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Abstract

The development of semiconductor technology with increasingly smaller structure sizes —
that are beyond the wavelength of visible light — and more energy efficient transistors
also led to a further development of the Radio-Frequency Identification technology (abbre-
viated RFID). The functionality of passive (without an additional voltage source) RFID
tags increased from the transmission of identification numbers to complex communication
protocols with dynamic memory management. In order to cope with the security and
privacy requirements of such systems the usage of powerful cryptographic algorithms is
necessary. This thesis discusses the integration of a standardized cryptographic algorithm
into a digital tag design and the implementation of cryptographic authentication methods
from the perspective of a digital designer. Furthermore, modern hardware verification
methods for the functional verification of complex digital systems are shown.

Keywords: Radio-Frequency Identification (RFID), authentication, privacy, hardware
verification, Advanced Encryption Standard (AES), EPC Gen 2 standard
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Kurzfassung

Durch die Weiterentwicklung der Halbleitertechnologie hin zu immer kleineren Struktur-
größen (jenseits der Wellenlänge des sichtbaren Lichts), mit immer energieeffizienteren
Transistoren, entwickelte sich auch Radiofrequenzidentifikation (abgekürzt RFID) stetig
weiter. Die Funktionalität von passiven (ohne zusätzliche Spannungsquelle versorgten)
RFID-Tags entwickelte sich vom Übertragen von Identifikationsnummern, hin zu komple-
xen Kommunikationsprotokollen mit dynamischer Speicherverwaltung. Um den Anforde-
rungen in Bezug auf Sicherheit und Privatsphäre, die an solche Systeme gestellt werden,
gerecht zu werden, ist der Einsatz von leistungsfähigen kryptografischen Algorithmen un-
abdingbar geworden. In der vorliegenden Arbeit wird die Integration eines standardisierten
kryptografischen Algorithmus in ein digitales Tag-Design, sowie die Implementierung von
kryptografischen Authentifizierungsmethoden, aus Sicht eines Digitaldesigners behandelt.
Weiters werden moderne Methoden zur funktionalen Verifikation komplexer Digitalsyste-
me vorgestellt.

Stichwörter: Radiofrequenzidentifikation (RFID), Authentifizierung, Privatsphäre, Hard-
wareverifikation, Advanced Encryption Standard (AES), EPC Gen 2 Standard
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Chapter 1

Introduction - A Brief Historical
Overview of RFID

Radio waves—respectively electromagnetic waves—are neither an invention of the modern
age nor a human invention. The first natural electromagnetic wave sources are almost as
old as the universe itself (13.7 billion years). Even today the residuals of the Big Bang—
which is the most widely accepted theory about the origin of the universe (see Berhorst
[6], page 27)—are still measurable as the so-called cosmological background radiation.
Furthermore, there are other natural sources of radio waves like cosmological pulsars
or radio galaxies. The detection of radio waves and the classification as a part of the
electromagnetic spectrum, however, is part of the history of the modern age. See Figure
1.1 for an illustrated historical overview of the developments that led to today’s RFID
technology. All dates in this text that lack an explicit citation were taken from Jeremy
Landt’s article “The history of RFID” [40].
Around 1800 Friedrich Wilhelm Herschel was the first one to find out that the light contains
more than just the small range that is visible to the human eye. Herschel used a prism to
split the sunlight into its wave spectrum and detected the infrared radiation above the end
of the visible red light. Faraday explored the influence of magnetism on light by sending
linearly polarized light through a magnetic field in 1846. The discovered effect was a
rotation of the polarization plane of the light. He concluded that light and magnetism are
related and that light could be produced by transversal oscillation of the electromagnetic
lines of force. Faraday’s ideas (et al.) led to the well known Maxwell’s equations which
were propagated by James Clerk Maxwell in 1864, and describe the behavior of electric
and magnetic wave fields and their interaction with matter. The following citation from
Maxwell (taken from [3]) shows that he was the first to recognize that light—in its visible
and invisible form—is an electromagnetic wave.

“This velocity is so nearly that of light that it seems we have strong reason
to conclude that light itself (including radiant heat and other radiations) is
an electromagnetic disturbance in the form of waves propagated through the
electromagnetic field according to electromagnetic laws.”

In 1887 Heinrich Hertz developed an experiment to proof the existence of electromag-
netic waves. The device he used was called the “Hertzian Oscillator” and consisted of a
transmitter and a receiver (open metal ring). On the transmitter side there was a construc-
tion that generated a strong electric spark. This electric spark also caused an electromag-
netic wave and initiated an electric current on the receiver’s dipole antenna. Furthermore,
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Figure 1.1: Historical Overview of the Evolution of RF(ID) Technology

Hertz calculated the speed of the electromagnetic wave and confirmed Maxwell’s thesis
that it equals the speed of light. Guglielmo Marconi shall be deemed to be the pioneer
of wireless communication. He studied Hertz’s work and made experiments with the in-
tention to transmit and receive information. After experiments with a shorter distance
of receiver and transmitter he established a radio connection across the English Channel
in 1896. Ten years later (1906) the technical progress evolved so far that the first radio
broadcast could be set up by E. F. W. Alexanderson. Alexanderson developed a radio
transmitter—the so-called Alexanderson alternator—which was powerful enough to trans-
mit radio waves from Brant Rock, Massachusetts to the Caribbean Sea. In 1926 John L.
Baird [35] patented a radio transmitter for object detection and about one year later a
construction to receive and display this information was patented. The television set was
developed and by the beginning of the 1930s the British Broadcasting Company began
to send the first television pictures using a method that was developed by Baird. The
Scottish physicist Robert Watson-Watt did research on the reflexion of radio waves in the
atmosphere and realized that this issue could be used for the location of objects. The first
airplane was located [58] using a refinement of the method that had been patented by
Watson-Watt in 1935. Harry Stockman studied “Communication by Means of Reflected
Power” and wrote an interesting article [54] in 1948. In this article he discussed a com-
munication form that is nowadays commonly used in ultra-high frequency and microwave
RFID technology and is called “backscattering”. The communication principle is that
the amount of power which is reflected by the other side of the communication path is
varied according to a communication protocol in order to transmit information. F. L.
Vernon showed in an article released in 1952 the application of “homodyne detection” for
microwave-based communication (see [57]) and stated:
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“The measurement of phase at microwave frequencies is important in the
development of microwave antenna components and in the measurement of
impedance properties of microwave components in general. [. . . ] An analysis
of the characteristics of homodyne detection shows that they are suitable for
application in many ways at microwave frequencies.”

