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Abstract

Project cost and duration are two very important aspects in project planning.
Based on data of past projects it is of interest how project cost and duration develop
over the years. This thesis analyzes this and associated questions for projects of
the semiconductor industry using mainly multivariate linear regression. The main
issue is that one third of the underlying dataset are running projects, for which
no final cost and duration is available. As estimations at project start turn out
to be biased, the idea is to generate models based on closed projects to apply
on running projects. By examining project structure in detail it is possible to
use additional project information to improve the model predictions significantly.
Using the resulting predictions, 240 different trends are analyzed: Over the years
durations mainly decrease and duration estimations improve. Project costs are
more or less constant, while estimation errors increase.
As the analysis is performed with the statistical software package R, another focus
is on usage of the graphical package ggplot2. Most graphics are produced with
this package and main functionalities are coded in presented functions.
This master thesis is a continuation of Sponers master thesis (2009) and is written
in collaboration with ams AG, Unterpremstätten.

Kurzfassung

Projektkosten und -dauer sind sehr wichtige Faktoren in der Projektplanung.
Basierend auf Daten von vergangenen Projekten, ist die Entwicklung dieser Fak-
toren im Jahresverlauf von Interesse. Diese Arbeit analysiert diese und ähnliche
Fragestellungen für Projekte aus der Halbleiter Industrie mittels multipler linearer
Regression. Laufende Projekte, die ein Drittel des Datensatzes ausmachen, spie-
len eine zentrale Rolle, da für diese keine tatsächlichen Projektkosten und -dauern
vorhanden sind. Schätzungen zu Projektstart stellen sich als verzerrt heraus, wes-
halb Modelle basierend auf abgeschlossenen Projekten erstellt werden, um diese
dann auf laufende Projekte anzuwenden. Zusätzlich können die Modellschätzun-
gen durch tiefgreifende Analysen der Projektstrukturen signifikant verbessert wer-
den. Darauf aufbauend werden 240 verschiedene Trendanalysen durchgeführt: Die
Projektdauer sinkt im Zeitverlauf vorwiegend und die zugehörigen Schätzung-
en verbessern sich. Projektkosten bleiben durchschnittlich konstant, während die
Schätzfehler steigen.
Die Analysen werden mit dem Statistik-ProgrammR durchgeführt, im Zuge dessen
auch Wert auf die Verwendung des Grafikpaketes ggplot2 gelegt wurde. Der
Großteil der Grafiken wurde mit diesem Paket erzeugt und die wichtigsten Funk-
tionalitäten in Funktionen kodiert.
Diese Masterarbeit ist eine Weiterführung der Masterarbeit von Sponer (2009)
und wurde in Zusammenarbeit mit der Firma ams AG, Unterpremstätten verfasst.
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Chapter 1.

Introduction

Project cost and duration are two very important aspects in project planning.
Based on data of past projects it is of interest how project cost and duration
develop over the years.

• Do projects tend to cost more or less?

• Do projects tend do last longer or shorter?

• What influences these factors and how?

• How can project cost and duration be estimated at project start?

Answering these questions aid on getting deeper insight in the structure of projects,
which can give crucial information on project planning.

This thesis uses methods of statistical analysis, especially multiple regression anal-
ysis, to give insight into product development projects of the semiconductor in-
dustry. The analysis is performed with the statistical software package R (see
appendix B, R-Packages and Functions). Below research objectives are given, that
are analyzed in detail based on project data covering several years.

The collaboration partner for this thesis is ams AG, an Austrian company with
headquarters in Unterpremstätten that develops and delivers analog semiconduc-
tors. The company ams has about 1300 employees in over 20 countries worldwide.
The main market fields of ams are consumer, industrial, medical, mobile commu-
nications and automotive markets (ams AG [1]).

Research Objectives

Beside many side questions of interest the main research objectives are as follows:

1. Is the database sufficient?
The given dataset covers a wide range of product development projects. At
the same answers are needed for the question, which part of data is sufficient
to give significant results and which parts cover not enough data.

1



Chapter 1. Introduction

2. How do project cost and duration develop over the years?
Is there a trend of project cost and duration or are these factors stable over
time? If there is a trend: Where does it come from? Special interest is on the
last few years of the data.

3. Did estimations of project cost/duration get better over the years?
At project start duration and cost are estimated. The question is how good
these estimations are and how their quality develops over the years.

4. How to get faster and cheaper?
When analyzing cost and duration of a project it is of interest what these
factors are influenced by. Also the question arises how these influences can
be described.

In 2009 Sponer [21] gave answers on similar questions. This thesis can be seen as
a continuation of her work. Due to comparability, here a similar thesis structure
is chosen.

Thesis Structure

The central part of this thesis is to analyze the given dataset according to the
research questions stated above. Chapter 2 describes the whole practical analysis
process. After the database and its structure is examined, a closer look on the
variables is given by using exploratory data analysis (EDA). Based on this an
overview of the analysis approach is given. First models based on data at project
start are generated. These models are improved by further analysis. As a main
part of the analysis the trend analysis and its results are presented. Finalizing the
practical part, models of the previous thesis by Sponer [21] are applied to the
new data.

The practical analysis is supported by theory in chapter 3 Theoretical Fundamen-
tals. The theory about linear regression models is extended by methods on diag-
nosing the models. A focus is also laid on methods in selecting “the best model”
from a set of possible models.

The final chapter 4 Conclusions firstly provides a short summary of the main
aspects of the analysis. After implications and interpretations are given, possible
future prospects are discussed.

Appendix A Common Statistical Distributions states the most common statistical
distributions within the context of this thesis. As the analysis is done with the
statistical package R, appendix B R-Packages and Functions briefly describes R
and states the most important packages used. Finally appendix C Self Written R
Functions lists the source code of some by the author self written functions, that
may be of interest to the reader.

2



Chapter 2.

Practical Analysis

2.1. Database

The data is based on development projects starting from the year 2000 up to the
beginning of 2013. It can be seen as a snapshot of project status at the date of
data extraction. For this analysis a raw dataset of development projects with all
corresponding variables was generated.

Thus for a single project many different variables are given. For the purpose of
this analysis these variables are sorted out by relevance, to have only the needed
variables left. The same is done with the set of projects. These steps as well as
other critical steps to form the final database are briefly described in section 2.1.1,
Data Preparation.

For confidential reasons the raw data as well as the final data used to analyze
are not provided within this thesis. Instead characteristic numbers of the data
can be found in section 2.1.2, Variables, where the variables used for analysis are
described.

To apply statistical analysis different models are used to describe the data. These
models underly certain assumptions on the data. Some of them can be checked
for example by hypothesis tests, others have to be assumed. Hypothesis tests are
mentioned where needed and general assumptions are stated in the Assumptions
section 2.1.4. For general assumptions about the models please see chapter 3,
Theoretical Fundamentals.

2.1.1. Data Preparation

As the basis of the database consists of user input, the first step before starting to
analyze the data is to prepare it.

3



Chapter 2. Practical Analysis

According to Stadlober [23] the three steps of critical data inspection are to
check

• integrity,

• consistency and plausibility,

• actuality and utility.

Applying these steps to the raw data results in the following tasks:

Data Format: The raw data is given in a comma-separated values (CSV) format.
For reading a CSV file it is important to be careful about special characters.
Especially the separation sign, the sign for the decimal point and, if used,
the quotation sign need to be identified.

If quotation signs are used, each opened quotation also has to have a closing
quotation sign within the respective cell, to keep different entries separated.
If the quotation sign is used within a data entry, it has to be replaced by an
alternative sign, so that multiple entries are not get treated as one.

After these modification steps the data can be read into R by the read.csv2
function (R-package utils, which is part of R).

Missing Values: In the raw database missing values are marked by different iden-
tifiers. So missing values have to be identified and denoted by a unique
identifier. Here the R built in identifier NA is used, which stands for “not
available”.

Where possible missing values are filled with correct values. For getting the
missing information other databases and user information are used.
Where correct values were not available missing value imputation methods
were used partly. Especially the principle of the Last Value Carried For-
ward (LVCF) technique (see Todorov and Templ [28]) was used, where
logically applicable.

Data Validation: The nature of data based on user input is that errors may occur.
For that reason the data has to be validated and corrected where possible.

The consistency and plausibility of the data is checked by logical relations.
For example outliers are rechecked, variable sums are validated, where the
sum is given or dates with a certain order are compared.

Extract Information of Interest: Some variables in the data are not of interest
for this analysis and some variables contain redundant information. This
unnecessary information is sorted out to have only basic variables left.

The raw database contains general development projects. Here only product
development projects are of interest. Hence product development projects are
filtered out by certain criteria to define the fundamental of the final dataset.
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2.1. Database

Data Rearrangement: To meet the needs of R and its functions for statistical
analysis as well as the research questions, the data was rearranged. This
includes

• extracting coded information,

• combining variables to new variables,

• creating new variables for categorizations,

• and harmonizing variable units.

The raw dataset consists of several CSV files. Thus within R they are com-
bined to a single dataset containing all information of interest.

Data Anonymization: As the data includes confidential information, variables are
partly anonymized for this publication.

The anonymization does not affect the statistical analysis itself.

2.1.2. Variables

For the analysis basic variables are used. These variables are chosen so that they
contain no overlapping information as far as possible and on the same time reflect
the core information of a product development project. The basic variables used
for analysis are named and briefly described in table 2.1. Table 2.2 states ranges
and units for each variable.

Table 2.1.: Variable names and descriptions

Name Description
dur_est & dur_act estimated & actual project duration
finance financial project type
bu business unit
proj_start project start
status project status
cost_est & cost_act estimated and actual total engineering

cost (project cost)
eng_h engineering hours
purch_c purchased cost
mat_c material cost
nre net revenue engineering
chip_asp single chip average sales price
chip_c single chip cost

Continued on next page
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Table 2.1 – continued from previous page

Name Description
tech size of the technology
die_size size of a single die (die size)
sort_t and test_t sort and test time
reuse effort for chip design and layout (reuse)
yield yield
pin_ct number of chip pins (pin count)

Remark 2.1

• The variable reuse ∈ [0%, 100%] describes the effort of chip design and
layout in the following way:

– reuse = 0% means that everything has to be built newly.
– reuse = 100% means that the chip design of an already developed chip

can be completely reused.

Practically reuse ranges within 10% to 90% most of the time.

• A project has a project start (the date is indicated by proj_start), at which
variable values are estimated to get an impression of the project. The esti-
mations of project cost and project duration are marked by the extension
_est.

• The extension _act for project cost and duration indicates the final or actual
value2. Actual values are collected on project closure.

• For describing project duration the time gap between project milestones
named M2 and M8 is chosen. This information provides the most accurate
and most comparable measurement of project duration within the given data.
It shall be noted that this duration does not reflect the complete project
duration, but the essential part of product development.

• The horizontal lines in table 2.1 as well as in table 2.2 mark, beside head
and foot line, variable categories in the following order:

– basic project information
– project cost information
– sale information and
– technical chip information

2This meaning changes for projects that are still running, as no final values are known yet (see
remark 2.2).
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2.1. Database

Table 2.2.: Variable ranges and units

Name Range Unit
dur_est & dur_act [0.08, 8.89] years
finance {F1, F2} categorical
bu {BU1, BU2, BU3, BU4} categorical
proj_start [2000-03-24, 2013-01-07] date
status {running, closed} categorical
cost_est & cost_act [0.005, 4.616] million Euro
eng_h [0, 29155] hours
purch_c [0.00, 1.31] million Euro
mat_c [0.00, 1.15] million Euro
nre [0.00, 1.77] million Euro
chip_asp [0.00, 23.30] Euro
chip_c [0.00, 9.89] Euro
tech {0.13, 0.35, 0.6, 0.8} µm

die_size [0.26, 150.51] mm2

sort_t [0.00, 75.00] seconds
test_t [0.00, 51.50] seconds
reuse [5, 100] %
yield [50.0, 99.7] %
pin_ct [3, 484] pins

As remarked the variable name extensions _est and _act mark estimated and
actual values of the two response variables duration and cost. To mark the same
for most of the other variables the following extensions are used:

_f: the estimated value at project start. It is the variable value of the first work-
statement3.

_l the estimated value at project end/closure4. It is the variable value of the last
workstatement.

Remark 2.2

• The two main variables describing cost and duration will also be called re-
sponse variables and the other variables predictor variables. This is because
duration and cost will be modeled by the other variables.

3defined in section 2.1.3
4This meaning changes for running projects, as they did not end yet (see remark 2.2).
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Chapter 2. Practical Analysis

In other words the predictor variables predict values for the response variables
according to the model. The response variables respond on changes of the
predictor variables according to the model. For details please see chapter 3,
Theoretical Fundamentals.

• The variables finance, bu, proj_start and status do not have any exten-
sions as they are fixed for a certain project. The status of a project is also
fixed for a certain project and has no extension, as it reflects the project
status at the time of database creation.

Projects will also be called running or closed projects referring to the value
of status.

• For running projects the meaning of the extensions _act and _l changes
as they did not end yet. Thus these extensions indicate the last available
information (e. g. the information of the last available workstatement).

2.1.3. Structure

Workstatement (WS) A project state is summarized in a so called workstatement
(WS). A WS consists of all project variables and its values at the state of
WS creation. Every project has a first WS at project start. Every project
with status closed has also a last WS at project end.

A project can also have more than two WS, but they are not created on
a regular basis. Thus they can not be used to compare projects directly.
Despite that the other WS will be used in chapter 2.4 to refine models.

The final dataset after data preparation (described in section 2.1.1) consists of 479
product projects. To recognize a certain project a unique id ∈ {1, . . . , 479} is
used for identification. Within this 479 product projects also 89 atypical projects
are included. Atypical projects are not of interest for this analysis for different
reasons, e. g. canceled projects, split projects, merged projects. This sort out was
done in accordance with ams AG to retrieve the projects of interest.

In the following the 390 left typical projects will be called “all projects”, as
they are all projects of interest. These 390 projects are also divided into subsets
by WS availability and status:

There are 130 typical projects that have status running. All 130 running proj-
ects have all WS available (i. e. no missing WS). Beside the running projects there
are 227 closed projects with all WS available (i. e. no WS is missing). The
remaining 33 projects are closed projects with missing first WS. Missing first
WS means that the WS at project start is not available. Hence these projects can
not be used when analyzing variable values at project start, but when analyzing
values at project end.
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2.1. Database

This described structure of the dataset is shown in fig. 2.1, which also points out
the distinction of running and closed projects by the use of colors.

Atypical 

Projects 

479 

89 

33 227 130 

Product 

Projects 

Typical Projects 

“All Projects” 

Closed Projects 

with missing 1st WS 
Running Projects 

(with all WS available) 

Closed Projects 

with all WS available 

background 390 

closed running 

not of interest 

Figure 2.1.: Database structure

The specified structure of the projects is of importance as it yields different subsets
of the data that are used context-based. The given names are used to refer to the
specific datasets.

Furthermore also unions of the defined data subsets are used, as presented in
fig. 2.2. When analyzing known actual values at project end, all closed projects
are used (union of closed projects with missing first WS and closed projects with
all WS available). The union of closed projects with all WS available and run-
ning projects gives projects with all WS available, that are of interest when
analyzing the first WS.

Remark 2.3

• Obviously it is of importance to distinguish which database is used for anal-
ysis and on which database graphics are based on. Thus within this thesis
the used database will be clearly stated in connection with the analysis and
in figure captions.
To refer to the databases also short names will be used (see table 2.3).

• There are 6 different subsets of interest of the original dataset (including
itself). On different points of the statistical analysis different datasets are
important. It also occurs that looking at different datasets for the same
analysis is crucial. To not go beyond the scope of this written thesis only the
most interesting views on the datasets are presented.
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357 260 357 

33 227 130 

260 

 All Closed 

Projects 
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Projects with 
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Closed Projects 

with all WS available 

Closed Projects 

with missing 1st WS 

Figure 2.2.: Database structure details

Table 2.3.: Dataset names: short and long names

Short Name Long Name
all_pr all projects
cl_pr_miss_f_WS closed projects with missing first WS
cl_pr_all_WS closed projects with all WS available
run_pr running projects (with all WS available)
all_cl_pr all closed projects
pr_all_WS projects with all WS available

Running and Closed Projects

As already indicated in fig. 2.1 and 2.2, the project status is of main interest.

Remark 2.4 The used colors to indicate closed (red) and running (blue) projects
(see fig. 2.3) will be used throughout this thesis, unless specified different.

status
closed
running

Figure 2.3.: Colors to indicate status

The importance of project status can be seen when looking at the distribution of
the number of projects across project start year (see fig. 2.4). In 2012, the year of
data generation, started 28 projects. 26 of them are still running and 2 projects are
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2.1. Database

already closed. When going back in time the portion of closed projects is increasing
and the portion of running projects is decreasing. That means when looking at the
last few years (e. g. 2010-2012), most projects are running projects (approximately
83%). This means that running projects cover an important part of all projects,
especially because recent years are of interest regarding the research objectives.
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Figure 2.4.: Histogram of project start, stacked by project status. One bin covers
one year. (data: all projects)

The main difference between closed and running projects is as follows:

closed: Estimations at project start are known (excluding the 33 projects with
missing first WS) as well as actual variable values at project end.

running: Estimations at project start are known, but actual variable values are
unknown.

Significant Dates

There are two significant dates for the database.

Today (= 2012-10-29) means the date of data generation. It is the date at which
time a snapshot of all projects is taken. This means that running projects
were running projects and closed projects were already closed on the date
today. So the database reflects the state of all projects on this date.

Data Collection Start (= 2006-10-25) is the date, when the data was started to
be collected. This data is an approximation based on coherences within the
data.
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Chapter 2. Practical Analysis

On this data the database was introduced and all projects that started from
that date on are collected in the database. Additionally all projects that
were running on that date were also added to the data, which is important
to consider when analyzing cost and duration trend.

The importance of these two dates is also pointed out in section 2.3, Modeling
Approach.

2.1.4. Assumptions

Statistical models always underly certain assumptions that need to be checked.
These assumptions can be found in chapter 3, Theoretical Fundamentals and have
to be inspected for each model separately.

Additionally some basic assumptions about the dataset have to be assumed:

• Trend information is hold by basic variables
To analyze project duration and cost trend over years, models based on closed
projects are used to describe final duration and cost of running projects.
These models are based on basic variables of the first WS (excluding project
start). This means that the information of project start and project end is
not used for these models.

Hence the assumption is that the basic variables of closed projects (except
project start) hold information about duration and cost trend. Thus the
trend of duration and cost is an effect of changes in basic variable values.

It was demonstrated that adding project start or project end to the predictor
variables causes an unnatural bias (see section 2.5, Model Improvements).

• Comparability of projects over time
As the models to predict final duration and cost of running projects are based
on closed projects it is assumed that the sets of running projects and closed
projects are comparable. That means that a running and a closed project
having similar structure at project start have similar project duration and
cost.

• Variable meanings changing over time
Due to renewals over time some variable changed in their meaning. In ac-
cordance with ams AG certain steps were performed to harmonize these
variables over time. The assumption is that after harmonization all variables
have a meaning consistent over time.

Examples for variable harmonizations are as follows:

eng_h The engineering hours got split up to have a record of the different
kinds of engineers working on a project. Here the sum of the single
variables is used to have the full engineering hours for all projects.
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2.2. Exploratory Data Analysis (EDA)

bu The structuring of the business units changed over time. Some business
units were split and some were merged. Here a categorization is used
that covers the meaning of all business unit categorizations.

2.2. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) was introduced by the statistician John Tukey
in the 1970s. It is a method of graphical and numerical procedures to get a deeper
insight into the data and its structures (see Stadlober [23]).

In practical statistical analysis EDA often plays an important role in nearly every
part of analysis steps. Here for example the concept of EDA is used to observe the
structure of the data as given in section 2.1.3.

2.2.1. Univariate Variables

Categorical Variables
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Figure 2.5.: Bar chart of status, bu and finance. Underneath each graphic the
absolute number of projects is stated accordingly. (data: all projects)

status, bu, finance: In section 2.1.3, Structure the distribution of project sta-
tus over the project start was already pointed out. Here (fig. 2.5) it can be seen
that there are twice as much closed projects than running projects. It is likely the
same when looking at finance: more than twice as much projects have financial
project type F2 compared to F1.

Looking at bu it turns especially out that there are few projects (about 4% of all
projects) with BU3, which might result in difficulties analyzing this business unit
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Chapter 2. Practical Analysis

separately. The models for cost and duration of running projects will be based on
the set of closed projects with all WS available. Looking at this dataset (see fig. 2.6)
there are just 4 projects of BU3 (about 2% of cl_pr_all_WS) and 15 projects of
BU1 (about 7% of cl_pr_all_WS). To be able to use the business unit category
without loosing information within the levels of BU1 and BU3 in section 2.2.2,
Reducing Category Levels these two levels will be merged with other levels.

0

100

200

BU1 BU2 BU3 BU4
bu

co
un

t

data
cl_pr_all_WS
rest

BU1 BU2 BU3 BU4 Sum
cl_pr_all_WS 15 76 4 132 227
rest 42 54 13 54 163
Sum 57 130 17 186 390

Figure 2.6.: Bar chart of bu stacked by data. (data: all projects)

tech: Although the variable tech is not a categorical variable, it is presented here,
as it has only 4 distinct values. Looking at the projects with all WS available in
fig. 2.7 it can be seen that there is a very small group of projects with a technology
size of 0.6. Thus also projects with tech 0.6 are candidates for merging it with
projects of another value (see 2.2.2, Reducing Category Levels).

Remark 2.5 Looking at the 33 closed projects with missing first WS (they are
not shown in fig. 2.7) is not of big interest, as tech_l is only used in section 2.7,
Model Application of Previous Thesis. Nevertheless it shall be noticed that the left
tech-value of 0.13 is used by one project of this set of projects only. The project
with tech-value 0.13 gets merged with the projects with tech-values of 0.35 based
on the same procedure which will be shown in 2.2.2, Reducing Category Levels.

Quantitative Variables

To get an overview of the quantitative variables, table 2.4 gives the values of basic
characteristic numbers. Table 2.5 shows the Pearson correlation5 r of estimated
and actual resp. last available estimated variable values.

5Measures the linear relationship between two variables (see Stadlober [22])
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Figure 2.7.: Categorized scatterplot of tech_f against tech_l with added jitter
(data: projects with all WS available)

Table 2.4.: Basic characteristic numbers of quantitative variables (data: projects
with all WS available)

Min q0.25 Median Mean q0.75 Max #NA
dur_est 0.08 0.58 0.78 0.89 1.06 3.42 19
dur_act 0.12 0.83 1.22 1.54 1.90 6.43 9
cost_est 0.00 0.15 0.26 0.35 0.48 2.71 0
cost_act 0.00 0.15 0.30 0.45 0.61 3.02 0
eng_h_f 0.00 880.00 1762.00 2462.02 3400.00 14300.00 0
eng_h_l 0.00 1148.00 2162.00 3437.08 4347.00 23701.00 0
purch_c_f 0.00 0.00 0.00 0.03 0.00 1.14 0
purch_c_l 0.00 0.00 0.00 0.05 0.01 1.16 0
mat_c_f 0.00 0.04 0.06 0.08 0.09 1.03 0
mat_c_l 0.00 0.04 0.06 0.08 0.09 1.15 0
nre_f 0.00 0.00 0.00 0.09 0.04 1.69 0
nre_l 0.00 0.00 0.00 0.10 0.05 1.77 0
chip_asp_f 0.00 0.25 0.53 1.36 1.28 23.30 0
chip_asp_l 0.00 0.23 0.50 1.31 1.13 20.97 0
chip_c_f 0.00 0.09 0.19 0.43 0.45 9.02 0
chip_c_l 0.00 0.09 0.19 0.42 0.42 9.89 0
die_size_f 0.32 1.70 4.76 9.62 10.23 131.50 0
die_size_l 0.26 1.71 4.88 10.10 10.56 150.51 0
sort_t_f 0.00 1.00 1.60 2.89 3.50 75.00 29
sort_t_l 0.00 0.75 2.00 2.76 3.92 20.00 23
test_t_f 0.00 1.00 1.80 2.75 3.64 30.00 45
test_t_l 0.00 1.12 2.20 3.31 4.40 22.00 40
reuse_f 10.00 50.00 70.00 65.78 85.00 100.00 31

Continued on next page
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Table 2.4 – continued from previous page

min q0.25 median mean q0.75 max #NA
reuse_l 10.00 50.00 70.00 65.38 85.00 100.00 31
yield_f 55.00 93.00 95.00 94.03 97.03 99.70 6
yield_l 58.91 90.00 95.00 91.91 96.03 99.70 0
pin_ct_f 3.00 10.00 19.00 31.58 33.50 484.00 78
pin_ct_l 3.00 9.00 19.00 29.24 32.00 314.00 66

Table 2.5.: Pearson correlation r of estimated and actual/last available estimated
variable values (data: projects with all WS available)

#NA r

dur_est dur_act 19 0.60
eng_h_f eng_h_l 0 0.81
purch_c_f purch_c_l 0 0.85
mat_c_f mat_c_l 0 0.84
cost_est cost_act 0 0.84
nre_f nre_l 0 0.88
chip_asp_f chip_asp_l 0 0.90
chip_c_f chip_c_l 0 0.77
yield_f yield_l 6 0.44
die_size_f die_size_l 0 0.99
sort_t_f sort_t_l 29 0.46
test_t_f test_t_l 45 0.71
pin_ct_f pin_ct_l 78 0.77
reuse_f reuse_l 31 0.98

Remark 2.6

• Tables 2.4 and 2.5 show correlations within the dataset of projects with all
WS available. This set contains running as well as closed projects. This yields
into an issue to keep in mind, as actual values are compared to estimated
values. This mixture is chosen as the intention of the tables is to give an
overview and because running projects as 1/3 of all projects are important
to look at.
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2.2. Exploratory Data Analysis (EDA)

• Differences in minimum and maximum of variable values comparing table 2.4
of this section and table 2.2 of section 2.1.2 result as in section 2.1.2 where
all projects are used as database.

Central
Ranges

50% (iqr) 90% 99% Median colour ● ●closed running

Figure 2.8.: Scatterplots of project start against duration and scatterplot of
dur_est against dur_act. The first 3 plots contain boxplots for du-
ration additional to the central ranges. On the last plot a 45° line is
plotted for orientation. Also a LOESS-smooth6 with 95% confidence
interval (CI) is shown. Datasets are indicated by plot titles.

duration: Looking at project duration (see fig. 2.8), it turns out that the estimated
duration is more evenly distributed over the start year than the actual duration.
The actual duration has a distribution with higher standard deviation and higher
median. Especially the last graphic in fig. 2.8 shows that the estimated duration
tends to underestimate the actual duration. The Pearson-correlation on the third
plot is 0.6 (see table 2.5).

The influence of the 33 closed projects with missing first WS (compare second to
third plot in fig. 2.8) results mainly in outliers, as the upper bound of the 99%
range increases. There are some outliers on each plot. Especially remarkable is
project 16 on the third plot, wich is an already closed project started in 2000 that
lasted nearly for 9 years.

cost: The variables representing project cost (see fig. 2.9) show a similar struc-
ture to duration variables presented above. The LOESS-smooth on the last plots
indicates that there is also some underestimation of estimated cost to actual cost.
Compared to duration, here we have a better approximation, which can also be
seen by the Pearson correlation (cost: 0.84, duration: 0.6, see table 2.5).
There are some outliers regarding project cost. The most conspicuous are marked
on each plot. Remarkable is project 272, as it has the highest estimated cost and

6LOESS smooth is strongly related to the LOWESS smooth (see section 2.2.3, Correlations.
The R function is loess of the basic package stats.
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Central
Ranges

50% (iqr) 90% 99% Median colour ● ●closed running

Figure 2.9.: Scatterplots of project start against cost and scatterplot of cost_est
against cost_act. Datasets are indicated by plot titles.

the highest actual cost of all projects with all WS available on one hand. On the
other hand project 272 acts as an outlier, as the estimated value is a rather good
approximation of actual cost.

Remark 2.7

• Figures 2.8 and 2.9 show closed and running projects on all plots included.
Especially regarding actual values it is important to keep in mind that “actual
values” for running projects (i. e. variable has extension _act) reflect the last
available estimations.

Nevertheless these two figures give an overview of cost and duration distri-
bution and the connection of estimations and actual values.

• On all plots of fig. 2.8 some short lines can be seen on the plot bottom or
left plotting region. These lines represent missing values.

For example look at the first plot of fig. 2.8: The short line at proj_start
2002 means that there is a project for which the estimated duration dur_est
is not known, i. e. is a missing value.

These rug lines7 will have the same meaning on all remaining plots.

2.2.2. Reducing Category Levels

For modeling cost and duration 19 variables come into account as predictor vari-
ables. When using a categorical variable like bu, some problems may arise:

7produced by the ggplot2 function geom_rug
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2.2. Exploratory Data Analysis (EDA)

• Some R functions used for regression (e.g. regsubsets, R-package leaps,
see Lumley [15]) do not accept categorical predictor variables.

• Interaction of n predictor variables with a single categorical variable of m
different levels produces n ·m new predictor variables.

A possible solution to prevent these problems and the problem that some categories
contain too less projects is to reduce the category levels. Here it was possible to
reduce each categorical variable to two levels. Thus numerical values (e. g. 0 and
1) can be used instead of the remaining two levels. A variable of this type is called
dummy variable.

Here Principal Component Analyis (PCA) is used to reduce category levels. This
method takes a dataset of several variables and produces by orthogonal trans-
formation a set of linear uncorrelated variables – the Principal Component (PC)
variables. This set is generated in a sorting such that each PC has maximum vari-
ance (e.g. holds maximum information about the dataset) given the independence
to previously generated PC. For more detailed information see section 3.5, Princi-
pal Component Analysis (PCA).
Based on the first few PC variables it will be decided which categories are similar,
so that they can be merged.

