampled from 250 Hz
to 125 Hz. Second, to capture the spectral components
(i.e. second-order statistics) of the EEG an AR process
was constructed that modeled the recorded EEG signal.
Mathematically, the AR model (of order p) is described by
the following equation:

- T-
Yk =a1Yk—1t@yk—2t+ -t apyi—p + Xk = Yik—1 a4 + Xk,

where a; express the autoregressive parameters, y; the
observed sample values, x; a zero mean white noise process;
a is a vector of p AR parameters, and y;_; is the vector of the
past p sample values.

In order to consider the variation of the EEG spectrum over
time, the autoregressive parameters have to change over time as
well. Therefore, such kind of parameters are termed adaptive
autoregressive (AAR) ones. The application of this kind of
AR parameters seems particularly indicated in terms of online
and real-time computations. As the calculation of the AR
parameters is concerned Kalman filtering was the method of
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Figure 2. Single-channel analysis of subjects K3, K6, L1, P19, Q5 (from top to bottom): (a) the first column displays the maximum kappa
for each monopolar (diagonal) and bipolar (off-diagonal) channels. (b) The topographic map displays the relative importance of each
electrode. (c) The third column shows the time courses of the kappa coefficient for the three best single channels and the combination of
these three channels. The time courses are smoothed with a triangular windowing function with a length of 0.2 s.
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choice, for several reasons: first, it is an adaptive and, second,
also a causal algorithm (i.e. using only data from the past) and
third, Kalman filtering was shown to be an optimal estimator
in terms of second-order statistics (Schlogl 2000). The update
equations of the Kalman filter are defined as follows:

ek = Yk — Vi1 di
Ok = Vi1 Ak—1 Vi1 + Vi
- Ar_1 V-
ke = k—1Yk—1
Ok

Eik = ak,1 + krex
X = Aro1 — ko1 Ag—

Ak = X+ W,.

Only the covariance matrix Wy, the variance Vj and the initial
values ag and A need to be defined. In order to avoid
initialization effects, the AAR estimation was calculated twice.
The first run provides AAR estimates by using ap = [0, ..., 0],
Ag=Ipxp, Vi =1 —-UC, Wy =1 x UC x trace(Ar_1)/p
with UC = 0.0055 and p = 3. The AAR estimates a, and
the prediction error e, of the first run are used to calculate
the initial values for the second run, using gy = mean{a,},
Ay = cov{a}, Vi = var{e,}, Wy = cov{Aa,} with Ag, =
d; —a;_1. In general, choosing the model order and the update
coefficient means always a trade-off between adaptation speed
and estimation accuracy (Schlogl 2000). Given that the
optimization of parameters is beyond the scope of this study,
we defined both criteria upon our previous experience.

2.3. Classification methods: linear discriminant analysis,
minimum distance analysis and k-nearest-neighbor classifier

LDA is one of the most popular classification methods. The
basic idea of LDA is to find the best discriminating projection
direction so that the distance between the classes is maximized,
while the distance within a class is minimized. LDA is simple,
robust and can be used to produce a continuous BCI output
in time as well as in amplitude (Schlogl et al 1997). The
minimum distance analysis (MDA) was based upon a certain
distance measure, the Mahalanobis distance, assuming for
each class a Gaussian distribution with mean p. and covariance
Y.. The mean u. and the covariance X, define the multivariate
normal probability density function, that corresponds to
class ¢. Any point in the n-dimensional feature space can
be associated with a certain distance to each class c.

The Mahalanobis distance d. (x) of point x with respect to
the multivariate normal distribution N (i, X.) is defined by

~1

d2(x) = (x — o) )_(x — o)’

with mean u. and the covariance X, estimated from the
training samples of class c. Accordingly, for each point x
in the n-dimensional feature space, we yield a distance to each
class ¢ and assign x to the class with the smallest distance.
Using this spatial information, simple and robust statistical
classifiers can be obtained, even for more than two classes.

In the k-nearest-neighbor classifier method, a test sample
is assigned to the class which is most frequently represented
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among the k nearest training samples. The nearest neighbors
are determined by calculating the Euclidean distance function
between those samples.

