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Abstract—Plane circular, toriodal circular and elliptic multipole expansions are used to reconstruct the magnetic field in the gap of
accelerator magnets. Toroidal elliptic multipoles are obtained by approximate solution of the potential equation in a newly developed
orthogonal coordinate system, the local toroidal elliptic coordinates.
Rotating coil probes are commonly used to measure the magnetic field of accelerator magnets. The artifacts, due to the geometry
mismatch, are described for the toriodal circular multipoles.

Index Terms—Magnetic field reconstruction, Toroidal circular and elliptic multipole expansions, Toroidal elliptic coordinates

I. INTRODUCTION

Present-day accelerator projects, as e.g. FAIR (Facilty for
Antiproton and Ion Research) at GSI, strive to obtain higher
energy resolution. This requires higher precision in the design
and construction of the guiding and focusing magnets. So
improvements of the computation, analytic representation and
measurements of the field are needed. The usual method is to
represent the plane central gap field a magnet by an expansion
w.r.t. circular multipoles [1].

Curved magnets are typically measured with a long curved
search coil [2]; this method only checks the magnet in its
horizontal mid plane and not within the full aperture (see also
Fig. 1). Rotating coils are typically used to obtain a harmonic
field description within the a typically circular aperture (e.g.
[3]) of a straight magnet. This method was extended to elliptic
apertures [4] and is used to describe the field within magnets
[5], [6]. The magnets of nearly all accelerators are curved (e.g.
SIS100/SIS300 at GSI [7], NIKA in Dubna [8]).

The effects of the curvature of a magnet can be described by
toroidal multipoles. These are approximate regular particular
solutions of the potential equation in local circular or elliptic
toroidal coordinates obtained by an expansion in the inverse
aspect ratio of the torus. Circular coordinates are well known
in the treatment of curved waveguides. The elliptic toroidal
coordinates are really new.

II. MULTIPOLE EXPANSIONS

The plane irrotational source-free field in the gap and its
potential are represented by various multipole expansions.
Multipoles are a complete subset of particular solutions of
the potential equations.

A. Circular multipoles

The circular multipole expansion in polar coordinates r, θ
is [1]:

Φ(r, θ) =
∞∑

m=−∞
Cm r|m| eimθ (1)

The coefficients Cm may be determined from a Fourier
expansion of the field given along the reference circle r = RR.

B. Local circular toroidal coordinates

Such multipoles are regular particular solutions of the
potential equation in dimensionless local toroidal coordinates
ρ, ϑ, ϕ, [9]. These are expressed in Cartesian coordinates
X,Y, Z, whose centre coincides with that of the torus. X and
Y lie in the equatorial plane. So the transformations are:

X + iY = RC h eiϕ, (2)
Z = RRef sinϑ, (3)
h = 1 + ε ρ cosϑ; (4)
ε = RRef/RC . (5)

RC is major radius = radius if curvature; RRef minor radius
= reference radius; ε the inverse aspect ratio.

1) Multipole solutions: Approximate (to the first order in
ε) torodoidally uniform particular solutions of the potential
equation are obtained by approximate R-separation: Φm =
h−1/2 ρm eimϑ, m = 0, 1, 2, ... [10]. Introducing Cartesian
coordinates x, y in the plane ϕ = const.:

z = x+ iy = RRef ρ e
iϑ (6)

we get the approximate scalar toroidal multipoles:

Φm(x, y) =
( z
RRef

)m
− ε

4

[( z
RRef

)m+1

+
( z
RRef

)m−1 |z|2

R2
Ref

]
.