At about the same time, D. B. Harris worked on “Radio Transmission Systems with
Modulatable Passive Responder”. In this patent Harris describes five ways to establish a
radio connection with a passive (without external power supply) responder. One of his
proposed solutions is shown in Figure 1.2. The figure contains a “centrally located sta-
tion” (analog to an RFID reader) that consists of an amplitude-modulation transmitter
(1) and a receiver (2). When the transmitter sends the signal —which is connected trough
the line (4) over the hybrid coil (3) to the transmitter—over the transmission antenna, a
part of the transmitted signal is fed back over the phase network (15) in opposite phase.
This needs to be done to compensate the signals that are received by the antenna (6) and
were caused by the transmitter on the “centrally located station” side. The signals from
the “remotely located station” are not touched by the phase network and are received
trough the line (4). In analogy to a passive UHF RFID tag front-end, this device consists
of a dipole antenna (7) for receiving and sending signals. The tuning network consist of
the capacitors (8) and (10). The transformer (9) is the link between the antenna and the
modulator/demodulator network (11)—and vice versa. After the demodulation stage the
signal is low-pass filtered by the capacitor (12) and sent to the telephone device (13). For
the other communication direction there exists a microphone (14).
In 1966 the first companies Sensormatic and Checkpoint appeared with the focus on elec-
tronic article surveillance (EAS). This technique protects stores against shop lifting by
attaching transponders on consumer goods like clothing, books, etcetera. When a product
leaves the store without deactivating the transponder, the alarm of the surveillance system
is triggered. The technique for EAS products is simple, inexpensive and effective against
shop lifting. The EAS labels used either microwave or inductive technology to generate a
response signal from a reader field. Moreover, it was the first commercial RFID product.
Mario W. Cardullo et al. designed and constructed the first prototype of a modern RFID
tag around 1970. Figure 1.3 shows a block diagram of a passive transponder device which
contains a random-access memory. The memory unit is accessible through commands
that are received over the radio field and decoded by the internal logic. At the same
time the radio field loads a capacitor that powers the transponder device. The stated
field of application was automatic payment of the toll roads for automobiles. Besides the
radio wave realization of the transponder, the patent also comprises the use of light and
sound waves. RFID became an interesting subject area and many companies, universities,
research laboratories and others worked actively to develop new RFID technology. One
interesting work at this time, “Short-Range Radio-Telemetry for Electronic Identification,
Using Modulated Backscatter,” was written by A. Koelle, S. Depp and R. Freyman from
the Los Alamos Scientific Laboratory, New Mexico [38] in 1975. This work showed the use
of a (20 kHz) sub-carrier that is modulated on the radio-frequency signal of the backscat-
tered answer by varying the load of the transponder antenna. This approach made it
possible to avoid problems that occurred when homodyne detection or other modulated
backscattering methods were used. The following citation was taken from the article.
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Figure 1.2: Figure from D.B. Harris patent [26] for “Radio Transmission Systems with
Modulatable Passive Responder” from 1952

“The problem of how to modulate the backscatter is solved in a way that is
both effective and economical, by varying the load on the transponder antenna
rectifier. We believe that these innovations make the modulated backscatter
method practicable and that the economy and simplicity of the method will
encourage wide use in electronic ID systems and other short-range telemetry
applications.”

The development of RFID technology shows that Koelle, Depp and Freyman were right
with their prediction. It was the beginning of the practical use of passive RFID tags. Also
companies began to develop RFID technology at this time. At the end of the 1970s it was
used for animal tracking for the first time. In the 1980s, the low-power CMOS technology
and the development of personal computers became an enabler for further distribution
of RFID systems. Personal computers allowed to establish the automated collection of
data in an economic way. This led to the first electronic toll collection for automobiles in
Norway in 1987 with followers in the USA. Four years later, the Association of American
Railroads (AAR) adopted an RFID system that was developed by J. Landt as industry
standard for tracking the train positions and their status. Another three years later every
train in the USA was equipped with RFID technology. The 1990s were characterized by
commercial use of RFID products. Tolling and train tracking was used in many coun-
tries worldwide and a European C.E.N standard for tolling was developed. Other RFID
applications like ski passes, car access and contactless payment were introduced, e.g., the
Texas Instruments Registration and Identification System (abbreviated TIRIS) to control
the start of the car engine. Moreover, the research on RFID continued and new research
facilities were founded like the Auto-ID Center in 1999 (Finkenzeller [15], page 309) which
was a non-profit collaboration between academic institutions and companies. The goal of
this institution was to develop an infrastructure (cf. Internet of Things) to track goods
worldwide that carry Electronic Product Codes (abbreviated EPC). At the same time
the first books appeared with the focus on all aspects of RFID technology. Finkenzeller’s
“RFID Handbook: Fundamentals and Applications. . . ” [16] is probably the most popular
example.
In 2003 the EPCglobal Inc. was founded and it continued the standardization work of



CHAPTER 1. INTRODUCTION - A BRIEF HISTORICAL OVERVIEW OF RFID 5

Figure 1.3: Figure from Mario Cardullo’s et al. patent [9] of “Transponder Apparatus and
System” from 1973

the Auto-ID Center. EPCglobal developed the EPC Gen 2 standard which defined new
communication standards between transponders and readers. The EPC Gen 2 standard
was more suitable to become the international standard for electronic product codes than
its predecessor since it solved some weaknesses of the first EPC standard (Finkenzeller
[15], page 309). Besides the EPC Gen 2 standard other standards were developed around
2000 such as ISO/IEC 14443 (2000 - 2008 [30]) for proximity cards, ISO/IEC 15693 (2000
- 2010 [30]) for vicinity coupling cards or ISO/IEC 18000 (2004 - 2008 [30] for item iden-
tification in logistics. The first mobile phone with near-field communication (abbreviated
NFC, ISO/IEC 14443 based) support was released around 2007 by Nokia. Over the years
the academic interest in RFID technology increased which can be seen in Figure 1.4 show-
ing the number of search results on IEEE Xplore [28] for the keyword “RFID” according
to the year of the publication from 1991 to 2012. From 2001 to 2007 the number of
publications doubled almost every year from 10 publications to 1068. The maximum was
reached in 2010 with 1590 RFID-related publications. The increased number of publica-
tions is explicable with a better academic infrastructure like conferences on RFID topics
and international working groups. Also the enhanced computing power of tags led to an
increased complexity of tag functionality which was an opener for new research fields such
as security or privacy for RFID systems, smart cards, the Internet of Things, etcetera.
I want to conclude this brief overview of the history of RFID with a quote from Jeremy
Landt’s article “The history of RFID” [40] which was published in 2005.

“We have a great many developments to look forward to, history continues to
teach us that.”
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Figure 1.4: Development of Academic Interest in RFID, Demonstrated on IEEE Xplore
Search Results

The remainder of this work is structured as follows:
Chapter 2 gives an overview of state-of-the-art RFID technology and explains the under-
lying principles on different design layers. A subsection shows the physics behind electro-
magnetic waves and how they can be used to transport both information and energy. The
chapter concludes with a detailed introduction of the EPC Gen 2 communication protocol.
Chapter 3 concentrates on authentication methods and especially on challenge-response
protocols that are based on symmetric-key cryptography. Then the Advanced Encryption
Standard (AES) is discussed as a popular example of a symmetric-key block cipher. The
rest of the chapter focuses on privacy for RFID tags.
Chapter 4 is about a very important but still underrated topic in hardware design: The
systematic verification of an implemented system based on the system specification. A typ-
ical hardware design flow from the specification on system level to the fabrication process
is explained. Then different ways measuring the progress of a verification process—like
code coverage or functional coverage—are compared. The main part of this chapter is
about the comparison of classical verification methods like a Verilog or Tcl test bench
to modern design methodologies that can be used with SystemVerilog or SystemC. The
remaining part of the chapter is about the executable specification that was used for the
practical part of this master’s work and the post-silicon validation of the chip.
Chapter 5 focuses on the practical part of the work and begins with a system overview
of the digital part of the chip. Besides the description of the system components also the
implemented authentication methods are explained. During the implementation process
some problems occurred which are related to the asynchronous parts of the chip design.
These implementation-related problems and their solutions are discussed in an own sec-
tion.
Chapter 6 summarizes this work and draws conclusions.



Chapter 2

State-of-the-Art RFID Technology

The following section provides a short introduction to RFID technology like it is used
today. In the first section the different kinds of RFID tags and their differentiation features
are explained, like frequencies, coupling types, active or passive tags, etcetera. Section 2.2
is about the physical and theoretical background of radio-frequency communication with
special regard to electromagnetic waves which are important for UHF communication.
Finally, Section 2.3 discusses the high-level functionality of the EPC Gen 2 protocol by
exploring the different protocol phases. The section starts with the selection of population
subsets of tags and ends with the access of individual tags.