23.1. Support vector machine. SVM 1is a strong
classification method which has demonstrated its excellent
generalization property in various applications, e.g. the
object recognition from an image (Osuna et al 1997), the
classification of hand written characters (Oliveira and Sabourin
2004) and the speech recognition (Ganapathiraju et al 2004).
Moreover, SVM have been also applied in BCI research by
Miiller et al (2003). To correctly predict the class to which
an unseen test sample belongs, SVM calculates the decision
hyperplane with the largest margin.

We may assume N training samples x; € R", each
associated with a class label y; € {+1,—1},i = 1,...,N.
The standard SVM solution is derived from the following
optimizing problem (Cortes and Vapnik 1995):

N
1
. T
mm -—-—w w+c¢ H
w.b.E 2 Z:S,
iz

subject to y; (w” ®(x;) +b) > 1 — &,
£>0, i=1,...N,

where w is the normal vector and b is the bias of the separation
hyperplane. In case ®(x) = x SVM is a linear classifier.
Otherwise, if ® maps x to a higher dimensional space, the
SVM is termed nonlinear.

In case the training data cannot be separated without
error, the slack variable & > 0 and the penalty parameter
C > 0 have to be introduced. As a consequence, a training
sample is allowed to be a small distance & on the wrong
side of the hyperplane without violating the stated constraint.
But the performance of SVM is not only determined by the
available training samples, rather by the penalty parameter C
as well. Therefore, the choice of an appropriate value of C is
an essential part of the SVM classification method.

In practice, the optimization problem mentioned above
is usually solved in its dual form, providing the advantage of
simpler constraints:

min, 30" Qo — e’

subjectto 0 < o; < C, i=1,...,N,

yTot =0,
where e is the vector of all ones, Q is an N x N positive
semidefinite matrix, Q;; = ¥;y;K(x;, x;), and K (x;, x;) =
D(x)Td(x ;) is the kernel function. The decision function is

sgn (Z yiei K(x;, x;) +b) .

2.3.2. Solving multi-class problems with binary classifiers.
Since originally LDA and SVM were designed for binary
classification problems, an extension for multiple classes is
needed. A traditional and straightforward way to comply with
this need is the combination of several binary classifiers to
construct a multi-class classifier. Alternatively, algorithms
can be used that consider all classes at once. For example,
in the case of M-class LDA, as proposed by Duda et al
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(2001), the n-dimensional feature vectors are projected into
a (n — 1)-dimensional subspace and a further classifier (e.g. a
nearest-neighbor classifier) is used to create the full classifier.
contrast, the combination of binary LDA does not need a
second classifier. In the case of SVM, the optimization task
of the combined SVM is smaller and easier to solve than a
multi-class SVM. The combined SVM is almost as effective
as the multi-class SVM, if the underlying binary classifiers
are tuned appropriately (Rifkin and Klautau 2004). We have
applied the combination of binary classifiers to our four-class
EEG analysis for its simplicity.

Two approaches to extend binary classifiers are available
to solve a M-class problem: the one-versus-rest and the
one-versus-one schemes. In the one-versus-rest scheme M
binary classifiers are constructed by training the ith classifier
through labeling the samples of the ith class as positive and the
remaining samples as negative. In the one-versus-one scheme,
however, one classifier is constructed for each pair of classes.

In total
K\ k! Ckx (k=1
2] (k=2)! x 2! 2

binary classifiers are necessary for the different pairs of classes.
For both schemes, the class of a test sample can be predicted
by majority voting, i.e., the test sample is labeled by the class
with the most numbers of votes. If ties or contradictions arise
in the voting, the test sample can either be rejected or assigned
to the class with largest prior probability. The latter was used
in this analysis. Although the one-versus-one scheme seems
slightly more complex than the one-versus-rest scheme, we
preferred the one-versus-one scheme in our analysis, following
the assumption that it may be more suitable for practical use
(Hsu and Lin 2002).