(7)
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Fig. 1. A curved main dipole of the SIS18 and the mole in front of the
magnet. The mole on the bench in front of a SIS18 magnet which was used
for testing the mole. 1 . . . motor unit 2 . . . auxiliary unit 3 . . . coil probe, 4
. . . bench, 5 . . . magnet
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Fig. 2. The local toroidal coordinates

Corresponding (normal and skew) vector fields are:

~Tm(x, y) = − RRef
m

∇Φm(x, y), (8)

~T (n)
m (x, y) = Re

(
~Tm(x, y)

)
, (9)

~T (s)
m (x, y) = Im

(
~Tm(x, y)

)
. (10)

A toroidally uniform magnetic induction may be represented
as:

~B(x, y) =
M∑
m=1

(
r̄m ~T (n)

m (x, y) + s̄m ~T (s)
m (x, y)

)
. (11)

C. Elliptic Toroidal Multipoles

1) Local Elliptic Toroidal Coordinates: A plane elliptic
system with coordinates η̄, ψ̄ and excentricity ē is shifted by
the radius of curvature RC along the major axis. This system
is then rotated around an axis parallel to the minor axis passing
through the original position of the origin by the angle φ. So
we get the following orthogonal system:

X =
(
RC + ē cosh η̄ cos ψ̄

)
cosφ, (12)

Y =
(
RC + ē cosh η̄ cos ψ̄

)
sinφ, (13)

Z = ē sinh η̄ sin ψ̄. (14)

with the metric coefficients:

ht = hη̄ = hψ̄ = ē
√

cosh(2η̄)− cos(2ψ̄)/
√

2, (15)

hφ = RC + ē cosh η̄ cos ψ̄ (16)
= RC (1 + ε̄ cosh η̄ cos ψ̄) = RC h̄ (17)

and the inverse aspect ratio

ε̄ := ē/RC . (18)

Up to unessential constants the volume element is:

dV =
(
cosh(2η̄)− cos(2ψ̄)

)
h̄dη̄ dψ̄ dφ (19)

∼ hη̄ hψ̄ hφ dη̄ dψ̄ dφ. (20)

A segment of a torus with elliptic cross section is given by :

0 ≤ η̄ ≤ η̄0, −π ≤ ψ̄ ≤ π, −φ0 ≤ φ ≤ φ0.
(21)

The excentricity is ē =
√
a2 − b2, where a, b are the major,

minor axes of the ellipse bounding the cross section of the
reference volume. tanh η̄0 = b/a.

2) The potential equation: Up to some unessential con-
stants the potential equation for toroidally (azimuthally) uni-
form potentials is:

1
cosh(2η̄)−cos(2ψ̄)

×

×
[
∂2

∂η̄2 + ∂2

∂ψ̄2 − ε̄
h̄

(
sinh η̄ cos ψ̄ ∂

∂η̄ + cosh η̄ sin ψ̄ ∂
∂η̄

)]
Φ̄ = 0.
(22)

The first fraction is removed and in the remaining part the
dependent variable is changed from Φ̄ to

√
h̄Φ̄ :

1√
h̄

[
∂2

∂η̄2
+

∂2

∂ψ̄2
− ε̄2

8h̄2

(
cosh(2η̄)− cos(2ψ̄)

)] (√
h̄Φ̄
)

= 0.

(23)



D. Elliptic Toroidal Multipoles

If approximate solutions accurate to the first order in ε̄ are
sufficient one may drop the last term in the square bracket
of the preceding equation. The remaining two terms are
just proportional to the potential equation in plane elliptic
coordinates η̄, ψ̄. The complete set of particular solutions of
the truncated equation has been given in [10], [4]. It comprises
the functions:

ce0 = 1
cen(η̄, ψ̄) = cosh(n η̄) cos(nψ̄)
sen(η̄, ψ̄) = sinh(n η̄) sin(n ψ̄) n = 1, 2, 3, . . . (24)

So the corresponding approximate solutions of eq.(22) are:

Φ̄cn(η̄, ψ̄) = (h̄)−1/2cen(η̄, ψ̄) +O(ε̄2), (25)
= S(η̄, ψ̄) cosh(nη̄) cos(nψ̄) +O(ε̄2), (26)

Φ̄sn(η̄, ψ̄) = (h̄)−1/2sen(η̄, ψ̄) +O(ε̄2), (27)
= S(η̄, ψ̄) sinh(nη̄) sin(nψ̄) +O(ε̄2). (28)

with

S(η̄, ψ̄) =
(
1 + ε̄

1
2

cosh(nη̄) cos(nψ̄)
)