PCA is performed on two categorical variables:

• tech: Here tech is treated as a categorical variable, as it has only four
distinct values. Value 0.6 and also 0.13 are analyzed on merging with values
0.35 and 0.8.

• bu: Each of BU1 and BU3 shall be merged with one of BU2 and BU4.

Remark 2.8

• The merging showed in this section is used in section 2.4, Modeling Cost and
Duration only. The variable bu will be used in the original and the merged
variant. To distinguish between these variants the variable name bu_m is used
to refer to the variable with merged levels and bu shall refer to the original
coding.

• PCA is performed on the set of projects with all WS available (pr_all_WS),
as then all variables of the first and the last WS can be included.

• The used PCA function of R (see later) takes only numerical variables to
perform the PCA. Thus all non-numerical variables are disregarded.

• When using PCA to analyze the category levels of tech also tech_f is re-
moved from the dataset.
The variable used to analyze size of technology is tech_l. The analysis was
also performed with tech_f, but results were the same. This is not surprising
as values of tech_f and tech_l are the same, except for 2 projects.
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• The following details about the dataset refer to the analysis of tech, but are
basically the same for the analysis of bu.

The used R function is princomp from the basic package stats, which is part of
R. The function requires a dataset that does not include missing values, but only
numerical variables. Omitting all missing values of the dataset pr_all_WS with
357 projects results in a dataset with 209 projects left (about 59%). To be able
to use all projects, it would be necessary to leave out all variables with missing
values (11 out of 29). To have a balance between the number of projects and the
number of variables used, PCA will be performed on three different subsets of the
projects with all WS available:

• All variables (except categorical and date variables) and missing values omit-
ted:
⇒ 209 projects (= 59% of 357)
⇒ 209 projects · 29 variables = 6061 data points
reference name: data1

• Excluding variables pin_ct, test_t and reuse (each with _f and _l), that
hold the most missing values (see section 2.2.4, Missing Values) and omitting
missing values of the rest:
⇒ 307 projects (= 86% of 357)
⇒ 307 projects · 23 variables = 7061 data points
reference name: data2

• Excluding all variables with missing values (see section 2.2.4, Missing Values)
and omitting missing values of the rest:
⇒ 357 projects (= 100% of 357)
⇒ 357 projects · 18 variables = 6426 data points
reference name: data3

tech

Most important to look at is the first PC for each dataset (see fig. 2.10). Especially
for data1 the data points with tech-value of 0.6 correspond better to 0.35 than
to 0.8. Projects 38 and 448 are within the interquartile range (IQR) of 0.35 tech
projects. Project 78 is an outlier that better fits to tech of 0.35. On the other plots
there is no such clear tendency to tech of either 0.35 or 0.8.

Result: Projects with tech-value of 0.6 are added to the set of 0.35 tech proj-
ects.
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(a) data1, cumulative portion = 0.59

(b) data2, cumulative portion = 0.65

(c) data3, cumulative portion = 0.73

Figure 2.10.: Boxplot series of first three PC for each tech_l-value (data: projects
with all WS available)
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(a) data1, cumulative portion = 0.57

(b) data2, cumulative portion = 0.61

(c) data3, cumulative portion = 0.73

Figure 2.11.: Boxplot series of first three PC for each bu-value (data: projects with
all WS available)
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bu

BU1 projects fit nearly on all boxplot series (see fig. 2.11) best with BU2 projects.
Thus these projects can be treated as similar and are put together labeled as BU2.

BU3: Looking at the first PC on all analyzed datasets BU3 projects fit the distri-
bution of BU2 projects, but there is also no contradiction to fit with BU4 projects.
On the plots of the second PC no tendency can be seen, as BU3 project values do
not intersect with the IQR of neither BU2 nor BU4 projects. Regarding the third
PC the boxplot series of data1 and data2 show a very good congruence of BU3 and
BU4.

Result: BU3 projects are merged with BU4 projects as new bu category level BU4.
BU1 projects and BU2 projects are merged to new bu category level BU2.

Remark 2.9

• The R function princomp gives for the described datasets always more than
the used three PC (generally at most the number of variables of the dataset).
In common it is not unique how many PC to choose to best represent the
data and there exist different criteria to aid on deciding (see section 3.5,
Principal Component Analysis (PCA)).
Here the scree plots indicated 2 to 3 variables to choose. To be consistent it
was decided to use 3 PC in all cases. On the same time already those three
PC gave a satisfactory answer on the question of which category levels to
merge.

• PCA for tech value 0.13 is not presented here, as it is not relevant for the
first WS and works the same as shown above. The result was to merge 0.13
with 0.35 tech projects.

2.2.3. Correlations

The pairwise correlation matrix ellipses (see fig. 2.12) using Pearson correlation
give a good oversight of how variables are correlated. The function used to gener-
ate the plot is plotcorr from the ellipse package (see Murdoch and Chow
[17]). The ellipses represent the correlation of two variables by picturing the shape
of a bivariate normal distribution of the respective correlation (see appendix A,
Common Statistical Distributions about multivariate normal distribution).

Remark 2.10

• Here closed projects with all WS available are used as dataset as this is the
data used to build the models of actual duration and cost. Therefore all
relevant variables (except categorical variables) of interest for these models
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are included. This covers variables of the first WS as well as actual duration
and cost.

• To analyze correlations in this section project 272 is excluded from the data,
as it is an extreme outlier that will also be excluded in further analysis.
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Figure 2.12.: Pairwise correlation matrix ellipses using Pearson correlation (data:
closed projects with all WS available, excluding project 272)

Two blocks of high correlations (most correlations greater 0.6) can be located:

1. dur_act, cost_act, dur_est, cost_est, eng_h_f, mat_c_f and reuse_f

2. chip_asp_f, chip_c_f, die_size_f, sort_t_f, test_t_f, yield_f and
pin_ct_f

The first block holds the response variables dur_act and cost_act as well as the
respective variables of the first WS. The other variables are of interest, as they are
candidates on predicting project duration and cost.

The second block corresponds to a set of technical chip variables and two sales
variables. The only left out technical variables are reuse and tech. Here the size
of technology can have only two different values, as the others are already merged
with them. Reuse has a special role, as it is member of the first block that holds
cost and duration information. This is logical as reuse is not a pure technical
variable, but gives information on how much work of past projects can be reused.
Thus the conclusion is that technical chip information correlates. At the same time
sale information has a connection to technical information.

As the first block is of main interest in fig. 2.13 a scatterplot matrix of the cor-
responding variables is provided (using R function pairs of the basic package

24



2.2. Exploratory Data Analysis (EDA)
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Figure 2.13.: Scatterplot matrix with LOWESS smooth on the lower panel and
absolute Pearson correlation on the upper panel (data: closed projects
with all WS available, excluding project 272)

graphics). The upper triangle shows the correlations of the corresponding vari-
ables with size relative to the correlation. In the lower triangle the scatterplots are
shown with scatterplot smoothing LOWESS (locally weighted scatterplot smooth-
ing) (see Cleveland [3]). The scatterplot matrix shows that most correlations
seem to be based on a linear relationship with increasing variance. This indicates a
transformation of the response variable (see Friedl [10], chapter 3). Remarkable
is the correlation of 0.89 between cost_est and eng_h_f. This is interpretable
such that engineering hours are the main part of project cost. Also of interest is
the last row showing scatterplots using reuse. Here the relationship does not seem
to be linear and the correlations are not that high (≤ 0.5) compared to the others.
Especially high values of reuse tend to lead to lower cost and lower duration.

Remark 2.11 The variable correlations and characteristics within category levels
are not shown here as this would go beyond the scope of this work. Nevertheless in
the remaining various dependencies will be considered. The regsubsets-function
will be used, which is a function for model selection.
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Chapter 2. Practical Analysis

2.2.4. Missing Values
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combinations
count percent cumsum_pct

1 207 57.98 57.98
2 36 10.08 68.06
3 20 5.60 73.66
4 13 3.64 77.30
5 13 3.64 80.94
...

Figure 2.14.: Aggregation plot of variables that contain any missing value. Col-
umns indicate values of the denoted variable. Light gray areas repre-
sent available values and dark grey areas indicate missing values. The
size of the areas are relative to the percentage of all variable values.
Rows show connections of missing and/or non-missing value blocks.
The R-output table on the right indicates the size of row blocks in
reverse order. (data: projects with all WS available)

The data is based on user generated data, so missing values are normal. As men-
tioned in section 2.1.1, Data Preparation missing values were already important
on preparing the data for analysis. The multivariate structure of missing values
plays a main role, as it can be derived on which parts of the data to put effort
on reconstruction. Also for further analysis the multivariate structure of missing
values should be considered.

Multivariate structure of missing values here means how missing values are dis-
tributed over a dataset. That is how many missing values appear in a single vari-
able and how missing values are related for different variables. In this thesis the
R-package VIM (see Templ et al. [26]) is used, which provides a variety of graph-
ical methods to visualize missing values structure.

When analyzing the data different visualization methods for missing values were
used. The method presented within this thesis is the aggregation plot. For further
methods and information see Templ et al. [25] and Templ and Filzmoser
[27]. The missing value structure of projects with all WS available (see fig. 2.14)
shows that only 207 projects (e. g. 58%) of the projects have no missing values.
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2.3. Modeling Approach

Not using pin_ct and test_t results in 207 + 36 + 20 = 263 (e. g. 74%) projects
without missing values.

2.3. Modeling Approach

Using the results of EDA it can be decided on which approach to choose for
modeling cost and duration trend. The upcoming section 2.3.1, Motivation states
briefly why the performed approach was chosen. On the same time this leads to
the importance of the dates today and data collection start. An overview of the
analysis methods used is given in section 2.3.2, Methods Overview.

2.3.1. Motivation

When analyzing project trend it is of interest to look at the trend of raw data, as
shown in fig. 2.15.
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Figure 2.15.: Raw trend of actual cost and duration by project start year. The
trend is represented as simple linear regression fit (data: projects
with all WS available)

The simple linear regression fit with 95% confidence interval (CI) of actual cost
and duration trend8 indicates that there is no trend of project cost (the horizontal
line is within the 95% CI) and a decrasing trend of project duration by project
start. A problem about this point of view is that there are also running projects

8This and all other linear regression fits in graphics are generated automatically (unless oth-
erwise noted). On this automatic generation there is no verification of model assumptions.
Thus the fits cannot be treated as reliable models, but as an indicator to get an idea of a
possible linear relationship.
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Chapter 2. Practical Analysis

included. As already specififed, actual values of running projects indicate the last
available estimation. This may cause bias in the trend, as two not comparable
meanings of actual values are mixed. Thus the question is where actual values for
running projects come from.
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Figure 2.16.: Number of WS for each project by project start (data: projects with
all WS available)

An answer to this question can be given by looking at the number of workstate-
ments for each project, which is shown in fig. 2.16. It can be seen that most running
projects (64 of 130 = 49%) have only one WS. In other words, for about half of
the running projects the last available information is from the first WS.
It is also notable that the number of WS per project goes up to 13. This means
that there may be some information lost, when just looking at the first and last
WS. Part of this additional information will be used later to improve the models
found (see 2.4, Modeling Cost and Duration).

For about half of running projects the last available information is from the first
WS. So the question is how reliable this cost/duration information is. To answer
this question, it can be looked at the comparison of estimated and actual values for
closed projects (see fig. 2.17). Obviously, estimations for cost and duration tend
to underestimate actual values. Cost estimations are relatively good for smaller
projects (lower cost), but for higher cost (except for project 272) the trend is
to underestimate more and more. In other words the estimated values have a
systematical error in estimating actual values. Thus the approach is to generate
unbiased models for fitting the actual values of running projects. To obtain these
models the closed projects are used as database. After that the models can be
applied on the running projects to get an unbiased fit with random error for actual
cost and duration values.

As running projects are used to analyze trend, another question is why running
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2.3. Modeling Approach

Figure 2.17.: Scatterplot of actual cost/duration against estimated cost /duration.
LOESS smooth with 95% CI is added (data: closed projects with all
WS available)

Figure 2.18.: Raw trend of actual cost/duration by project start year. On the right
plot two significant dates are added. The trends are represented by
simple linear regression fits (data: closed projects with all WS avail-
able)
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Chapter 2. Practical Analysis

projects are needed at all. Hence only closed projects may be used to analyze
cost/duration trend (see fig. 2.18). For both, duration and cost, a more or less
negative trend is observable. Additionally on both plots the data has the shape of
a cone. The reason for this is made visible on the duration plot, as it depends on the
two significant dates today and data collection start (see section 2.1.3, Structure).
As closed projects are already finished, they can only last until today. Thus it is
logical that the mean project duration tends to increase when going back in time
from today. Due to the meaning of data collection start also projects before that
date tend to last longer then before. The same conclusions apply to project cost,
as dur_act and cost_act of closed projects with all WS available are correlated
(r = 0.54 and 0.56 excluding outlier project 272).

Because of that using only closed projects leads to a biased trend. As already men-
tioned, for analyzing trend closed and running projects will be used. For running
projects a model based on the closed projects will be generated, to get an unbiased
fit for project cost and duration. This overcomes also the problem corresponding
to the date today. The approach to prevent the bias based on the data collection
start is simply to regard only projects started after tis date.

Remark 2.12 The above arguments are also the reason for not using project start
as a predictor variable for modeling actual cost and duration.

2.3.2. Methods Overview

Here the methods used to model cost and duration trend are described and pre-
sented in fig. 2.19. The choice of methods is based on the structure of the data, as
described in the previous section 2.3.1, Motivation.

Analysis Methods 

Cost / Duration 

Regression 

ANOVA 

(ANalysis Of VAriance) 

Outlier / Missing Value 

Analysis 

Overall Method 

Trend Analysis 

(Regression) Analyze 

Models of 

Previous Thesis 

Side Topic 

Figure 2.19.: Overview of analysis methods
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2.4. Modeling Cost and Duration

Cost/Duration Regression
To get unbiased estimations for project cost and duration of running projects,
closed projects are used. Based on closed projects with all WS available
multiple linear regression models are generated.

Analyze Models of Previous Thesis (side topic)
As a side topic to the main research objectives it is of interest to analyze
the models of the previous thesis and apply them to the new dataset (see
Sponer [21]).

Analysis of Variance (ANOVA)
The first step in analyzing trend is to perform an ANOVA on project cost
and duration by project start year.
As the application of this analysis did not result in significant results of
interest, it is not presented within this thesis.

Trend Analysis (Regression)
To get a detailed analysis of the trends a regression analysis of project cost
and duration with project start as predictor is performed. On the same time
different subsets of the data are analyzed to find out which project categories
are responsible for any trend found.

Outlier/Missing Value Analysis (overall method)
Due to the structure of the data, missing values and outliers play an impor-
tant role in all parts of the analysis. So this fact has always be taken into
account.

Remark 2.13 The intention of ANOVA was to identify yearly differences in cost
and duration. For cost/duration ANOVA compares these characteristics by each
year and shows significant differences, if found. Here no significant results of inter-
est were found.

2.4. Modeling Cost and Duration

Actual cost and duration are modeled for closed projects with all WS available
based on the information of the first WS. Hence only variables with extension _f
or _est may be used. The purpose is to apply these models to running projects to
get an unbiased prediction for actual values.

There are m = 16 variables used as possible predictors for modeling. These pre-
dictor variables are all variables of the first WS, excluding estimated cost as it
is a linear combination of the other cost variables. Of course also the variables
proj_start (would cause bias, as explained in section 2.3, Modeling Approach)
and status (only closed projects are used) are not useful as predictor variables.
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Chapter 2. Practical Analysis

The upcoming section 2.4.1 shows an example and practical details about the
process of model selection. The corresponding theory is covered by section 3.4.
Sections 2.4.2 and 2.4.3 present details about the actual modeling process for actual
project cost and duration based on the first WS. The results are summarized in
section 2.4.5.

2.4.1. Model Selection Process

The core function used for model selection is the regsubsets function of the leaps
package (see Lumley [15]). Basically this function takes a set of variables (one
response variable and a set of predictor variables) and returns the “best models”
for 1 to pmax predictor variables (not counting the intercept), whereas pmax can be
specified.

When selecting variables with the regsubsets function different aspects have to
be considered. The two main points are as follows:

1. Predictor variables have to be numerical
Thus numerical substitutions for categorical variables based on section 2.2.2,
Reducing Category Levels are applied.

2. NA, NaN or Inf values lead to errors
NaN (not a number, e. g. 0/0) and Inf (infinity) values do not occur in the
datasets used. To avoid errors because of not available (NA) values, all data
entries (i. e. projects) containing NA values have to be omitted. How many and
which projects are excluded from the dataset depends on the used variables
and the structure of missing values (see section 2.2.4, Missing Values).
Here it was chosen to start the regsubsetsmodel selection with all variables.
If variables containing NA values can be identified as not influential, they are
excluded from the set of possible predictors to start the model selection
newly. If variables with missing values stay significant, the models found are
compared to models without these variables holding NA values.

For more detailed information about the usage of the regsubsets function, please
see the R help manual.

Remark 2.14 Generally there is no overall “best model” for modeling a response
variable based on multiple predictor variables. Different criteria exist to help on
deciding which model to chose. The regsubsets function can be performed using
different methods, on which the model selection depends. Unless otherwise specified
the exhaustive method is used. This method compares all models given a fixed
number p− 1 of predictors (excluding the intercept). Within this set of models it
is possible to decide for the best model, which then is returned by the function.
For many variables this leads to intensive calculations as mp−1 models have to be
compared.
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2.4. Modeling Cost and Duration

When fitting a multiple regression model withm basic variables the question arises
if transformed variables or interactions have significant influence. The approach
within this thesis is as follows:

Predictor Transformation
Typical transformation functions include the square function, the logarithm
and the exponential function. Here the natural logarithm (will be denoted as
log) and the square function are used. Not using the exponential function
results as together with the square function this resulted in linear depen-
dencies. The mode chosen is to apply the regsubsets function on the set of
basic variables together with the transformed variables.
Transformations are applied to variables, where reasonable (e. g. not to cat-
egorical variables).

Interactions
m basic predictor variables and two transformations for each variable result
in 3m predictors. Counting all predictor variables and their interactions gives
approximately (3m)2 = 9m2 (= 2304 for m = 16) possible predictor vari-
ables. As this leads to extensive computing time and to keep models simple,
models are generated on the basic predictor variables and its transformations
only. This gives models without interactions. To not loose the potential of
interactions, these models are analyzed on significance of interactions of the
left significant predictor variables within the model.

Model Variety
It is preferable that different models are taken into account, as there is no
single best model. Here the approach is to generate two models for project
cost and duration each. For each response variable two models are generated
based on predictors with and without transformations.

Remark 2.15

• To refer to transformed variables the extensions _sq and _log shall be used
for square root and logarithmic transformations respectively.

• Here in practice instead of the pure logarithmic transformation log(x) the
shifted version log(1+x) is used. The reason is that some variables hold also
the value zero. This also results in the property of non-negative transformed
variables, because all original variables are nonnegative (see section 2.1.2,
Variables)9.

9x ≥ 0⇒ log(1 + x) ≥ 0, because the logarithm log(x) is a monotone increasing function with
root at x = 1
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Chapter 2. Practical Analysis

Response Transformation

To overcome problems with violations of linear regression assumptions – especially
non constant error variance (heteroscedasticity) and deviations from normal dis-
tribution – a transformation of the response variable may be helpful. A common
method is the Box-Cox transformation (see Friedl [9, 10] and Stadlober [23]).
For theoretical details about the Box-Cox Transformation see section 3.3, Model
Diagnostics.

For modeling actual project cost and duration response transformations will be
needed. The step of finding out which Box-Cox transformation to use and applying
the transformation is subsequent to the model selection. Applying the transforma-
tion results in the need of a newly performed model selection, as other variables
may become significant. To not go beyond the scope of this thesis the process of
model selection will be shown with already transformed responses.

Foregoing analysis showed that the response transformation f(y) = y1/3 is appro-
priate. The following example of a model for actual cost with estimated cost as
the only predictor shows briefly how to obtain such a transformation:

Example 2.1 The simple model cost_act ~ cost_est is taken as an example:

> summary(cost_act ~ cost_est, data = cl_pr_all_WS)

Residuals:
Min 1Q Median 3Q Max

-0.7664 -0.0988 -0.0338 0.0370 1.4013
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0139 0.0220 -0.63 0.53
cost_est 1.4033 0.0566 24.80 <2e-16 ***
---
Residual standard error: 0.228 on 225 degrees of freedom
Multiple R-squared: 0.732, Adjusted R-squared: 0.731
F-statistic: 615 on 1 and 225 DF, p-value: <2e-16

The residual plots presented in fig. 2.20 show, that the residual variance depends on
the fitted values (i. e. the variance is not constant). On the same time the normal
quantile–quantile plot (Q–Q plot) as well as the histogram show that the residuals
are not normally distributed. This is underlined by the Shapiro-Wilk test10 with
a p-value < 2.2 · 10−16.

On the same time by the residual plots in fig. 2.20 project 272 can be identified
as outlier. On the three plots on top only the three outliers with highest abso-
lute (standardized) residuals are marked. Nevertheless the rightmost point on the
10The Shapiro-Wilk test tests for normal distribution (see section 3.3, Model Diagnostics).
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Figure 2.20.: Residual plot of cost_act ~ cost_est (data: closed projects with
all WS available)

“Residual vs Fitted” and the “Scale-Location” plots are confirmed to represent
project 272.

The Box-Cox transformation for the simple model cost_act ~ cost_est (see
fig. 2.21) gives for the transformation parameter λ a 95% CI of about [0.26, 0.41].
The maximum log-likelihood estimation is about 0.33. Thus λ = 1/3 is chosen.

In addition to the transformation outlier project 272 is excluded giving the follow-
ing model:

> summary(lm(cost_act^(1/3) ~ cost_est, data = subset(df_predfc,
+ !(id == 272)))

Residuals:
Min 1Q Median 3Q Max

-0.3320 -0.0685 -0.0062 0.0538 0.4162
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4014 0.0119 33.7 <2e-16 ***
cost_est 0.8989 0.0345 26.1 <2e-16 ***
---
Residual standard error: 0.111 on 224 degrees of freedom
Multiple R-squared: 0.752, Adjusted R-squared: 0.751
F-statistic: 680 on 1 and 224 DF, p-value: <2e-16
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Figure 2.21.: Box-Cox transformation plot for the model cost_act ~ cost_est
(data: closed projects with all WS available)
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Figure 2.22.: Residual plot of cost_actˆ(1/3) ~ cost_est (data: closed projects
with all WS available)
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2.4. Modeling Cost and Duration

Now the distribution of the residuals looks much more like normal distribution
(see fig. 2.22), which also results in a better Shapiro-Wilk p-value of 0.0052. The
variance structure of the residuals is better, but still not satisfactory. The resulting
model can of course be improved, as there are also some outliers to be looked at
more in detail.

The purpose of this example is to show an example for a Box-Cox transformation
and the origin of the transformation parameter λ = 1/3.

Remark 2.16

• The R-print of linear model (lm) summary in example 2.1 and following
prints include a coding of significance levels for the p-values:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(The level code denotes that the p-value is within the range of its surround-
ing numbers). The significance levels are used to get a quick overview of
coefficient significance.

• As seen in example 2.1 project 272 is a cost outlier. In fact this project is an
outlier regarding project cost, material cost and single chip cost. Because of
that project 272 will be excluded from the data used to model actual project
cost from the beginning.

• The residual plots presented within this thesis (e. g. fig. 2.20 and fig. 2.22)
are produced by the self written function GGplotLm. For more information
see appendix C, Self Written R Functions.

Missing Values

As stated missing values are important for the model selection process. In section
2.2.4, Missing Values an aggregation plot for the missing values for projects with all
WS available can be found. Here it is needed to know the missing value structure
for the closed projects with all WS available only (see fig. 2.23). When referring in
this section to variables that hold missing values, this figure will be the source of
information.

2.4.2. Modeling Actual Project Cost based on First
Workstatement

As stated in remark 2.16, for modeling actual project cost project 272 is excluded
from the closed projects with all WS available.
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2 31 13.66 76.22
3 16 7.05 83.27
4 9 3.96 87.23
5 7 3.08 90.31
6 3 1.32 91.63
7 2 0.88 92.51
...

Figure 2.23.: Aggregation plot of missing values with R-output table (data: closed
projects with all WS available)

The generation of the two types of cost models, with and without transformed
predictor variables, is presented in a summarized form. Each single step of decisions
cannot be presented, but the main steps are demonstrated or at least remarked.

Without Transformed Predictors

The model selection process starts with all variables available. As mentioned the
regsubsets function requires a dataset without NA values. Thus all projects con-
taining NA values have to be omitted. The resulting project numbers are as fol-
lows:

nrow pct11

original 226 100 (Original data set including NA values)
NA omitted 142 63 (Original dataset without projects that hold NA values)
difference 84 37 (The projects that are omitted because of NA values)

As only 63% of the projects are left when using all variables, it is of interest to
identify variables holding NA values that are not significant.

Omit non-significant variables holding NA values: Based on the output of
the regsubsets function (see fig. 2.24) applied on the dataset with omitted NA
values it can be seen that sort_t_f, test_t_f and pin_ct_f are variables with
missing values that are not considered in any model. These variables can now be
11nrow = number of rows, pct = percent
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2.4. Modeling Cost and Duration

excluded from the subset regression to use a bigger dataset. By the same method
also tech_f could be identified as non significant variable.
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Figure 2.24.: Selected predictor variables of subset regression12 (data: closed proj-
ects with all WS available)

Remark 2.17 As excluding only one variable already causes a bigger dataset it
may follow that a variable with NA values that was not significant, is now considered
in a model. Because of that the exclusion of variables with NA values is always
verified stepwise. This means that only one variable is excluded at a time and
then it is again checked if the other variables can still be excluded. The variable
to exclude is always chosen as the one which holds the most missing values.

Looking at the subset regression of the remaining dataset (see fig. 2.25) there is
no variable with NA values not considered in any model.

But not all of the 8 models have to be useful models, as to many variables may
result in overfitting. The model selection criteria can help on deciding which num-
ber of predictors give a good model (see fig. 2.26). Based on the criteria and on a
deeper look into interesting models, the set of 4 predictors can be chosen as a good
model. For p− 1 = 4 BIC reaches its minimum and for the other criteria there is
not much improvement for p − 1 > 4. The predictors of the models with up to 4
predictors are listed in the following (they can also be readout of fig. 2.25):

12A row of this plot represents one model and is marked by its BIC-value. The squares on the
plot have two meanings. On one hand non-white colors correspond to the BIC-value. On the
other hand any non-white color means that the respective variable is a predictor in the model.
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Figure 2.25.: Selected predictor variables of subset regression (data: closed projects
with all WS available)
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Pred. Mod. 1 : eng_h_f
Pred. Mod. 2 : eng_h_f + dur_est
Pred. Mod. 3 : eng_h_f + dur_est + mat_c_f
Pred. Mod. 4 : eng_h_f + dur_est + mat_c_f + bu_m

Obviously reuse_f and yield_f do not occur in any of the models. Thus these
predictors holding NA values can be omitted from the set of possible predictors.
The only leftover predictor holding NA values (9) is dur_est. It can be shown, that
omitting dur_est does not improve the models.

Specify model to work with: On the remaining variables a subset regression is
performed again (see fig. 2.27). Mallows Cp criterion supports 6 predictors and on
the same time all other criteria do not contradict this. The model with 6 predictors
looks as follows:

> lm_c1 <- lm((cost_act)^(1/3) ~ dur_est + eng_h_f + mat_c_f +
+ purch_c_f + nre_f + bu_m, data = cl_pr_all_WS)
> summary(lm_c1)

Residuals:
Min 1Q Median 3Q Max

-0.2320 -0.0576 -0.0158 0.0473 0.3671
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.28e-01 3.11e-02 13.77 < 2e-16 ***
dur_est 1.38e-01 2.37e-02 5.82 2.1e-08 ***
eng_h_f 7.94e-05 5.19e-06 15.31 < 2e-16 ***
mat_c_f 8.74e-01 1.39e-01 6.30 1.8e-09 ***
purch_c_f 4.06e-01 8.50e-02 4.78 3.3e-06 ***
nre_f -1.13e-01 5.46e-02 -2.07 0.04 *
bu_m -5.96e-02 1.48e-02 -4.02 8.0e-05 ***
---
Residual standard error: 0.0897 on 210 degrees of freedom

(9 observations deleted due to missingness)
Multiple R-squared: 0.838, Adjusted R-squared: 0.833
F-statistic: 181 on 6 and 210 DF, p-value: <2e-16

nre_f is with a p-value of 0.04 not strongly significant, but it is kept in the model
as this may change by further adjustments. It is also notable that due to the
usage of dur_est 9 projects with missing values are deleted. To verify the model,
the residual plot can be used (see fig. 2.28). The distribution of the residuals
(see normal Q-Q plot and histogram) seems to be close to normality, but may
be improved (Shapiro-Wilk test p-value = 0.0015). Especially project 130 is an
outlier. The assumption of constant variance (see residuals vs. fitted and scale-
location plots) is also not yet optimal. Beside the outlier project 130, project 187
13This plot summarizes the main model selection criteria in a single graphic. For each number of

predictors (which is p-1, as the intercept is not counted) the value of each criterion is denoted.
The values are connected to a line for each criterion.