3. Experiments and results

3.1. Evaluation criteria—the kappa coefficient

In an M-class classification problem, the proper evaluation
of the classifier is described by its confusion matrix defining
the relationship between the ‘true’ classes and the output of
the classifier. From the confusion matrix H, we can derive the
classification accuracy ACC (overall agreement)

> Hii
ACC = po = =i it
Po N

and the chance expected agreement
N Z,‘ Noi X Njo
Pe= " NxN
where N =}, > H;; is the total number of samples, H;; are
the elements of the confusion matrix H on the main diagonal,
Nyi, N, are the sums of each column and each row, respectively.
Then the estimate of the kappa coefficient «
oo o= pe M x po—1
1— p. M -1
and its standard error se(«x) is obtained by
\/po + Pg - Zi[noi X Njp X (noi + nia)]/N3
(1 pe)/'N

)

se(k) =

with chance probability p, = 1/M. For more details see also
Cohen (1960), Bortz and Lienert (1998) and Kraemer (1982).
To compute the kappa coefficient, we used the implementation
realized in the BIOSIG-toolbox (Schlogl 2004).

3.2. Cross-validation

For cross-validation we chose a trial-based leave-one-out
method (LOOM). We estimated the accuracy of a classifier
by training the classifier m separate times, where m is the
number of trials. Each time we removed one different trial
from the previous data set and trained the classifier with the
remaining trials. Then, we applied this developed classifier
to each sample of the test trial. Accordingly, we calculated
a classification result for each point in time and each trial,
obtaining a time course of the classification result. LOOM
was used in combination with each of the presented classifiers.
All results presented here were obtained through this cross-
validation procedure.

3.3. Single-channel analysis

In order to specify the importance of each channel (i.e.,
electrode position) for the classification result, the AAR
parameters (model order p = 3) were estimated for
every monopolar channel (total 60) and for every possible
combination of bipolar channels (60 x 59/2 = 1770). These
bipolar channels were calculated by taking the difference of
two monopolar channels. Accordingly, 1830 single-channel
AAR estimates were obtained. Next, the AAR estimates (based
on the data down sampled from 250 to 125 samples per second)
from each trial were divided into segments of 25 samples (i.e.
0.2's). For each segment an MDA classifier across all trials was
calculated and applied to the same segment. Accordingly, an
average kappa value for each segment was obtained. Within
the interval of t = 0 to 7 s, the segment with the largest
kappa value was used to obtain a classifier. The classifier
was validated using leave-one-out method for cross-validation.
This provides a time course of the kappa value for each of the
1830 channels. This algorithm is available through BIOSIG
(Schlogl 2004).

The maximum kappa coefficient of each time course has
been put into a 60 x 60 matrix at the position indicated by the
respective channels (see first column of figure 3). The diagonal
positions indicate the results from the monopolar channels,
while all other positions display the results of bipolar channels.
In order to validate the relative importance of each channel, the
average of all maximum kappa coefficients over all channels
was calculated. This average of all channels can be calculated
by taking the average of all rows (or columns because of the
symmetrical structure) of the 60 x 60 matrix. The average
values are associated with each electrode and are displayed
as a topographic map (second column of figure 3). The
third column of figure 3 depicts the time course of the kappa
coefficient for those three channels which yielded the largest
kappa value, taking care that no channel was selected more
than once. The legend lists those bipolar channels which
provided the best results.
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Figure 3. A comparison of kappa coefficient generated from linear SVM, LDA and kNN output. The classifiers were applied to analyze the
four-class, 60-channel EEG recorded from subject K3, K6, L1, P19 and Q5 where the 180-dimensional feature vectors extracted by

estimating the AAR-parameter of model order 3 were used as input.

Table 2. Classification results of the best single channel. TI
indicates the segment for calculating the classifier, ACC indicates
the overall accuracy, and « =+ se(x) indicates the kappa coefficient
with its standard error. The positions of the channels are shown in
figure 1.