2.1 Basic Principles of RFID

The basic RFID-related terms and differentiation features can be explained best on the
basis of the different abstraction layers in the design process of a transponder device (see
Figure 2.1). On the top-level of the abstraction layer—seen from a top-down view—there
is the Application Layer, which of course influences all underlying layers. The figure
shows some examples for the application layer which result in different requirements and
constraints for the design. An electronic article surveillance system (EAS) results in a
passively driven low-cost transponder design with high constraints to range and power
supply and low requirements for security—if needed at all (cf. light-weight block ciphers
versus asymmetric cryptography). On the other hand, a mobile phone with near-field
communication functionality does not need to be as power constrained as an EAS tag
but has higher requirements for security and privacy. Also the way of implementing the
transponders is totally different, since an EAS transponder is mostly analog electronic and
an NFC component for a mobile phone might have its own microcontroller or is controlled
by the operating system of the mobile phone (hardware/software co-design ).
The System Layer distinguishes between the different kinds of transponders (1-bit
transponder, tags, smartcards) and the implementation of their internal control logic.
The type of available memory is also a characteristic of the transponder design because
the availability of a non-volatile memory allows the configuration of the transponders or
to change their firmware. According to the application area, the transponders can come
in different formats also-called housings, e.g., the transponders for animal tracking use
a glass housing which is implanted under the skin. For logistic systems the transponder
needs to be invulnerable against physical transformation and is part of a thin label that
can be attached onto a surface.

7
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Figure 2.1: Differentiation Features of RFID Systems on Different Layers

On the Protocol Layer the differentiation features are basically defined by the actual
protocol that is implemented which defines the reader-to-transponder communication and
vice versa. This implies the different modulation types like ASK, FSK, PSK, the data
encoding (NRZ, Manchester coding, Miller coding, etcetera) and the data and frame for-
mats. The inventory strategy is also part of the protocol and can either be deterministic
or probabilistic (cf. EPC Gen 2 inventory). The protocol also defines some kind of data-
integrity feature for data frames which is at most a cyclic redundancy check (abbreviated
CRC) or some kind of parity checking. Standardized security and privacy is a rather new
topic for RFID and the standardization of cryptographic suits is still in progress. Product-
related security like it is used for car access or ticketing systems for public transportation
have already been used before. The security protocols for these applications were mostly
designed inside one company without publication of the protocol. This type of security
provisioning is called “security by obscurity” and is treated to be bad practice with high
consensus of security experts. This led to many hacked systems in the past. One example
for this practice is the block cipher “KeeLoq” which is used for remote keyless entry (cars)
or passive entry systems. In 2007, Bogdanov [7] presented attacks and weaknesses of the
cipher.
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Figure 2.2: Electromagnetic Frequency Spectrum with Frequency Ranges, Names and
Relevant RFID Frequencies

The differentiation on the Physical Layer is strongly related to the type of the RFID
transponder respectively its operating frequency, e.g., microwave, HF, UHF, etcetera. This
also defines the way the communication channel is implemented (coupling type) and the
method that is used to transmit and receive information (e.g., backscattering or load mod-
ulation). The transponders can either be “active” which means that they have an own
or additional power supply or “passive” which means that the whole operating energy
is extracted from the reader field. The operating range is also related to the operating
frequency but varies with the actual implementation of the tag.
The following subsections are named after the described abstraction layers and give more
detailed information on the related differentiation features.

2.1.1 Physical-Layer Differentiation

Operating Frequency: According to Finkenzeller (see [16], page 154) and Miller (see
[43], page 3 and 4) the spectrum of electromagnetic waves consists of the frequency ranges
shown in Figure 2.2. The spectrum also contains the radio wave ranges which are im-
portant for RFID applications. ISM frequencies—which stands for “Industrial Scientific
and Medical”—are internationally reserved for the use of high-frequency devices. This
does not only imply radio frequency transmission devices but also microwave ovens for
example. The most important ISM frequencies for RFID transponders are 13.56 MHz for
HF tags, 868 MHz for UHF tags and 2.45 GHz for microwave tags. Short-range device fre-
quencies (abbreviated SRD) are public usable frequencies in the range between 865 MHz
and 868 MHz. An application in this range does not need to be authorized or registered
(in Europe) which is a big advantage for the use in RFID in terms of costs. Another part
of the radio spectrum that can be used for RFID purposes is the range between 9 and
135 kHz which is used for example for sensor devices that are placed inside the rumen of
cattle (see [16], page 26).

Coupling: A coupling type that can be used for LF and HF transponder ranges is the
inductive coupling, where the medium used for data transfer and for power supply is
an alternating magnetic field (Figure 2.3). The field is provided by the resonate circuit
of the reader and induces an alternating current in the transponder coil that is tuned to
the operating frequency of the reader with a tuning capacitor (Ctune). Another capaci-
tor (Cpow) is used for the passive supply of the transponders and serves as a stabilized
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Figure 2.3: Inductively Coupled Reader and Transponder

power supply for the integrated circuit. This form of coupling works effectively only in
the near field of the reader coil (distance < λ/2π, e.g., for 13.56 MHz ∼ 3.5 m) for the
transmission of data from the transponder to the reader. The distance for passively driven
tags is much smaller than this definition of the near field. When the distance between
reader and transponder exceeds the near field and enters the far field, the transmission
of data by electromagnetic coupling is more effective. For this type of coupling the
electromagnetic waves are used instead of the magnetic ~H field which changes the design
of the transponder antennas from coils to dipoles. Figure 5.13 in Section 5.1.7 shows
a frontend of a UHF tag and explains the data processing and power supply inside the
passive transponder. The communication principle is the same as for radar technology.
Depending on the emitted wavelength of the reader and the size of the antenna (or ob-
ject for radar) a certain amount of power is reflected. The maximum amount of power
is reached when the antenna circuit of the transponder is in resonance with the electro-
magnetic field emitted by the reader. Backscattering works by changing the load that is
connected to the antenna of the transponder which changes the resonance frequency of
the resonate circuit respectively the amplitude of the reflected power. This principle can
be used to transfer data from the transponder to the reader. Other coupling types are
close coupling, which is suitable for transponders that need high amounts of energy for
passive operation for distances between 0.1 and 1 cm, and electrical coupling where the
reader and the tag are coupled capacitively. The latter two coupling types have only small
relevance for RFID tags.

Power Supply: The power for transponders can be supplied either with or without an
additional power supply. Transponders that do not need an additional power source are
called passive transponders which is the same nomenclature as for RFID tags. Active
radio frequency transponders have a power supply and are able to produce their own
high-frequency field that is independent from the reader field. RFID tags are not able to
produce their own high-frequency field even if they have an additional power supply. In
terms of radio transponders RFID tags with a battery supply are therefore called semi-
active or semi-passive. For the classification of RFID tags it is also common to call
these tags active.
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LF HF UHF Microwave
135 kHz 13.56 MHz 868 MHz 2.45 GHz

passive passive passive active passive active

0.5 m 1.5 m 3-5 m 15 m < 1 m 15 m

Table 2.1: Comparison of Maximum Operating Ranges for RFID Tags

Range: The maximum distance between reader and responder given in Table 2.1 are
typical values and are supposed to show the tendency of how the range is influenced by
the operating frequency, coupling and the power supply of the tag. The actual possible
range also depends on the strength of the reader field, the use of a directional radio (UHF
and microwave only), the tag design (power consumption), the environment where the
tags are used, etcetera. For more information see Fleisch et al. [17] pages 78 and 79,
Finkenzeller [16] pages 21 - 26 and 46 or Ward et al. [42] on page 9.