41



Chapter 2. Practical Analysis

●

●

●
●

●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

● ●
●

●
●

●

3

6

9

−1025

−1000

−975

−950

−925

C
p −

>
 p

IC
 −

>
 m

inim
ize

1 2 3 4 5 6 7 8 9 10
No. of Predictors (p−1)

C
rit

er
io

n 
V

al
ue Criteria

●

●

●

●

AIC
AICc
BIC
Cp

Criteria for Subset
 Regression Model Selection

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
● ● ● ● ●

0.70

0.75

0.80

0.85

0.90

0.09

0.10

0.11

R
2 &

 adjR
2

residual standard error

1 2 3 4 5 6 7 8 9 10
No. of Predictors (p−1)

V
ar

ia
bl

e 
V

al
ue Variable

●

●

●

adjR2
R2
sigma

Model Inference Variables

Figure 2.27.: Model Selection Criteria (data: closed projects with all WS available)
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Figure 2.28.: Residual plot lm_c1 (data: closed projects with all WS available)

42



2.4. Modeling Cost and Duration

seems to be influential and project 37 seems to have a high influence on the fitted
values.

Further model analysis is briefly discussed in the following:

• Outlier Elimination: Found outliers have to be analyzed and eliminated
if necessary. This process is done stepwise when outliers occur.

• Model Confirmation: After each step that changes the database, the
model is confirmed. Here this means that it is reviewed if the same or other
variables are significant.

• Interactions: The resulting model is analyzed on interactions using Analysis
of Variance. First the previously found model is compared to the same model
including all possible interactions of two variables:

Analysis of Variance Table

Model 1: (cost_act)^(1/3) ~ dur_est + eng_h_f + mat_c_f + purch_c_f +
nre_f + bu_m + dur_est:eng_h_f + dur_est:mat_c_f + dur_est:purch_c_f +
dur_est:nre_f + dur_est:bu_m + eng_h_f:mat_c_f + eng_h_f:purch_c_f +
eng_h_f:nre_f + eng_h_f:bu_m + mat_c_f:purch_c_f + mat_c_f:nre_f +
mat_c_f:bu_m + purch_c_f:nre_f + purch_c_f:bu_m + nre_f:bu_m

Model 2: (cost_act)^(1/3) ~ dur_est + eng_h_f + mat_c_f + purch_c_f +
nre_f + bu_m

Res.Df RSS Df Sum of Sq F Pr(>F)
1 184 1.0232
2 199 1.2415 -15 -0.2183 2.6174 0.0013 **

The p-value of 0.0013 indicates not all interactions can be treated as non-
significant. When adding the most significant interaction dur_est:mat_c_f
to the model without interactions, the ANOVA results in:

Analysis of Variance Table

Model 1: (cost_act)^(1/3) ~ dur_est + eng_h_f + mat_c_f + purch_c_f +
nre_f + bu_m + dur_est:eng_h_f + dur_est:mat_c_f + dur_est:purch_c_f +
dur_est:nre_f + dur_est:bu_m + eng_h_f:mat_c_f + eng_h_f:purch_c_f +
eng_h_f:nre_f + eng_h_f:bu_m + mat_c_f:purch_c_f + mat_c_f:nre_f +
mat_c_f:bu_m + purch_c_f:nre_f + purch_c_f:bu_m + nre_f:bu_m

Model 2: (cost_act)^(1/3) ~ dur_est + eng_h_f + mat_c_f + purch_c_f +
nre_f + bu_m + dur_est:mat_c_f

Res.Df RSS Df Sum of Sq F Pr(>F)
1 184 1.0232
2 198 1.0826 -14 -0.0594 0.7637 0.7073

Now the p-value is 0.7073, so all other interactions can be disregarded.

• Categorical Variables: The previous procedure involves interactions with
numerical variables only. Thus on the next step interactions with the cate-
gorical variables (before category reduction, see section 2.2.2, Reducing Cat-
egory Levels) is performed.
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Chapter 2. Practical Analysis

If a categorical variable is left in the model, now it is replaced by the corre-
sponding full categorical variable. In this case bu_m is replaced by bu.

Specifying the Final Model: The result of the above described steps is the final
model lm_c for actual project cost:

> excl_c <- c(26, 37, 39, 42, 105, 130, 146, 177, 187, 228, 272, 290)
> lm_c <- lm((cost_act)^(1/3) ~ dur_est + eng_h_f + mat_c_f + bu +
+ dur_est:mat_c_f, data = subset(cl_pr_all_WS, !(id %in% excl_c)))
> summary(lm_c)

Residuals:
Min 1Q Median 3Q Max

-0.17133 -0.05261 -0.00549 0.04750 0.21642
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.12e-01 3.08e-02 10.15 < 2e-16 ***
dur_est 2.69e-01 3.12e-02 8.62 2.2e-15 ***
eng_h_f 7.60e-05 4.66e-06 16.30 < 2e-16 ***
mat_c_f 2.68e+00 3.11e-01 8.61 2.3e-15 ***
buBU2 -5.09e-02 2.56e-02 -1.99 0.04830 *
buBU3 -1.59e-01 5.21e-02 -3.06 0.00252 **
buBU4 -1.01e-01 2.55e-02 -3.94 0.00011 ***
dur_est:mat_c_f -2.20e+00 3.71e-01 -5.94 1.3e-08 ***
---
Residual standard error: 0.0751 on 198 degrees of freedom

(9 observations deleted due to missingness)
Multiple R-squared: 0.868, Adjusted R-squared: 0.864

Remark 2.18

• The projects saved to excl_c are the identified outliers.

• The model name lm_c represents “linear model cost”.

The residual plot of the final model lm_c (see fig. 2.29a) still shows some outliers.
Especially the Q-Q plot shows some outliers. In addition the histogram makes clear
that there is a skewness of residual distribution. On the same time this skewness
is very slight and the Q-Q plot shows a linear and relatively symmetric structure,
in particular when compared to the last residual plot. Cooks distance and leverage
give no real influential points as well as the other plots.

As seen before cost is difficult to describe accurately, therefore this model can be
regarded to give good predictions and can be used as an unbiased model for actual
project cost.
14The points on the far right hand side of each plot (only the half point is visible) represent

projects for which the model cannot fit values due to missingness of values for any predictor
variable.
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Figure 2.29.: Final cost model lm_c without transformed predictors (data: closed
projects with all WS available)
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Apply to Running Projects: Fig. 2.29b compares the estimated cost to modeled
cost (fitted values of lm_c) on the two upper plots. It can be clearly seen that the
modeled costs are an unbiased predictor for the actual cost. The two plots on
the bottom show how estimated and modeled cost relate to the last available
estimation. The last available estimated cost is larger then the estimated cost
at project start for many projects. On the same time modeled cost tend to give
higher values than the last available estimation, i. e. the model says that the cost
will increase in the future.

Remark 2.19 In the 4th plot of fig. 2.29b the model indicates for some running
projects that the last available estimation is too high. On the other hand in fig. 2.17
in section 2.3, Modeling Approach it turned out that estimations (at project start)
tend to underestimate actual values. Thus the model lm_c may result in too low
predictions for some running projects. This issue is addressed in section 2.5, Model
Improvements.

With Transformed Predictors

The same procedure as described without transformed predictors is now applied
to variables and their transformations. Hence just the main steps and differences
to the above model selection are described.

Here, instead of the 16 basic predictor variables, m = 42 predictor variables are
used. As the calculation time for exhaustive subset regression is exponential in
the number of predictors p− 1 with base m, this leads to considerable calculation
times. For 16 predictors this was easily possible to handle. For 42 predictors the
calculation times quickly get extensive for often repeated calculations, as table 2.6
shows15,16.

Table 2.6.: Calculation times

max(p− 1) calculation time
8 3 sec.
9 9 sec.
10 21 sec.
11 42 sec.
12 89 sec.
13 140 sec.

As a solution it was chosen to use a two step procedure:
15calculations were run on a laptop with the following specifications: Windows 7 Enterprise, 4GB

RAM, Intel i5 CPU with 2.67GHz
16Also Kleinbaum et al. [14] suggest to use exhaustive search (all-subset-selection) only for

m < 40 predictor variables (see section 3.4, Model Selection).

46



2.4. Modeling Cost and Duration

1. Exhaustive regsubsets with max(p− 1) = 8. Predictors that are element of
at least 4 models are forced to be included in the models of the next step.

2. Exhaustive regsubsets with max(p − 1) = 15 and forced in predictors of
the first step.

Remark 2.20 The numbers of the above two steps and the numbers in table 2.6
do only apply for a special case. Concrete numbers are taken here for illustration
purpose.

Omit non-significant variables holding NA values: Applying the regsubsets
model selection to the full dataset and up to max(p − 1) = 8 predictors (see
fig. 2.30) indicates that more predictors could give better models. The following
variables are part of at least 4 of these models:
eng_h_f, bu_m, dur_est_log, mat_c_f_log
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Figure 2.30.: Model Selection Criteria (data: closed projects with all WS available)

These variables are forced to be in the models of the next regusbsets step with
up to 15 models. The corresponding plot of the selected predictor variables shows
this clearly (see the left most columns of fig. 2.31). Here it can also be seen that
pin_ct_f and its transformations – the variable(s) with most missing values – are
not predictors of any model. By the same procedure, which is performed stepwise,
also test_t_f, sort_t_f, reuse_f and tech_f (with its transformations) could
be identified as not being significant. The predictor yield_f could not be excluded
by this procedure, which results in 14 projects that can not be considered.
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Figure 2.31.: Selected predictor variables of subset regression (data: closed projects
with all WS available)

Specify model to work with: On the last step of omitting non-significant vari-
ables holding NA values a model with p− 1 = 14 predictors was chosen:

> lm_ct1 <- lm(formula = (cost_act)^(1/3) ~ ..., data = cl_pr_all_WS)
> summary(lm_ct1)

Residuals:
Min 1Q Median 3Q Max

-0.2132 -0.0524 -0.0058 0.0390 0.3670
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.32e+02 3.65e+01 -3.61 0.00039 ***
eng_h_f 6.27e-05 6.32e-06 9.93 < 2e-16 ***
mat_c_f -1.40e+02 5.32e+01 -2.62 0.00939 **
purch_c_f 4.43e-01 7.64e-02 5.80 2.6e-08 ***
chip_c_f -7.24e-02 2.14e-02 -3.38 0.00089 ***
die_size_f 4.36e-03 1.12e-03 3.91 0.00013 ***
yield_f -1.11e+00 3.16e-01 -3.52 0.00054 ***
bu_m -5.99e-02 1.44e-02 -4.15 5.0e-05 ***
dur_est_log 1.72e-01 4.32e-02 3.98 9.6e-05 ***
eng_h_f_log 3.91e-02 8.64e-03 4.53 1.0e-05 ***
mat_c_f_log 1.42e+02 5.38e+01 2.65 0.00874 **
yield_f_log 4.54e+01 1.27e+01 3.59 0.00041 ***
mat_c_f_sq 5.43e+01 2.11e+01 2.58 0.01064 *
nre_f_sq -1.88e-01 7.60e-02 -2.47 0.01446 *
yield_f_sq 3.37e-03 9.78e-04 3.44 0.00070 ***
---
Residual standard error: 0.0786 on 197 degrees of freedom

(14 observations deleted due to missingness)
Multiple R-squared: 0.88, Adjusted R-squared: 0.872
F-statistic: 104 on 14 and 197 DF, p-value: <2e-16

14 variables in the model lm_ct1 are a noticeable number of predictors. According
to model selection criteria (not shown here) also a model of 6 predictors could have
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been chosen without much worse criteria values. The larger model was preferred
to work with, as a wider range of interactions can be considered.
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Figure 2.32.: Residual plot of model lm_ct1 (data: closed projects with all WS
available)

The residual plot of lm_ct1 (see fig. 2.32) already shows a relatively constant
variance and a relatively good adaption to normal distribution (except for outlier
130). On the first sight two outliers (37 and 130) are obvious, which requires more
detailed analysis.

Further model analysis: Basically the same steps as for the model without
transformed predictor variables are performed. The main changes are as follows

• Interactions: By Analysis of Variance (ANOVA) all interactions not includ-
ing dur_est_log could be identified as non-significant with a p-value of 0.43.
To obtain the significant interactions a regsubsets model selection is ap-
plied on all original predictors and their interactions with dur_est_log (see
fig. 2.33). A bend in AIC, AICc and BIC can be seen for p−1 = 6 predictors.
On the same time better criteria values can be obtained by more predictors,
even for BIC that prefers simpler models. As for untransformed predictors a
relatively simple model was finally chosen, here the more complicated model
with p− 1 = 15 predictors is chosen (minimizes BIC).

• Categorical Variables: The only left predictor, that is based on a categor-
ical variable is bu_m in interaction with dur_est_log. As bu_m is replaced
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Figure 2.33.: Model Selection Criteria (data: closed projects with all WS available)

by bu, only the interaction with BU4 is left with a significant difference to
BU117.

Specifying the Final Model: The result of the above described steps is the final
model for actual project cost18:

> excl_ct <- c(37, 67, 130, 189, 272, 317, 440)
> lm_ct <- lm(formula = (cost_act)^(1/3) ~ ...,
+ data = subset(cl_pr_all_WS, !(id %in% excl_c)))
> summary(lm_ct)

Residuals:
Min 1Q Median 3Q Max

-0.17983 -0.04793 0.00108 0.04006 0.19049
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.45e-01 3.09e-02 4.68 5.4e-06 ***
eng_h_f 5.24e-05 9.14e-06 5.73 3.8e-08 ***
mat_c_f -5.08e+01 9.18e+00 -5.53 1.0e-07 ***
purch_c_f 4.71e-01 6.90e-02 6.82 1.1e-10 ***
chip_c_f -1.02e-01 3.24e-02 -3.14 0.0019 **
die_size_f 5.95e-03 1.29e-03 4.62 6.9e-06 ***
log(1 + dur_est) -3.80e+02 8.06e+01 -4.72 4.6e-06 ***
log(1 + mat_c_f) 5.78e+01 9.96e+00 5.80 2.7e-08 ***
log(1 + dur_est):log(1 + mat_c_f) -9.89e+00 1.48e+00 -6.67 2.7e-10 ***

17When using categorical variables in the lm function, for all category levels the difference to
the first level is regarded.

18The function I(·) that can be seen for some variables, is a fuinction of the base package
denoting to use the input object “as is”.
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log(1 + dur_est):yield_f -3.16e+00 6.81e-01 -4.64 6.6e-06 ***
log(1 + dur_est):I(bu == "BU4")TRUE -9.64e-02 2.12e-02 -4.54 9.9e-06 ***
log(1 + dur_est):log(1 + eng_h_f) 9.57e-02 3.10e-02 3.09 0.0023 **
log(1 + dur_est):log(1 + yield_f) 1.30e+02 2.77e+01 4.70 5.0e-06 ***
log(1 + dur_est):I(mat_c_f^2) 3.61e+01 6.34e+00 5.68 4.9e-08 ***
log(1 + dur_est):I(yield_f^2) 9.48e-03 2.08e-03 4.56 9.1e-06 ***
---
Residual standard error: 0.068 on 191 degrees of freedom

(14 observations deleted due to missingness)
Multiple R-squared: 0.906, Adjusted R-squared: 0.899
F-statistic: 132 on 14 and 191 DF, p-value: <2e-16

Remark 2.21 The model name lm_ct stands for “linear model cost with trans-
formed predictors”.

The residual plot of the final model lm_ct (see fig. 2.34a) shows no contradiction
to constant variance. On the same time the adaption of the distribution to the
normal distribution seems to be very good, as the Q–Q plot and the histogram
show. This is confirmed by a Shapiro-Wilk test p-value of 0.6. Some projects still
excess levels for influential points, but the excess is very small so that they are
treated as inconspicuous. These observations show that there is no contradiction to
the assumptions of the cost model lm_ct and thus can be used to predict project
cost.

Apply to Running Projects: When applying the model lm_ct to running proj-
ects one large outlier was identified (not shown in plot). Project 321 resulted in a
predicted cost of about 1356 million Euro (ME), whereas the last estimated cost
are 1.8 ME. On the same time the maximum of actual cost of all closed projects
is 3.02ME with a median of 0.24ME. Searching for reasons for this clear outlier
it turned out that project 321 is an outlier for estimated duration (see fig. 2.8 in
section 2.2, Exploratory Data Analysis (EDA)) and also for material cost, which
are both important variables in model lm_ct. This reveals that a model, espe-
cially complicated models with many predictors, can be sensitive to outliers in the
predictor variables, which has to be kept in mind in further steps of the analysis.

Comparing the estimated cost to the modeled cost in fig. 2.34b for the model clearly
a much better adaption to the actual cost can be observed. Looking at the running
projects, for estimated cost the last available cost estimation is larger for most of
the running projects. In contrast the model tends to raise the last available cost
estimation. Also here shall be stated that the issue of running projects for which
the model predicts lower cost than the last available estimation, will be treated in
the upcoming section 2.5, Model Improvements.
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Figure 2.34.: Final cost model lm_ct with transformed predictors (data: closed
projects with all WS available)
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Chapter 2. Practical Analysis

2.4.3. Modeling Actual Project Duration based on First
Workstatement

The decision process in modeling actual project duration based on the first WS
is very similar as for modeling project cost. Thus this section contains just the
results and some interpretation. For more information about the process of model
selection see the practical section 2.4.1, Model Selection Process or the theoretical
section 3.4, Model Selection.

Without Transformed Predictors

This final linear model for predicting actual duration contains only 5 basic predic-
tors and no interactions.

> excl_d <- c(73, 87, 105, 272)
> lm_d <- lm(formula = (dur_act)^(1/3) ~ dur_est + eng_h_f + reuse_f +

mat_c_f + chip_c_f, data = subset(cl_pr_all_WS, !(id %in% excl_d)))
> summary(lm_d)

Residuals:
Min 1Q Median 3Q Max

-0.3720 -0.0976 -0.0044 0.0982 0.4236
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.22e-01 5.25e-02 15.67 < 2e-16 ***
dur_est 4.25e-01 3.92e-02 10.86 < 2e-16 ***
eng_h_f -3.17e-05 9.09e-06 -3.48 0.00061 ***
reuse_f -1.22e-03 4.94e-04 -2.47 0.01430 *
mat_c_f 7.75e-01 2.73e-01 2.84 0.00505 **
chip_c_f 6.21e-02 1.91e-02 3.25 0.00138 **
---
Residual standard error: 0.148 on 197 degrees of freedom

(20 observations deleted due to missingness)
Multiple R-squared: 0.6, Adjusted R-squared: 0.59
F-statistic: 59.1 on 5 and 197 DF, p-value: <2e-16

The residual plots (see fig. 2.35a) are inconspicuous and a Shapiro-Wilk test p-
value of 0.55 confirms this for the normality assumption. Also here the plot of the
fitted model values for closed and for running projects (see fig. 2.35b) shows that
model predictions are unbiased.
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Figure 2.35.: Final duration model lm_d without transformed predictors (data:
closed projects with all WS available)
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With Transformed Predictors

As for the project cost models, also for project duration the model with transformed
predictors is more complicated than the model without. Thus this model with 7
predictors and several interactions is also more sensitive.

> excl_dt <- c(4, 22, 67, 78, 79, 105, 173, 237, 317, 322)
> lm_dt <- lm(formula = (dur_act)^(1/3) ~ ..., data = subset(cl_pr_all_WS,

!(id %in% c(excl_dt))))
> summary(lm_t_df)

Residuals:
Min 1Q Median 3Q Max

-0.2738 -0.0971 -0.0043 0.0772 0.3802
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.70629 0.05339 13.23 < 2e-16 ***
die_size_f 0.02855 0.00548 5.21 5.1e-07 ***
log(1 + dur_est) 0.59762 0.07712 7.75 6.5e-13 ***
log(1 + mat_c_f) 3.27510 0.73070 4.48 1.3e-05 ***
finance:log(1 + die_size_f) -0.09134 0.01584 -5.77 3.4e-08 ***
log(1 + dur_est):log(1 + test_t_f) 0.16501 0.03711 4.45 1.5e-05 ***
log(1 + dur_est):I(nre_f^2) -1.03043 0.30576 -3.37 0.00092 ***
log(1 + mat_c_f):log(1 + die_size_f) -1.31477 0.35630 -3.69 0.00030 ***
---
Residual standard error: 0.133 on 180 degrees of freedom

(29 observations deleted due to missingness)
Multiple R-squared: 0.671, Adjusted R-squared: 0.658
F-statistic: 52.5 on 7 and 180 DF, p-value: <2e-16

Looking at the residual plots of the final model (see fig. 2.36a) the most remarkable
topic is the residual distribution. The histogram shows a slight more widespread
distribution for the estimated density compared to normal density. This can also
be seen on the Q–Q plot as a deviation on the lower tails. On the upper tails
3 slight outliers can be seen that are not conspicuous when looking at the other
plots. Also the Shapiro-Wilk test gives with a p-value of 0.12 no contradiction to
the normal distribution assumption. Thus the model can be assumed to be valid.

The model outliers excl_dt can clearly be recognized on fig. 2.36b as outliers.
Apart from this point the comparison of the model to actual and estimated values
looks similar to the model without transformed predictors.
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Figure 2.36.: Final duration model lm_dt with transformed predictors (data:
closed projects with all WS available)
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Chapter 2. Practical Analysis

2.4.4. Influential Variables

This section briefly examines the question of variables with highest influence on
actual project cost and duration. The approach chosen is to perform a subset
variable selection with forward search on all variables of interest (see section 3.4,
Model Selection for details). This is done for variable values at project start (first
WS) and project end (final WS) separately. The used data includes all closed
projects with all WS available for analyzing project start and all closed projects
for project end.

Actual Project Cost
• most influential variables of first WS (at project start)

1. + engineering hours
2. + estimated duration
3. + material cost
4. − business unit
5. − nre + average chip sales price
6. + purchased cost − reuse

• most influential variables of final WS (at project end)
(excluding cost variables eng_h, purch_c, mat_c and nre)
1. − reuse
2. + pin count
3. − business unit
4. − average chip sales price
5. − size of the technology

Actual Project Duration
• most influential variables of first WS (at project start)

1. − reuse
2. + material cost
3. + die size − finance
4. + test time + size of technology − business unit

• most influential variables of final WS (at project end)
1. − reuse
2. + engineering hours
3. − finance
4. + test time
5. − purchased cost − pin count + die size

The above list gives for each response-WS combination the most influential vari-
ables. Additionally for each variable the sign of influence is given:
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2.4. Modeling Cost and Duration

• “+ var” means that an increase of var increases the response (if all other
variables are constant).

• “− var” says that an increase of var results in a decrease of the response (if
all other variables are constant).

The variables are ordered based on the order they are added to the model by
forward search. Forward search adds in each step a variable to the model that
gives the most significant additional information.

For each response-WS combination at least two different data subsets are analyzed
by subset regression. The data subsets differ on the number of projects due to
missing values. Because of analyzing multiple models, the order of the variable
importance is not always clear. Thus some variables are put together on an order
level.

Remark 2.22

• Order: As stated above the order of the influential variables is not absolute.
The intention is to give an idea about the significant information provided
by each variable on describing actual cost and duration.

• Database choice: The same analysis could be done including running proj-
ects, as model fits give an unbiased prediction for actual project cost and
duration. Here it was decided to use closed projects only, as the relationship
of cost and duration of running projects to the other variables is the same.
This is due to the relationship given by the models.

• Connection to models: This analysis corresponds closely to the analyzed
models summarized in the upcoming section 2.4.5, which can be seen by the
similarity of predictor variables to influential variables stated in this section.

• Excluded variables: The variables of estimated cost/duration and actual
cost/duration are excluded from influence analysis, as they have logically
high influence on actual cost/duration. Only estimated duration is admitted
for analyzing influence on actual cost.
On analyzing influence of variables at project end for actual cost the listed
cost variables are excluded, as they are the main factors of a linear combi-
nation that exactly gives the actual cost. To get an idea of the influence of
these cost variables on actual cost, please be referred to the corrlation matrix
in fig. 2.37.

• Signs of influence for categorical variables: Here numerical versions of
categorical variables bu and finance with reduced levels are used (see section
2.2.2, Reducing Category Levels). This gives the following relationship:

– BU1 or BU2 ⇒ bu = 1
BU3 or BU4 ⇒ bu = 2
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Chapter 2. Practical Analysis

– F1 ⇒ finance = 1
F2 ⇒ finance = 2

For example take the negative influence of variable business unit on actual
duration. This means that the actual duration of a project p1 of business
unit BU1 or BU2 (bu = 1) is higher than the actual duration of a project p2
of business unit BU3 or BU4 (bu = 2). This is only a valid conclusion under
the assumption that projects p1 and p2 have the same values for all other
variables.

• Influence of average chip sales price on cost: It is notable that the
average chip sales price shows a positive influence on cost regarding the first
WS and a negative for the final WS. This may yield due to excluding cost
variables. A model not containing for example engineering hours or material
cost changes the way how additional influence is described.

This fact has to be considered on interpreting the influential variables of final
WS on actual cost.
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Figure 2.37.: Pairwise correlation matrix ellipses for variables of the last WS using
Pearson correlation (data: closed projects with all WS available)

This analysis also corresponds closely to the analyzed correlations in section 2.2.3,
Correlations. Variables highly correlated with actual project cost or duration are
listed as influential variables above. High correlations can also be a reason for
variables not listed here. For example fig. 2.12 on page 24 gives for eng_h_f and
dur_est a high correlation between 0.6 and 0.8, but engineering hours is not listed
among the most influential variables of the first WS. On the same time fig. 2.12
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reveals that eng_h_f is significantly correlated to reuse_f and mat_c_f, which
are both listed as influential variables. Because of that the engineering hours seem
to give no significant additional information in describing actual duration. As the
correlation matrix helps to interpret the most influential variables, fig. 2.37 gives
a graphical view of the correlation matrix for variables of the last WS.

It concludes that variables not listed above do not necessarily have to be non-
influential on actual cost or duration.

2.4.5. Summary

This section summarizes the results about the final models of the previous two
sections. First each model pair is compared to get an idea about their differences.
At the end of this section the results are also interpreted.

Remark 2.23 To reference to the fitted values of the previously identified models,
following terms shall be used:

• cost_lm: fitted values of lm_c
(cost model without transformed predictors)

• cost_lm_t: fitted values of lm_ct
(cost model with transformed predictors)

• dur_lm: fitted values of lm_d
(duration model without transformed predictors)

• dur_lm_t: fitted values of lm_dt
(duration model with transformed predictors)

Comparing Model Pairs

Fig. 2.38 directly compares the predicted values of the models for project duration
and cost. The graphics show scatterplots of the difference of model predictions with
transformed predictors to the model predictions without transformed predictors
against the actual values. Regarding duration for short lasting projects lm_d pre-
dicts higher duration than lm_dt. For longer lasting projects the situation changes
(The curve down at dur_act from 4 to 6 is a result of project 42). The respective
plot of project cost shows that the two models are very similar across the actual
cost range regarding their mean. Also here the curve down is a result of an outlier
(project 52).

Table 2.7 gives basic characteristics on model differences. For both the distribution
looks symmetric with center at zero. For project duration 50% of the differences lie
in the range of [−0.14, 0.21] years, which is equal to [−51, 77] days. The respective
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Chapter 2. Practical Analysis

Figure 2.38.: Comparison of model predictions with and without transformed pre-
dictors with LOESS smooth. Two outliers regarding actual values are
marked (data: closed projects with all WS available)

Table 2.7.: Basic characteristic numbers of model prediction differences (data:
closed projects with all WS available)

Min q0.25 Median Mean q0.75 Max #NA
dur_lm_t − dur_lm -1.76 -0.14 0.05 0.06 0.21 2.07 49.00
cost_lm_t − cost_lm -0.23 -0.02 0.00 0.01 0.02 0.41 30.00

50% range of project cost is [−0.02, 0.02] ME. The outcome of this is that the
model predictions can differ within certain ranges, but on average the difference is
about zero.
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2.4. Modeling Cost and Duration

Model Summaries

The following list summarizes the model formulas and lists closed projects excluded
from the analysis, as they were identified as outliers:

• lm_d (duration model without transformed predictors)

m̂(dur_act) ≈ [0.822 + 0.425 dur_est
+ 3.17 · 10−5 eng_h_f
− 1.22 · 10−3 reuse_f
+ 0.775 mat_c_f
+ 0.0621 chip_c_f]3

closed projects excluded from the model:
73, 87, 105, 272

• lm_dt (duration model with transformed predictors)

m̂(dur_act) ≈ [0.70629 + 0.02855 die_size_f
+ 0.59762 log(1+dur_est)
+ 3.27510 log(1+mat_c_f)
− 0.09134 finance · log(1+die_size_f)
+ 0.16501 log(1+dur_est) · log(1+test_t_f)
− 1.03043 log(1+dur_est) · (nre_f)2

− 1.31477 log(1+mat_c_f) · log(1+die_size_f)]3

closed projects excluded from the model:
4, 22, 67, 78, 79, 105, 173, 237, 317, 322

• lm_c (cost model without transformed predictors)

m̂(cost_act) ≈ [0.3125 + 0.2690 dur_est
+ 7.596 · 10−5 eng_h_f
+ 2.677 mat_c_f
− 0.05087 buBU2
− 0.1595 buBU3
− 0.1006 buBU4
− 2.202 dur_est · mat_c_f ]3

closed projects excluded from the model:
26, 37, 39, 42, 105, 130, 146, 177, 187, 228, 272, 290
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• lm_ct (cost model with transformed predictors)

m̂(cost_act) ≈ [0.1446 + 5.241 · 10−5 eng_h_f
− 50.77 mat_c_f
+ 0.4706 purch_c_f
− 0.1019 chip_c_f
+ 5.955 · 10−3 die_size_f
− 380.0 log(1+dur_est)
+ 57.77 log(1+mat_c_f)
− 9.892 log(1+dur_est) · log(1+mat_c_f)
− 3.159 log(1+dur_est) · yield_f
− 0.09644 log(1+dur_est) · buBU4
+ 0.09570 log(1+dur_est) · log(1+eng_h_f)
+ 130.2 log(1+dur_est) · log(1+yield_f)
+ 36.05 log(1+dur_est) · (mat_c_f)2

+ 9.480 · 10−3 log(1+dur_est) · (yield_f)2 ]3

closed projects excluded from the model:
37, 67, 130, 189, 272, 317, 440

Remark 2.24

• The function m̂(·) denotes the estimated median. As in section 3.3, Model
Diagnostics stated, back-transformation of the fitted values to the original
scale results in the median.