Subject  Channels TI (s) ACC (%) « % se(k)

K3 #3—#34 6.6-6.8 56.9 0.425 £ 0.050
K6 #24-#41 5.0-52 465 0.288 £+ 0.054
L1 #22-#33  6.2-64 485 0.313 £ 0.056
P19 #28-#17 5.8-6.0 544 0.392 £+ 0.059
Q5 #30-#29 6.6-6.8 53.8 0.383 +0.051

The comparison of tables 2 and 3 reveals that in two data
sets, K3 and L1, the three-channel case provide better results
than the single-channel case, but with K6 the single-channel
result is more advantageous. In both tables, K6 is indicated
to show the worst overall performance and no prominent
electrode over the sensory-motor area was determined

(figure 3). In general, all data sets with high performance levels
reach even higher results by adding more channels. Adding
more channels to the data sets with low performance, however,
did not increase the classification result.

3.4. Multi-channel analysis

The multi-channel analysis is based on all recorded
60 channels, for each of them the features were determined
by estimating the AAR parameters (model order p = 3, update
coefficient UC = 0.0055 and AAR parameters estimated by
Kalman filtering). The EEG of each trial was represented
as a n x S matrix, where n = 60 x 3 = 180 constitutes
the dimension of the samples. After the down-sampling from
250 Hz to 125 Hz each 8 s trial gives rise to 125 Hz x 8 s =
1000 samples. As in the single-channel analysis, each trial
was divided into smaller time segments with a length of 0.2 s
(25 samples) and the separability for each segment was
calculated.

Table 3. Classification result using the AAR parameters of the three best single channels; a model order of 3 was used for each channel
resulting in nine features. The ‘channel’ column shows the three best single channels for each subject; TI indicates the segment for

calculating the classifier, ACC indicates the overall accuracy, and « +
channel positions are shown in figure 1.

se(k) indicates the kappa coefficient with its standard error. The

Subject  Channels TI (s) ACC (%) «k =% se(x)

K3 #34—#3, #23—#14, #19-#12 5.8-6.0 66.6 0.555 £+ 0.054
K6 #41-#24, #50—#34, #49-#25 6.8-7.0 38.5 0.180 £ 0.049
L1 #33—#22, #44-#31, #34-—#28 6.4-6.6 49.5 0.327 £ 0.056
P19 #18—#17, #40—#39, #42-#34  6.0-6.2 57.7 0.432 £ 0.062
Q5 #30-#29, #24-#16, #23—#22 6464 55.2 0.402 £ 0.052
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Table 4. Best classification results using LDA, kNN and linear SVM. TI indicates the segment (time point) for calculating the classifier,
ACC indicates the overall accuracy, and « £ se(x) indicates the kappa coefficient with its standard error. The number of the nearest
neighbor k used in kNN classifier and the penalty parameter C used in SVM are given in brackets in the first column of kNN and SVM part
respectively. These results show that SVM is more suitable to classify high-dimensional data sets.

LDA KNN SVM
Subject TI(s) ACC (%) « =+ se(k) TI (s) (k) ACC (%) K = se(x) TI (s) (C) ACC (%) K = se(x)
K3 56-58 68.4 0.578 £ 0.055 6.8-7.0(50) 465 0287 £0.045 6.6-68(1) 772 0.695 %+ 0.059
K6 6.0-6.2 459 0.278 £0.054 5.0-5.2(50) 35.9 0.145 £ 0.047 5.6-5.8(10) 52.4 0.366 %+ 0.058
L1 4446 435 0.246 £ 0.052 6.8-7.0(50) 355 0.140 £ 0.046  6.6-6.8 (100) 53.9 0.386 %+ 0.059
P19 6.6-6.8 53.6 0.381 £0.059 6.8-7.0 (100) 45.6 0.275 £0.054 5.0-5.2 (100) 64.0 0.520 % 0.065
Q5 6.2-64 609 0.479 £0.055 5.8-6.0 (100) 45.2 0270 £0.046 6.0-6.2(50) 67.5 0.566 + 0.058

Table 5. Statistical significant differences (#-value) between classifiers. A positive 7-value indicates that the column classifier is better than

the classifier indicated in the corresponding row; a negative z-value indicates that classifier of the corresponding column is better than the

classifier of the row.

t-Value MDA (1) MDA (3) LDA (60) kNN (60) SVM (60)
MDA (1) NA 0.50 0.80 —12.73 (***)  3.98 (**)
MDA (3)  —0.50 NA 0.38 —4.11(*) 539 (%)
LDA (60)  —0.80 —0.37 NA —4.71 (%) 9.80 (***)
INN(60) 1273 (%  4.11(%) 471 (% NA 8.45 (***)
SVM (60) —3.98 (%) —539(*) —9.80(**) —845(**) NA

One, two and three stars indicate that the significance level has reached p = 5%,

1% and 0.1%, respectively.