2.1.2 Protocol-Layer Differentiation

Data Coding: Data coding defines how binary values are represented in the baseband
signal. This can either be by direct coding of the actual baseband signal value (NRZ
coding or unipolar RZ coding) or a transitional coding of the baseband signal (Manch-
ester coding). Other codings rely on the baseband signal value of the last symbol that
was sent. Examples for this coding style are Differential code for direct coding of the
baseband signal and DBP or Miller coding for transitional coding. The reasons for using a
particular coding style are the signal spectrum after the modulation, the continuity of the
power supply for passive transponders and the recognizability of transmission errors (bad
symbols) or collisions, e.g., caused by two tags that are sending data simultaneously. Fig-
ure 2.4 shows examples for different coding types. To demonstrate the different behavior
of the codings Figure 2.5 shows a communication with two involved tags and one reader.
The tags are sending data simultaneously, on the left side with Differential coding and on
the right side with Manchester coding. The first bits of both tags are the same (logic ‘1’)
therefore no collision occurs. In the second bit slot Tag 1 sends another ‘1’ and Tag 2 a
‘0’. With Differential coding the reader receives a “correct” symbol without detecting a
collision, while the reader on the right side receives a bad symbol for the Manchester coded
data and notices that a collision occurred. The third received bit for the Differential coded
data is a ‘0’ which does not occur in either of the tag signals. In a worst-case scenario
the reader on the left receives a correct frame or command with inconsistent data without
recognizing that something went wrong. Usually some kind of consistency check data is
sent like parity or a CRC checksum but there is still the chance that multiple errors are
not detected. The disadvantages for Manchester coding are a higher sampling rate, which
is necessary to decode the same amount of data as for Differential coding, and a more
complex encoding and decoding logic.

Modulation Types: Modulation is the way of influencing carrier-signal parameters (am-
plitude, frequency or phase) according to the encoded baseband signal and the modulation
type so that the receiver is able to extract the data from the carrier signal. The frequency
of the signal that is used as a carrier signal to transmit the coded data is much higher
compared to the encoded data signal, independent from the actual coupling type (e.g.,



CHAPTER 2. STATE-OF-THE-ART RFID TECHNOLOGY 12

1 1 1 0 0 1 0
NRZ

Manchester

Differential

Miller

'1' → signal is high 
'0' → signal is low

'1' → transition from high to low in first 1/2 pulse
'0' → transition from low to high in first 1/2 pulse

'1' → signal transition 
'0' → no signal transition

'10' → no signal transition
'00' → signal transition at start of second '0'

'1' → signal transition in first 1/2 pulse 

Figure 2.4: Coding Examples for Direct-, Transitional-, Direct Differential-, and Transi-
tional Differential Codings
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Figure 2.5: Two Tags Transmitting Data Simultaneously to a Reader with Two Different
Codings

electromagnetic waves or inductive coupling).
The simplest form of modulation is the Amplitude-Shift Keying (abbreviated ASK) with
a modulation factor of 100% which is also-called on-off keying because the carrier signal
is turned on or off. One disadvantage becomes evident when a coding type like NRZ is
used and a long trail of zeros should be transmitted to a passive tag. Since the field is
turned off during the whole time while zeros are transmitted but the tag still consumes
power the tag will sooner or later run out of energy. This effect can be avoided or reduced
when a modulation index smaller then 100% is used. Figure 2.6 shows an example of
ASK modulation with a modulation index “m” of 100% and 50%. The modulation can
be written as a multiplication of the carrier signal with the weighted binary-coded data
or baseband signal (Equation 2.1).

uASK(t) = ucarrier(t)−m ∗ (1− usignal(t)) ∗ ucarrier(t) (2.1)

Frequency-Shift Keying (abbreviated FSK) uses a change of the frequency component
of the carrier signal to transmit information. The most common implementation uses two
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Figure 2.6: ASK Modulation Scheme with a Differential Coded Data Signal, the Carrier
Signal and Different Modulation Factors
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Figure 2.7: 2 FSK Modulation Scheme with a Differential Coded Data Signal and the Two
Carrier Signals

different frequencies (2 FSK) which are turned on and off mutually exclusive according to
the binary-coded data signal (see Figure 2.7). In this example, if the data signal is “low”
the slower carrier is applied to the transmission antenna and the faster carrier is used if
the data signal is “high”. Equation 2.2 describes this behavior.

uFSK(t) = uCarrier0(t) ∗ usignal(t) + uCarrier1(t) ∗ |usignal(t)− 1| (2.2)

The last component that can be used to modulate a carrier signal uses the phase of
the signal and is therefore called Phase-Shift Keying (abbreviated PSK). For simplicity a
phase change of 180 degrees is used in Figure 2.8 which is called 2 PSK or Binary PSK
because two phase states can be differentiated. In practice the carrier signal’s phase can be
shifted by other angles which can be used to encode a sequence of bits which increases the
data rate. QPSK (quadruple) uses four phase states for instance, to modulate two bits at
the same time, OPSK (octal) modulates three bits, etcetera. Figure 2.9 shows an example
of different PSK types with evenly distributed phase states. The symbol associations are
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Figure 2.9: Different PSK Types with Even Distribution of Phase States and Exemplified
Symbol Association

also just examples and can vary in practice.

Considering the frequency spectrum of ASK, FSK or PSK it lacks the fact that the
data-signal spectral lines are placed directly next to the carrier frequency. This can be
changed by using another modulation type which differs from the other mentioned types
and is called Modulation with Subcarrier. Usually it is used for inductively coupled RFID
systems like the typical 13.56 MHz HF tags and works with a multi-step modulation sys-
tem. The encoded data signal is modulated (ASK, FSK or PSK) on a subcarrier that is
usually derived from the operating frequency of the carrier by dividing the carrier with
a divisor that is a power of two (e.g., 16, 32, 64). On the next stage the output signal
of the previous modulation step is modulated on the actual carrier by switching a load
resistor according to the modulated subcarrier signal. The result is a higher gap between
the spectral lines of the carrier and the data signal. For the demodulation process the
antenna signal can be low-pass filtered to separate the carrier from the sub-carrier signal.
The whole procedure is shown in Figure 2.10 where an ASK modulation of the data signal
is used for the first stage.

Probabilistic versus Deterministic Inventory: The inventory process is a protocol
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Figure 2.10: Subcarrier Modulation Scheme with a Differential Coded Data Signal and
100% ASK Modulation on the First Stage

feature that is used to search for tags inside a reader field. Since, only one tag can answer
at a time there needs to be a mechanism implemented that manages the time slots. For
inventory purposes it is also necessary for the reader to detect collisions (cf. Modulation
Types). Basically, there exist two principles how the inventory process can be imple-
mented. Deterministic Inventories progressively search the UID (a unique number that
identifies the tag) space until the whole UID is found and selected for further commu-
nication. Therefore the reader sends a start command and all tags in the field return a
part or the whole UID at the same time. If the reader detects a collision, it recognizes
that from this point on the received data is not consistent anymore and decides to use
either a “1” or a “0” for this bit. Then the reader selects all tags that begin with this bit
string to be allowed to continue with the inventory process. The tags then send the next
part of the UID until another collision is detected and solved. This procedure continues
until a whole ID is extracted. One protocol that uses this inventory type is ISO/IEC
14443-3. Figure 2.11 gives an example of the procedure. The reader begins to send the
“Start Inventory” command which is received by two tags in the field. Then the tags reply
with their UID by synchronously sending the bit sequence of the UID. The first three bits
“110” are transmitted successfully because these three bits match within both IDs. On
the next bit a collision occurs because the tag on the left sends a “1” and the tag on the
right a “0”. In order to solve the collision the reader randomly chooses a “0” for the bit
that caused the collision and selects all tags which have IDs that begin with “1100”. This
command excludes the tag on the left from the current inventory process and allows the
other tag to send its full ID. Depending on the number of tags in the field a collision could
theoretically happen with every bit that is transmitted by the tags during the inventory
process, but the number of collisions is limited to the number of bits that are used for the
ID. That is the reason why this inventory is called deterministic.