• Model lm_dt contains the factor finance, which has the levels F1 and F2.
When calculating the formula the value 1 has to be inserted for finance, if
the corresponding project has financial project type F1 and the value 2 has
to be inserted for financial project type F2. This is the encoding as it is done
by R.

• lm_c and lm_ct partly hold factors buBU2, buBU3 and buBU4. These variables
are dummy variables that take values of 0 or 1. The variable takes value 1
if the underlying project is of the corresponding business unit and value 0
otherwise.

For example if an estimation of the median for a new project of business unit
BU3 is wanted to be calculated, than the formula of the lm_c model is used
with BU2 = 0, BU3 = 1 and BU4 = 0.

• ATTENTION: The above used function log(·) denotes the natural loga-
rithm and NOT the logarithm with base 10, as sometimes denoted.
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Table 2.8.: Summary of model characteristics

AIC AICc BIC R2
adj R2 s

lm_d -769.25 -768.82 -749.37 0.59 0.60 0.15
lm_dt -749.63 -748.83 -723.74 0.66 0.67 0.13
lm_c -1058.76 -1058.03 -1032.13 0.86 0.87 0.08
lm_ct -1093.42 -1090.89 -1043.50 0.90 0.91 0.07

Table 2.8 summarizes some characteristics for each model. For explanations about
the characteristics please see chapter 3, Theoretical Fundamentals and especially
section 3.4, Model Selection.

Table 2.9.: Summary of characteristics for the simple models

AIC AICc BIC R2
adj R2 s

lm_d_simple -774.88 -774.83 -768.19 0.52 0.52 0.16
lm_c_simple -992.62 -992.57 -985.89 0.77 0.77 0.10

Additionally in table 2.9 the same characteristics are given for two simple mod-
els. lm_d_simple uses only dur_est to predict (dur_est)1/3 (analogously for
lm_c_simple). Thus the scale the values of table 2.9 can be used to directly com-
pare to the values of 2.8.

Remark 2.25

• The s values in tables 2.8 and 2.9 are on the transformed scale of cost re-
spective duration to the power of 1/3. This is important to consider on
interpreting these values.

• On comparing the model selection criteria it should also be considered that
the underlying datasets differ slightly due to outlier elimination.

Interpretation

Also here the R2 and R2
adj values show that duration is more difficult to predict

than cost. In other words the portion of variance described by the model is larger
for cost than for duration.

Looking at each model pair in table 2.8 it is observable that the adjusted coeffi-
cient of determination (see section 3.4, Model Selection) R2

adj increases 7% resp.
4% for the duration resp. cost model, when comparing model without and with
transformed predictors. So the more complicated models have a higher portion of
described variance or information. Regarding the cost models also the other model
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selection criteria AIC, AICc and BIC prefer the model with transformed predic-
tors. In contrast for duration the model selection criteria prefer the model without
transformed predictors.

By looking at the model selection criteria of the simple models in table 2.9 it is
obvious that the models using more predictors are favored by every model selection
criterion. The improvements in R2

adj, which is associated to the portion of described
variance, range from 7% to 14%.

2.5. Model Improvements

The models discussed in the previous section already describe a noticeable part
of response variance. On the same time it was observed that the models predict
lower response values compared to the last available estimations for some running
projects. This is of course possible, but still suspicious. For this reason this section
has a closer look on duration and cost WS estimations starting from the second
WS. This information was not used so far for modeling.

First an introductory section briefly describes the approaches for improving the
models already found. The consecutive two sections focus on analyzing how to
improve the models for actual project cost and duration by using the information
of estimations from all available WS. Finally the possibly found improvements are
evaluated.

2.5.1. Improvement Ideas and Approaches

There were mainly two ideas on improving the models found:

1. Use the information of estimated project end to improve model predic-
tions and to included direct information about time.

2. Use the information of cost and duration estimations of all available
WS to improve the model predictions.

Remark to idea 1: This idea is based on two observations:

(i) As shown in section 2.3, Modeling Approach using the information about
project start in modeling actual project cost/duration results in a bias. This
bias is due to the structure of the data: Recent started and already finished
projects tend to cost less and last shorter than projects started longer ago.
The idea is that this problem may be avoided by using the information of
project end.
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(ii) In section 2.1.4, Assumptions the assumption of comparability of projects over
time is described. When using project end as predictor variable for actual
project cost/duration, this assumption is not needed any more.

First it was checked if the models of the previous section are valid over the time
range. By conducting the analysis over various bisections of the data by the time
range the validity could be verified. Hence no contradiction to the assumption
stated in (ii) is given by using the original models.

Nevertheless (i) suggests a model improvement by using the information of project
start. Here it is important to observe that using the information of estimated
project end in conjunction with estimated project duration makes the information
of project start available (project end − project duration = project start). This
leads to an undesirable bias as already stated. This effect was verified by analyzing
models that include the estimated project end as predictor.

To sum up, the realization of idea 1 would cause a bias and is not needed to fulfill
the assumptions.

Remark to idea 2: It was already mentioned that using the information of all
WS is associated with difficulties (see section 2.1.3 about the database structure).
The main issue is that there is no comparable point of time for WS creation. Thus
the information of the last available WS (or any other WS than the first) has no
comparable time horizon.

On the same time the assumption that WS estimations approximate the actual
value is obvious. This assumption shall be verified and analyzed on possible meth-
ods of using this information to improve the predictions for actual project cost/du-
ration. To look at the different WS in a structured way it is chosen to compare WS
of the same number. This means that all first WS are compared, all second WS
are compared and so on. The first approach chosen is exploratory and described
in the next two sections.

Remark 2.26 The approach of comparing WS of the same number does not result
in comparing last available WS. The concept of last available estimations is only
applicable to running projects, but for running projects actual duration and cost
are not known. Still this chosen approach makes sense, as a strategy for improving
model fits can be generated. The next step is to simulate closed projects as being
running projects and analyze the improved predictions, as it will be done in section
2.5.4, Improvements Evaluation.

2.5.2. Duration Model Improvements

The dataset used here is based on the closed projects with all WS available. It is ex-
tended as for all available WS the estimations of cost and duration are considered.
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Remark 2.27 On analyzing how the last available estimation can aid on improv-
ing the model predictions, only WS excluding the final WS can be regarded. The
reason is that the final WS already contains the actual duration, which is assumed
to be not known. This assumption is especially true for running projects. It follows
that for analyzing the j-th WS only closed projects come into account, that were
still running at the j-th WS.

To analyze the behavior of duration estimations of each WS, these estimations
are compared to the actual duration. This means that for each WS the difference
of estimated duration to the actual duration is regarded. As an example here the
analysis of all WS up to the third WS is presented.

Figure 2.39.: Boxplot series of duration deviation. The first three boxplots rep-
resent the difference of the estimated duration at that WS to the
actual duration. The last two boxplots represent the difference of the
respective model prediction to the actual duration (lm_t and lm cor-
respond to lm_dt and lm_d respectively). Each grey line connects a
single project (data: closed projects with all WS available, that were
still running at the 3rd WS)

Interpretation: Fig. 2.39 shows for WS 1, 2, and 3 the differences of the corre-
sponding duration estimations to the actual duration as boxplots. The boxplots are
overlaid by the jittered19 observations. These boxplots are compared to the box-
plots of the difference of the two duration model estimations of lm_d and lm_dt
to the actual duration. To get an idea of how project estimations behave, for each
project the corresponding points are connected by straight lines. Thus points on
19This is a method used by the ggplot2 package to avoid overplotting. The points are jittered

around their real values.
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the zero line represent projects for which the actual duration was estimated ex-
actly. Points above and underneath the zero line represent overestimations and
underestimations, respectively. Fig. 2.39 makes clear that WS estimations tend to
underestimate. On the same time estimations get better for increasing WS and the
median seems to approximate zero. The models are relatively symmetric around
zero, although the median is slightly negative. The aim is to use the last available
WS estimation to decrease the model variations, while keeping the median at zero.
A zero median or mean is necessary to have an unbiased prediction.
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Figure 2.40.: Scatterplot series of duration deviation and LOESS smooth with 95%
CI. (data: closed projects with all WS available, that were still run-
ning at the 3rd WS)

The impact of the skewness of WS estimations deviations can be seen more clearly
on the corresponding scatterplot of the differences against project start, as it is
shown in fig. 2.40. An accumulation of points around zero is forming for increasing
WS. On the other hand the smoothing lines show that the actual duration is still
systematically underestimated by WS estimations, in contrast to the model fits.

Transformation: Having a closer look on the connection of the third WS and the
model lm_d in fig. 2.39 yields the idea that it is desirable to use as transformation
the maximum of WS estimation and model prediction20: The idea is that the max-
imum improves the predictions/estimations for underestimated values and keeps
some overestimations that ensure unbiasedness.

The result is shown in fig. 2.41, that plots the difference of maximum of third
WS estimation and lm_d model fit to actual duration21. Here only third WS and
model lm_d are shown. Obviously the maximum for the third WS is centered at
20It is equivalent to take the maximum of the difference to actual values and the maximum of WS

estimations and model predictions themselves, as min(x−c, y−c) = min(x, y)−c ∀x, y, c ∈ R.
21For both plots of fig. 2.41 the right version representing lm_d is the same as in fig. 2.39 and

fig. 2.40, because the maximum of model prediction with itself is regarded.
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Figure 2.41.: Boxplot and scatterplot series of improved duration deviation with
LOESS smooth and 95% CI for the scatterplots. The deviation is
improved for the 3rd WS as the maximum of the 3rd WS estimation
and the model prediction of lm_c is considered (data: closed projects
with all WS available, that were still running at the 3rd WS)

zero and looks symmetric with a smaller IQR than the model predictions. Also
the scatterplot shows for the third WS maximum an unbiased estimation across
time.

Remark 2.28

• This idea of a transformation to improve model predictions will be evaluated
in section 2.5.4, Improvements Evaluation.

• This section showed the analysis with focus on the third WS. In practice all
WS were analyzed and validated.

2.5.3. Cost Model Improvements

Interpretation: Looking at the same situation for project cost the boxplot series
in fig. 2.42 shows some differences to project duration. The distribution of project
cost estimations has larger variance compared to the IQR. Also the zero line is
within the IQR already for the first WS.

Transformation: The first idea might be to use the maximum of last available
estimation and model predictions, as done for duration. This approach led to a
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2.5. Model Improvements

Figure 2.42.: Boxplot Series of cost deviation for WS 1 to 3 and both models (data:
closed projects with all WS available, that were still running at the
3rd WS)

skewed overestimation, thus a bias. The transformation chosen instead is

cost_transf(x, y) :=
(x+ y)/2 if x > y

y if x ≤ y

x = estimation of the corresponding WS
y = model prediction

This transformation is chosen based on the following steps:

• The cost models give already very good approximations of actual cost, thus
the maximum caused an overestimation.

• Idea: Use average (x+ y)/2.
Result: The result gives a distribution which median fits the actual cost
very good, but is still skewed caused by a set of clear underestimations of
the regarded WS estimations.

• Idea: Use average only if WS estimation is larger than the model fit and the
model fit otherwise.
Result: Median still fits the actual cost very well and additionally the dis-
tribution looks symmetric.

The result can be seen in fig. 2.43 that applies the cost transformation function
cost_transf to the third WS and compares it to the model fits of lm_c. Obvi-
ously the distribution becomes symmetric and variance decreases by applying the
transformation. The transformation is also unbiased over time as the right plot
shows.
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Figure 2.43.: Boxplot and scatterplot series of improved cost deviation. The scat-
terplots also show a LOESS smooth and 95% CI (data: closed projects
with all WS available, that were still running at the 3rd WS).

2.5.4. Improvements Evaluation

The idea of how to evaluate the transformations of duration and cost is to apply
the transformations to simulated running projects. This simulation can be done
by choosing a date d in the past and replicating the project states at date d. An
appropriate date d has to be far enough in the past, so that enough today closed
projects were running. On the same time d has to be close enough to today, such
that enough today closed projects were already running. Here d = 2007-01-01 is
chosen with 123 projects running at date d, remaining of 227 today closed projects
that have all WS available. This dataset of simulated running projects will be
referred to as data_eval.

For each of the four models (2 models for actual cost and actual duration each)
two types of evaluation models are generated, as listed in table 2.10.

Table 2.10.: Evaluation model types

Response Predictor
Type 1 actual duration/cost original model fits
Type 2 actual duration/cost transformed model fits

Remark 2.29

• The same analysis as shown underneath can also be performed for another
date d. The analysis of other dates d gave similar results, so d = 2007-01-01
is shown as an example.
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2.5. Model Improvements

• The models of section 2.4, Modeling Cost and Duration were evaluated on a
transformed scale using the response transformation f(y) = y1/3. Thus the
model assumptions are also analyzed on this transformed scale. To account
for the assumptions, the evaluation models are also analyzed on the trans-
formed scale. This implies that also the predictor has to be transformed by
f(·).

• The improvement transformations were done on the original scale of project
cost and duration. The reason is that this approach makes the improvements
easier to interpret.

• To refer to the improvement transformations the extension _mod will be used.

The following aspects are of main interest on evaluating the model improve-
ments:

Information described by the model: The degree of information can be mea-
sured by the coefficient of determination R2 or the estimated residual stan-
dard error s.

Model assumptions: To draw conclusion from the model fits it is necessary to
verify the model assumptions first. In place of the whole model diagnostics
here the p-value of the Shapiro-Wilk test will be presented only. The other
assumptions were verified during the analysis process.

Unbiasedness of predictions: The analyzed models are simple linear regression
models and thus have the following form:

E(Y 1/3) = β0 + β1x
1/3

(see section 3.1, Simple Linear Regression) with x1/3 being an original or
improved predictor (on the transformed scale). Thus

median(Y ) =
(
β0 + β1x

1/3
)3

is the median of Y . Here it shall be verified that x can be used as an unbiased
predictor itself, which is equivalent to the hypothesis

β0 = 0 and β1 = 1.

Duration Models

Evaluating the duration model (see table 2.11) shows that the improved model
predictions describe for the test database an about 4% higher portion of infor-
mation than the original predictions. Accordingly the residual standard error s
is decreaed by the improvement transformation. On the same time the p-values
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Table 2.11.: Evaluation of duration model improvements (data: data_eval)

Model
R2 s

p-value p-value p-value
E(dur_act1/3) = β0 = 0 β1 = 1 Shapiro-Wilk
β0 + β1 dur_lm1/3 0.60 0.155 0.37 0.53 0.77
β0 + β1 dur_lm_mod1/3 0.64 0.147 0.72 0.75 0.79
β0 + β1 dur_lm_t1/3 0.66 0.146 0.68 0.83 0.22
β0 + β1 dur_lm_t_mod1/3 0.71 0.134 0.79 0.81 0.13

give no contradiction to model assumptions and unbiased predictions (all p-values
� 0.05).

Decision: Concluding the improved duration predictions in fact improve the pre-
dictions and can be used as unbiased predictions for actual project duration.

Remark 2.30 ATTENTION: The values of R2 and s can not be compared directly
between the models with and without transformed predictors, as the number of
observations differs due to different number of missing values and outliers. At the
same time comparison gives ideas of the quality.

Cost Models

Table 2.12.: Evaluation of cost model improvements (data: data_eval)

Model
R2 s

p-value p-value p-value
E(cost_act1/3) = β0 = 0 β1 = 1 Shapiro-Wilk
β0 + β1 cost_lm1/3 0.87 0.075 0.46 0.22 0.03
β0 + β1 cost_lm_mod1/3 0.92 0.061 0.02 0.02 0.82
β0 + β1 cost_lm_t1/3 0.92 0.064 0.67 0.36 0.92
β0 + β1 cost_lm_t_mod1/3 0.94 0.057 0.07 0.07 0.69

For project cost the improved predictions also give higher degrees of determination,
whereas the increase is about 5% for cost_lm and about 2% for cost_lm_t (see
table 2.12). In contrast to the original predictions, the improved ones have potential
risk of being biased predictions as the p-values of the corresponding hypothesis
tests are with 0.02 and 0.07 relatively low.

Decision: The decision is to use the improvement transformation only for the
simpler cost model lm_c without transformations. As already analyzed project cost
is more difficult to predict accurately, than project duration. Model cost_lm_mod
has a large Shapiro-Wilk test p-value and a very high coefficient of determination
of 0.92. On the same time here a test dataset is regarded, whereas the relatively
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low p-values for testing on β0 and β1 are not considered as contradiction to a good
model.
For the model lm_ct with transformations the original predictions are used, as they
are unbiased for the test dataset data_eval and the improvement transformation
gives for the test dataset only 2% higher portion of described variance.

Remark 2.31 In the upcoming sections it will not be differentiated explicitly
between original and improved model predictions. For all but the predictions of
lm_ct, the improved predictions are meant by referring to model predictions.

2.6. Trend Analysis

The intention of this section is to analyze trends of project cost and duration by
time. The underlying question is if these factors increased or decreased during the
last years. To give answers it is crucial to have predictions for actual values of
running projects that represent reality as good as possible.

Up to here the models for unbiased predictions of actual values for running projects
(based on closed projects) are derived and analyzed in detail. Hence the models
give reliable and unbiased estimations of actual project cost and duration. By
applying the models to running projects the trend analysis can be performed.

First section 2.6.1, Dataset and Analysis Mode introduces the data and gives
details on the analysis mode. The results are presented in section 2.6.2, Results
and are illustrated by examples in section 2.6.3, Example. The last two sections
also give interpretations on some results. For an overall interpretation please see
chapter 4, Conclusions.

2.6.1. Dataset and Analysis Mode

Dataset

As indicated in section 2.3, Modeling Approach projects started before the date
data collection start (= 2006-10-25) tend to last longer, because of the dataset
structure (see section 2.1.3, Structure). Hence the trend analysis will be based on
all projects that started after the data collection start date. This dataset shall be
denoted as data_trend and covers about 6 years of time (from data collection
start = 2006-10-25 to today = 2012-10-29).
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data_trend consists of

• 116 closed projects and

• 128 running projects

 = 244 projects

including 3 closed projects with missing first WS.

On analyzing trend, project cost of different projects are compared over the years.
To make project costs comparable an inflation adjustment is necessary. Here as
reference year to adjust the cost for 2012 is chosen. The used inflation rate i is an
average of inflation rates from 2000 to 201722 of 35 advanced economies worldwide
(International Monetary Fund [11]).

Let s := project start year, d := (predicted) project duration and c := project cost
of a single project. The inflation adjusted cost cadj is calculated as

cadj =
d−1∑
j=0

c

d
(1 + i)2012−(s+j)

i>0= c
(1 + i)2012−s

d

( 1
1+i)

d − 1
( 1

1+i)− 1

and is based on the idea to equally distributed project cost over all years while
running.

The trend analysis will also analyze trends for different data categories based on
business units and financial project types. Hence the distribution of projects across
these categories is of interest, as shown in fig. 2.44. Especially BU3 and all but two
combinations of bu and finance (F1 & BU2 and F2 & BU4) have few projects
(at most 33). For that reason it might be difficult to identify trends for these
categories. Especially slight trends might not be significant.

Remark 2.32

• Also here missing values are important. The distribution of missing values is
already discussed in section 2.2.4, Missing Values. Here also model outliers
play an important role. Approximates of number of missing values will be
supplied with the results.

• For the rest of this section all cost variables shall refer to inflation adjusted
costs.

• The 3 closed projects with missing first WS can not be used for analyzing
estimation errors, as estimations at project start are needed.

222000 is the year of the first project start. 2017 is the predicted year of the last project closure.
Inflation rates from 2012 to 2017 are estimations.
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Figure 2.44.: Histogram of business units for both financial project types (data:
data_trend)

Analysis Mode

As the trend analysis is based on regression models that include some uncertainty,
value is set to diversify the analysis. Diversity shall be given by regarding differ-
ent response variables. The responses shall be denoted by four different response
modes, as they are defined in table 2.13.

Table 2.13.: Definition of response modes

Origin of Response for
Mode Closed Projects Running Projects
act_lm actual values _lm predictions
act_lm_t actual values _lm_t predictions
lm _lm predictions
lm_t _lm_t predictions

These response modes are used in conjunction with four different response types:

• Absolute cost/duration

• Cost/duration estimation error

By absolute cost/duration the actual cost/duration and its predictions themselves
are referred to. The estimation error measures the error done by estimating actual
values at project start and is defined as follows:
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Let xact := actual value at project end and xest := estimation at project start. The
formula for the estimation error xest.err. is

xest.err. := xact − xest

xest

and has following properties:

• xest.err. ∈ [−1,∞), because xact ≥ 0

• xest.err. = c⇔ xact = (1 + c)xest, with special cases
– xest.err. = −1⇔ xact = 0
– xest.err. = 0⇔ xact = xest

The interpretation of an estimation error of xest.err. = c would be that the actual
value xact is (1+c)100% of the estimated value xest. In other words, the estimation
under-/overestimated the actual value by (1 + c)100%

Remark 2.33

• The analysis is performed on different subsets of data_trend, based on busi-
ness units bu and financial project types finance:

– all projects
– both levels of finance separateley (2 variants)
– each level of bu separateley (4 variants)
– each combination of finance and bu (8 variants)

• These variants for responses give 4 (response modes) times 4 (response types)
= 16 possibilities. Each response possibility is analyzed on each of the 1 +
2 + 4 + 8 = 15 datasets. Altogether 240 different trend analysis are to be
performed.

• To refer to the response types absolute and estimation error the extensions
_abs and _est_err will be used, respectively. The extension will be attached
to cost or dur to refer to cost and duration.

2.6.2. Results

The results of the trend analyses are presented in tables 2.14 and 2.16 and are
accompanied by tables 2.15 and 2.17 giving characteristic numbers (pages 82 to
85). The list below describes the content of these tables in detail (everything refers
to tables 2.14 and 2.16, unless stated different):
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Cell content (except top row and two rightmost columns): Each cell refers to
a trend analysis of a response-data combination. Response type and mode
are stated on the table margins and in the table captions. Non significant
results23 are denoted by “–”. If a significant trend occurs three characteristics
are specified:

Trend direction
↑ upward trend (variable increases over time)
↓ downward trend (variable decreases over time)
The color of the cell text marks the same information: Red text denotes
an upward trend and green text a downward trend.

Average slope As for nearly all models a predictor transformation applies,
average slopes are given. The average slope is calculated by the simple
formula (last fit − first fit)/(time range) and can be interpreted as the
yearly increase / decrease of the mean response. As the trend direction
is given separately, only the absolute average slope is given.

Significance Beside the trend direction and the average slope it is important
to know how significant the trend is, which is coded by significance stars
as for regression models (see remark 2.16):
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
The significance stars code the p-value of the hypothesis test that the
response is constant over time. Thus the p-value can be interpreted as
the probability that there is actually no trend.

Grey colored cells Some cells have a grey background color. This indicates that
slope and significance is influenced by a small set of projects (typically one
or two projects). Especially for a small set of projects the trend may be
influenced by a single project (see example 2.2).

As treatment of these influential projects a conservative approach is chosen:
If a small set of projects causes a (more) significant trend, these projects are
excluded. If a trend is prevented, the projects are kept. If any of these cases
occurs, the corresponding cell is highlighted by a grey background color. On
the same time these influential projects are listed afterwards for completeness
reasons.

Columns ncl and nrun
ncl := number of closed projects in the corresponding data subset
nrun := number of running projects in the corresponding data subset

Top row (pctpr)
pctpr := percentage of projects without NA values for the corresponding re-
sponse24

23Here results are defined as significant, if the slope p-value ≤ 0.1.
24pctpr is nearly the same for response types absolute and estimation error.
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An important information is given by the number of projects contained in
each dataset. As each response contains missing values for certain projects,
in general the numbers ncl and nrun do not give the exact number of ana-
lyzed projects (projects with available response). But multiplied with pctpr
(ncl ·pctpr and nrun ·pctpr) these numbers give a better approximation of the
number of projects analyzed. The exact numbers are not provided, as the
intention is to summarize the results.

Characteristics given by tables 2.15 and 2.17
For each dataset the median x̃ and median absolute standard deviation smad
of the corresponding response is given. The median is a robust25 estimator
of the expected value and smad is a robust estimator of standard deviation
(see Stadlober [23]). A very rough rule of thumb is that about 95% of the
data lies in the range of x̃± 2smad

26.

Remark 2.34

• The most important information about the table contents is summarized at
the bottom of both tables.

• The data subset of F1 & BU3 holds only one project. This project has missing
values for all responses, thus this category can not be analyzed. It follows
that the results for the categories F2 & BU3 and BU3 are exactly the same.

Example 2.2
This example shows how a small set of projects (here two) can influence trend
significance. Here the cost estimation error cost_est_err of response mode lm_t
for the projects of F2 & BU1 is analyzed. Table 2.16 gives as result “–”, which
means that no significant trend was found. On the same time the cell has a grey
background, thus the non-significance depends on a small set of projects. Table
2.16 also says that approximately 5 ·0.85 ≈ 4 closed 28 ·0.85 ≈ 23 running projects
are analyzed (actually here are no missing values).

The left plot of fig. 2.45 shows the regression line of the non-significant result
together with 95% confidence interval (CI) and prediction interval (PI). As the
plot title states, the average slope is 4.6% with a p-value of 0.327 (non-significant).
The non-significance can be seen as the 95% CI includes a horizontal line. On the
same plot two running projects (211 and 459) are labeled. These projects can be
identified as influential: 211 pulls the left tail of the regression line up and 459 pulls
the right tail down. Hence excluding 211 and 459 may result in an increasing line.
Actually it really results in a significant increasing slope, as the right plot of fig. 2.45
25Robust against outliers
26For X ∼ N(µ, σ2) normally distributed, 95% of a random sample lies within the range of

µ± 1.96σ.
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Figure 2.45.: Trend analysis of cost estimation error of F2 & BU1. Response mode:
lm_t. The left model is generated with data including projects 211
and 459, whereas the right models data does not include these proj-
ects. (data: data_trend)

shows. The new slope is 11% with a significant p-value of 0.006 (corresponds to
significance code “**”).

