
SOME COMMENTS TO MAGNETIC FIELD REPRESENTATION FOR

BEAM DYNAMIC CALCULATIONS

P. Schnizer∗, E. Fischer GSI, Darmstadt, Germany

B. Schnizer, TU Graz, Graz, Austria

Abstract

Machines with high currents and small apertures, as used

for SIS100 of the FAIR project, require a sincere under-

standing of the resonances excited by the magnetic field

distortions; typically performed by tracking codes. These

codes model the field errors using a Taylor Series approx-

imation of the field quality at the track of the ideal parti-

cle. The path of the particle within the elliptic aperture of

the dipole is curved; thus the standard approach of using

plane circular multipoles fails to model the real symmetry

of the magnetic field, an important feature of effective field

description for beam loss calculations. Therefore toroidal

elliptic multipoles were developed which allow describing

the magnetic field concisely in an elliptic vacuum chamber

in curved dipoles and quadrupoles.

INTRODUCTION

SIS100, the core component of the FAIR accelerator,

uses superconducting fast ramped magnets. These dipole

magnets are curved and the beam aperture is elliptic.

The precise field of an accelerator magnet can only be

found by numerical calculations. Analytic expressions are

fitted to this field in the aperture in order to distribute infor-

mation on this field in a convenient and concise way. Par-

ticular solutions of the potential equation are used as basis

functions for this approach. The standard tool are plane

circular multipoles. Plane elliptic multipoles are useful if

the beam aperture has an elliptic cross section [1, 2, 3].

Their advantages are a larger reference area, an ellipse sur-

rounding the reference circle of the former case, and better

convergence properties. In a curved magnet curvature ef-

fect are not entirely negligible. Toroidal circular multipoles

were developed [4] and demonstrated that the coefficients

can be obtained by a rotating coil probe [5, 6]. Now elliptic

toroidal multipoles have been developed. In this paper we

present how these are to be calculated.

TOROIDAL ELLIPTIC MULTIPOLES

In the aperture of a curved magnet the reference volume

is a segment of a torus. Its vertical cross section is a circle

or an ellipse. In the latter case toroidal elliptic coordinates

are the appropriate tool.

Toroidal Elliptic Coordinates

These orthogonal coordinates are obtained by shifting a

plane vertical ellipse by an amountRc along the X-axis off
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the origin and then rotating it by the azimuth φ around the

original vertical (Z-) axis:

X + iY = (Rc + e cosh η cosψ) eiφ (1)

Z = e sinh η sinψ. (2)

Rc is curvature radius. The semi-axes a, b determine the

eccentricity e and the value η = η0 characterising the ref-

erence ellipse. e/Rc is the inverse aspect ratio ǭ:

e =
√

a2 − b2 tanh(b/a) = η0. (3)

ǭ = e/Rc (4)

The metric coefficients are:

ht(η, ψ) = hη = hψ = e

√

cosh2 η − cos2 ψ (5)

hφ(η, ψ) = Rc h(η, ψ) = Rc (1 + ǭ cosh η cosψ)(6)

ht0 = ht(η0, ψ), h0 = h(η0, ψ). (7)

The Potential

Only fields and potentials uniform in φ are considered.

So these quantities are the same in each cross section

φ =const.; they are independent of φ. The potential equa-

tion is:

1

h2t

[

∂2

∂η2
+

∂2

∂ψ2
+ (8)

+
ǭ

h

(

sinh η cosψ
∂

∂η
− cosh η sinψ

∂

∂ψ

)]

Φ = 0

1

h2t
√
h

[

∂2

∂η2
+

∂2

∂ψ2
+

ǭ2

4h2

]

(
√
hΦ) = 0. (9)

ǭ is small; so neglecting second and higher powers gives

a good approximation. The operator then remaining in (8)

is just the Laplacian in plane elliptical coordinates η, ψ. A

complete set of particular solutions of the latter equation

is: {1, cosh(nη) cos(nψ), sinh(nη) sin(nψ)}, n = 1,2,3 ...

Thus an approximate solution of (9) may be written as:

Φ(η, ψ) = B0h
−1/2

[

a0 + (10)

M
∑

n=1

[

an
n

cosh(nη)

cosh(nη0)
cos(nψ) +

bn
n

sinh(nη)

sinh(nη0)
sin(nψ)

]

]

Determining The Coefficients

The coefficients a0, a1, ..., b1, b2 can be determined from

the Cartesian field componentsBy(ψ), Bx(ψ) given on the
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reference ellipse. They are either found numerically from

a field code or experimentally by measurements. Now we

use a local two-dimensional coordinate system in the cross

section φ = 0. Its origin is at (X,Y, Z) = (Rc, 0, 0); the

x-axes are parallel; the y-axis is parallel to the Z-axis.

rℓ = e (cosh η cosψ, sinh η sinψ) (11)

The reference ellipse E and all values characterising it are

the same as above. The unit vector normal to E , i.e. nη is:

nη(η, ψ) =
drℓ
dη

/∣

∣

∣

drℓ
dη

∣

∣

∣
, nη0(ψ) = nη(η0, ψ). (12)