The other inventory type is called Probabilistic Inventory because collisions are not
solved in a deterministic way. Instead, there is a mechanism implemented that decreases
the probability of another collision. Since the number of tags in the reader field cannot be
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Figure 2.11: Example for a Deterministic Inventory Routine
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Figure 2.12: Example for a Probabilistic Inventory Routine

detected per se, the reader needs to successively adjust the probability of tag collisions.
Also the tags need to have some kind of randomization functionality implemented (cf.
Random Number Generator) to pick a random number from a reader-defined pool that
selects when the tag will reply. In the following an example for a probabilistic inventory
which works similar to the EPC Gen 2 inventory is discussed. At the beginning of the
inventory the reader chooses the pool size (e.g., 2 in Figure 2.12) and the tags calculate
a random number within the pool range (‘’0‘’ or “1”). One tag marked with an “X” was
already dismissed from the inventory because of a pre-selection process. All tags that cal-
culated a zero answer with the UID. The reader detects a collision and doubles the pool
size for the next round. Therefore, the tags calculate new random numbers. In the follow-
ing round another collision is detected and the reader doubles the pool size again. Since no
tag calculated a zero, no tag answers this time. Instead of shrinking the pool variable the
reader executes the inventory with the same settings. This is recognized by the tags which
do not recalculate a new random number, but decrease the actual number by one. Finally,
only one tag calculated a zero and answers with an ID which is then selected by the reader
for further communication. The maximum time for a successful inventory for a given num-
ber of tags can only be statistically estimated. There is the theoretical probability that
this inventory process will last forever but increasing the pool variable makes this unlikely.

Security and Privacy Features: Security and privacy features are usually not a part
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of the RFID protocol pers se, but protocols provide ways to implement functionality that
is not defined in the standard. The ISO/IEC 14443 protocol provides so-called custom
commands which allow companies to implement their own commands. In the EPC Gen 2
protocol there are already some command skeletons defined that can be used to implement
cryptographic functionality based on cryptographic suits that can either be standardized
or company specific. The type of algorithm that is used for cryptography depends on the
application, the price of the tag, the power consumption constraints, the maximum exe-
cution time, etcetera. Standardized security algorithms are typically used for smartcards
like credit cards where a high level of security is needed and the price for the smartcard is
not that relevant as it is, e.g., for a logistic label. Asymmetric algorithms such as elliptic
curve cryptography or RSA are high computational problems which also consume more
chip size than a light-weight cipher like Present (see Bogdanov et al. [8]). Since, it is
not realistic to predict that asymmetric algorithms will be used for cheap products like
RFID logistic labels in the next years, there is also the need for low-cost ciphers. Such
ciphers provide relatively high security and consume less chip size, execution time and
power than asymmetric algorithms. Besides the used cryptographic algorithm also the
hardware implementation and the protocols that use the algorithms need to be secure.
Many systems are not broken because of the used algorithms but because of the way they
were implemented which often allow side-channel attacks, fault attacks or other imple-
mentation attacks. With additional hardware effort side channels can be closed and fault
attacks can be detected and prevented. Since the complexity of algorithms cannot be
infinite every cryptographic implementation can be somehow broken with enough effort
and time—whether directly or indirectly. So it is always a trade-off between a high level
of security and the implementation effort. This trade-off has to be considered together
with the environment where the product is used in order to find the sweet-spot that makes
the effort for breaking a system uninteresting for attackers, and the costs low enough to
be acceptable. The use of standardized authentication protocols ensures that no mistakes
on the protocol layer are made which could offer a vulnerability to man-in-the-middle
attacks like replay or relay attacks. Privacy aspects are not fully covered with the use
of an encrypted communication or authentication protocol. Also the identity of the tag
should stay unknown for unauthorized persons to prevent unwanted tracking which is one
of the major privacy concerns. The problem gets more obvious by looking at inventory
mechanisms of protocols like ISO/IEC 14443 where the tag’s UID is transmitted in plain
text form and without previously creating a secured communication channel. Solutions
for this problem are discussed in Chapter 3 in Section 3.4.

2.1.3 System-Layer Differentiation

Types of RFID Transponders: RFID transponders can be classified as 1-bit Transpon-
ders, Labels, Tags or Smartcards. A 1-bit transponder is typically used for electronic article
surveillance (EAS) where no real information is exchanged between reader and transpon-
der besides the information whether the transponder is in the field or not, or deactivated.
The costs for such transponders are very low, because of the high quantities and the simple
circuit design.
The next category is called Labels, because they consist of a thin and flexible carrier ma-
terial that is almost invulnerable against physical deformation. They are often used for
logistic purposes and therefore produced in very high quantities which makes them very
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Property 1-bit Transp. Labels Tags Smartcards

Application Example EAS logistics transportation credit cards

Complexity & Costs very low low medium high

Logic Implementation analog only FSM FSM FSM & µC

Security Effort none low medium high

Quantities very high very high high medium - low

Power Consumption very low low medium high

Table 2.2: Typical Properties of RFID Transponder Types

cheap. Since the complexity of the implemented functionality (RFID protocol) is usually
quite low, the control logic is implemented as a finite-state machine.
Tags usually provide more complex functionality than labels which raises the costs. In-
creased functionality normally results in a higher power consumption. One classical tag
application are tickets in transportation systems. The security effort is also higher com-
pared to labels, because the economical and reputational damage caused by a cracked
system that is used for ticketing is significant.
The most complex RFID transponder systems are Smartcards, e.g., credit cards which
often use microcontrollers or even have some kind of operating system that manages the
system components. Those systems often use standardized cryptography for authentica-
tion and secure communication purposes. The price for these transponders is relatively
high, because the quantities are much lower than for labels, also the development and
manufacturing costs are higher but smartcards usually have a long life cycle. Table 2.2
gives a summarized overview of the typical properties of different RFID types.

Control Logic Differentiation: The way the control logic of the RFID tags is realized
is another differentiation feature which is related to the transponder type. The simplest
form—without any logic—is used for 1-bit transponders (see Figure 2.13, left) that uses an
LC resonant circuit for example to influence the reader field. If the transponder is inside
the oscillating reader field the current that is induced in the transponder coil creates a
field that works in the opposite direction of the reader field. The resulting magnetic field
weakens the reader field which can be recognized by the reader and can be used to decide
if the tag is inside the field or not. For transponders that use a communication protocol
like EPC Gen 2, a digital control logic is usually implemented in a finite-state machine
(abbreviated FSM) style. These transponders can give dynamic answers and transmit
data that depends on the commands that were received from the reader (cf. Mario Car-
dullo’s “TRANSPONDER APPARATUS AND SYSTEM” from 1973, Figure 1.3). More
dedicated transponders such as smartcards also use microcontroller-based implementa-
tions to handle the high complexity that comes with modern protocols, the cryptographic
requirements, additional interfaces, etcetera. The difference to the FSM-based designs is
that the development process is not only focused on hardware but also on software design
(hardware/software co-design) which allows to implement functionality more quickly and
on a higher abstraction level. Compared to pure hardware designs the microcontroller-
based designs tend to be bigger (it can be shown that when the tag’s complexity is high
enough a trend reversal takes place, see [22] page 13), less energy efficient and slower.