The list of influential points (page 86) states these two projects for cost estimation
error, category F2 & BU1 with response mode lm_t. As shown above, excluding
these two projects results in a significant increase.
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Table 2.14.: Results of duration trend analysis (for further explanations see the
legend on the bottom)

act_lm act_lm_t lm lm_t ncl nrun

pctpr 90% 87% 85% 79%

ab
so
lu
te

all pr. – – – – 116 128
F1 – – – – 31 45
F2 – – – – 85 83
BU1 – – – – 5 38
BU2 ↓ 44d . – ↓ 30d . – 40 37
BU3 ↓ 64d * – ↓ 44d * ↓ 54d *** 4 13
BU4 – – – – 67 40
F1, BU1 – – – – 0 10
F1, BU2 ↓ 63d . – ↓ 45d . – 27 28
F1, BU3 – – – – 0 1
F1, BU4 – – – – 4 6
F2, BU1 ↓ 33d * – ↓ 82d * – 5 28
F2, BU2 – – – – 13 9
F2, BU3 ↓ 64d * – ↓ 44d * ↓ 54d *** 4 12
F2, BU4 – – – – 63 34

es
ti
m
at
io
n
er
ro
r

all pr. – – ↓ 5% ** ↓ 4% * 113 128
F1 – – – – 30 45
F2 – – ↓ 6% ** ↓ 4% * 83 83
BU1 ↓ 13% ** – ↓ 10% ** – 5 38
BU2 – – – – 39 37
BU3 – – – – 4 13
BU4 – – – ↓ 4% * 65 40
F1, BU1 – – – – 0 10
F1, BU2 – – – – 26 28
F1, BU3 – – – – 0 1
F1, BU4 – – ↓ 25% * – 4 6
F2, BU1 ↓ 13% *** – ↓ 10% ** – 5 28
F2, BU2 – – – – 13 9
F2, BU3 – – – – 4 12
F2, BU4 ↑ 6% . – – – 61 34
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
↓ falling trend, ↑ increasing trend, numbers: average abs. slope, d=days
pctpr: percent of projects without NA values, ncl/nrun: # running resp. closed projects
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Table 2.15.: Duration trend analysis: median x̃ and median absolute standard de-
viation smad

act_lm act_lm_t lm lm_t
x̃ smad x̃ smad x̃ smad x̃ smad

ab
so
lu
te

all pr. 1.23 0.63 1.31 0.72 1.26 0.43 1.37 0.56
F1 1.35 0.86 1.38 0.93 1.31 0.74 1.46 0.74
F2 1.19 0.56 1.22 0.65 1.25 0.39 1.30 0.52
BU1 2.61 1.45 2.92 1.50 2.70 1.58 2.92 1.50
BU2 1.21 0.66 1.35 0.86 1.21 0.36 1.38 0.50
BU3 1.12 0.12 1.13 0.26 1.14 0.16 1.31 0.31
BU4 1.09 0.41 1.12 0.45 1.20 0.33 1.20 0.38
F1, BU1 3.96 1.48 4.55 1.78 3.96 1.48 4.55 1.78
F1, BU2 1.28 0.57 1.38 0.91 1.21 0.30 1.43 0.57
F1, BU3 NA NA NA NA NA NA NA NA
F1, BU4 1.24 0.46 1.21 0.09 1.56 0.50 1.14 0.11
F2, BU1 2.22 1.36 2.72 1.38 2.22 1.37 2.72 1.34
F2, BU2 1.12 0.57 1.12 0.66 1.21 0.56 1.17 0.47
F2, BU3 1.12 0.12 1.13 0.26 1.14 0.16 1.31 0.31
F2, BU4 1.04 0.39 1.09 0.44 1.19 0.31 1.21 0.39

es
ti
m
at
io
n
er
ro
r

all pr. 0.59 0.42 0.65 0.51 0.65 0.24 0.69 0.35
F1 0.74 0.56 0.77 0.65 0.71 0.36 0.79 0.33
F2 0.57 0.38 0.63 0.48 0.62 0.21 0.68 0.34
BU1 0.74 0.40 0.93 0.39 0.71 0.36 0.90 0.44
BU2 0.56 0.47 0.59 0.52 0.59 0.29 0.67 0.36
BU3 0.50 0.39 0.81 0.77 0.50 0.29 0.78 0.59
BU4 0.56 0.42 0.53 0.49 0.66 0.20 0.61 0.31
F1, BU1 1.23 0.56 1.60 0.77 1.23 0.56 1.60 0.77
F1, BU2 0.57 0.43 0.60 0.52 0.57 0.26 0.76 0.28
F1, BU3 NA NA NA NA NA NA NA NA
F1, BU4 0.93 0.31 0.52 0.77 0.84 0.43 0.27 0.41
F2, BU1 0.65 0.29 0.84 0.38 0.63 0.22 0.78 0.37
F2, BU2 0.56 0.50 0.54 0.39 0.65 0.47 0.61 0.34
F2, BU3 0.50 0.39 0.81 0.77 0.50 0.29 0.78 0.59
F2, BU4 0.54 0.37 0.53 0.47 0.64 0.19 0.62 0.30

placeholder
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Chapter 2. Practical Analysis

Table 2.16.: Results of cost trend analysis (for further explanations see the legend
on the bottom)

act_lm act_lm_t lm lm_t ncl nrun

pctpr 90% 87% 85% 79%

ab
so
lu
te

all pr. – – – – 116 128
F1 – – – – 31 45
F2 – ↑ 34kE . – – 85 83
BU1 – – – – 5 38
BU2 – – ↓ 45kE . – 40 37
BU3 – – – – 4 13
BU4 – – – – 67 40
F1, BU1 – – – – 0 10
F1, BU2 – – ↓ 70kE * ↓ 82kE . 27 28
F1, BU3 – – – – 0 1
F1, BU4 – – – – 4 6
F2, BU1 – – – – 5 28
F2, BU2 – – – – 13 9
F2, BU3 – – – – 4 12
F2, BU4 – – – – 63 34

es
ti
m
at
io
n
er
ro
r

all pr. ↑ 6% ** ↑ 6% ** ↑ 3% . ↑ 5% ** 113 128
F1 – – – – 30 45
F2 ↑ 6% ** ↑ 5% ** – ↑ 5% ** 83 83
BU1 ↑ 14% * ↑ 10% * ↑ 12% * ↑ 8% . 5 38
BU2 – – – – 39 37
BU3 – – – – 4 13
BU4 – ↑ 3% . – – 65 40
F1, BU1 – ↑ 23% * – ↑ 23% * 0 10
F1, BU2 – – – – 26 28
F1, BU3 – – – – 0 1
F1, BU4 – – – – 4 6
F2, BU1 ↑ 14% * – – – 5 28
F2, BU2 – – ↓ 4% . – 13 9
F2, BU3 – – – – 4 12
F2, BU4 – ↑ 3% . – – 61 34
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
↓ falling trend, ↑ increasing trend, numbers: average abs. slope, kE=103 Euro
pctpr: percent of projects without NA values, ncl/nrun: # running resp. closed projects
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2.6. Trend Analysis

Table 2.17.: Cost trend analysis: median x̃ and median absolute standard deviation
smad

act_lm act_lm_t lm lm_t
x̃ smad x̃ smad x̃ smad x̃ smad

ab
so
lu
te

all pr. 0.39 0.37 0.39 0.39 0.39 0.35 0.40 0.34
F1 0.45 0.48 0.42 0.46 0.43 0.40 0.46 0.43
F2 0.39 0.33 0.37 0.31 0.39 0.33 0.38 0.31
BU1 0.86 0.80 0.81 0.74 0.86 0.80 0.81 0.74
BU2 0.35 0.41 0.40 0.44 0.34 0.32 0.38 0.40
BU3 0.69 0.30 0.80 0.44 0.65 0.22 0.84 0.34
BU4 0.30 0.18 0.28 0.17 0.29 0.18 0.27 0.16
F1, BU1 0.64 0.17 0.60 0.43 0.64 0.17 0.60 0.43
F1, BU2 0.32 0.36 0.35 0.41 0.31 0.27 0.35 0.35
F1, BU3 NA NA NA NA NA NA NA NA
F1, BU4 0.50 0.27 0.55 0.33 0.39 0.31 0.68 0.15
F2, BU1 0.88 0.88 0.90 0.77 0.88 0.85 0.90 0.77
F2, BU2 0.41 0.47 0.41 0.42 0.44 0.37 0.44 0.32
F2, BU3 0.69 0.30 0.80 0.44 0.65 0.22 0.84 0.34
F2, BU4 0.29 0.27 0.27 0.15 0.28 0.18 0.26 0.14

es
ti
m
at
io
n
er
ro
r

all pr. 0.16 0.42 0.18 0.43 0.19 0.38 0.19 0.39
F1 0.55 0.86 0.50 0.73 0.48 0.59 0.48 0.52
F2 0.09 0.29 0.11 0.32 0.10 0.26 0.08 0.28
BU1 1.31 0.72 0.86 0.46 1.31 0.68 0.81 0.38
BU2 0.30 0.49 0.35 0.51 0.39 0.30 0.35 0.28
BU3 0.09 0.22 0.32 0.31 0.09 0.18 0.33 0.12
BU4 −0.01 0.21 −0.02 0.22 0.00 0.16 −0.04 0.11
F1, BU1 1.55 0.24 0.94 0.65 1.55 0.24 0.94 0.56
F1, BU2 0.50 0.63 0.50 0.71 0.47 0.41 0.51 0.50
F1, BU3 NA NA NA NA NA NA NA NA
F1, BU4 −0.13 0.32 0.03 0.43 −0.04 0.37 0.13 0.36
F2, BU1 1.06 0.62 0.84 0.35 0.98 0.63 0.75 0.34
F2, BU2 0.14 0.22 0.14 0.24 0.27 0.12 0.27 0.10
F2, BU3 0.09 0.22 0.32 0.31 0.09 0.18 0.33 0.12
F2, BU4 0.00 0.19 −0.02 0.20 0.01 0.15 −0.05 0.10

placeholder
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Chapter 2. Practical Analysis

In the following a list of influential points is given (correspond to grey colored
cells of tables 2.14 and 2.16) as well as the consequence on trend analysis when
including or excluding these projects. Afterwards a separate list gives details on
the projects.

• Duration absolute

– all projects
lm excluding 467: significant decrease

– BU3 (same result for F2 & BU3)
act_lm excluding 251: more significant decrease
act_lm_t excluding 251: significant decrease

• Duration estimation error

– F1
act_lm excluding 195: significant decrease
act_lm_t excluding 195: significant decrease

– BU1
act_lm including 222, 223, 244, 296: more significant decrease
act_lm_t including 222, 223, 244, 296: significant decrease
lm including 222, 223, 244, 296: more significant decrease
lm_t including 222, 223, 244, 296: significant decrease

– BU2
act_lm_t excluding 195: significant decrease

– BU3 (same result for F2 & BU3)
act_lm excluding 425: significant decrease
lm excluding 425: significant decrease
lm_t excluding 425: significant decrease

– F1 & BU2
act_lm excluding 195: significant decrease

– F2 & BU1
act_lm including 222, 223, 244, 296: more significant decrease
act_lm_t including 222, 223, 244, 296: significant decrease
lm including 222, 223, 244, 296: more significant decrease
lm_t including 222, 223, 244, 296: significant decrease
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2.6. Trend Analysis

• Cost absolute

– BU1
act_lm_t excluding 211, 463: significant increase
lm excluding 211, 463: significant increase
lm_t excluding 211, 463: significant increase

– F1 & BU4
lm excluding 328: significant increase

– F2 & BU1
act_lm_t excluding 211, 463: significant increase
lm_t excluding 211, 463: significant increase

– F2 & BU4
lm_t excluding 399: significant decrease

• Cost estimation error

– BU1
lm excluding 459: more significant increase
lm_t excluding 211, 459: more significant increase

– BU2
act_lm excluding 418, 446, 464, 477: significant decrease

– F1 & BU2
act_lm excluding 418, 446, 464, 477: significant decrease

– F2 & BU1
lm excluding 211, 459: significant increase
lm_t excluding 211, 459: significant increase

The following list gives some details on the influential points mentioned in the list
above:

• Duration absolute
467: running, started in 2012, duration about 5.5 (large)
251: closed, started in 2008 (first project of this dataset), duration about 1
(small)

• Duration estimation error
195: closed, started before 2008, estimation error about -.5 (small)
222, 223, 244, 296: running, started between 2007 and 2009, large predicted
cost estimation errors (see fig. 2.48 in section 2.6.3, Example)
425: running, started in 211, estimation error about 3 (large)
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Chapter 2. Practical Analysis

• Cost absolute
211: running, started 2207, cost about 3.5 (large)
463: running, started 2012, cost about 0.1 (small)
328: running, started 2009 (middle), cost about 1.2 (here large) Influential
because it increases variance significantly, due to few projects
399: running, started 211, cost about 1.75 (large)

• Cost estimation error
211: running, started 2007, large estimation error
459: running, started 2012, small estimation error
418, 446, 464, 477: running projects, stared after 2011, large predicted
estimation errors

2.6.3. Example

This example shall give a deeper understanding of the results and shows how some
of the analyzed trends look like. Here also example 2.2 shall be mentioned, as it
gives some details about the interpretation of results and also shows how a small
set of projects can have major impact on significance.

Lets look at duration estimation error with response mode act_lm. The results
are listed in to bottom part of table 2.14. For all project the cell gives “–”, which
means that no significant trend is found. The analyzed dataset consists of 113
closed and 128 running projects, whereas about 113 · 0.9 ≈ 102 closed and about
128 · 0.9 ≈ 116 running projects have non-missing response27.

All projects: This set is visualized by scatterplots in fig. 2.46. The right plot shows
a regression smooth with 95% CI and labels potential otuliers. A regression smooth
gives a first idea on how the trend may look like. In contrast to the regression
smooth, here by fitted regression an analyzed model28 is meant. The regression
smooth may suggest a slight decreasing trend, also because the 95% CI does not
seem to include a horizontal line29. The right plot in fig. 2.46 shows the fitted
regression line, which demonstrates that there is actually no significant trend. One
reason for the misleading regression smooth is given by the clear outliers 233 and
237.

Characteristics: The characteristics table 2.15 says that the median estimation
error is 0.59 with a median absolute standard deviation of 0.42. This means:

• On average the actual duration is about 159% of the estimated duration.
27The actual numbers are 108 closed and 106 running projects.
28Verified model assumptions and analyzed outliers.
29A horizontal line means that the estimation error is constant over time.
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Figure 2.46.: Trend regression smooth and fitted regression line with 95% CI and
PI for cost estimation error of all projects. Response mode: act_lm.
On the right plot general outliers are labeled. The left plot labels
projects excluded from regression (data: data_trend)

• Roughly with a chance 0.95 the duration estimation error of a random project
is within 0.59± 2 · 0.42 = [−0.25, 1.43]. This means that the actual duration
is from 75% to 243% of the estimated duration.

Those values are also visible by regression line and PI on the fitted regression plot
(see fig. 2.46).

Subsets: No significant trend for all projects does not necessarily mean that there
is also no trend for subsets of these projects. The table of duration trend results
2.14 shows that there are significant trends for BU1, F2 & BU1 and F2 & BU4.
These trends are visualized in fig. 2.47 as scatterplots with regression smooths for
all 15 subsets. The labeled points represent excluded outliers or influential points
(see list of influential points on page 86).

F2 & BU1: As example the project category F2 & BU1 shall be looked at in detail.
The result table 2.14 gives “↓ 13% ***”. This means that a significant decreasing
trend of about 13% per year is found. The significance code *** says that the
corresponding p-value is element of [0, 0.001]. The p-value can be interpreted as
the probability of being wrong in stating that there is a trend.

Looking at fig. 2.47c only, the plot of F2 & BU1 shows a regression smooth with a
clear decreasing trend. But this conclusion may be erroneous, as there are 4 run-
ning projects that rise the tail of the left regression line. Analyzing this dataset in
detail shows that projects 222, 223, 244 and 296 may be kept in the model with-
out violating assumptions, but still are influential points. By choosing a cautious
approach, the projects were excluded for giving the results. On the same time the

89



Chapter 2. Practical Analysis

F1 F2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

195

237

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●●

●

●

●

●
●●

●
●

●
●

●

●

● ●●●

●●
●

●

●
●●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●
● ●● ●

●

0

1

2

3

4

5

2008 2010 2012 2008 2010 2012
proj_start

du
r_

es
t_

er
r

Regression Smooth (act_lm)

(a) Scatterplot with regression smooth by financial project types
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(b) Scatterplot with regression smooth by business units
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(c) Scatterplot with regression smooth by combinations of financial project types and
business units.

Figure 2.47.: Trend regression smooths for cost estimation error of all subsets.
Response mode: act_lm (data: data_trend)
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Figure 2.48.: Trend regression line with 95% CI and PI for cost estimation error
of F2 & BU1. Labeled points are projects excluded from regression.
Response mode: act_lm (data: data_trend)

grey background in the result table 2.14 and the corresponding comments state the
issue of these 4 projects. The average 13% decreasing trend in duration estimation
error with significance *** is shown as fitted regression in fig. 2.48.

2.7. Model Application of Previous Thesis

Concluding to the practical analysis part of this thesis, this section applies the
models of the previous thesis (see Sponer [21]) to the actual dataset. The models
were analyzed and here the results are briefly presented.

2.7.1. Data Relations

The definition of the dataset data_comp, that will be used to apply the models
of Sponer, follows the idea that the data should be as comparable as possible
to the dataset used by Sponer. At the same time full comparability can not be
achieved.

First the dataset used by Sponer is briefly described:

• 109 projects

• Data from years 2002 to 2007

• Typical projects that passed milestone M830

30Within this thesis defined as closed projects.
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• Variables describing the following project characteristics:
cost, duration, die size, pin count, reuse, size of the technology (tech) and
business unit

• Variables represent final/actual values

Thus the data_comp is based on all closed projects and uses only variables of the
final WS (extensions _act and _l). From the 260 closed projects all 4 projects of
business unit BU3 are excluded, because this business unit did not exist like that
within the dataset of Sponer.

Remark 2.35

• As the data data_comp holds only variables of the final WS, the models
analyzed within this section cannot be compared to the models based on the
first WS (see section 2.4, Modeling Cost and Duration).

• For the models of this section the unit of project cost is changed to Euro
and the unit of duration is changed to days. This is done so, to use the same
units as Sponer.
The plots of the models use again the original units of ME and years for cost
and duration respectively.

• Here the original values of bu and tech are used (before reducing category
levels, see section 2.2.2).

• Sponer uses instead of reuse, the variable negreuse which is defined as
100− reuse.

An issue of comparability of the datasets is that category levels changed in some
way over time or were modified. In the following it is described how comparability
is achieved for business unit and size of the technology levels as possible:

Business Units (bu)

Sponer denoted the levels of bu by A, B, C and D. She describes that business
unit A and C (correspond to BU1 and BU2) are merged to give a new business
unit A.

Since 2007 business units B and D were merged to a business unit that is here
named BU4. For the projects of BU4 it cannot be determined with reasonable
effort, whether they are rather business unit B or D. As Sponer differs between
B and D, here it is decided to treat the new BU4 (containing B and D) the same
as B and disregard business unit D. The decision is also based on the fact, that
models for business unit D resulted in constant models.
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Table 2.18.: Correspondence of business unit levels between data_comp and the
data of Sponer [21]

notation number of projects
data_comp BU1 & BU2 19 +92 =111
Sponer A (& C) 37 + 4 = 41
data_comp BU4 145
Sponer B (& D) 28 +40 = 68

Thus the correspondence of business unit levels as stated in table 2.18 is given.
The numbers of projects presented also show that the number of projects in each
category of the dataset data_comp is more than doubled, compared to the data
available for Sponer. Of course these numbers are based on the category modifi-
cations stated above.

Remark 2.36

• For analyzing cost Sponer developed a model for the union of business units
A and B

• The models analyzing duration treated each business unit separately.

Size of the technology (tech)

The levels of the size of technology are the same for both datasets. But Sponer
merged different levels:

• 0.6 was merged with 0.8, union denoted by 0.6

• 0.13 was merged with 0.35, union denoted by 0.35

This redefinition of the levels of tech is performed also on data_comp to be able
to compare the datasets.

2.7.2. Model Analysis

Here the models of Sponer are analyzed by performing the following rough
steps:

1. Apply model to new dataset data_comp

2. Omit outliers giving a comparable model to Sponer

3. Checking for response transformation

4. Checking new variables for significance
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Chapter 2. Practical Analysis

Generally speaking, the results are similar to the results of Sponer. Due to more
data the coefficient estimates change a bit and the R2

adj decrease. The model for-
mulas could be approved as still being valid, although different response transfor-
mations turned out to be more appropriate. On the same time non of the variables
that were used by Sponer became additionally significant.

The following list gives the model formulas. Additionally it shows R2
adj values for

the original model of Sponer and for the model applied to data_comp with old
and new response transformation:

Cost model for business units A & B =̂ BU1, BU2 & BU4
orig. formula: log(cost_act) ~ die_size_l + (100-reuse_l) + tech_l

R2
adj

Sponer 0.4524
data_comp log(·) response transformation 0.3399
data_comp (·)1/5 response transformation 0.3520

Duration model for business unit A =̂ BU1 & BU2
orig. formula: dur_act ~ die_size_l + (100-reuse_l)

R2
adj

Sponer 0.5034
data_comp no response transformation 0.4547
data_comp (·)1/2 response transformation 0.4757

Duration model for business unit B =̂ BU4
orig. formula: dur_act ~ (100-reuse_l)

R2
adj

Sponer 0.5102
data_comp no response transformation 0.1599
data_comp (·)1/2 response transformation 0.1957

The resulting models are plotted in fig. 2.49, that shows scatterplots of actual
values against fitted values for previous and new response transformation as well
as against their differences. Each two plots on the right side show now obvious
difference. Looking at the plot of the fit differences reveals that the differences are
very small. Table 2.19 gives characteristic values for these differences.

Table 2.19.: Characteristics of model comparison: Difference of fitted values new to
previous transformation. Cost values are in Euro and duration values
in days (data: data_trend)

Model x̄ x̃ s smad

Cost (bu A & B =̂ BU1, BU2 & BU4) 14 303 19 262 32 497 10 775
Duration (bu A =̂ BU1 & BU2) -43.6 -57.3 44.8 35.6
Duration (bu B =̂ BU4) -15.7 -22.8 16.7 5.1

Concluding it can be said that some degree of description for the new extended
data data_trend is lost, but the models are still valid. The models can still be
applied to the data and although other transformations turned out to be more
appropriate, the transformations by Sponer give very similar results.
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2.7. Model Application of Previous Thesis
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Figure 2.49.: Application of models by Sponer [21]. Scatterplots of actual val-
ues against fitted values. Labeled points are excluded model outliers.
For these plots cost is in million Euros and duration in years (data:
data_trend)
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Chapter 3.

Theoretical Fundamentals

This chapter gives a brief introduction to the theoretical fundamentals of the
statistical analysis presented in this thesis. The aim is to give a summary and
an overview of the theoretic aspects. For further details, please be referred to the
corresponding literature. As main references for this chapter we give Fahrmeir,
Kneib and Lang [6], Friedl [10], Kleinbaum et al. [14] and Sachs and
Hedderich [19] (in alphabetical order).

When analyzing multivariate data, there is a wide range of analysis methods.
Kleinbaum et al. [14] give a rough guide to the choice of an appropriate method
(see table 3.1), which is based on variable classification. The focus here is on
multiple regression analysis, as most predictor variables are continuous.

Table 3.1.: Rough guide to multivariate methods

Classification of Variables
Method Dependent Independent General Purpose
Multiple
regression
analysis

Continuous Classically all
continuous, but
in practice any
type(s) can be
used

To describe the extent,
direction, and strength of the
relationship between several
independent variables and a
continuous dependent variable

Analysis of
variance

Continuous All nominal To describe the relationship
between a continuous
dependent variable and one or
more nominal independent
variables

Continued on next page
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Chapter 3. Theoretical Fundamentals

Table 3.1 – continued from previous page

Classification of Variables
Method Dependent Independent General Purpose
Analysis of
covariance

Continuous Mixture of
nominal
variables and
continuous
variables (the
latter used as
control
variables)

To describe the relationship
between a continuous
dependent variable and one or
more nominal independent
variables, controlling for the
effect of one or more
continuous independent
variables

Logistic
regression
analysis

Dichotomous A mixture of
various types
can be used

To determine how one ore
more independent variables
are related to the probability
of the occurrence of one of
two possible outcomes

Poisson
regression
analysis

Discrete A mixture of
various types
can be used

To determine how one ore
more independent variables
are related to the rate of
occurrence of some outcomes

Notation

The following list of descriptions gives a rough guideline to the notation of variables
used within this chapter. The guidelines apply to Latin letters and is valid unless
a variable is specified differently.

Small (non bold) letters e. g. x, y
Known/fixed constant

Small bold letters e. g. x, y
Known/fixed vectorized constant
i. e. x = (x1, . . . , xn)T with known constant xi = i-th entry of x

Capital (non bold) letters e. g. X, Y
Random variable or matrix (type will be defined on usage)

Capital bold letters e. g. X, Y
Vectorized random variable
i. e. Y = (Y1, . . . , Yn)T with random variable Yi = i-th entry of Y
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3.1. Simple Linear Regression

Remark 3.1

• In general. here vectors shall denote column vectors (unless specified differ-
ent). To denote row vectors, they will be transposed denoted by a superscript
“T”. For example x transposed is denoted by xT .

• Estimations are denoted by a hat. For example the estimation of β is written
as β̂.

• Greek letters describe unknown variables.

3.1. Simple Linear Regression

The simple linear regression (SLR) model is specified as follows:
Let Y = (Y1, . . . , Yn)T be a vector of independent random variables31 and x =
(x1, . . . , xn)T known observations. The simple linear regression model is described
by the relationship

Yi = β0 + β1xi + εi, i = 1, . . . , n (3.1)
with ε = (ε1, . . . , εn)T a random vector of independent and identically distributed
(iid) N(0, σ2) variables. Thus E(εi) = 0 and Var(εi) = σ2. β0 (intercept), β1 (slope)
and σ2 (error variance) are unknown constants. In terms of vector notation, equa-
tion (3.1) can be expressed by

Y = β01n + β1x+ ε

with 1n = (1, . . . , 1)T , which links simple to multiple linear regression (see section
3.2).

As a consequence it follows µi := E(Yi) = β0 + β1xi and Var(Yi) = σ2. Thus
Yi

ind∼ N(β0 + β1xi, σ
2) (ind = independent).

Remark 3.2

• The distribution of the Yi’s is independent, but not identical as the expected
value depends on xi.

• The term simple refers to the fact, that there is only one predictor xi in the
SLR model.

• The SLR model is linear in the parameters β0 and β1.

• The fact that Var(Yi) = σ2 is constant for all i = 1, . . . , n is called Ho-
moscedasticity.

• Y is called response and x is called predictor variable.
31The realization of Y is denoted by y = (y1, . . . , yn)T . Realizations of variables using Y are

given by replacing Y with y.
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Chapter 3. Theoretical Fundamentals

3.1.1. Parameter Estimation

There are three unknown parameters in the SLR model: β0, β1, σ
2. This section

focuses on the estimation of these parameters.

Least-Squares Method

First the parameters β0, β1 shall be estimated, such that the Error Sum of Squares
(SSE) is minimized.

SSE(β0, β1) =
n∑
i=1

ε2i =
n∑
i=1

(Yi − (β0 + β1xi))2

Minimizing the SSE with respect to β0 and β1 leads to their estimations β̂0 and
β̂1 respectively.

β̂0 = Y − β̂1x

β̂1 =
∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2

The method of minimizing SSE(βo, β1) is called least-squares method.

Remark 3.3

• The estimations of β̂0 and β̂1 by the least-squares method are independent
of distribution assumptions.

• Based on the estimations β̂0, β̂1 of β0, β1 the expected value of the i-th
observation Yi can be estimated by µ̂i = Ê(Yi) = β̂0 + β̂1xi.

Maximum Likelihood (ML) Method

The least-squares method does not give an estimation for σ2. To obtain an esti-
mation σ̂2 by the Maximum Likelihood (ML) method the distribution assumption
is needed. Under (3.1) the Log-Likelihood function of the sample is

logL(β0, β1, σ
2|y) = log

n∏
i=1

fi(β0, β1, σ
2|yi)

= −n2 log 2π − n

2 log σ2 − 1
2σ2

n∑
i=1

(yi − β0 − β1xi)2
(3.2)

with fi(·) the density of the normal distribution N(β0 +β1xi, σ
2) (see appendix A,

Common Statistical Distributions).
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3.2. Multiple Linear Regression

Maximizing the Log-Likelihood yields the same estimations for β0 and β1 as the
least-squares method and an estimation of the variance of σ̂2 = 1

n

∑n
i=1(Yi − β̂0 −

β̂1)2 = 1
n
SSE(β̂0, β̂1). This estimation is biased, therefore the unbiased estima-

tion
s2 = 1

n− 2

n∑
i=1

(Yi − β̂0 − β̂1)2 = 1
n− 2 SSE(β̂0, β̂1)

is used.

Remark 3.4 n− 2 ca be interpreted as the degree of freedom (df) of the estima-
tor s2, which is the number of observations n minus the number of parameters
estimated from the sample (here: β̂0 and β̂1).

3.2. Multiple Linear Regression

In multiple linear regression the number of predictors is larger then one. In general
let x1, . . . ,xp−1 be a set of known predictor vectors of dimension n. The multiple
regression formula is

Y = Xβ + ε (3.3)

with X = (1n,x1, . . . ,xp−1) a n × p matrix and β = (β0, β1, . . . , βp−1)T the n-
dimensional vector of coefficients. Again normal distribution is assumed: Y ∼
Nn(Xβ, σ2In)32. This assumption is equivalent to ε = (ε1, . . . , εn)T ∼ Nn(0, σ2I).

The multiple regression equation (3.3) can equivalently be expressed as

Y = β01n + β1x1 + . . .+ βp−1xp−1 + ε, or
Yi = β0 + β1xi1 + . . .+ βp−1xip−1 + εi, i = 1, . . . , n, or
Y1
...
...
Yn

 =


1 x1,1 · · · · · · x1p−1
... ... . . . ...
... ... . . . ...
1 xn,1 · · · · · · xnp−1



β0
...

βp−1

+


ε1
...
...
εn

 .

Remark 3.5

• Multiple linear regression is a generalization of simple linear regression.

• The distributions of Y and ε follow a multivariate normal distribution. The
single components are independent and normally distributed (see appendix
A).

32In denotes the n× n identity matrix
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• Regression formula (3.3) is linear in the coefficients β0, . . . , βp−1, but the
predictors can also be nonlinear. Lets consider for example the following
regression formula:

Yi = β0 + β1xi1 + β2 log(xi,1) + β3xi1x
2
i2 + εi, i = 1, . . . , n.

By substituting x̃i2 := log(xi,1) and x̃i3 := xi1x
2
i2 the regression formula can

be rewritten as

Yi = β0 + β1xi1 + β2x̃i,2 + β3x̃i,3 + εi, i = 1, . . . , n

which fits the general multiple linear regression formula.

• The expected value of Y shall be denoted by µ := E(Y ).

• Throughout the literature (e. g. Sachs and Hedderich [19]) it is also com-
mon to define the number of predictor variables xi as p, instead of p − 1.
The results are the same.

3.2.1. Parameter Estimation

The procedure of estimating the parameters in multiple linear regression is analo-
gous to the procedure for SLR. Here the p+ 1 parameters β0, β1, . . . , βp−1 and σ2

have to be estimated.

The estimation method is the same as for SLR. Applying the least squares method
leads to minimization of

SSE(β) =
n∑
i=1

ε2i = εTε = (Y −Xβ)T (Y −Xβ).

Minimizing SSE(β) results in the following estimation for β:

β̂ = (XTX)−1XTY (3.4)

Also the ML method from SLR can be applied analogously to the multiple linear
regression model. Inserting the multiple regression model in the Log-Likelihood
of the SLR model (equation (3.2)) and using the unbiased version results in the
following estimation of σ:

s2 = 1
n− p

ε̂T ε̂ = 1
n− p

SSE(β̂) (3.5)

with estimated error ε̂ = Y − Xβ̂. ε̂ is also called the residual vector with i-th
residual εi (error or the i-th observation).
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3.2. Multiple Linear Regression

Properties

In equation (3.4) it can be seen that each element of β̂ is a linear combination of
the elements of Y . Thus because Y is normally distributed, also β̂ is normally
distributed. Mean and covariance can easily be calculated as

E(β̂) = (XTX)−1XTE(Y ) E(Y )=β= β

Cov(β̂) = (XTX)−1XTVar(Y )X(XXT )−1 Var(Y )=σ2In= σ2(XTX)−1.