We combined the binary LDA and SVM classifiers by
using the one-versus-one scheme and the majority voting.
Whenever ties during the voting process emerged, we allocated
the sample to the class which had reached the maximal
sum of all decision values (i.e., the distance between the
decision hyper plane and the sample point). The classification
results are summarized in a sequence of confusion matrices;
specifically we extracted the time course of accuracy or the
one of the kappa coefficient.

For kNN, the following values were chosen as numbers
for the nearest neighbor £: 5, 10, 50, 100 and 200. The SVM
penalty parameter C was set to the values 1, 10, 50 and 100.
Table 4 shows the comparison of the most accurate LDA, ANN
and linear SVM classification results, which were calculated
individually for each subject. The corresponding parameters
of the results are listed in the first column for each classifier.

Figure 3 represents the classification results of the four-
classe EEG as time courses of kappa coefficients. These results
indicate SVM as more effective than LDA that was in turn more
efficient than kNN. In most cases, the time course of the kappa
coefficients reveals a similar characteristic differing only in
the overall performance. An exception is the result of subject
L1 insofar as the peak of the LDA-based time course appears
much earlier (r = 4.5 s), whereas the SVM-based peak does
much later (t = 6.7 s).

3.5. Statistical comparison

In total, results from five different classifiers have been
obtained. First, AAR parameters (p = 3) of each possible
bipolar channel were applied to MDA (table 2). Second,
the AAR parameters of the three channels with the best
classification results were also applied to MDA (table 3).
Third, the AAR parameters obtained from each of the 60

channels were applied to LDA, k-nearest neighbor and an SVM
classifier. The kappa values together with their confidence
intervals (see tables 2, 3 and 4) prove that all classification
results are significantly above a chance classification.

In order to compare the different classification approaches
the accuracy and kappa values (listed in tables 2, 3 and 4) were
subjected to statistical analysis. The z-value of the differences
between each pair of classifiers were calculated; with 4 degrees
of freedom a #-value larger than 2.78 is with error probability
p < 5% statistically significant.

Table 5 contains the f-values resulting from the
significance test of the differences between -classifiers.
Accordingly, SVM reached significantly better results than any
of the four other classifiers, whereas kNN was significantly
worse than the rest. The difference between single-channel
MDA, three-channel MDA, and LDA with all 60 channels
failed to reach statistical significance. Table 5 lists the results
of the kappa coefficients. The same analysis performed with
the ACC criterion yielded the same results.

4. Discussion and conclusion

Five different classification approaches were applied and
compared with each other: single-channel MDA, MDA based
on the three best channels, LDA using 60 channels, SVM
using 60 channels and ANN using 60 channels. Looking
at both linear classifiers, SVM and LDA, SVM performed
significantly better than LDA. Two related explanations should
be raised:

(i) The three AAR parameters were calculated in this study
for each of the 60 channels resulting in a total feature space
of 180 dimensions, while only 240 to 320 trials were used
to build a classifier. The ratio between 180 dimensions and
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less than twice as many independent samples demonstrate
that the ‘curse of dimensionality’ cannot be neglected. To
overcome the ‘curse of dimensionality’ problem is one of
the main advantages of SVM.

(ii)) LDA requires the estimation of the inverse of the
covariance matrix to determine its weight factors. If the
dimensionality of the data is high and only few samples
are available, then, generally, the estimate of the
covariance matrix and its inverse is bad (Duda e al/ 2001).
SVM does not depend on the covariance matrix and,
therefore, is not affected by this limitation.