Formats and Housings: The applications for RFID technology are numerous and so
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Figure 2.13: Different Realizations of Tag Logic

are the formats (or housings) of the transponders. Figure 2.14 shows some examples of
different transponder formats which are already in use. The blue coin in the top left
corner is used in public transportation as access token to subway stations in Taipei City,
Taiwan. In the upper middle of the figure there is an HF label as it is used for example in
libraries to automatically identify books and connect them with information that is stored
in a database. Another example (bottom left) shows a UHF tag which is used in logistic
systems. The “e-card” was introduced in Austria in 2005 as an electronic form of an
insurance card, but the card can also be used to electronically sign or encrypt documents,
for e-banking or for online filing of tax returns. Even passports use RFID technology to
store and transmit personal details like name, age, home country, biometric data, a picture
of the owner, etcetera.

2.2 Electromagnetic Waves as a Communication Medium

At the beginning of Chapter 1 the discovery of the electromagnetic waves was shown
from a historical perspective. Furthermore, the relation between the magnetic field and
the electric field was mentioned and that the speed of the electromagnetic waves is equal
to the speed of light which is defined to be exactly 299,792,458 m/s in the vacuum (see
NIST/CODATA [45]). In the following it is explained how electromagnetic waves as they
are used for UHF tags can be generated and used for communication purposes.

2.2.1 Generation of Electromagnetic Waves

The limited propagation speed of changes in the electromagnetic field from the source of
the field to another point in the space leads to the characteristic wavelike propagation.
When an evenly oscillating electromagnetic field is examined, the distance (wavelength λ)
between two peaks in the wave is in direct relation to the propagation speed of the wave
and inversely proportional to the oscillator frequency (see Equation 2.3 and Figure 2.15).
The angle between the ~E field and the ~H field is a right angle. The direction of the field
vectors can be figured out according to the so-called “left-hand rule”, where the middle
finger is the vector of the propagation direction, the index finger is the ~E field and the
thumb is the ~H field vector.
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To understand the creation of an electromagnetic wave it might be helpful to look at a
dipole antenna that gets charged by an alternating voltage source (see Figure 2.16 which
was adapted from Finkenzeller [16] on page 111, Figure 4.58). The dipole antenna can be
seen as an unfold capacitor [2] that is connected to an alternating voltage source (cosine
source for further explanations) that creates an ~E field between the two plates of the
capacitor (Figure 2.16a - c). Figure 2.16d shows the dipole antenna with positive charge
carriers at the top of the antenna and negative carriers at the bottom. When assuming
that the electric field is created at the time t = 0 where the AC cosine source reaches its
positive maximum, then it can be said that this is the beginning of the creation process of
the electromagnetic field. By changing the voltage direction of the AC source the charge
carriers start to move from one side of the antenna to the other—in other words a cur-
rent flows. This also changes the generated electric field like it is shown in Figure 2.16e.
Meanwhile, the propagation of the already generated field lines continue. At a fourth of
the AC-source oscillation period the voltage has reached the zero crossover point (Figure
2.16f). This means that no charge separation exists at that point and therefore also no
electric field. Instead the field line ends begin to connect and form a closed whirl. De-
pending on the frequency of the antenna voltage source the whirls start to disconnect from
the emitter at a certain point (between Figure 2.16f and g), which is the beginning of the
so-called far field where the electromagnetic radiation begins. The higher the frequency
of the electromagnetic wave is, the smaller the wavelength and the smaller the distance to
the emitter of the electromagnetic radiation which implies higher field strengths. Figure
2.16g shows an already disconnected whirl and the beginning of a new whirl that has an
opposite field orientation. The distance between two whirls is half the wavelength and so
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the distance between two whirls with the same field orientation is the wavelength. At the
half period of the voltage cosine source the Figure 2.16h is quite similar to the starting
point in Figure 2.16d except the orientation of the field. The new generated whirl pushes
the already existing whirl away from the transmitter at the speed of light.

2.2.2 Reflection of Electromagnetic Waves

The area between the antenna—where the electromagnetic field is formed—to the point
where the radiation of the electromagnetic waves begins (around λ/2π) is called near field.
Beyond this point the far field begins where the electromagnetic waves lost the connection
to the antenna and propagate freely in space. Since the transition from near field to far
field depends on the wavelength λ and the strength of the field decreases quadratically
with the distance from the antenna, only high-frequency systems (UHF and microwave)
use electromagnetic waves as communication medium for RFID purposes.
The fact that objects reflect electromagnetic waves is already known since the invention
of radar technology (cf. Robert Watson-Watt in Chapter 1). How well an object reflects
electromagnetic waves is described by the so-called radar cross-section factor σ which de-
pends on the material (metal reflects better than wood for example), size, shape, surface
structure, wavelength, polarization of the electromagnetic wave, etcetera. The influence
of the wavelength and the object dimension are very important, therefore the size of the
object (in the following called “s”) in relation to the used wavelength is classified into
three categories (see Finkenzeller [16], page 116):

Raleigh range (λ >> s): Has no practical relevance for RFID tags since the radar
cross-section factor is too low.

Resonance range (λ ∼ s): An object that is in resonance with the emitted wave-
length gets a resonance step-up of σ which is used and wanted for antennas. When the
object size or the wavelength is changed just a little around the resonance point resonance
step-up is lost.
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Figure 2.16: Generation of Electromagnetic Waves with a Dipole Antenna

Optical range (λ << s): The influence of the wavelength to σ is not significant when
the dimension of the object is high compared to the wavelength. How well the object re-
flects the electromagnetic waves then only depends on the shape and orientation of the
object.

The propagation of the electromagnetic wave usually is not homogeneous for all directions—
as it would be for a so-called isotropic emitter where the radiation pattern is spherical—and
depends on the form of the antenna. A dipole for example emits the maximum power at
a right angle away from the middle of the antenna (see Figure 2.17) and does not radiate
at all upwards or downwards. Other antenna designs increase this directional effect which
allows communication over longer distances. To express the relation of the transmission
power and the directional effect for different antennas they are compared to an isotropic
emitter. The difference of the power transmitted by an isotropic emitter and the power
transmitted by another antenna with the same power supply (effective isotropic radiated
power, abbreviated EIRP) in the main radiation direction (direction with the maximum
power transmission) is expressed by the so-called antenna-gain factor “Gi” (see Equation
2.4). For a dipole antenna the Gi factor is around 1.639 according to Finkenzeller, which
means that the power supply of the antenna needs to be just about 61% to achieve the
same effect as for an isotropic emitter.

PEIRP = Pantenna supply ∗Gi (2.4)

When considering the other side of the communication channel it is important to know
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Figure 2.17: Directional Power Emission of a Dipole Antenna Compared to an Isotropic
Emitter

which portion of the power that is emitted by the reader can be used by the receiver. The
power shrinks with the distance from the emitter according to Equation 2.5 where “S”
is the so-called power density (see Figure 2.18). In order to calculate the power that is
received by an antenna (in optimal orientation to the reader field) for a given density a
proportional factor needs to be introduced to express how much of the incoming field is
captured. By taking a look at the dimension of the density (W/m) one will notice that
this factor needs to be an area which is called the effective aperture “Ae”. For illustration
purposes Ae can be seen as an area where a certain amount of the emitted electromagnetic
flux—that is described by its density—gets through and generates a certain amount of
power (see Equation 2.6). This power is then converted into an antenna voltage which is
partially absorbed by the circuit connected to the antenna and the rest is reflected. The
amount of reflected energy can also be expressed as an area called scatter aperture As

which equals the radar cross-section factor σ. It can be shown that for a power matched
antenna Ae equals As. In this case the amount of reflected energy is the same as the amount
of energy that can effectively be used by the receiver (see Finkenzeller [16], page 120). To
achieve an optimal matched antenna the circuit behind the antenna (analog front-end) has
to compensate the antenna’s complex impedance. Therefore the analog front-end’s input
impedance needs to be the complex conjugated impedance of the antenna’s equivalent
circuit.