It follows

β̂ ∼ Np(β, σ2(XTX)−1).

The least-squares estimator β̂ has some preferable properties:

• β̂ is an unbiased estimator of β, i. e. E(β̂) = β.

• Gauss-Markov-Theorem: Among all linear and unbiased predictors β̂L, the
least-squares estimator β̂ has minimal variance, i. e.

Var(β̂i) ≤ Var(β̂Li ) ∀ i = 1 . . . , n ∀ β̂L

(see Fahrmeir, Kneib and Lang [6]).

• For the estimated expectation of the response it follows µ̂ := Ê(Y ) = Xβ̂.
The µ̂i’s are also called fitted values or predictions.

The fitted values µ̂i are also denoted by Ŷi, which indicates that this variable
can be interpreted as an estimation of Yi. This is among others of interest
for new observations.

• By using equation (3.4) µ̂ can be rewritten:

µ̂ = X(XTX)−1XTY = HY

withH = X(XTX)−1XT denoting the symmetric (H = HT ) and idempotent
(HH = H) hat matrix.

The residuals (estimated error terms) are defined analogously to SLR and can be
rewritten by using the hat matrix:

ε̂ := Y − µ̂ = Y −HY = (In −H)Y .

Hence the residuals are as well a linear combination of Y and follow the normal
distribution:

E(ε̂) = E(Y )− E(µ̂) µ̂=Xβ̂= Xβ −Xβ = 0
Var(ε̂) = σ2(In −H)
ε̂ ∼ Nn(0, σ2(In −H)).
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Remark 3.6

• It can be shown that (ε̂T ε̂)/σ2 ∼ χ2
n−p. Applying equation (3.5) it follows

that ((n− p)/σ2) s2 = SSE(β̂)/σ2 ∼ χ2
n−p.

• With this result it can be shown that s2 is an unbiased estimator of σ2:

E
(
n− p
σ2 s2

)
= n− p ⇒ n− p

σ2 E(s2) = n− p ⇒ E(s2) = σ2.

• Despite the model errors εi are iid distributed, the residuals are not, as the
variance depends on the i-th observation (Var(ε̂i) = σ2(1 − hii), with hii
the i-th diagonal element of the hat matrix H). Therefore also standardized
residuals ri are used, which are defined as follows:

ri := ε̂i
s
√

1− hii
.

Given valid model assumptions the standardized residuals have constant vari-
ance.

• Also studentized residuals r∗i are practically used:

r∗i := ε̂(i)

s(i)
√

1 + xTi (XT
(i)X(i))−1xi

whereas variables with index in brackets define the respective variable based
on all observations excluding the i-th (n− 1 observations).

• Sometimes the naming of variations of residuals vary:
Studentized residuals are also called jackknife residuals and standardized
residuals may also be named as studentized residuals. Thus care about the
exact meaning has to be taken.

3.2.2. Analysis of Variance (ANOVA) Table

The Analysis of Variance (ANOVA) provides some basic estimates of variance used
in regression analysis.

Remark 3.7 The ANOVA method, as described in table 3.1 (page 97), is closely
related to linear regression and uses the principle of the ANOVA table as presented
here. For more details see for example Kleinbaum et al. [14].
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3.2. Multiple Linear Regression

Obviously the following equations hold

(Yi − Y ) = (Ŷi − Y ) + (Yi − Ŷi) ∀ i = 1, . . . , n

⇒
n∑
i=1

(Yi − Y ) =
n∑
i=1

(Ŷi − Y ) +
n∑
i=1

(Yi − Ŷi).

The second equation is also valid in its squared version
n∑
i=1

(Yi − Y )2

︸ ︷︷ ︸
=: SST

=
n∑
i=1

(Ŷi − Y )2

︸ ︷︷ ︸
=: SSR

+
n∑
i=1

(Yi − Ŷi)2

︸ ︷︷ ︸
=: SSE

(3.6)

which can be interpreted as a partition of the variance. This partition is summa-
rized in table 3.2, which also defines the Mean Error Sum of Squares (MSE) and
the Mean Regression Sum of Squares (MSR).

Table 3.2.: ANOVA table

Source of Variation Sum of Squares (SS) df Mean SS

Regression SSR := ∑n
i=1(Ŷi − Y )2 p− 1 MSR := SSR

p−1

Error SSE := ∑n
i=1(Yi − Ŷi)2 n− p MSE := SSE

n−p

Total SST := ∑n
i=1(Yi − Y )2 n− 1

The notations of the ANOVA components are summarized in the following list:

• SST Total Sum of Squares

• SSR Regression Sum of Squares

• SSE Error Sum of Squares

Remark 3.8 Throughout the literature different notations for the summed squares
are used. The results stay the same, but care has to be taken when reading different
literatures. For example the term SSR is sometimes referred to as Residual Sum
of Squares, which equals the Error Sum of Square, as it is used here.

The coefficient of determination R2

This subsection is mainly based on Fahrmeir, Kneib and Lang [6]. The coef-
ficient of determination is defined as follows:

R2 := SSR
SST

(3.6)= SST− SSE
SST = 1− SSE

SST .

Because of the partition of variance (equation (3.6)) it follows that 0 ≤ R2 ≤ 1.
Thus two extreme cases for values of R2 apply with following interpretations:
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1. R2 = 1
⇒ The error sum of squares SSE = ∑n

i=1 ε̂
2
i is zero. This means that all

residues are equal to zero and the model fits the data perfectly.

2. R2 = 0
⇒ The regression sum of squares SSR = ∑n

i=1(Ŷi − Y )2 is zero. This means
that Ŷi = Y ∀ i = 1, . . . , n. In other words the predictors have no influence
on the predictions.

Remark 3.9 R2 = 0 means that none of the predictors has a linear influence on
the response Y . But there may be some kind of non-linear influence. For example
the square of a predictor variable x2

i can be influential, while the linear term xi
has no influence.

There are some more notable properties of the coefficient of determination:

• The R2 value can also be interpreted as the squared correlation coefficient
between the response Y and its prediction Ŷ = µ̂.

• Adding a new predictor to the multiple linear regression model never de-
creases the value of R2, even if the new predictor has no influence.

• When comparing different models by the coefficient of determination, care
has to be taken. The response Y has to be the same, the number of param-
eters p− 1 has to be the same and the Intercept has to be included.

3.2.3. Hypothesis Tests

When performing regression analysis, questions about certainty arise. Hypothesis
tests about the regression coefficients β = (β0, β1, . . . , βp−1)T give some answers.
Generally speaking, depending on the application various different variants of hy-
pothesis tests can be considered.

The central assumption used for hypothesis tests and also confidence intervals
(see section 3.2.4, Confidence and Prediction Intervals) is the distribution assump-
tion: εi iid∼ N(0, σ2). Fahrmeir, Kneib and Lang [6] provide a generalization of
hypothesis tests on β:

H0 : Cβ = d against H1 : Cβ 6= d (3.7)

with C a r × p matrix such that rank(C) = r ≤ p and d = (d1, . . . , dr).
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3.2. Multiple Linear Regression

Remark 3.10

• Fahrmeir, Kneib and Lang [6] also state that these tests are relatively
robust against small deviations of the normal distribution assumption. Their
book additionally gives a section on the asymptotic validity of these tests.

• For a more general approach that discusses hypothesis tests on linear models
in a common sense, please see Stadlober [23].

The hypothesis test statistic33 can be derived as follows:

1. Get SSE = ε̂T ε̂, which is the error sum of squares for the full model (SSE of
the model without constraints to β).

2. Get SSEH0 := ε̂TH0 ε̂H0 with ε̂H0 defined as the residuals of the model under
H0.

3. Define the test statistic F as:

F :=
1
r

(SSEH0 − SSE)
1

n−p SSE

with r equals the number of rows of C, that is the number of hypothesis
equations.

Remark 3.11

• As seen in section 3.2.1, Parameter Estimation the SSE is minimized for the
overall model. Thus it derives that SSEH0 ≥ SSE⇒ F ≥ 0.

• As the test statistic under H0 follows a Fisher-F distribution, this test is
called F-test.

In remark 3.6 it was stated that SSE/σ2 ∼ χ2
n−p. It can also be shown that (SSEH0−

SSE)/σ2 ∼ χ2
r. On the same time these two random variables are independent and

hence F is Fisher-F distributed with r and n − p degrees of freedom: F ∼ Fr,n−p
(see appendix A Common Statistical Distributions). Using this result gives the
following decision rule for hypothesis test (3.7):

Reject H0 if F ∗ > F1−α;r,n−p (3.8)

with a given significance level α, F1−α;r,n−p the 1− α quantile of the Fr,n−p distri-
bution and F ∗ the realization of F .
33A random variable, on which the hypothesis test is based on.
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Based on hypothesis test (3.7) three basic types of tests are derived, as suggested
by Kleinbaum et al. [14]:

1. Overall Test: Is the overall model, i. e. the set of all predictors, significant
for predicting the response Y ?

2. Test for Addition of a Single Variable: Does adding a single predictor
variable provide significant additional information in predicting the response
Y , compared to the model without this predictor?

3. Test for Addition of a Group of Variables: Does adding a set of pre-
dictors provide significant additional information in predicting the response
Y ?

Overall Test

H0 : β1 = β2 = . . . = βp−1 = 0 against H1 : ∃j ∈ {1, . . . , p− 1} : βj 6= 0

H0 can be interpreted as “All p− 1 independent variables considered together do
not explain a significant amount of variation in Y ” (Kleinbaum et al. [14]).
The connection to the general hypothesis test (3.7) is drawn by:

C =


0 1 0
... . . .
0 0 1

 , d =


0
...
0

 and r = p− 1.

Note that the the null-hypothesis gives a model with intercept left as the only
coefficient: Yi = β0 + εi. Under this model the least-squares estimator of β0 is Y ,
which results in SSEH0 = SST. Applying this to the test statistic gives:

F =
1
p−1 (SST− SSE)

1
n−p SSE = SSR/(p− 1)

SSE/(n− p) = MSR
MSE ∼ Fp−1,n−p.

Remark 3.12

• According to Fahrmeir, Kneib and Lang [6] for this hypothesis test F
can be rewritten as F = n−p

p−1
R2

1−R2 , which gives the following interpretation:
For a small R2 value F gets small and thus the Null-Hypothesis (the overall
model is not significant) is more likely to be kept than for a large R2 value
(close to 1).

• This hypothesis is calculated by the R summary output of a linear regression
model (produced by the lm function). It is shown in the bottom line as
F-statistics: 〈value〉 on 〈p-1〉 and 〈n-p〉 DF, p-value: 〈value〉

with parameters in angle brackets being replaced by their respective values.
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3.2. Multiple Linear Regression

Test for Addition of a Single Variable

H0 : βj = 0 against H1 : βj 6= 0, j = 1, . . . , p− 1

In this case H0 states that the predictor xj has no additional influence, given all
other predictors are in the model. This test fits the general hypothesis test by

C = (0, . . . , 0, 1, 0, . . . , 0), d = 0 and r = 1

with C being a row vector of all zero entries, except for an entry of 1 at the j-th
position. In this special case it can be shown that the test statistic is:

F =
β̂2
j

V̂ar(β̂j)
∼ F1,n−p.

Remark 3.13

• This test is equivalent to the so-called t-test, that uses a t-distributed ran-
dom variable. To be precise T = β̂j/sej with sej = (V̂ar(β̂j))1/2 is tn−p
distributed. T relates to F by F = T 2 (see appendix A Common Statistical
Distributions).

• This type of test is done as t-test for every predictor in theR summary output
for linear models. In the following example

Estimate Std. Error t value Pr(>|t|)
pred1 1.380e-01 2.370e-02 5.823 2.14e-08 ***

the coefficient of the predictor pred1 is β̂j ≈ 0.138 with sej ≈ 0.0237. Thus
T = 0.138

0.0237 ≈ 5.823. The p-value is equal to P(Tn−p > 5.823) and in this case
results as 2.14 · 10−8. The stars are a graphical representation of the p-value,
as stated in section 2.6, Trend Analysis34.

Test for Addition of a Group of Variabless

Let βgroup = (βi1 , . . . , βik)T be a vector of k ≤ p− 1 coefficients.

H0 : βgroup = 0 against H1 : ∃j ∈ {1, . . . , k} : βij 6= 0

This test also corresponds to a respective representation of the matrix C and
vector d in the general hypothesis test (3.7). As r = k the test statistic F is Fk,n−p
distributed. For more details about the calculation see Fahrmeir, Kneib and
Lang [6] or Kleinbaum et al. [14].
340 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Chapter 3. Theoretical Fundamentals

Remark 3.14

• This test is a generalization of the overall test and the test for addition of a
single variable.

• In R this test can be performed with the anova function of the basic stats
package. Within this thesis it was for example applied implicitly when analyz-
ing the interactions in the cost/duration models with transformed predictors
(see section 2.4, Modeling Cost and Duration).

3.2.4. Confidence and Prediction Intervals

Let xnew = (1, xnew,1, . . . , xnew,p−1) be a new observation. The expected value of the
corresponding response E(Ynew) = xTnewβ can easily be estimated by ŷnew = µ̂new =
xTnewβ̂. Beside the point estimator it is often of interest to calculate intervals, that
represent the amount of uncertainty.

1− α Confidence Interval (CI) for µnew = E(Ynew)
Interval that holds the true mean response with a certainty of (1− α)100%.

ŷnew ± tn−p,1−α/2 s
√
xTnew(XTX)−1xnew

1− α Prediction Interval (PI) for ynew
Interval that holds the true response with a certainty of (1− α)100%.

ŷnew ± tn−p,1−α/2 s
√

1 + xTnew(XTX)−1xnew

Remark 3.15

• The formula of the confidence interval is based on the distribution of β̂:

β̂ ∼ Np(β, σ2(XTX)−1)
⇒ xTnewβ̂ ∼ N(xTnewβ, σ

2xTnew(XTX)−1xnew).

• The formula of the confidence interval is based on the distribution of ε̂new =
Ynew − xTnewβ̂:

ε̂new ∼ N(0, σ2(1 + xTnew(XTX)−1xnew)).

• As the formulas reveal, the prediction interval is wider than the confidence
interval.
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3.3. Model Diagnostics

3.3. Model Diagnostics

When applying linear regression to model relationships, it is very important that
the stated assumptions are fulfilled. If the assumptions are violated, all the con-
clusions of the previous chapters can not be drawn, which may result in erroneous
interpretations. On the same time it is important to detect outliers, that have un-
desirable influence on the model. Thus this section provides an overview of some
possibilities to check if the validity of the assumptions is reasonable. For further
literature see for example Fahrmeir, Kneib and Lang [6] or Kleinbaum et
al. [14].

The focus here is on exploratory methods to check the assumptions. The statistics
program R provides for this purpose a residual plot for linear models. Within this
thesis an analogous self-written plot is used, which is based on the graphical R-
package ggplot2. As a reference fig. 3.1 is used to provide an exemplary residual
plot.
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Figure 3.1.: Exemplary residual plot generated with the self-written function
GGplotLm

Remark 3.16 This remark explains some details about the residual plot as shown
in fig. 3.1, which is generated by the self-written function GGplotLm. The source
code can be found in appendix C.
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• The first four plots are basically the same as for the object-oriented plot func-
tion plot.lm for linear model (lm). For more details see the corresponding
R help-page.

• Red Smoothing Lines: The red lines on the plots (except for the his-
togram) represent the scatterplot smoothing LOWESS (see Cleveland [3]).
The main purpose is to the get an idea about the variance.

• Numbered Points: The numbered points on the plots are aimed to detect
possible outliers.

– On the first three plots always the three points with largest (absolute)
value on the y-axis are marked. This is the same procedure as done by
the standard plot procedure plot.lm.

– On the fourth plot Residuals vs Leverage the union of the three points
with highest leverage value and the three points with largest Cook’s
distance are labeled by their numbers.

– The last plot DFFITS is based on the R function influence.measures
of the default package stats, which calculates some standard leave-one-
out deletion statistics for linear models (see e. g. Belsley, Kuh and
Welsch [2] and Cook and Weisberg [4]). Generally DFBETAS
for all coefficients βi, DFFITS and COVRATIO are computed. The
function also gives possible influential points, which are all marked on
the plot, although the scatterplot is based on DFFITS only.

– For definition of DFBETAS, DFFITS and COVRATIO see section 3.3.2,
Influential Observations.

Here the label numbers on the plots are project numbers.

• Dotted Lines The horizontal and vertical dotted lines represent additional
levels for possible influential points, as defined underneath.

• Histogram The histogram of the standardized residuals additionally shows
the estimated density as well as the standard normal density.

3.3.1. Model Assumptions

Linearity

The linearity of the regression function can be checked by plotting the residuals
against the fitted values. The residuals should vary randomly around the zero line
across the whole spectrum of fitted values. Additionally scatterplots of the residuals
against the predictor variables xi could be used to detect non-linearity.
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3.3. Model Diagnostics

Homoscedasticity

Non-constancy of error variance can be diagnosed by plotting the (standardized/s-
tudentized) residuals against the fitted values or the predictors xi. It is suggested
by Fahrmeir, Kneib and Lang [6] to favor standardized or studentized resid-
uals over standard residuals, as standard residuals do not have constant variance
themselves.

The reference picture is a constant variation around zero. Fahrmeir, Kneib and
Lang [6] provide tests and actions against heteroscedasticity.

Normality Assumption

A graphical tool to check the normality assumption is the normal quantile–quantile
plot (Q–Q plot), which plots the sample quantiles against the theoretical quan-
tiles35 of the normal distribution (see e. g. Stadlober [23]). The reference for
normally distributed variables is a straight line of data points.

It is possible to test for normality of the residuals – among others – by using
the Shapiro-Wilk test (see Sachs and Hedderich [19] or Stadlober [23]). As
the null-hypothesis says that the sample is normally distributed, a small p-value36

indicates that the normal distribution is violated and a large p-value indicates that
there is no contradiction to normal distribution.

Remedy: Response Transformation

According to Kleinbaum et al. [14] there are three primary reasons for using
transformations:

1. Stabilize the response variance

2. Normalize the response

3. Linearize the regression model

An important empirical solution to compute a proper response transformation is
the Box-Cox Transformation. The idea is to find a parameter λ such that the
variance of a random variable Y gets independent of the expected value by trans-
forming Y to Tλ(Y ) with

Tλ(Y ) =
Y λ λ 6= 0

log(Y ) λ = 0

35The p-quantile xp of a random variable X has the property, that P(X ≤ xp) ≥ p and P(X ≥
xp) ≤ p for p ∈ (0, 1)

36Typically p < 0.05
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This leads to a log-likelihood maximization. For more details about the theory see
Stadlober [23].
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Figure 3.2.: Example of a Box-Cox transformation plot

The R-function boxcox from the MASS package calculates and also optionally plots
the empirical solution of log-likelihood maximization (see fig. 3.2). The central
vertical line marks the Box-Cox estimation λ̂ for λ. The two sideways vertical lines
mark a 95% confidence interval for λ. In practice a rational number within the 95%
CI is chosen to use for the transformation. In the example of fig. 3.2 an appropriate
choice would be λ̂ = 1

3 .

Remark 3.17

• A model with transformed predictor Tλ(Y ) describes the mean response
(i. e. E(Tλ(Y ))) on the transformed scale, whereas by back-transformation
to the original scale the median response is described (see Friedl [9]).

• By applying the inverse transformation the fitted values, confidence interval
and prediction interval can be obtained on the original scale. The regression
coefficients can not be back-transformed directly.

3.3.2. Influential Observations

Influential observations are observations that have a large impact on the estima-
tions β̂ and/or µ̂. There are different measurements of influential observations.
Some widely used are presented in the following.
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Remark 3.18 An influential observation does not necessary mean, that this ob-
servation has to be removed from the data, as the observation does not necessarily
violate the model assumptions. Anyway it has to be kept in mind, that remov-
ing outliers mean a modification of the database. In practice the reason for an
observation being influential should be analyzed.

Leverage

The diagonal elements hii of the hat-matrix H = xT (XTX)−1X can be written
as

hii = 1
n

+ 1
n− 1(x1

i − x1)TS−1(x1
i − x1)

with x1
i denoting the transposed i-th row of the design matrix X (excluding the

intercept) and x1 denotes the vector of means and S denotes the covariance ma-
trix of these x1

i . Thus hii > 1
n
and hii grows by growing distance of xi to x1.

Observations are called high-leverage points, if they fulfill

hii > 2h = 2p
n

(see Friedl [10]).

Remark 3.19

• High-leverage points do not necessarily have to be influential.

• The high-leverage condition is plotted as a vertical dashed line on the Resid-
uals vs. Leverage plot of the residual plots (see e. g. fig. 3.1).

Cook’s-Distance

The Cook’s-distance Di measures the difference of Ŷ(i), the estimation of the mean
response with excluding the i-th observation, to the standard mean estimation Ŷ .
The definition is based on their Euclidean distance and can be rewritten in depen-
dence of standardized residuals ri and diagonal elements hii of the hat-matrix:

Di := (Ŷ(i) − Ŷ )T (Ŷ(i) − Ŷ )
ps2 = r2

i

p

(
hii

1− hii

)
, i = 1, . . . , n.

Thus the Cook’s distance is large, if the i-th observation is a high-leverage point
or has a large residue. A rule of thumb is to consider observations with Di > 0.5
as conspicuous (see Fahrmeir, Kneib and Lang [6]).
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Remark 3.20 Because of the dependence of Di on ri and hii only, the values of
the Cook’s distance can be drawn as contour lines on the scatterplot of ri against
hii. As an example see the red dashed line on the bottom left plot Residuals vs.
Leverage of fig. 3.1.

Other Measurement of Influential Single Observations

Friedl [10] gives the following condition for standardized residuals ri, that mark
potential outliers:

|ri| > 2
√
Var(ri) = 2⇒

√
|ri| >

√
2 ≈ 1.41.

This condition is plotted on the Scale-Location plots of the residual plots as a
horizontal dashed line (see e. g. fig. 3.1).

The following list provides some measurements of the influence of single observa-
tions on certain estimators (see Belsley, Kuh and Welsch [2], Cook and
Weisberg [4] and Friedl [10]):

• DFBETAS Influence of i-th observation on βj

DFBETASij :=
β̂j − β̂j(i)

s(i)

√
(XTX)−1

jj

• DFFITS Influence of i-th observation on µi

DFFITSi := ε̂i
s(i)
√

1− hii

√
hii

1− hii

• COVRATIO Influence of i-th observation on the covariance matrix

COVRATIOi :=
det

(
s2

(i)(XT
(i)X(i))−1

)
det (s2(XTX)−1)

Remark 3.21

• In the above formulas “det()” denotes the matrix determinant and the index
in brackets (as in s2

(i)) denotes that the parameter is computed excluding the
i-th observation.

• The condition for potential influential observations based on DFFITS by
Friedl [10]

|DFFITS| > 3
√

p

n− p
is plotted on the DFFITS plots of the residual plots as horizontal lines (see
e. g. bottom right plot in fig. 3.1).
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3.4. Model Selection

In multiple linear regression a major question is which predictor variables to choose
from a given set of possible predictor variables. Therefore some criteria are needed
to compare different models. Especially for a large quantity of predictor variables
it is also of interest to apply methods of predictor selection, that overcome the
needs of analyzing each single model37.

In the following sections let the number of possible predictors be m and the num-
bers of predictors of the current model be p ≤ m.

3.4.1. General Approaches

Kleinbaum et al. [14] propose the following general steps in selecting the best
regression model:

1. Specify the maximum model to be considered.
For specifying the maximum model m potential predictor variables have to
be chosen.

2. Specify a criterion for selecting a model.
Typically a set of criteria is used, as each criterion for itself has certain
tendencies. According to Friedl [10] a popular strategy for model selection
is as follows: Calculate the values of R2

adj, AIC, AICc and BIC and compare
the models that minimize AIC, AICc and BIC with the one maximizing R2

adj.

3. Specify a strategy for selecting variables.
Some strategies are described later within this section.

4. Conduct the specific analysis.
It is needed to diagnose the chosen model, as described in section 3.3, Model
Diagnostics.

5. Evaluate the reliability of the model chosen.
This step questions how reliable the chosen model is when applying it to
other samples. Kleinbaum et al. [14] briefly discuss three methods to
assessing model reliability: The follow-up-study, the split-sample analysis and
the holdout sample.

Within this thesis these steps were performed with help of the R-function reg-
subsets of the package leaps (see Lumley [15]). For more details about the
regsubsets function and its use within this thesis see section 2.4.1, Model Selec-
tion Process. Generally speaking the leaps package provides many more functions
on model selection procedures.
37m possible predictors lead to 2m possible regression models (without considering interactions

or predictor transformations)
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Kleinbaum et al. [14] recommend for model selection to generate, based on pre-
vious knowledge, a relatively small set of models of interest, that can be evaluated
by strategies of step 3. In practice this method is often not applicable due to the
analysis structure. Alternative methods often used in practice are described in the
following list:

• All-Subset-Selection (Exhaustive Search) This method (theoretically)
compares all possible models and returns the best models in the sense of a
model selection criterion. Kleinbaum et al. [14] suggest this method for
m < 40.

• Forward-Selection Based on a start model this method adds on each step a
single variable to the model. The new variable is chosen as the one that gives
the best improvement of the model selection criterion. If no improvement is
possible, the algorithm stops.

• Backward-Selection This method starts with the full model of all m vari-
ables. In each step a variable is eliminated from the model. Also here a
variable is chosen, which gives the best improvement of the model selection
criterion when eliminating it. If no improvement is possible, the algorithm
stops.

• Stepwise-Selection On stepwise-selection in each step a variable can be
added, removed or exchanged, based on the best improvement in the model
selection criterion.

3.4.2. Model Selection Criteria

This section focuses on describing different model selection criteria. Within this
thesis the described criteria were used simultaneously on choosing a model. The
decision process was aided by the self-written function ModelSelCrit that visu-
alizes the model selection criteria (see appendix C, Self Written R Functions).
Fig. 3.3 shows an example plot.

R-squared adjusted (R2
adj)

The coefficient of determination is defined as

R2 = SSR
SST = 1− SSE

SST

and can be interpreted as the portion of response variance described by the model.
As already mentioned an issue about the R2 value is, that it never decreases by
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Figure 3.3.: Example of model selection criteria plot generated with the self-
written function ModelSelCrit

adding variables. Thus maximizing the R2 value may lead to the full model, even
if it contains irrelevant predictors. Hence the adjusted R2 value R2

adj is defined:

R2
adj := 1− SSE/(n− p)

SST/(n− 1) .

It can be shown that adding a new predictor leads to an increasing R2
adj value,

only if the test statistic of the corresponding hypothesis test (test for addition of
a single variable) gives a value greater than one (see Friedl [10]). This leads to
an increase of the R2

adj value already for a p-value of about 0.3 (see Fahrmeir,
Kneib and Lang [6]). As this may result in the problem of overfitting, care has
to be taken on using the R2

adj value.

Akaike Information Criterion (AIC)

A popular information criterion is the Akaike Information Criterion (AIC), that
measures the balance of high adaption to complexity of the model. The AIC is
defined as

AIC := −2 logL(β̂, s2) + 2(p+ 1)

whereas L(β̂, s2) is the likelihood function, that measures model adaption. Mini-
mizing the AIC leads to a balance of maximizing the likelihood function and min-
imizing the number of parameters p+ 1. Inserting the multiple regression formula
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into the AIC definiton and removing constant summands results in the following
form

AIC = n log SSE(β̂)
n

+ 2p

as it is also calculated by R (see Friedl [10]).

Corrected Akaike Information Criterion (AICc)

Theres is also a corrected version AICc of the AIC, as the AIC has the tendency
to overfitting for a small number of observations n or a high number of parameters
p compared to n. The corrected AIC is defined as

AICc := −2 logL(β̂, s2) + 2(p+ 1) + 2(p+ 1)(p+ 2)
n− p

= AIC + (p+ 1)(p+ 2)
n− p

.

According to Friedl [10] AICc minimization should be preferred upon the AIC
if n/(p + 1) ≤ 40. On the same hand he recommends to use AICc in practice, as
limn→∞AICc = AIC.

Bayesian Information Criterion (BIC)

Schwarz [20] introduced the Bayesian Information Criterion (BIC), that is de-
fined very similar to the AIC:

BIC := −2 logL(β̂, s2) + (p+ 1) log(n).

Compared to the AIC, minimizing the BIC is more likely to favor simple models.

Mallow’s Cp

Let βm be the coefficients of the full model and βp be the coefficients of a model
with p ≤ m parameters. Mallow’s complexity parameter Cp is defined as

Cp := SSE(βp)
SSE(βm)/(n−m) − n+ 2p

= MSE(βp) (n− p)
MSE(βm) − n+ 2p.

The last formulation shows that the value of Cp is roughly equal to p, if MSE(βp)
is roughly equal to MSE(βm), which means that the correct model is of size p
(see Kleinbaum et al. [14]). As a simple model selection rule Mallows [16]
proposes to choose the model that minimizes Cp.
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3.5. Principal Component Analysis (PCA)

This section is based on Johnson and Wichern [12] and Jolliffe [13].

The idea of Principal Component Analyis (PCA) is to reduce the dimension of a
dataset, while keeping as much variation/information as possible. This is obtained
by transforming the variables to a new set of variables, the Principal Components
(PCs). The PCs are uncorrelated and ordered such that each PC contains the
maximum variance given the previous PCs (see Jolliffe [13]).