(29)

Other expressions may be obtained by use of trigonometric
and hyperbolic addition theorems. All these elliptic toroidal
multipoles are mutually orthogonal under:∫ 2π

0

Φα,n Φβ,n′ h̄ dψ̄ (30)

E. Elliptic Toroidal Vector Fields

Such vector fields are obtained from the multipoles just
given by gradients:

~Fcn = − 1
ht

(
∂

∂η̄
,
∂

∂ψ̄

)
Φ̄cn, (31)

~Fsn = − 1
ht

(
∂

∂η̄
,
∂

∂ψ̄

)
Φ̄sn. (32)

The working of these toroidal multipoles and vector fields
is under further investigation.

III. APPLICATION: REPRODUCING THEORETICAL FIELDS

Two-dimensional field values for long curved dipole mag-
nets were computed by a numerical program. The values be-
longing to a plane ϕ = const. were interpolated and integrated
to give a potential. The latter was expanded w.r.t. the toroidal
multipoles (7) and also w.r.t. the common circular multipoles
(r/RRef )m eimθ. Both approaches give good representations.
The expansion coefficients differ since in the former expansion
the effect of the curvature is contained in the basis functions
while in the latter expansion this effect is hidden in the
expansion coefficients.
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Fig. 3. The coil sensitivity Kn versus the multipole n (absolute. . . ’+’,
compensated . . . ’-’)

IV. APPLICATION: ROTATING COIL IN A CURVED MAGNET

A. Excursus: Rotating coil in a straight magnet

The output of a radial coil rotating with constant angular
frequency ω in a magnetic field is Fourier decomposed as:

V (t) = −ω
M∑
n=1

Kn (an cos(nωt) + bn sin(nωt)) , (33)

with an, bn the multipole components of the magnetic field.
The upper limit of the sum, M can be ∞. In practice a value
between 10 and 20 is used. The sensitivity of a so called radial
coil probe to the multipole n is given by

Kn =
NLRRef

n

[(
r2

RRef

)n
−
(

r1

RRef

)n]
. (34)

with L the length of the coil, r2 and r1 the other and inner
radius of the coil [3], [11] and RRef the reference radius. The
factors are given for one coil array as used at CERN [11],
[12] (see Fig. 3, absolute curve). During the measurement the
axis of the coil probe does not necessarily coincide with the
magnet’s axis, but has an offset d. This is taken into account
correcting the multipoles an and bn applying the “feed down”

an =
M∑
m=n

(
n− 1
n−m

)(
d

RRef

)n−m
a′m . (35)

The same procedure is applied for converting b′n to bn.

B. Induced voltage

The coil’s rotation axis is in the equatorial plane of the
torus segment, which is the reference volume in the gap of
the curved magnet. d is its distance from the central circle; d
is located at ϕ = 0. L = ` is the coil length. r1 and r2 are the
distances of the big parts of the coil from the rotation axis.

The rotating coil excises a circular cylinder within the
toroidal segment. By assumption, the field is the same in each
cross section ϕ = const. and is given by (11). At the contrary,
the field is a really three-dimensional one across the cylinder.



Fig. 4. The rotating coil probe within the curved magnet aperture.

A Cartesian (x, y, z) and a cylindrical (r, θ, z) system are
introduced. Their equatorial planes are at ϕ = 0; y = Z, Y =
−z. So each point of the coil may be denoted by each of
the triples (x, y, ϕ) and (r, θ, z). The transformations between
these triples have been derived in [10].