S =
PEIRP

4π ∗ r2
(2.5)

Pe = Ae ∗ S (2.6)

For communication purposes the tag varies the real part (resonator) or the complex
part (capacitor) of the matching network by switching an additional resonator or capacitor
which changes the amount of reflected energy. The corner cases for the reflected energy
can be found by a short-circuit of the antenna terminals—for a considered loss-less antenna
circuit (Xant. = Xc)—where the maximum power is reflected with σ = 4∗Ae and the open
loop case where no energy is reflected et all. The backscattered power that is used for the
modulation from tag to reader can lie between those boundaries. For an example of the
analog front-end with a backscatter modulator see Section 5.1.7.
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2.3 EPC Gen 2 as an Example of a Modern RFID Protocol

In 2003 the EPCglobal Inc. was founded which developed the second version of the EPC
standard (see Section 1). The EPC Gen 2 standard is a UHF (860 - 960 MHz) proto-
col focusing on RFID applications that works with electronic product codes (abbreviated
EPC), which was more or less treated as a pure electronic replacement of the bar-code
system at the beginning of the EPC. Due to optional and extendible protocol functionality
this standard is also suitable for more complex applications. In the following an overview
of the functionality of the protocol with focus on the basic principles is given. Section
2.3.1 begins with an explanation of the EPC number, the tag’s finite-state machine and
the different memory banks of the tag. In the next sections a step-by-step walk through
the reader access of a tag is explained, beginning with the selection of a tag population
(Section 2.3.2) for the subsequent inventory process (Section 2.3.3) that is used to prepare
the access of a single tag. Finally, different ways to access tag functionality are discussed.
The lowest abstraction layer (physical layer) is not discussed since the sub-carrier mod-
ulation, different modulation types, data encoding, the backscattering principle, etcetera
are already discussed in Section 2. For a more detailed description see the EPC Gen 2
standard provided on the GS1 homepage [24].

2.3.1 EPC Gen 2 Basics

The electronic product code (abbreviated EPC) is a unique number which identifies, e.g.,
a product that is attached to the tag (label). In contrast to barcodes like EAN/UCC the
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Figure 2.19: EPC Encoding According to SGTIN-96

EPC can also be used to identify an individual product instead of the article by using a
consecutive number. There is not a single encoding type for EPC but about 20 different
encoding types which are defined in the GS1 Tag Data Standard [23]. The structure of
the encodings looks quite similar (see Figure 2.19 for an example) which always begins
with a Header field that defines the used encoding type. In the given SGTIN-96 example
(abbreviation for Serialized Global Trade Item Number with 96 bits length) the header
is followed by a three-bit Filter field which allows a preselection of the tags (cf. “Select”
in Section 2.3.2) on different packaging levels. Since the length of Company Prefix is
between 20 to 40 bits, the Item Reference field length is between 4 and 24 bits and the
overall length must be 44 bits, the Partition field defines the length of the Company Prefix
respectively the border to Item Reference. The Company Prefix identifies the so-called
“EPCglobal Manager” which is usually the company that manufactured the product. Sim-
ilar to barcodes the Item Reference number defines the article but in addition a unique
Serial Number is used to identify an individual product. According to the GS1 Tag Data
Standard 1.6 [23] there exist EPC numbers up to 202 bits besides the formal used 64 and
96-bit EPC numbers.

Finite State Machine of an EPC Gen 2 Tag

In order to understand the explanations in the next sections a basic knowledge about
the finite-state machine (abbreviated FSM) that is the basement of the EPC Gen 2 “tag-
identification layer” might be helpful. Figure 2.20 shows the FSM that is subdivided into
three phases “Select”, “Inventory” and “Access”. All phases have states belonging to them
and every state has specific commands that are mainly connected with them. However,
some commands are valid in more than one state like a “Query” which starts a new in-
ventory round independently from the actual tag state.
The Select phase begins with the POWER UP state—which actually is not a defined EPC
Gen 2 state—that is automatically entered when the tag is powered by the reader field. If
the tag was not killed before (the tag accepts no commands and does not respond in this
state) the READY state is entered. In this state a preselection of the tag population is
performed which is then part of the Inventory phase. This phase is started by a “Query”
command of the reader that contains the settings for the probabilistic inventory. Depend-
ing on the result of the command the tag enters either the ARBITRATE state where the
tag waits for another inventory command or the REPLY state. In the latter case, the tag
backscatters a number and waits for the readers acknowledge (“ACK”). When the reader
requests another random number by sending a “Req RN” the tag answers with a number
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that becomes the “handle” of the tag (a unique identifier used in future reader commands
to address single tags) and enters the Access phase. If the tag is security-enhanced the
next state is OPEN, else the SECURED state is entered directly. The first state allows
only restricted access to the stored tag information, memory and commands until some
kind of security procedure is successfully executed. Then the tag enters the SECURED
state with more privileges that depend on the actual implementation of the tag. Killing a
tag with the “KILL” command is possible from both states if supported.

Tag Memory Banks

The tag memory contains up to four separate memory banks as shown in Figure 2.21. The
Reserved memory bank contains the optional “KILL” and “ACCESS” passwords which
can be used to bring the tag into the permanent KILLED state or from the OPEN to the
SECURED state (see Figure 2.20). If there is no kill password set or if it contains only
zeros then the tag cannot be killed. An unimplemented access password leads to a direct
transition from ACKNOWLEDGED to the SECURED state.
The EPC memory bank stores besides the EPC number also a so-called “StoredCRC”
that is a cyclic redundancy checksum (CRC-16) over the EPC memory bank without the
optional “XPC”. Furthermore, the protocol-control words “StoredPC” and its optional
extension the “XPC” are located in this memory bank. The protocol-control words store
information such as the length of the EPC number, flags that indicate that a user memory
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bank or the XPC is available, a flag that signals that an answer to a Challenge command
is available and stored in the ResponseBuffer (see Section 2.3.2), etcetera.
In the TID there is an allocation class identifier stored according to ISO/IEC 15963 which
is an 8-bit number that defines the type of the tag followed by information that is used to
identify the tag’s functionality like custom commands or optional features.
The USER memory is optional and contains application-specific files that can be accessed
by file commands and after the mapping into the USER memory used like other memory
banks.