LDA and MDA performed significantly worse than SVM.
However, the advantage of these two statistical classifiers
is their low computational effort. We used this advantage
to investigate all possible bipolar and monopolar channels.
In the face of the similarity of the MDA and LDA results
no statistically significant difference is observed.  This
observation complies with the general property of robustness
of statistical classifiers.

As indicated by our results, the neural network ANN
performed worst, even worse than the single-channel result.
A previous study pointed to the same direction (Schlogl 2000,
pp 36-7) showing that learning vector quantization (LVQ)
reached a lower degree of accuracy than LDA. Given that
both, LVQ and iANN, are the classifiers based on neural
networks. This raises the question, whether neural network-
based classifiers are in general less suited to classify AAR
parameters.

Often it is more convenient for the subject to use only
a limited number of electrodes (i.e. channels). Therefore,
to evaluate each single channel in its discriminative power
we performed a minimum distance analysis based on the
mahalanobis distance (MDA). The results revealed a similar
performance as compared to LDA with multi-channel data.

The single-channel analysis uncovers the relative
importance of each electrode position. The dominance of
electrodes in the single trial analyses (e.g. figure 3) that overlay
the sensorimotor and premotor areas and especially the hand
representation area confirms the modulation of sensorimotor
rhythms during motor imagery. McFarland et al (1997) used
the 72 to measure the proportion of the total variance of the mu
and or beta rhythm amplitude accounting for the user’s target
location and underlining the importance of electrode locations
at or close to C3 and C4 for BCI applications. In another
single-trial motor imagery study Pregenzer ez al (1995) applied
the distinction sensitive learning vector quantizer (DSLVQ)
and reported the best separability between left and right hand
motor imagery with signals recorded from electrode positions
C3 and C4. The activation of sensorimotor areas during
movement imagination could be quantified by EEG studies
(e.g., Neuper and Pfurtscheller 1999) but was measured also
indirectly in fMRI studies (e.g., Ball et al 1999, Porro et al
1996). All this evidence underlines the importance of the
Rolandic mu and central beta rhythms for the realization of
an EEG-based BCI and the attainment of control over brain
oscillations.

The current work made use of the advantageous method
of AAR parameters, allowed a low-dimensional feature space
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(compared to other spectral features), and no feature selection
was necessary. The model order p = 3 and the update
coefficient were selected according to unpublished results from
different data sets using an MDA classifier. This study did not
include any optimization of the model order nor of the update
coefficient. Therefore, as a matter of fact, optimization of the
model order and/or the update coefficient provides room for
further improvement.

Given the fact that a rather limited number of independent
trials (60 to 90) were available for each class, we implemented
a cross-validation using a trial-based leave-one-out method
(LOOM). LOOM was applied successfully already by one
of the earliest works in the field of BCI research (Keirn and
Aunon 1990). The striking advantage of LOOM rests on its
ability that even in the presence of small sample sizes efficient
and unbiased cross-validation is reached.

Generally, the usefulness or rather the property of a
classifier with several classes is characterized by the confusion
matrix. From the confusion matrix the accuracy as well as
Cohen’s kappa coefficient (Cohen 1960) can be derived. If all
M classes occur equally frequent, kappa « and accuracy ACC
can be related to this equation:

M x ACC —1

K = o —1 .

However, if their occurrence is not equally distributed, the
kappa coefficient has to be preferred since in this way the
higher rates of occurrence of some classes are compensated. In
other areas such as in sleep classification research (e.g. Danker-
Hopfe et al 2004, Anderer et al 2005) the kappa coefficient
is already established. The current work is an attempt to
introduce Cohen’s kappa to the field of BCI research.

In summary, this four-class BCI data of five subjects
were examined on various aspects: determining the overall
separability with statistical, neural network-based and support-
vector-machine-based classifiers, comparing these approaches
with each other and, finally to estimate the discriminative
power of specific electrode positions.

Three data sets (K3, K6 and L1) have also been used for
the BCI competition 2005. It will be of interest to compare
the results of this work with the submissions of the BCI
competition. Overall, a classification accuracy of between
52% and 77% and a kappa between 0.36 and 0.70 were
obtained.
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