The Voltage induced in the rotating coil is according to
Faraday’s law:

V (t) = −dΦ
dt

= − d

dt

∫ r2

r1

∫ L

−L
( ~B · ~er) dz dr. (36)

Expression (11) is used for ~B above but the transformations
to be applied for the components and arguments are derived
in eqs.(44) to (49) of [10]. We evaluated the integrands by
Mathematica and found:

V (t) = ω

M∑
m=1

Kn [s̄m Cmn cos(nωt)− r̄mDmn sin(nωt)]

(37)
Equating (33) to (37) and comparing the coefficients of equal
harmonics gives:

an = −
M∑
m=1

s̄m Cmn, bn =
M∑
m=1

r̄m Dmn. (38)

Multiplying the above equations by the inverse (or pseu-
doinverse) matrices C−1, D−1 respectively, gives the wanted

expansion coefficients

s̄k = −
M(+1)∑
n=1

an D
−1
nk , r̄k =

M(+1)∑
n=1

bn C
−1
nk . (39)

The elements of the matrices (Cnm) and (Dnm) are given
below. The evaluations of (Cnm) and (Dnm) reveal that the
matrices C and D are nealy the same. Their difference dC is a
matrix, whose only non-zero elements are in the first column.
Their values are :

(dC)m,1 = − ε

(
d

2RRef

)m
. (40)

So it suffices to compute only one matrix, say C. D then
follows from:

D = C + dC. (41)

Each matrix element of C and D comprises at most 4 terms.
The conversion matrix (Cnm) can be written in the following
form

C = I − ε
(
U +D + Lco + Ldr2

)
+ Ldr︸ ︷︷ ︸

f(d)

. (42)

The matrix consists of four submatrices whose magnitude
depend on the ratio ε = RRef/RC . Only the first matrix U
is independent of the coil probes offset from the coordinate
system. All matrices dependent on d are zero if d = 0. U is
given by

U =
n

4(m− 1)
δn+1,m (43)

and D by

D =
d

4RRef
δnm ·

{
2 n = 1
n+ 2 n > 2 . (44)

All following matrices (denoted with a large L) are lower
triangular matrices with all elements on the diagonal equal to
zero, thus L is given by

L = λnm =
{

0 n ≤ m
6= 0 n > m

. (45)

The matrix Lco is given by

Lco =
(

n− 2
n−m− 1

)
(n− 1)

(
d

RRef

)n−m−1

Sc (46)

with Sc given by

Sc =
[ l2

24R2
Ref︸ ︷︷ ︸

Scl

− Km+2

4 (m+ 1)Km

]
. (47)

Sm describes the smear out of one toroidal multipole on
the whole spectrum measured by the rotating coil depending
on the curvature of the torus (described by ε and the coil
geometry).

The matrix Ldr2 is given by

Ldr2 =
4

n−m+ 1

(
d

RRef

)(n−m+1)

∗ C dr2 (48)



TABLE I
PARAMETERS FOR DIFFERENT MACHINES.

RC [m] RRef [mm] ε [units] L [mm] d [mm]

LHC 4650 17 0.04 600 1
SIS100 52.5 40 7.62 600 1
SIS300 52.5 35 6.67 600 1
NICA 15 40 26.67 600 1

with C dr2

C dr2 =



0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
6 12 0 0 0 0 0 0 0 0 0
8 24 21 0 0 0 0 0 0 0 0

10 40 54 32 0 0 0 0 0 0 0
12 60 110 100 45 0 0 0 0 0 0
14 84 195 240 165 60 0 0 0 0 0
16 112 315 490 455 252 77 0 0 0 0
18 144 476 896 1050 784 364 96 0 0 0
20 180 684 1512 2142 2016 1260 504 117 0 0


.

The star “*” indicates that the multiplication has to be done
element by element. A short formula is not yet available for
C dr2.

The matrix Ldr is the only one, which does not depend on
the torus curvature ratio ε. Its non zero elements are given by

Ldr =
(
n− 1
n−m

)(
d

RRef

)n−m
. (49)

This term is equivalent to the formula derived for recalculating
plane circular multipoles This term is the equivalent as found,
when a coil probe is translated by a distance d in a cylindrical
field [1].

For the discussion below the matrix Mco is defined

M co
nm =

(
n− 2

n−m− 1

)
(n− 1)

l2

24R2
Ref

(
d

RRef

)n−m−1

. (50)

It is obtained from Ldr only using Scl, setting the second term
of Sm to zero.

The matrices C and D can be inverted numerically.