The componentBη on E is:

Bη0(ψ) = Bη
∣

∣

η=η0
= nη0(ψ)· ~B

∣

∣

η=η0
= nη0xBx+nη0yBy

(13)

or

χ(ψ) := − ht0h
3/2
0 Bη0(ψ)

B0

= (14)

−e
√

cosh2 η0 − cos2 ψ [1 + ǭ cosh η0 cosψ]
3/2 ×

Bx(ψ) sinh η0 cosψ + By(ψ) cosh η0 sinψ

B0

√

sinh2 η0 cos2 ψ + cosh2 η0 sin
2 ψ

On the other hand, from the series (10) and with

~B = − gradΦ = − 1

ht

(

∂Φ

∂η
,
∂Φ

∂ψ

)

(15)

we get:

−χ(ψ) = h
3/2
0

∂

∂η
(Φ(η, ψ)/B0)

∣

∣

η=η0
=

= h0

M
∑

n=1

[an tanh(nη0) cos(nψ) + (16)

+bn coth(nη0) sin(nψ)]

− ǭ

2
a0 sinh η0 cosψ

− ǭ

2
sinh η0

M
∑

n=1

[

an
n

cosh(nη0) cos(nψ) +

+
bn
n

sinh(nη0) sin(nψ)

]

cosψ

CONSTRUCTING THE CONVERSION

MATRICES

Based on the function χ(ψ) coefficients are to be calcu-

lated using

Cn =
1

π

π
∫

π

χ(ψ) cos(nψ)dψ (17)

and

Dn =
1

π

π
∫

π

χ(ψ) sin(nψ)dψ (18)

These have then to be converted to the appropriate local

elliptic toroidal multipoles using

FAn = Cn (19)

and

GBn = Dn (20)

The conversion matrices F and G have been calculated us-

ing MathematicaTM. Up to now the calculations were per-

formed up to coefficients of order 5. The given results show

that these matrices can be constructed by simple formulae.

The matrix G consists of

G = CTH
0 + ǫ (SH + CTH1 ) . (21)

The matrix CTH 0 is given by

CTH
0 = Im,m1/ tanh((m− 1)η0) , (22)

with I , the identity matrix. The matrix SH consists of two

bands. The lower band T 1 is given by

T 1
nm =

{

1/(4(m− 1)) m = n+ 1
0 m 6= n+ 1

(23)

The upper band T 2 is then given by

T 2
nm =

{

1/(4n) m = n− 1
0 m 6= n− 1

(24)

So the matrix SH is then given by

SH = − sinh(η0) (T1 + T2) (25)

The matrix CTH1 is again a banded matrix with its lower

band CTH1 given by

CTH1
nm =

{

coth((m− 1)η0) m = n+ 1
0 m 6= n+ 1

(26)

and its upper band CTH2 given by

CTH2
nm =

{

coth(nη0) m = n− 1
0 m 6= n− 1

(27)

thus CTH1 = CTH 1 + CTH 2 .
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The matrix F one has to take the element a0 into ac-

count, thus its has one more row and column as matrix G .

The matrix F is given by

F = TH 0 + ǭ
(

SH
0 + TH 1

)

. (28)

The matrix TH 0 is given by

TH 0 = +Inn tanh((n− 1)η0) . (29)

The matrix SH
0 is identical to SH if using the rule

SH
0

n+1,m+1 = SH n,m . (30)

All elements of SH
0

m
,
1 are 0 except SH

0

2,1 =

−1/2ǭ sinh(η0) and all elements of SH 0
1,m except that the

element of SH 0
1,2 = 1/2ǭ sinh(η0). The matrix TH 1 is

given by

TH 1 =
1

2
ǭ cosh η0

(

TH
1 + TH

2
)

, (31)

which consists of two bands. TH 1 is given by

TH
1

nm =

{

coth(mη0) m = n− 1 and m > 1
0 others

.

(32)

The matrix TH 2 is given by

TH
2
nm =

{

coth((m− 2)η0) m = n+ 1 and m > 1
0 others

.

(33)

Constructing these matrices the vectors An =
a0, a1, a2, . . . and Bn = b1, b2, . . . can be calculated us-

ing numerical methods.

CONCLUSION AND OUTLOOK

The results presented here show that now the magnetic

field within an elliptic toroidal can be described concisely.

The formulae given here have to be extended so that the

field components By and Bx can be interpolated directly.

This will then allow representing the field following the

curvature of the beam. In next steps we will then use the

measured data to obtain the coefficients an and bn to study

the difference in field reconstructed by the local elliptic

toroidal multipoles and the plane circular multipoles typ-

ically used. The banded matrices show that a feed up and

feed down of one coefficient to the next is to be expected.

For typical accelerators the effect will be small as in curved

magnets the dipole is the dominant term, thus mainly some

spurious quadrupole is generated. This can be typically

neglected as it will be much smaller then the quadrupole

strength of the main quadrupole. The particular effect de-

pends on the size of the beam and the machine radius.

The development given will allow interpreting the results

of magnetic measurement and give a concise description of

the magnetic field along a curved trajectory with elliptic

dimensions.
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