3.5.1. Definition and Representation of Principal Components

Let X = (X1, . . . , Xp) be a set of of random variables38 The principal components
PCi i = 1, . . . , p are linear combinations of the Xj’s, which leads to following
general representation by Johnson and Wichern [12]):

PC1 = aT1X = a11X1 + a12X2 + · · ·+ a1pXp

PC2 = aT2X = a21X1 + a22X2 + · · ·+ a2pXp

...
PCp = aTpX = ap1X1 + ap2X2 + · · ·+ appXp.

Let Σ be the covariance matrix of X then it follows

Var(PCi) = aTi Σai i = 1, . . . , p
Cov(PCi,PCk) = aTi Σak i, k = 1, . . . , p.

Hence the PCs can be defined as follows: PCi = linear combination aTi X, such that
Var(aTi X) is maximized subject to Cov(aTi X,aTkX) = 0 ∀ k < i and aTi ai = 1.

Remark 3.22

• The condition aTi ai = 1 is necessary, as maximizing Var(aTi X) is an un-
bounded problem. This is because Var(cY ) = |c| Var(Y ) > Var(Y ) for all
constants c with |c| > 1.

• Also other constraints to ai are possible, e. g. maxj |aij| = 1 (see Jolliffe
[13]).

38No distribution assumption is necessary here. On the same time multivariate normality as-
sumption leads to useful interpretations and further inferences (see Johnson and Wichern
[12]).

121



Chapter 3. Theoretical Fundamentals

Let (λj, ej), j = 1, . . . , p be the pairs of eigenvalues and eigenvectors of the covari-
ance matrix Σ. Let these pairs be ordered such that λ1 > λ2 > . . . > λp. Then it
can be shown that the i-th PC is given by

PCi = eTi X = ei1X1 + ei2X2 + · · ·+ eipXp i = 1 . . . , p (3.9)

with

Var(PCi) = eTi Σei = λi i = 1, . . . , p
Cov(PCi,PCk) = eTi Σek = 0 i, k = 1, . . . , p.

Remark 3.23 Ideas for proofing the PC result (equation (3.9))

• The result can be constructed by applying the technique of Lagrangian mul-
tipliers to the constrained maximization problem stated above (see Jolliffe
[13]).

• A direct proof can be performed by looking at maxa a
T Σa
aTa

and using eTi Σei =
λi and eTi ei = 1 (see Johnson and Wichern [12]).

3.5.2. General Remarks about Principal Components

Apply PCA to sampled data
The previous section derived the PC representation for random variables. In
practice sampled data is available. The above result can be applied analo-
gously to the data by using the sample covariance matrix S instead of Σ
(see Johnson and Wichern [12]).

Choosing a Representative Number of PC
An important reason on performing PCA is to describe the information of
p variables by a much smaller number of PC variables. There is no unique
answer on how many PCs to choose to represent the original data without
loosing much information. A visual method is to plot the ordered eigenvalues
λ̂i of the sample covariance matrix S against the index i, which is called scree
plot39. Johnson and Wichern [12] suggest to look for an elbow or bend
on the scree plot, which index defines the number of appropriate PCs by the
corresponding index i. Fig. 3.4 shows an example scree plot that has a clear
elbow at i = 3. Thus i = 3 is the suggested number of representative PCs.
The reason is that the remaining eigenvalues have about the same size and
are relatively small compared to previous eigenvalues.

For more details and other methods on choosing an appropriate number of
principal components see Jolliffe [13].

39“Scree is the rock debris at the bottom of a cliff.” (Johnson and Wichern [12])
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Figure 3.4.: Example scree plot

Computing the Principal Components with R
R provides with its basic package stats the function princomp that performs
PCA for a given dataset. The function returns an object of class princomp.
In the following let this object be denoted by fit. The principal components
themselves can be accessed by the command fit$scores. Functions of in-
terest to work with a princomp object are among others as follows (all part
pf basic R packages):

• summary(fit): Calculates for each PC standard deviation, absolute
and cumulative portion of variance.

• loadings(fit): Returns the composition of the PCs, i. e. the values of
each ei.

• plot(fit): A plot of a princomp object gives the scree plot, as for
example fig. 3.4.

• biplot(fit): Generates a biplot, that shows a scatterplot with two
principal components and their loadings on the same plot.

For further details see the corresponding R help pages.

There is a wide range of applications and derivations of principle component anal-
ysis. For more details and further reading please be referred to Johnson and
Wichern [12] and Jolliffe [13].
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Conclusions

Summary

The main aspect of this thesis is the idea of using the information of closed proj-
ects to get unbiased predictions for final project cost and duration of running
projects.

By examining the structure of the data using Exploratory Data Analysis (EDA) it
turned out, that the estimations of project cost and duration can not be directly
used on analyzing running projects. As for running projects in general only the
first workstatement (WS) can be assumed to exist, the idea was to generate models
based on data of the first WS. As two third of the data are closed projects with
known final cost and duration, the closed projects were used to generate these
models. By detailed analysis and attaching importance to model diversity, it was
possible to retrieve models with a good statistical basis. Further discussion led
to the idea of improving models by other available WS. Deeper analysis of the
structure of closed projects showed how to obtain significant improvements of
model quality by using these WS. Thus the prediction for running projects adapts
depending on its progress. Using the resulting models, it was possible to analyze
cost and duration trend with many details.

Beside these described steps, high effort was put on data preparation and exami-
nation of data structure. On all steps of analysis it was also important to analyze
the structure of missing values, to not loose valuable information. On the way to
the main purpose of analyzing trends in cost and duration, many interesting side
results arose. For example the model improvements showed how project duration
and cost develop by WS.

Most graphics shown within this thesis were produced using the graphical R pack-
age ggplot2. Due to the grammar of graphics (see Wilkinson [32]), ggplot2 is
based on graphics for many different purposes. Main functionalities were collected
in functions, to make them accessible and to allow modifications easily. A selec-
tion of these graphical and other functions is put in the appendix to make them
available to others.

The thesis is completed by a theoretical look at regression analysis with related
topics as well as Principal Component Analyis (PCA).
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Implications and Interpretations

In the central analysis part of cost and duration trend analysis many results were
obtained. Generally the results should be seen as indicators for trends. There are
four response modes, which can give differing results. Thus an overview look is
recommended to interpret the results as a whole. It is also important to notice
that the trends are represented by expected values of the response variable (either
actual project duration or cost). Especially the examples underline this by intervals
that contain the real expected value, thus the real trend, with a chance of 95%
(confidence interval (CI)).

The detailed trend analysis of project categories can be used to identify the origin
of trends. On the other hand it may reveal that no overall trend hides a trend in
some categories.

On interpreting the trends it is also necessary to look at influential projects. As
explained, especially in project categories with few projects it may happen that
single projects prevent or support the model to detect significant trends. Based on
knowledge if an influential project can be regarded as representative or not for the
respective category, the interpretation may change.

Concluding the following list gives summarized answers on the research questions
stated in chapter 1 Introduction:

1. Is the database sufficient?
Generally the answer is: Yes.
For some aspects of statistical analysis there is not enough data. Especially
the trend analysis revealed that, due to data structure, some project cate-
gories hold too few projects to find possible trends.

This has an important influence on trend analysis interpretation: No indi-
cated significant trend may be a result of no actual trend or of too less data
to be recognized as significant trend.

2. How do project cost and duration develop over the years?

Duration There was no overall significant trend found. A deeper look re-
vealed that business units BU2 and BU3 seem to have a more or less
decrease in project duration. These trends are originated in the financial
project types F1 and F2 respectively. Here also a decreasing trend may
be present for the conjunction of F2 & BU1. It shall be remarked that
only BU3 and F2 & BU3 shows decreasing trends for 3 of 4 response
modes. The other trends could only be verified as significant for two
response modes.
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Cost BU2 shows for one response mode a tendency to lower project costs.
This trend gets more significant when depending BU2 on F1. Only F2
shows slight significant increasing cost. There are two projects (211 and
463) which prevent significant trends for several categories (see grey
backgrounds and the influential points list).

For more details see tables 2.14 and 2.16 as well as other results in section
2.6, Trend Analysis.

3. Did estimations of project cost/duration get better over the years?

Duration Project duration estimations at project start show the tendency
to have become more accurate in time. There is only one slight sig-
nificant increase for F2 & BU4. Also partly decreasing trends in the
estimation error of all projects can be seen. Many subcategories also
indicate decreasing trends. On the same time many cases occur, where
non-significance is based on influential projects.

Cost The cost estimation error shows particularly increasing trends. Here it
is interesting that for all projects as well as BU1 separately, the cases
appear of (increasing) trends for all response modes. Only F2 & BU2
show a slight decreasing cost estimation error. Fur BU2 and F1 & BU2
a set of 4 projects prevents a significant decrease.

For more details see tables 2.14 and 2.16 as well as other results in section
2.6, Trend Analysis.

4. How to get faster and cheaper?
This is a question difficult to answer directly. An issue is that for exam-
ple lowering engineering hours can not be regarded separately. A decrease
in a variable practically also effects other variables in certain ways due to
dependencies.

Here the approach to answer this question is to identify influential variables
and the sign of their influence. Thus according to the data following actions
result – at least by isolated consideration – in faster and cheaper projects:

Duration

• Reuse the information of already developed chips (raise reuse).
• Keep engineering hours and material cost low.
• Focus on development of chips with low die size.
• Lower the test time.
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Cost

• Keep especially engineering hours and material cost low (corre-
spond directly to project cost).

• Reuse as much information as possible from past projects (raise
reuse).

As stated, the above recommendations are based on isolated examinations.
The suggestions may be self-evident, nevertheless they represent the most
significant influences as described in section 2.4.4, Influential Variables.

Future Prospects

Section 2.5, Model Improvements shows a method to use the information of con-
secutive WS. It provides an adaptive prediction of model cost and duration as
the project progresses. These adaptations used the newly estimated cost and du-
ration only. To further improve models and define models for each WS, further
and deeper analysis is necessary. A major issue to consider is that there is no
equidistant chronological distribution of WS.

Here the focus was on trend analysis of actual values. Thus all information at
project start provided was used to generate models for actual values. This includes
estimated duration and indirectly also estimated project cost. As the models are
based on these estimations, the model predictions can not be used to replace the
estimations without needing them. Statistical analysis could be used to generate
models that provide predictions for cost and duration based on basic estimations
of project characteristics only.

Based on project start and the date of today, passed project duration of running
projects can be computed. Using this information for running projects and the
actual duration of closed projects, all projects can be put together to apply Survival
Analysis (see e. g. Tableman and Kim [24], who use R/S code). First steps in
Survival Analysis did not reveal better models for project duration, than the ones
presented in this thesis. Nevertheless deeper Survival Analysis can reveal more
details about the research objectives.

Finally evaluating the results and outcomes of this thesis in the future may be
valuable. Especially the predictions for running projects can be evaluated easily.
Additionally, as done with the models by Sponer, the models selected here may
be evaluated on relevance for the future.
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Appendix A.

Common Statistical Distributions

This appendix chapter provides some common statistical distributions with ba-
sic properties. References for this chapter are (in alphabetical order) Friedl [8],
Sachs and Hedderich [19] and Stadlober [22]. Especially the distribution
plots are based on the plots provided by Stadlober [22].

Normal Distribution

Notation X ∼ N(µ, σ2), µ ∈ R, σ ∈ R+

Density (see fig. A.1)

f(x) = 1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
, x ∈ (−∞,∞)

Characteristics E(X) = µ,Var(X) = σ2

Properties

• X ∼ N(µ, σ2)⇒ X−µ
σ
∼ Z with Z ∼ N(0, 1)

• Let X1, . . . , Xn be independent with Xi ∼ N(µ, σ2)
X := 1

n

∑n
i=1Xi, S2 := 1

n−1
∑n
i=1

(
Xi −X

)2
⇒

– X and S2 are independent

– X ∼ N(µ, σ2/n), X−µ
σ/
√
n
∼ N(0, 1)

– (n− 1)S2/σ2 ∼ χ2
n−1

• Let X1, . . . , Xn be independent with Xi ∼ N(µi, σ2
i ) and c1, . . . , cn be

constants ⇒ Y := ∑n
i=1 ciXi ∼ N(µ, σ2) with µ = ∑n

i=1 ciµi and σ2 =∑n
i=1 c

2
iσ

2
i
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• Central Limit Theorem (CLT)
Let X1, X2, . . . be independent and identically distributed (iid) random
variables with E(Xi) = µ and Var(X) = σ2 <∞

⇒ lim
n→∞

P
(
Xn − µ
σ/
√
n
≤ z

)
= Φ(z), ∀z ∈ R

with Xn = 1
n

∑n
i=1Xi and Φ(z) the cumulative distribution function

(cdf) of the standard Normal Distribution N(0, 1).

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
x

f(
x)

parameters
µ = 0, σ = 1
µ = 0, σ = 2
µ = 0, σ = 3

Figure A.1.: Density of N(µ, σ) distribution for µ = 0; σ = 1, 2, 3

Remark A.1 Multivariate normal distribution
Let X = (X1, . . . , Xp) a p-dimensional random vector with density

f(x) = 1
(2π)−p/2|Σ|−p/2 exp

(
−(x− µ)TΣ−1(x− µ)

2

)
, x ∈ Rp

with µ ∈ Rp and Σ a positive semidefinite p × p matrix. | · | denotes the matrix
determinant and Σ−1 the matrix inverse of Σ.

Then X follows the p-dimensional multivariate normal distribution with expected
value E(X) = µ and covariance matrix Var(X) = Σ denoted by X ∼ Np(µ,Σ).

Properties:

• LetX1, . . . , Xp be independent and normally distributed⇔X = (X1, . . . , Xp)
follows a p-dimensional multivariate normal distribution with Var(X) = D
a diagonal matrix.
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• X = (X1, . . . , Xp) ∼ Np(µ,Σ) ⇒ Each k-dimensional (k ≤ n) subset Y of
X with Y = (Xi1 , . . . , Xik) {i1, . . . , ik} ∈ {1, . . . , n} is multivariate normally
distributed. Especially it follows that each Xi with i ∈ {1, . . . , n} is normally
distributed.

For more information on multivariate normal distribution see Fahrmeir, Kneib
and Lang [6].

Chi-Squared Distribution

Notation X ∼ χ2
n, n ∈ N, n . . . degree of freedom

Density (see fig. A.2)

fn(x) =


1
2n/2Γ(n/2)x

n/2−1e−x/2 x ≥ 0
0 x < 0

Characteristics E(X) = n,Var(X) = 2n

Properties

• X1, . . . , Xn
iid∼ N(0, 1)⇒ ∑n

i=1X
2
i ∼ χ2

n

• χ2
n ∼ γ(n2 ,

1
2) (χ2

n is a special Gamma distribution)

n=2

n=4

n=6
n=8

n=10
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Figure A.2.: Density of χ2
n distribution for n = 2, 4, 6, 8 and 10
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Student-t Distribution

Notation T ∼ tn, n ∈ N, n . . . degree of freedom

Density (see fig. A.3)

fn(t) = Γ((n+ 1)/2)
Γ(n/2)

√
nπ

(1 + t2/2)−(n+1)/2, x ∈ (−∞,∞)

Characteristics E(T ) = 0 (if n > 1), Var(T ) = n
n−2 (if n > 2)

Properties

• Let X ∼ N(0, 1) and Y ∼ χ2
n be independent ⇒ X√

Y/n
∼ tn

• Let X1, . . . , Xn
iid∼ N(µ, σ2)⇒ X−µ

S/
√
n
∼ tn−1

• For n > k all moments E(T j) with j < k exist.
For example the distribution of t1 does not have an expected value.

• For n → ∞ the tn distribution approximates the standard normal dis-
tribution. Thus t∞ ∼ N(0, 1).
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Figure A.3.: Density of tn distribution for n = 1, 3, 10 and the limit case n = ∞
(N(0, 1) distribution)
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Fisher-F Distribution

Notation F ∼ Fm,n

Density (see fig. A.4)

fm,n(t) =


Γ((m+n)/2)
Γ(m/2)Γ(n/2)

m
n

(
m
n
t
)−(m+n)/2

t > 0
0 t ≤ 0

Characteristics E(F ) = n
n−2 (if n > 2), Var(F ) = 2n2(m+n−2)

m(n−2)2(n−4 (if n > 4)

Properties

• Let X ∼ χ2
m and Y ∼ χ2

n be independent ⇒ X/m
Y/n
∼ Fm,n

• Let X1, . . . , Xm
iid∼ N(µX , σ2

X) and Y1, . . . , Yn
iid∼ N(µY , σ2

Y ) be indepen-
dent ⇒ S2

X/σ
2
X

S2
Y /σ

2
Y
∼ Fm−1,n−1

• F ∼ Fm,n ⇒ 1/F ∼ Fn,m

• T ∼ tn ⇒ T 2 ∼ F1,n
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Figure A.4.: Density of Fm,n distribution for m = 10; n = 4, 10, 50, 1000
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Appendix B.

R-Packages and Functions

This appendix chapter first describes briefly the used software R and afterwards
the main used packages and functions.

R

The used software to perform the analysis and to generate the graphics of this
work is called R, which is a free statistical programming language and software
package published under the terms of GNU General Public License (see R De-
velopment Core Team [18]). It shall also be mentioned that the author used R
in conjunction with the editor Tinn-R (see Faria, Grosjean and Jelihovschi
[7]). The R version used is 2.15.2.

Used Packages and Functions

R is highly extensible by numerous packages available online. A package can be
interpreted as a collection of functions for a more or less specific use. All packages
and their documentations are available at the Comprehensive R Archive Network
(CRAN)40. A good overview of R and its applications is given by Crawley [5].
To access the help for a single function, just type ?<function-name> into the
command line interface.

The descriptions of the packages and functions are taken from the respective docu-
mentations.

40http://cran.r-project.org/
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Appendix B. R-Packages and Functions

ellipse: Functions for drawing ellipses and ellipse-like confidence regions

Used Version v0.3-7

Reference Murdoch and Chow [17]

Description “This package contains various routines for drawing ellipses and
ellipse-like confidence regions, implementing the plots described in Mur-
doch and Chow (1996), A graphical display of large correlation matrices,
The American Statistician 50, 178-180. There are also routines imple-
menting the profile plots described in Bates andWatts (1988), Nonlinear
Regression Analysis and its Applications.”

plotcorr “This function plots a correlation matrix using ellipse-shaped
glyphs for each entry. The ellipse represents a level curve of the density
of a bivariate normal with the matching correlation. ”

ggplot2: An implementation of the Grammar of Graphics

Used Version v0.9.2.1

Reference Wickham [30]

Description “An implementation of the grammar of graphics in R. It com-
bines the advantages of both base and lattice graphics: conditioning and
shared axes are handled automatically, and you can still build up a plot
step by step from multiple data sources. It also implements a sophisti-
cated multidimensional conditioning system and a consistent interface
to map data to aesthetic attributes. See the ggplot2 website for more
information, documentation and examples.”

Note ggplot2 is a graphical package and most of the plots within this the-
sis are generated with this package. The website for this package41 is
providing a more detailed documentation than the R help files do. It
contains also many examples.

leaps: Regression subset selection

Used Version v2.9

Reference Lumley [15]

Description “Regression subset selection including exhaustive search”

regsubsets “Model selection by exhaustive search, forward or backward
stepwise, or sequential replacement”

41http://docs.ggplot2.org/
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MASS: Support functions and datasets for Venables and Ripley’s MASS

Used Version v7.3-22

Reference Venables and Ripley [29]

Description “Functions and datasets to support Venables and Ripley, ’Mod-
ern Applied Statistics with S’ (4th edition, 2002).”

boxcox “Computes and optionally plots profile log-likelihoods for the pa-
rameter of the Box-Cox power transformation.”

plyr: Tools for splitting, applying and combining data

Used Version v1.7.1

Reference Wickham [31]

Description “plyr is a set of tools that solves a common set of problems:
you need to break a big problem down into manageable pieces, operate
on each pieces and then put all the pieces back together. For example,
you might want to fit a model to each spatial location or time point
in your study, summarise data by panels or collapse high-dimensional
arrays to simpler summary statistics. The development of plyr has been
generously supported by BD (Becton Dickinson).”

ddply “For each subset of a data frame, apply function then combine results
into a data frame.”

VIM: Visualization and Imputation of Missing Values

Used Version v3.0.2

Reference Templ et al. [26]

Description “This package introduces new tools for the visualization of miss-
ing and/or imputed values, which can be used for exploring the data
and the structure of the missing and/or imputed values. Depending
on this structure of the missing values, the corresponding methods may
help to identify the mechanism generating the missing values and allows
to explore the data including missing values. In addition, the quality
of imputation can be visually explored using various univariate, bivari-
ate, multiple and multivariate plot methods. A graphical user interface
available in the separate package VIMGUI allows an easy handling of the
implemented plot methods.”

aggr “Calculate or plot the amount of missing/imputed values in each vari-
able and the amount of missing/imputed values in certain combinations
of variables.”
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Appendix C.

Self Written R Functions

This chapter presents some R functions written by the author. They have different
purposes, inputs, outputs and modes, which are briefly described on the beginning
of each function. The functions used to generate graphics are based on the R
package ggplot2 (see Wickham [30]).

The following functions are provided in alphabetical order:

• GGplotFit (page 142)

• GGplotLabel (page 143)

• GGplotLm (page 144)

• GGscatterPlot (page 149)

• ModelSelCrit (page 152)

• MySummary (page 154)

• Other functions (page 157)

– Adjust
– AggrMissings
– LmRegsubsets
– NaOmit
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Appendix C. Self Written R Functions

GGplotFit

# -----------------------------------------------------------------
# Name
# GGplotFit
# Description
# Plots a model fit of the model ’mod ’ on a scatterplot of y
# against x.
# Input ( necessary only)
# mod the model , which fit to plot
# x the x variable for the scatterplot
# y the y variable for the scatterplot
# data data set to use for plotting and generateing the fitted
# values
# It has to be valid: length (x) == length (y) == nrow(data)
# Output
# -
# -----------------------------------------------------------------
GGplotFit <- function (mod , x, y, data , trans=NULL , xlab=NULL ,

ylab=NULL , llab=NULL , title=NULL , colour =NULL , label_id=c())
{

if(is.null(trans)) trans <- identity
if(!is.null(x)){ data$x <- x }else{ stop("empty x") }
if(!is.null(y)){ data$y <- y }else{ stop("empty y") }
if(is.null(data)){ data <- data.frame(x=x, y=y) }
n <- nrow(data)
n_na_omit <- nrow(mod$model)
data[, c("fit", "lwr_c", "upr_c")] <-

trans( predict (mod , newdata =data , interval =" confidence ",
level = 0.95))

data[, c("fit", "lwr_p", "upr_p")] <-
trans( predict (mod , newdata =data , interval =" predict ",

level = 0.95))
if(!is.null( colour )) data$ colour <- colour
# labels
if(is.null(xlab)){

name <- deparse ( substitute (x))
xlab <- GetVarName (name)

}
if(is.null(ylab)){

name <- deparse ( substitute (y))
ylab <- GetVarName (name)

}
if(!is.null( colour )){

if(is.null(llab)){
name <- deparse ( substitute ( colour ))
llab <- GetVarName (name)

}}
if(is.null(title))

title <- paste("Trend Analysis :", sQuote (ylab))
ggplot (data , aes(x=x, y=y)) +

(if(is.null( colour )){
geom_point ()
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}else{ geom_point(aes( colour = colour )) })+
geom_ hline( yintercept =0, colour =" grey70 ") +
scale_ colour _ discrete (name=llab) +
geom_ ribbon (aes(ymin=lwr_p, ymax=upr_p), alpha =1/10) +
geom_ ribbon (aes(ymin=lwr_c, ymax=upr_c), alpha =1/3) +
geom_ ribbon (aes(ymin=fit , ymax=fit)) +
geom_line(aes(y=fit)) +
labs(x=xlab , y=ylab) +
(if(title!=""){ labs(title=title) }else{ geom_blank () }) +
BaseTheme (base_size=base_size_) +
GGplotLabel (data=data , label=data$id ,

subset =( data$id %in% label_id), hjust= Adjust (data$x))
}
# -----------------------------------------------------------------

GGplotLabel

# -----------------------------------------------------------------
# Name
# GGplotLabel
# Description
# Generates a text geom (geom_text) for adding to a
# ggplot2 - object . Is used to label points on a plot.
# (Code partly from ggplot2 book , partly from ’qqline ’ function
# and rest by the author ).
# Input
# data data of the plot
# label labels for the points ( default : corresponding rownames
# of data)
# subset subset of the data to label ( logical )
# hjust horizontal adjustment for the labels
# vjust vertical adjustment for the labels
# print logical , to decide if labeld points should be printed
# out
# plot if plot = F: return labels only
# Output
# -
# -----------------------------------------------------------------
GGplotLabel <- function (data , label = rownames , subset = NULL ,

hjust = -0.1, vjust = -0.1, print=F, plot=T, ...)
{

n = nrow(data)
if(is. function (label)){

label <- label(data)
}else if(is. character (label) & ( length (label) == 1)){

if(!is.null(data[, paste(label)])){
label <- data[, paste(label)]

}else{
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label <- rep(label , n)
}

}
if(is.null( subset ))

subset <- rep(T, n)
subset [is.na( subset )] <- FALSE
if(sum( subset ) == 0)

return (geom_blank ())
label <- as. character (label)
label[is.na(label)] <- ""
if( length ( subset ) != n){

warning (" length of ’subset ’ not compatible with data dim")
return (geom_blank ())

}
if( length (label) != n){

warning (" length of ’label ’ not compatible with data dim")
return (geom_blank ())

}
data$label <- label
if( length (hjust) == 1) hjust <- rep(hjust , n)
if( length (vjust) == 1) vjust <- rep(vjust , n)
data$hjust <- hjust
data$vjust <- vjust
if(print){

print(label[ subset ])
}
if(!plot) return (data[subset , ]$label)
geom_text(data=data[subset , ], aes(label=label , hjust=hjust ,

vjust=vjust),
size=base_size_*0.3, show_guide=FALSE , ...)