C. Magnitude of the terms

The formulae given above were evaluated for the following
different machines: the Large Hadron Collider (LHC) at CERN
[13], SIS100 [6], [7] and SIS300 at GSI, and NICA [8] at
Dubna (see Table I).

The parameters given in Table I were used to calculate
the coefficients of the matrices. Accelerators require a field
description with an accuracy of 1unit and roughly 0.1 unit
for the field homogeneity (1 unit equals 100 ppm). Therefore
any contribution less than 1 ppm can be ignored.

Due to the circumference of the LHC ε is very small and
thus the correction of all matrices are very small (less than 1
ppm) except for the matrix Mco, where the values close to the
diagonal get to a size of 2000 ppm. This value may seem to
exceed the target value for the field description; but the higher
order multipoles are in the order of 100 ppm; thus the effective
artifact will be safely below the target value of 10 ppm.

For machines with an aspect ratio as found for SIS100 or
SIS300 the matrix U is in the order of 100 ppm. It can be
neglected except for the main multipole. The values of the

matrix Mco get of similar size as the values for Ldr. The
values are given by the offset d. Also when measuring straight
magnets special methods are applied to obtain the offset d
from the measured dataset [3]. Thus the authors believe that
the artifacts can be minimised by similar adequate procedures
[14].

D. Choosing the coil length

A long coil will result in larger sensitivity (see (34)) and
thus in better measurement performance. On the other hand
the matrix Lco depends on the coil length (see (47)). The
magnitude of the coefficients depends on d as for to Ldr, with
the component Sml being orders of magnitude larger than the
second term of Sm. So the dominating part of Lco can be
written as

Mco =
(

n− 2
n−m− 1

)
(n− 1)

l2

24R2
Ref

(
d

RRef

)n−m−1

. (51)

Its total contribution to the matrix Cnm is given by εMco.

εMco =
l2ε

24RRefd
(n−m)Ldr (52)

The factor (n - m) varies across the matrix; practically not
more than 15 coefficients will be used. Therefore the coil
length should be in the range of

l =
√

24 d
εRC

. (53)

E. Compensating systems

The main multipole of an accelerator magnet is typically
1000 to 10000 times larger than the higher order multipoles.
Therefore one reduces the sensitivity to the main component
subtracting two coil rotating on a common support (e.g. [3],
[11]). K1 is typically reduced by a factor 500 to 1000 for a
carefully fabricated coil array. This setup increases the mea-
surement accuracy of the higher order multipoles, as the coil
probe system is more immune to mechanical imperfections of
the rotation, and less accurate electronics are required. The
compensated factors Kn is illustrated in Fig. 3.

The second term of (47) contains the ratio Kn+2/Kn,
which would get large. The multipole C1, measured with the
compensated system is not used in the field calculation, but it
is taken from the measurement with the “absolute coil probe”.
Therefore K1 of the absolute system is to be used in the ratio.

F. Comparison to a simplistic approach

A common approach describing the field of curved magnets
is using two dimensional circular multipoles, neglecting any
dependence in z. The local toroidal multipoles, given above,
allow estimating the error artefacts created by this approach.

The sagitta of a beam in a dipole magnet can be approxi-
mated by

s ≈
l2dp

8 RRing
(54)



(a) to scale (b) radius reduced

Fig. 5. Overlap of the coils

with s the sagitta, ldp the length of the chord and RRing the
radius of the ring. The sagitta for the SIS100 magnet is given
by

s ≈ (3[m])2

8 · 52.5[m]
≈ 23[mm] (55)

and the sagitta within the coil (length L 600 mm) is

s ≈ (0.6[m])2

8 · 52.5[m]
≈ 0.9[mm] (56)

Straight magnets are measured, placing the rotating coil se-
quentially along the magnet bore. The same approach, applied
in a curved magnet will lead to a overlap one side and a gap
on the other see (Fig. 5) [15]. The overlap length is given by

dU =
LR

RRing
(57)

with dU the overlap length, R the coil radius (typically close
to RRef ). This simplified approach results in an relative error
independent of the coil length

dU
L

=
D

2RRing
=

80 · 10−3

2 · 12.5
= 32 · 10−4 . (58)

The overlap results, that a part on the outside is not covered,
while some part at the inner side is taken twice. Thus only the
harmonics (−1)(n−1) · z(n−1) are affect, these terms are the
non allowed ones in a dipole. Further this ratio is too small
to be significant for any of the machines listed in Table I.