}
# -----------------------------------------------------------------

GGplotLm

# -----------------------------------------------------------------
# GGplotLm
# Description
# Residual plots for "lm" and "aov" objects .
# (Code partly from ggplot2 book , partly from qqline function ,
# partly from plot.lm function and rest self - written by the
# author )
# Input
# mod The model to generate the residual plot for.
# other intput variables work the same as for plot.lm.
# Output
# Residual Plot
# Only prints the labeled points for each plot.
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# -----------------------------------------------------------------
GGplotLm <- function (mod , which = c(1 ,2 ,3 ,4 ,5 ,6) ,

cook_ levels = c(0.5 , 1), id_n = 3,
caption = list(" Residuals vs Fitted ", " Normal Q-Q",
"Scale - Location ", " Residuals vs Leverage ", " Histogram ",
" DFFITS "), plot=T)

{
require ( ggplot2 )
require ( gridExtra )
p <- length (coef(mod))
n <- length (mod$resid)
if (!is. numeric (which) || any(which < 1) || any(which > 6))

stop("’which ’ must be in 1:6")
plots <- vector (’list ’, 6)
ifelse ( length (which) <= 3, plots$nrow <- 1, plots$nrow <- 2)
# from plot.lm
DropInf <- function (x, h, id){

if (any(isInf <- h >= 1)) {
warning ("Not plotting observations with leverage one :\n

id = ", paste(id[isInf], collapse = ", "), call. = FALSE)
x[isInf] <- NaN

}
x

}
# from qqline
geom_ qqline <- function (mod){

probs <- c(0.25 , 0.75)
y <- fortify (mod)$. stdresid
y <- quantile (y, probs , names = FALSE , type = 7, na.rm = TRUE)
x <- qnorm(probs)
slope <- diff(y)/diff(x)
int <- y[1L] - slope * x[1L]
geom_ abline ( intercept = int , slope = slope , colour = " grey50 ",

size = 0.5)
}
# function GetCaption
GetCaption <- function (k){

if ( length ( caption ) < k){ NA_ character _
}else{ as. graphicsAnnot ( caption [[k]]) }

}
df_mod_param <- fortify (mod)
labels _id <- rownames (df_mod_param)
# function geom_text_id
geom_text_id <- function (data , x, ind , i,

subset _orig_data=rep(T,n))
{

subset _label <- 1:n %in% ind
cat( sQuote ( GetCaption (i)), " outliers :\n", sep="")
hjust = Adjust (x)
GGplotLabel (data , label = labels _id[ subset _orig_data],

subset = subset _label[ subset _orig_data], hjust = hjust ,
vjust = 0.5, print=T)

}
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show_res <- sort.list(abs(df_mod_param$.resid),
decreasing = TRUE)[1: id_n]

show_std_res <- sort.list(abs(df_mod_param$. stdresid ),
decreasing = TRUE)[1: id_n]

show_cook_lev <- union(sort.list(abs(df_mod_param$. cooksd ),
decreasing = TRUE)[1: id_n], sort.list(abs(df_mod_param$.hat),
decreasing = TRUE)[1: id_n])

# --------------------------------------------------------------
# 1: Residuals vs. Fitted
i <- 1
if(i %in% which){

plots [[1]] <- ggplot (df_mod_param , aes (. fitted , .resid)) +
geom_hline( yintercept = 0, colour = " grey50 ", size = 0.5) +
geom_point(shape = 1) +
geom_line(aes(x = lowess (. fitted ,. resid)$x,

y = lowess (. fitted ,. resid)$y), colour ="red") +
labs(title = GetCaption (i),

x = " Fitted values ", y = " Residuals ") +
BaseTheme (base_size=base_size_)

if(id_n) plots [[1]] <- plots [[1]] + geom_text_id(
df_mod_param , df_mod_param$.fitted , show_res , i)

}
# --------------------------------------------------------------
# 2: Normal Q-Q plot of residuals
i <- 2
if(i%in% which){

plots [[2]] <- ggplot (mod , aes( sample = . stdresid )) +
geom_ qqline (mod) +
stat_qq(shape = 1) +
labs(title = GetCaption (i),

x=" Theoretical Quantiles ", y=" Standardized Residuals ") +
BaseTheme (base_size=base_size_)

qq <- qqnorm (df_mod_param$.stdresid , plot.it=F)
if(id_n){

hjust = ifelse (qq$x > mean(range(qq$x)), 1.2, -0.2)
subset <- 1:n %in% show_std_res
data <- df_mod_param
data$x <- qq$x; data$y <- qq$y
cat( sQuote ( GetCaption (i)), " outliers :\n", sep="")
print( rownames (data[subset , ]))
plots [[2]] <- plots [[2]] +

geom_text(data=data[subset , ], aes(x, y),
label= labels _id[ subset ], hjust=hjust[ subset ],
vjust =0.5 , size=base_size_*0.3)

}
}
# --------------------------------------------------------------
# 3: Scale - Location
# ( Fitted Values vs. sqrt(abs( Standardized Residuals )))
i <- 3
if(i %in% which){

lowess _ <- function (...){ lowess (...)$y}
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df_p3 <- data.frame(x = df_mod_param$.fitted ,
y = sqrt(abs(df_mod_param$. stdresid )))

subset _orig_data <- !is.nan(df_p3$y)
df_p3 <- df_p3[ subset _orig_data , ]
plots [[3]] <-

ggplot (df_p3 , aes(x, y)) +
geom_ point(shape = 1) +
geom_line(aes(x = lowess (x,y)$x, y = lowess (x,y)$y),

colour ="red") +
geom_ hline( yintercept =sqrt (2) , color=" grey40 ", linetype =2) +
labs( title = GetCaption (i),

x = " Fitted values ",
y = expression (sqrt(abs(" Standardized Residuals ")))) +

BaseTheme (base_size=base_size_)
if(id_n) plots [[3]] <- plots [[3]] +

geom_text_id(df_p3 , df_p3$x, show_std_res , i,
subset _orig_data= subset _orig_data)

}
# --------------------------------------------------------------
# 4: Residuals vs. Leverage
i <- 4
if(i %in% which){

hat <- DropInf (df_mod_param$.hat , df_mod_param$.hat ,
rownames (df_mod_param))

df_p4 <- data.frame(
hat = hat ,
stdresid = df_mod_param$. stdresid )

subset _orig_data <- !is.nan(df_p4$hat)
df_p4 <- df_p4[!is.nan(df_p4$hat), ]
plots [[4]] <- ggplot (df_p4 , aes(x = hat , y = stdresid )) +

geom_ hline( yintercept = 0, colour = " grey50 ", size = 0.5) +
geom_ vline( xintercept = 0, colour = " grey50 ", size = 0.5) +
geom_ point(shape = 1) +
geom_line(aes(x = lowess (hat , stdresid )$x,

y = lowess (hat , stdresid )$y), colour ="red") +
geom_ vline( xintercept =2*p/n, color=" grey40 ", linetype =2) +
labs( title = GetCaption (i),

x = " Leverage ", y = " Standardized Residuals ") +
BaseTheme (base_size=base_size_)

range = data.frame(
x= ggplot _build(plots [[4]]) $panel$ ranges [[1]]$x.range ,
y= ggplot _build(plots [[4]]) $panel$ ranges [[1]]$y.range)

plots [[4]] <- plots [[4]] +
coord_ cartesian (xlim=range$x, ylim=range$y)

hh <- seq.int(min(min(df_p4$hat), max(df_p4$hat)/100) ,
ceil( range$x[2]*100)/100, l=100)

df_p4_cook <- data.frame(x=hh , y=p*(1-hh)/hh)
legend = F
for(crit in cook_ levels ){

df_p4_cook$ysp <- +sqrt(crit*df_p4_cook$y)
df_p4_cook$ysn <- -sqrt(crit*df_p4_cook$y)
df_ annotate <- subset (df_p4_cook , x == max(x[x <1]))[1, ]
plots [[4]] <- plots [[4]] +
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# add cook distance lines
geom_line(data=df_p4_cook , aes(x=x, y=ysp ,

color="Cooks Dist."), linetype =2) +
geom_line(data=df_p4_cook , aes(x=x,

y=ysn ,color="Cooks Dist."), linetype =2) +
theme(plot. margin = unit(c(1 ,3 ,1 ,1) , "lines")) +
# add cook distance annotation
geom_text(data=df_annotate , aes(x=Inf , y=ysn),

hjust =1.1 , vjust =1, label=crit , color =2,
size=base_size_*0.25) +

geom_text(data=df_annotate , aes(x=Inf , y=ysp),
hjust =1.2 , vjust =0, label=crit , color =2,
size=base_size_*0.25)

if(any(df_p4_cook$ysp < range$y[2]) |
any(df_p4_cook$ysn > range$y[1]))

legend = T
}
if( legend ){

plots [[4]] <- plots [[4]] +
theme( legend .title= element _blank (),
legend . justification = ’left ’,
legend . position =c(0 ,0.05) ,
legend . background = element _blank (),
legend .key.width = unit (1*base_size_/10, "cm"))

} else {plots [[4]] <- plots [[4]] + OmitLegend ()}
if(id_n) plots [[4]] <- plots [[4]] +

geom_text_id(df_p4 , df_p4$hat , show_cook_lev , i,
subset _orig_data= subset _orig_data)

}
# --------------------------------------------------------------
# 5: Histogram of residuals
i <- 5
if(i %in% which){

df_range <- df_mod_param[!is.nan(df_mod_param$. stdresid ), ]
range <- max(df_range$. stdresid ) - min(df_range$. stdresid )
plots [[5]] <-
ggplot (mod , aes(x = . stdresid )) +

geom_ histogram (aes(y = .. density ..) , colour ="black",
fill="white", binwidth =range/20) +

stat_ function (fun=dnorm , aes( colour =" Normal "), size = 1) +
stat_ density (aes( colour =" Estimated "), geom="line", size = 1,

position =" identity ") +
labs(title = GetCaption (i),

x = " Standardized Residuals ", y=" Density ") +
scale_ colour _ manual (name = " Density ",

breaks = c(" Normal ", " Estimated "),
values = c("red", "blue")) +

BaseTheme (base_size=base_size_) +
theme( legend . position = c(0.9 , 0.9) ,

legend .title = element _blank ())
}
# --------------------------------------------------------------
# 6: DFFITS
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i <- 6
if(i %in% which){

df_p6 <- as.data.frame( influence . measures (mod)$ infmat )
df_p6$index <- 1: nrow(df_p6)
capture . output (show_infl <- df_p6$index[ rownames (df_p6) %in%

rownames ( summary ( influence . measures (mod)))])
plots [[6]] <- ggplot (df_p6 , aes(index , dffit)) +

geom_ hline( yintercept = 0, colour = " grey50 ", size = 0.5) +
geom_ hline( yintercept = c(-3*sqrt(p/(n - p)),

3*sqrt(p/(n - p))), color=" grey40 ", linetype =2) +
geom_ point(shape = 1) +
labs( title = GetCaption (i),

x = "Index", y = " DFFITS ") +
BaseTheme (base_size=base_size_)

if(id_n) plots [[6]] <- plots [[6]] +
geom_text_id(df_p6 , df_p6$index , show_infl , i)

}
# --------------------------------------------------------------
if(plot)

do.call(grid.arrange , plots[c(which , 7)])
}
# -----------------------------------------------------------------

GGscatterPlot

# -----------------------------------------------------------------
# Name
# GGscatterPlot
# Description
# Scatterplot built with ’ggplot2 ’ and various options
# Input
# x,y ( necessary ): points to plot
# all other input parameters are optional and can be used to
# adjust the plot to personal needs
# Output
# var: variable names in a single string
# coefficients : some coefficients about the data
# labeled : the labeled points (here together with their
# project number generated by ’GetNr ’ function )
# -----------------------------------------------------------------
GGscatterPlot <- function (x, y, colour =NULL , lim_adj=T, xlim=NULL ,

ylim=NULL , line=T, xlab=NULL , ylab=NULL , llab=NULL ,
title=NULL , label=NULL , label_bool=NULL , get_nr=F, smooth =F,
method ="loess", smooth _col=" grey50 ",
smooth _ family =" symmetric ", zero_vline=T, legend _pos="right",
plot=T, facet_r=NULL , facet_c=NULL , xlab_ang =0, return _plot=F)

{
data <- data.frame(x=x, y=y)
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if(!is.null( colour )) data$ colour <- colour
if(!is.null(facet_r)) data$facet_r <- facet_r
if(!is.null(facet_c)) data$facet_c <- facet_c

# for output
# coefficients
if(class(x) %in% c(" numeric ", " integer ")){

cor_test <- cor.test(x=x, y=y, na. action =na.exclude ,
method =" pearson ")

}else{ cor_test <- list( estimate =NA , p.value=NA) }
df_coef <- data.frame(n=nrow(data),

NAs=nrow(data)-nrow(na.omit(data)),
NAs_pct=round (100 - nrow(na.omit(data))/nrow(data)*100) ,
cor = round(cor_test$estimate , 2),
cor_p_value = round(cor_test$p.value , 4))

rownames (df_coef) <- "1"
# point labeling
if(is.null(label_bool) | is.null(label))

label_bool <- label <- rep(F, length (var))
label_bool[is.na(label_bool)] <- F
# output : labeled
data$label <- label; data$label_bool <- label_bool
if(class( labeled <- label[label_bool ]) == " factor ")

labeled <- as. character ( labeled )
if(get_nr) labeled <- GetNr(GetNr(as. character ( labeled )))
if(nrow(na.omit( subset (data , label_bool))) == 0)

data$label_bool <- F
# define plot labels
if(is.null(xlab)){

name <- deparse ( substitute (x))
xlab <- GetVarName (name)

}
if(is.null(ylab)){

name <- deparse ( substitute (y))
ylab <- GetVarName (name)

}
if(!is.null( colour )){

if(is.null(llab)){
name <- deparse ( substitute ( colour ))
llab <- GetVarName (name)

}}
if(is.null(title)){

title <- paste( sQuote (xlab), "&", sQuote (ylab))
}
if(plot){

if(!is.null(xlim) | !is.null(ylim)) lim_adj = FALSE
if(lim_adj) limits <- range(c(x,y), na.rm=T)
hjust <- Adjust (data$x)
hjust_xlab <- 0.5 + 0.5*sign(xlab_ang); vjust_xlab <- 0.5
if(abs(xlab_ang) == 45) vjust_xlab <- 1
df_miss_x <- data[is.na(data$x), ]
df_miss_x[is.na(df_miss_x)] <- -Inf
df_miss_y <- data[is.na(data$y), ]
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df_miss_y[is.na(df_miss_y)] <- -Inf
p <- ggplot (data , aes(x, y)) +

(if(!is.null( colour )){
geom_point(aes( colour = colour ))

}else{ geom_point () }) +
scale_ colour _ discrete (name=llab) +
geom_ hline( yintercept =0, colour =" gray50 ", alpha =0.5) +
(if(zero_vline){

geom_vline( xintercept =0, colour =" gray50 ", alpha =0.5)
}else{ geom_blank () }) +
BaseTheme (base_size=base_size_) +
theme(axis.text.x =

element _text(angle = xlab_ang , hjust = hjust_xlab ,
vjust = vjust_xlab)) +

(if(line){
geom_ abline ( intercept =0, slope =1, colour =" grey50 ")

}else{ geom_blank () }) +
(if(lim_adj & (class(x) == " numeric ")){

xlim( limits ) }else{ geom_blank () }) +
(if(lim_adj){ ylim( limits ) }else{ geom_blank () }) +
(if(!is.null(xlim)){ xlim(xlim) }else{ geom_blank () }) +
(if(!is.null(ylim)){ ylim(ylim) }else{ geom_blank () }) +
labs(x = xlab , y = ylab) +
(if(title %in% c("", NA , "none", FALSE))

{ geom_blank () }else{ labs(title = title) }) +
(if( smooth ){

if( method == "loess"){
# family =" symmetric ": make loess robust against outliers
if( smooth _col != "aes"){ geom_ smooth ( method =method ,

family = smooth _family , colour = smooth _col)
}else{ geom_ smooth ( method =method , family = smooth _family ,

aes( colour = colour )) }
}else{

if( smooth _col != "aes"){
geom_ smooth ( method =method , colour = smooth _col)

}else{ geom_ smooth ( method =method , aes( colour = colour )) }
}

}else{ geom_blank () }) +
(if(any(is.na(data$x))){ geom_rug(data=df_miss_x, side="l",

colour =" grey50 ", alpha =1)
}else{ geom_blank () }) +
(if(any(is.na(data$y))){ geom_rug(data=df_miss_y, side="b",

colour =" grey50 ", alpha =1)
}else{ geom_blank () }) +
theme( legend . position = legend _pos) +
(if(!is.null(facet_r)){

if(is.null(facet_c)){ facet_grid (.~facet_r)
}else{ facet_grid(facet_c~facet_r) }

}else{
if(!is.null(facet_c)){ facet_grid(facet_c~.)
}else{ geom_blank () }

}) +
GGplotLabel (data , label = data$label ,
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subset = data$label_bool , hjust=hjust , vjust =0.5 , plot=T)
if(! return _plot){

print(p)
}else{

return (p)
}

}
list(var=paste(xlab , "&", ylab), coefficients =df_coef ,

labeled = labeled )
}
# -----------------------------------------------------------------

ModelSelCrit

# -----------------------------------------------------------------
# Name
# ModelSelCrit
# Description
# Plots model selection criteriea for each model size , based on
# a regsubsets object .
# Input
# regs ’regsubsets ’ object
# data data used to generate regs
# plot should the plot be generated ? ( logical )
# lm optional ’lm ’ object : if given , model selection
# critera are calclated for this model only.
# Output
# ret data frame giving criteria values for each model size
# additionally the predictors of each model are printed
# -----------------------------------------------------------------
ModelSelCrit <- function (regs , data , plot=T, lm=NULL){

if(!is.null(lm)){
n <- length (lm$ residuals )
p <- length (lm$coef)
# AIC = - 2*log L + k * edf
AIC <- extractAIC (lm , k=2) [2]
AICc <- extractAIC (lm , k=2) [2] + 2*p*(p+1)/(n-p -1)
BIC <- extractAIC (lm , k=log(n))[2]
sigma <- summary (lm)$sigma
R2 <- summary (lm)$r. squared
adjR2 <- summary (lm)$adj.r
ret <- data.frame(AIC , AICc , BIC , adjR2 , R2 , sigma)
return (round(ret , 3))

}
# apply regsubsets function from package leaps
require (leaps)
regs_sum <- summary (regs)
# extract relevant information
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predictors <- colnames (regs_sum$which)[-1]
model_ matrix <- regs_sum$which[, -1]
nr_ models <- dim(model_ matrix )[1]
n <- nrow(data)
# coefficients to calculate
nr_pred <- AIC <- AICc <- BIC <- sigma <- R2 <- adjR2 <-

rep (0, nr_ models )
for(i in 1:nr_ models )
{

p <- length (coef(regs , i)) # = nr of pred (incl. intercept )
nr_pred[i] <- p - 1
predictors <- paste(names(coef(regs , i))[-1],

sep="", collapse =" + ")
modi <- lm(as. formula (paste("y ~ ", predictors )), data=data)
AIC[i] <- extractAIC (modi , k=2) [2]
AICc[i] <- extractAIC (modi , k=2) [2] + 2*p*(p+1)/(n-p -1)
BIC[i] <- extractAIC (modi , k=log(n))[2]
sigma[i] <- summary (modi)$sigma
R2[i] <- summary (modi)$r. squared
adjR2[i] <- summary (modi)$adj.r. squared
cat("Pred. Mod.", i, ":", predictors , "\n")

}
cat("\n")
Cp <- regs_sum$cp
ret <- data.frame(AIC , AICc , BIC , Cp , adjR2 , R2 , sigma)
if(plot){

require ( ggplot2 ); require ( gridExtra )
l <- min(ret[, c("R2", "adjR2")])
h <- max(ret[, c("R2", "adjR2")])
l <- floor (10*l)/10; h <- ceil (10*h)/10
# plot criteria variables
df_plot1 <- data.frame(nr_pred = rep(nr_pred ,

times=dim(ret[, 1:4]) [2]) ,
crit_val = as. vector (as. matrix (ret[, 1:4])),
crit = rep(names(ret)[1:4] , each=nr_ models ),
group = rep(c(rep("IC -> minimize ", 3), "Cp -> p"),

each=nr_ models ),
alpha = rep (1, nr_ models *4))

df_plot1$crit_val [(df_plot1$crit == "Cp") &
(df_plot1$crit_val > 20)] <- NA

df_plot1 <- rbind(df_plot1 , data.frame(nr_pred = min(nr_pred),
crit_val = 1, crit = "Cp", group = "Cp -> p", alpha = 0))

p1 <- ggplot (df_plot1 , aes(x=nr_pred , y=crit_val , group=crit ,
colour =crit)) +

BaseTheme (base_size=base_size_) +
geom_line(data= subset (df_plot1 , alpha ==1)) +
geom_ point(aes(alpha=alpha)) +
geom_ abline ( intercept =1, slope =1, colour =" grey70 ") +
labs(x="No. of Predictors (p -1)",

y=" Criterion Value",
colour =" Criteria ",
title = " Criteria for Subset \n

Regression Model Selection ") +
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scale_x_ continuous ( breaks =min(nr_pred):max(nr_pred)) +
facet_grid(group~., scale="free") +
scale_alpha(guide="none")

# plot of standard error sigma , R2 and R2_adj
df_plot2 <- data.frame(

nr_pred = rep(nr_pred , times=dim(ret[, 5:7]) [2]) ,
val = as. vector (as. matrix (ret[, 5:7])),
var = rep(names(ret)[5:7] , each=nr_ models ),
group = rep(c("R2 & adjR2", "R2 & adjR2",

" residual standard error"), each = nr_ models ),
alpha=rep (1, nr_ models *3))

df_plot2 <- rbind(df_plot2 ,
data.frame(nr_pred = rep(min(nr_pred), 2),
val = c(l,h), var = rep("adjR2", 2),
group = rep("R2 & adjR2", 2), alpha = rep (0, 2)))

p2 <- ggplot (df_plot2 ,
aes(x=nr_pred , y=val , group=var , colour =var)) +

BaseTheme (base_size=base_size_) +
geom_line(data= subset (df_plot2 , alpha ==1)) +
geom_point(aes(alpha=alpha)) +
labs(x="No. of Predictors (p -1)",

y=" Variable Value",
colour =" Variable ",
title = "Model Inference Variables \n") +

scale_x_ continuous ( breaks =min(nr_pred):max(nr_pred)) +
facet_grid(group~., scale="free") +
scale_alpha(guide="none")

print(grid. arrange (p1 , p2 , nrow =1))
}
round(ret , 3)

}
# -----------------------------------------------------------------

MySummary

# -----------------------------------------------------------------
# Name
# MySummary
# Description
# Summary function (based on summary function from base package )
# with additional characteristic variables . Generates also a
# ’summary plot ’ with boxplot and central ranges , if ’var ’ is
# numerical .
# Input
# var sample to analyze
# x optinal x variable for the plot
# several other parameters are given to adjust the plot to
# personal needs
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# Output
# list containing two data frames : ’coefficients ’ and ’ranges ’
# summary plot
# -----------------------------------------------------------------
MySummary <- function (var , x=NULL , digits =2, plot=T,

ctrl_ ranges =c(0, 0.5, 0.9, 0.99) , label_bool=NULL , label=NULL ,
xlab=NULL , ylab=NULL , title=NULL , get_nr=F, ylim=NULL ,
zero_ hline=T, colour =NULL , xlab_ang =0, notch=F, facet_r=NULL ,
facet_c=NULL , boxplot _fill=TRUE , legend =TRUE)

{
if(!(class(var) %in% c(" numeric ", " integer ")))

return ( summary (var))

df_sum <- as.data.frame(as.list( summary (var)))
if(sum(is.na(var)) == 0) df_sum$NAs <- 0
names(df_sum) <-

c("min", "q_25", " median ", "mean", "q_75", "max", "NAs")
df_sum <- round(df_sum , digits )
n <- length (var)
df_sum$NAs_pct <- round(df_sum$NAs/n*100); df_sum$n <- n

# specify ranges
if(!is.null(ctrl_ ranges )){

df_range <- data.frame(lower = numeric (), upper = numeric ())
alpha <- 1-ctrl_ ranges
quant_l <- alpha/2; quant_u <- 1-alpha/2
quant_names <- paste(ctrl_ ranges *100, "%", sep="")
quant_names[quant_names == "50%"] <- "50% (iqr)"
quant_names[quant_names == "0%"] <- " Median "
for(i in 1: length (ctrl_ ranges )){

df_range[quant_names[i], ] <-
quantile (var , c(quant_l[i], quant_u[i]), na.rm=T)

}
}else{ df_range <- NULL }

# get names of var and x
name <- deparse ( substitute (var))
name_var <- GetVarName (name)
name_var_ return <- name_var # used for return list
if(!is.null(ylab)) name_var <- ylab
if(is.null(xlab)){

if(is.null(x)){
name_x <- "Index"

}else{
name <- deparse ( substitute (x))
name_x <- GetVarName (name)

}
}else{ name_x <- xlab }
if(is.null(title))

title <- paste(" Summary of", sQuote (name_var))

if(is.null(label_bool) | is.null(label))
label_bool <- label <- rep(F, length (var))
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label_bool[is.na(label_bool)] <- F
if(plot){

if(!is.null(ctrl_ ranges )){
df_range$label = rownames (df_range)
df_range$lty <- c(1, 1:( nrow(df_range) -1))[1: nrow(df_range)]

}
df_plot <- data.frame(var=var)
df_plot$x <- if(is.null(x)){ 1: length (var) }else{ x }
df_plot$label <- label; df_plot$label_bool <- label_bool
df_plot$hjust <- Adjust (df_plot$x)
if(!is.null(facet_r)) df_plot$facet_r <- facet_r
if(!is.null(facet_c)) df_plot$facet_c <- facet_c
if(!is.null( colour )) df_plot$ colour <- colour
df_miss_x <- df_plot[is.na(df_plot$x), ]
df_miss_x[is.na(df_miss_x)] <- -Inf
df_miss_var <- df_plot[is.na(df_plot$var), ]
df_miss_var[is.na(df_miss_var)] <- -Inf
p <- ggplot (data=df_plot , aes(x=x, y=var))
hjust_xlab <- 0.5 + 0.5*sign(xlab_ang); vjust_xlab <- 0.5
if(abs(xlab_ang) == 45) vjust_xlab <- 1
p <- p +

(if(class(x)==" factor " & boxplot _fill == TRUE){
list(aes(fill=x), scale_fill_ discrete (name=""))

}else{ geom_blank () }) +
geom_ boxplot ( outlier .size = 0, notch=notch) +
(if(!is.null( colour )){ geom_point(aes( colour = colour ))

}else{ geom_point(alpha =0.5) }) +
(if(zero_hline){

geom_hline( yintercept =0, colour =" gray50 ", alpha =0.5 ,
show_guide=F)

}else{ geom_blank () }) +
(if(!is.null(ctrl_ ranges )){

list(geom_hline(data=df_range , size =1*base_size_/20,
aes( yintercept =upper , linetype =label), show_guide=T),

geom_hline(data=df_range , size =1*base_size_/20,
aes( yintercept =lower , linetype =label), show_guide=T),

scale_ linetype _ manual (name = " Central \ nRanges ",
values = setNames (df_range$lty , c(df_range$label))))

}else{ geom_blank () }) +
# plot missing values (if any)
(if(any(is.na(df_plot$x))){

geom_rug(data=df_miss_x, side="l", colour =" grey50 ",
alpha =1)

}else{ geom_blank () }) +
(if(any(is.na(df_plot$var))){

geom_rug(data=df_miss_var , side="b", colour =" grey50 ",
alpha =1)

}else{ geom_blank () }) +
(if(!is.null(facet_r)){

if(is.null(facet_c)){ facet_grid (.~facet_r)
}else{ facet_grid(facet_c~facet_r) }

}else{
if(!is.null(facet_c)){ facet_grid(facet_c~.)
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}else{ geom_blank () }
}) +
BaseTheme (base_size=base_size_) +
theme(axis.text.x = element _text(angle = xlab_ang ,

hjust = hjust_xlab , vjust = vjust_xlab)) +
labs(x = name_x, y = name_var) +
(if(title %in% c("", NA , "none", FALSE))

{ geom_blank () }else{ labs(title = title) }) +
theme( legend .key.width = unit (1*base_size_/14, "cm")) +
(if(!is.null(ylim)){ ylim(ylim) }else{ geom_blank () }) +
GGplotLabel (df_plot , label = df_plot$label ,

subset = df_plot$label_bool , hjust=df_plot$hjust ,
vjust =0.5) +

(if(!is.null( colour ) & !is.null(ctrl_ ranges )){
guides ( colour =guide_ legend ( override .aes=

list( linetype =0)))
}else{ geom_blank () }) +
(if( legend ){ geom_blank () }else{ OmitLegend () })

print(p)
df_range$label <- NULL

}
cat(" Summary of", sQuote (name_var), "\n\n")
if(class( labeled <- label[label_bool ]) == " factor ")

labeled <- as. character ( labeled )
if(get_nr) labeled <- GetNr(GetNr(as. character ( labeled )))
if(!is.null(df_range)) df_range <- round(df_range , digits )
list(var=name_var_return ,

coefficients =df_sum ,
ranges =df_range ,
labeled = labeled )

}
# -----------------------------------------------------------------

Other Functions

The subsequent functions are either small functions, or functions needed to run
the functions presented above.

Adjust

# -----------------------------------------------------------------
# Name
# Adjust
# Description
# Returns a horizontal adjustmend to use for lables of a
# variable x.
# Input
# x: variable , which labels should be horizontal adjusted
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# Output
# Horizontal adjustment
# -----------------------------------------------------------------
Adjust <- function (x){

if(class(x) == " factor ") x <- as. numeric (x)
x[x == Inf] <- max(x[x < Inf], na.rm=T)
ifelse (x > mean(range(x, na.rm=T)), 1.2, -0.2)

}
# -----------------------------------------------------------------

AggrMissings
# -----------------------------------------------------------------
# Name:
# AggrMissings
# Description
# Provides additional information to an "aggr"- object .
# For a number of combination blocks ( bottom up) the number of
# observations , the percentage and cumulative percentage is
# calculated .
# Input
# aggr an "aggr" object ( generated with function aggr
# {VIM}
# subset only used , if ’prop ’ is not provided
# defines the number of combinations returned .
# prop All combinations are returned , such that the
# last combination has a cumulative percentage
# greater than ’prop ’.
# Output
# n number of observations
# missings number and perdentage of missings for each
# variable
# combinations number and percentage of missings for each
# block ( bottom up)
# -----------------------------------------------------------------
AggrMissings <- function (aggr , subset =1:10 , prop)
{

require (VIM)
n <- sum(aggr$count)
ct <- aggr$ missings $Count
ct_mis <- data.frame(count = ct ,

percent = round (100*ct/n, 2),
row.names=aggr$ missings $ Variable )

ct_mis <- ct_mis[order(-ct_mis$count), ]
ct_comb <- data.frame(count = aggr$count ,

percent = round(aggr$percent , 2),
cumsum _pct = round(aggr$percent , 2))

ct_comb <- ct_comb[order(-ct_comb$count), ]
ct_comb$ cumsum _pct <- cumsum (ct_comb$ cumsum _pct)
rownames (ct_comb) <- 1: max(as. numeric ( rownames (ct_comb)))
if(! missing (prop)){

if(prop < 1) prop = prop * 100
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subset <- !(ct_comb$ cumsum _pct > prop)
subset [ subset == FALSE ][1] <- T

}
list(n = n, missings = ct_mis ,

combinations = ct_comb[subset , ])
}
# -----------------------------------------------------------------

LmRegsubsets

# -----------------------------------------------------------------
# Name
# LmRegsubsets
# Description
# Returns the i-th model of a regsubsets model and optionaly
# produces the standard residual plot (plot.lm).
# Input
# regs ’regsubsets ’ or ’summary .regsubsets ’ object
# i the index of the model to return
# data underlying data
# plot produce the residual plot? ( logical )
# sum print the model summary ? ( logical )
# Output
# ret desired regression model
# -----------------------------------------------------------------
LmRegsubsets <- function (regs , i, data , plot=F, sum=F){

if(class(regs) == " regsubsets ") regs <- summary (regs)
predictors <- paste(names(coef(regs$obj , i))[-1],

sep="", collapse =" + ")
ret <- lm(as. formula (paste("y ~ ", predictors )), data=data)
if(plot){ par(mfrow=c(2 ,2)); plot(ret); par(mfrow=c(1 ,1)) }
if(sum) print( summary (ret))
return (ret)

}

NaOmit

# -----------------------------------------------------------------
# Name
# NaOmit
# Description
# Omits all rows of the inout data frame and prints
# information on the number of omited rows.
# Input
# data data frame to omit rows with NA values
# ret should the result be returned ? ( logical ), usefull if
# only information about number of missings is wanted
# Output
# data data frame with omitted NA rows
# -----------------------------------------------------------------
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NaOmit <- function (data , ret=T){
nrow_orig <- nrow(data)
data <- na.omit(data)
nrow_omit <- nrow(data)
info <- data.frame(nrow = c(nrow_orig , nrow_omit ,

nrow_orig -nrow_omit),
row.names = c(" original ", "NA omitted ", " difference "))

info$pct <- round(info$nrow/nrow_orig*100)
print(info)
if(ret) data

}
# -----------------------------------------------------------------
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