The results of the toroidal multipoles and this plane circular
multipoles can only be compared on the field description. This
simplified calculation does not consider an offset d from the
axis. So only the term U is nonzero in (42). The size of this
parameter is proportional ε. The inverse matrix of

(I − εU )−1 = I + εU +O(ε2) . (59)

XXX to be checked!! Thus this term does not compensate the
derivative of the first term in ε of (20), but differs by 1/(m−1).
Thus this simple approach is only valid if this difference is
negligible next to the other terms in (20).

V. CONCLUSIONS

The field description of accelerator magnets was extended
from the usually used circular multipoles to ones adapted to
elliptic apertures [4], commonly used in most accelerators, as
well as to curved magnets, typically found in medium sized
accelerators.

Rotating coil probes allow measuring circular 2D harmonic
coefficients. Using the circular toroidal multipoles the ex-
pected artifacts are described and a measure for an acceptable
coil length is given.

REFERENCES

[1] A. K. Jain, “Basic theory of magnets,” in CAS Magnetic Measurement
and Alignment, S. Turner, Ed. CERN, August 1998, pp. 1–21.

[2] G. Moritz, “Mechanical equipment,” in CAS Measurement and Align-
ment of Acclerator and Detector Magnets, S. Turner, Ed. CERN, April
1998, pp. 251–272.

[3] A. K. Jain, “Harmonic coils,” in CAS Magnetic Measurement and
Alignment, S. Turner, Ed. CERN, August 1998, pp. 175–217.

[4] P. Schnizer, B. Schnizer, P. Akishin, and E. Fischer, “Theory
and application of plane elliptic multipoles for static magnetic
fields,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 607, no. 3, pp. 505 – 516, 2009. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6TJM-
4WH8C2J-4/2/7f3973c2a3a41e616d9ec8901a2f3a9d

[5] E. Fischer, P. Schnizer, P. Akishin, R. Kurnyshov, A. Mierau,
B. Schnizer, and P. Shcherbakov, “Measured and calculated field prop-
erties of the SIS100 magnets described using elliptic and toroidal
multipoles,” in PAC 09, Vancouver 2009, 2009.

[6] E. Fischer, P. Schnizer, A. Akishin, R. Kurnyshov, A. Mierau,
B. Schnizer, S. Y. Shim, and P. Sherbakov, “Superconducting SIS100
prototype magnets design, test results and final design issues,” IEEE T.
Appl. Supercon., vol. 20, no. 3, pp. 164–167, June 2010.

[7] “FAIR - Facility for Antiprotons and Ion Research, Technical Design
Report, Synchrotron SIS100,” December 2008.

[8] H. G. Khodzhibagiyan et al., “Superconducting magnets for the nica
accelerator complex in dubna,” this conference.

[9] W. D. D’haeseleer, W. N. G. Hitchon, J. D. Callen, and J.-L. Shohet,
Flux coordinates and magnetic field structure. Springer, 1990.

[10] P. Schnizer, B. Schnizer, P. Akishin, and E. Fischer, “Plane elliptic
or toroidal multipole expansions for static fields. applications within
the gap of straight and curved accelerator magnets,” The International
Journal for Computation and Mathematics in Electrical Engineering
(COMPEL), vol. 28, no. 4, 2009.

[11] P. Schnizer, “Measuring system qualification for LHC arc quadrupole
magnets,” Ph.D. dissertation, TU Graz, 2002.

[12] N. Smirnov, L. Bottura, F. Chiusano, O. Dunkel, P. Legrand, S. Schloss,
P. Schnizer, and P. Sievers, “A system for series magnetic measurements
of the lhc main quadrupoles,” IEEE T. on Applied Superconductivity,
vol. 12, no. 1, pp. 1688 – 1691, March 2002.
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