2.3.2 Selection Phase

This phase is automatically entered when tags enter a reader field (tags that are not al-
ready killed) and serves as a preselection process for the inventory procedure. Therefore
the tags can be selected or deselected by Select commands that contain a comparison
criterion which the tags either fulfill or not. Depending on the result of the comparison
the tag performs an action that is also defined by the Select command and can either be a
union ∪, an intersection ∩ or a negation operation. By applying subsequent Selects a sub-
set of the available tags can be chosen that match complex criteria. The tags implement
four different inventory sessions (called S0 - S3) which can have the value “A” or “B” and
are also-called “inventoried” flags (see Figure 2.22a) . Every inventory round addresses
only one session at a time. The presence of more than one session gets useful if more than
one reader inventories a tag population. Each reader works then on a different session.
Another flag is the “SL” or “selected” flag which is available for all sessions and can be
used optionally for the inventory in connection with a session flag.
Figure 2.22 (b - d) shows the use of session flags for the selection phase in a single-reader
environment. At the beginning (b) all tags in the reader field are powered and initialize
their session flags by setting them to “A”—only one session flag is shown in the figure
for each tag. The blue circle shows the first selection criterion that is applied in the
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next figure to set all tags inside the circle (c) to “A” and the others to “B”. For a more
complex selection and to demonstrate the different actions that can be performed on a
tag population subset another selection criterion (orange circle) is used for 2.22d2 - 3.
In Figure 2.22d1 the second criterion is not used, but a “Select” command to invert the
selection from the previous figure is used instead. Inversion which is the same as a logic
NOT (¬Criterion1) is very useful since some criteria are more easily defined by their
opposite. The next figure shows the union (∪) function that connects both criteria by
a logic OR (Criterion1 ∨ Criterion2) which is like a graphical melting of both criterion
circles. In the last figure the intersection function (∩) is used which works as a logic AND
(Criterion1 ∧ Criterion2) and selects all tags that are shared by both criterion circles.
By using the logic functions AND, OR and NOT consecutively all logic operations can be
achieved.
The selection criteria can address different memory banks (see Figure 2.21) except the
“Reserved” bank. For example by addressing the “EPC” only tags from a certain manu-
facture can be selected or tags with special abilities which are stored in the PC and XPC
control words. The XPC word also contains an indicator called “C” flag that is important
for the second “Selection”-phase command Challenge which is optional and tells a reader
that a challenge answer was calculated and stored. The Challenge command is a skeleton
frame which only defines some basic fields, but the real functionality is defined by the
selected Cryptographic Suite (abbreviated CS) which can be either standardized or de-
fined by the manufacturer of the tag. By sending a Challenge command the tags that are
capable of the defined CS calculate an answer and either store it in the “ResponseBuffer”
or backscatter it after the readers ACK in the “REPLY” state. If the answer is stored
the “C” flag is asserted which can then be selected by the reader to only inventory the
tags that calculated an answer. After the inventory the reader can perform a read-out of
the ResponseBuffer by sending a “ReadBuffer” command and check the correctness of the
answer (see Chapter 3 for details).

2.3.3 Inventory Phase

In this phase the reader wants so detect which tags are in the field—that fulfill the con-
straints that were set in the “Selection” phase—and prepare them for the “ACCESS”
phase were only one tag at a time is addressed. The goal is to detect a single tag and
connect a “handle” with it that is used lateron as a reference to send commands to a
specific tag. The principle of the probabilistic inventory is already explained in Section
2.1.2. Therefore only the EPC-specific functions are explained in the following.
The “Query” command starts a new inventory round. Besides some physical-layer pa-
rameters (data rate, usage of a pilot tone, coding), the Query defines also the Session
(S0 - S3) that is used, the target (“A” or “B”), the usage of the SL flag and the pool
size (“Q” parameter) of the probabilistic inventory. Depending on the “Q” value all tags
pick a random number inside the pool size which is a number between zero and 2Q-1 that
is loaded into the “slot counter”. Tags that calculated a zero transit automatically to
the “REPLY” state and backscatter a 16-bit random number. All other tags transit to
the “ARBITRATE” state. If collisions occur then the reader can increase the pool size
by sending a “QueryAdjust” command and increase the “Q” value. Decreasing is also
possible but not useful when too many tags have already answered. If no tags answer a
“QueryRep” command is used to decrement the slot counter until one or more tags reach a
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Figure 2.22: Inventory Sessions and SL Flag, and a Consecutive “Select” Procedure

slot counter value of zero and answer the reader. By sending one or more successive Query
commands a single tag responds with a 16-bit random number. This is acknowledged by
the reader through an “ACK” command that contains the number that the tag sent before.
The answer of the tag to the ACK depends on the configuration of the tag and the settings
that were transmitted by the reader before and could contain the (X)PC, the EPC, the
“Challenge” command response and/or a CRC. Finally, the reader requests another 16-bit
random number by sending the “Req RN” command which then becomes the “handle”
of the tag. The tag enters the “OPEN” or “SECURED” state depending on the support
of security algorithms. The whole inventory phase without a detailed illustration of the
transition from “ARBITRATE” to “REPLY” is shown in Figure 2.23.

2.3.4 Access Phase

The “Access” phase takes place in the “OPEN” and the “SECURED” state and contains
five mandatory and 15 optional commands (see Figure 2.24). Furthermore, there can
be custom commands implemented that are tag specific or proprietary commands which
must not be used for field-deployed tags. Therefore there has to be the possibility to
disable these commands (e.g., test commands). The mandatory and optional commands
are not all available in the “OPEN” state. Some functions can only be executed in the
“SECURED” state, for example memory locking, privilege modifications, key changes,
etcetera. To transit to the “SECURED” state, the tag either implements the “Access”
command with a valid password in the “Reserved” memory bank, or the “Authenticate”
command according to a cryptographic suite. If no security function is implemented the
tag directly transfers from the “ACKNOWLEDGED” state to the “SECURED” state.
For the reading and writing of the tag’s memory (see Figure 2.21) there exist the manda-
tory “Read” and “Write” commands and the optional “Block*” commands that can be



CHAPTER 2. STATE-OF-THE-ART RFID TECHNOLOGY 30

B

A

A

B

B

B

A

B

B

B

B

B

B

A

B

B

B

B

B

Random Number RN16
slot counter = 0

Reader

Inventory (Query Cmds.)

+ Anticollision

ACK (RN16)

PC |  EPC | Resp. | CRC

Req_RN

Handle (= RN16)

ARBITRATE

REPLY

ACKNOWL.

OPEN SECURED
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used to manipulate a group of subsequent memory words. The memory regions can also
have manipulatable privileges (read or write locks) that can be set or made permanent
with the “Lock” or “BlockPermalock” command.
All cryptographic commands are optional and their functionality is usually defined in a
cryptographic suite except the “Access” command (see Section 2.3.1) and “Untraceable”
which allows hiding of the EPC parts from unauthenticated interrogators. The “Auth-
Comm” and “SecureComm” commands need a precede “Authenticate” command and are
used to execute a multi-step authentication protocol (see Chapter 3) or for a secured data
transfer. It is also allowed to implement multiple security levels with different passwords
and privileges that are connected to each other. For example, if a reader with superuser
privileges authenticates he could change keys by the “KeyUpdate” command or change
privileges with the “TagPrivilege” command which is not permitted for any other security
level. The cryptographic suite defines the used algorithms as well as the authentication
protocols and available cipher modes. It also defines how secure communication is im-
plemented, how the payload of the “Authenticate” and other commands must look like,
etcetera.
The last “Access”-phase related commands are used for files. File access in EPC Gen 2
works memory mapped. Therefore, a specific file can be opened with “FileOpen” and the
file number, and then this file is used like any other tag memory by accessing the “USER”
memory bank. Files can also be connected to different privileges and could also require
a preceding authentication to be fulfilled. The available files can be explored with the
“FileList” command which transmits the size, privileges and other attributes. Dedicated
tags can use the “FileSetup” command to dynamically change the size of files or their type.
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Chapter 3

Authentication Methods and
Privacy

In the following, authentication methods for constrained RFID tags based on symmetric-
key cryptography are explained and privacy aspects are discussed. The chapter starts with
a short introduction on different authenticity-provisioning functions and their suitability
for constrained tags in Section 3.1. Afterwards, the Advanced Encryption Standard (ab-
breviated AES) as an example for a symmetric-key block-cipher is introduced in Section
3.2. In Section 3.3 different types of authentication methods are explained and examples
are given. The last section is about privacy and discusses different approaches for RFID
systems.

3.1 Authenticity-Provisioning Functions

There are different ways to prove the authenticity of communication parties in digital
systems. One is the knowledge of a shared secret like a password or a PIN code that
is entered to authenticate. The weakness of such a system is that by eavesdropping the
communication the system could be broken (Figure 3.1a). There is a better way to use
a shared secret for proving authenticity by not directly transmitting the password, but
using the password to create a proof of the knowledge of the password. Such a system
could rely on symmetric-key cryptography like the AES algorithm (Section 3.2) which
uses the same password for encrypting and decrypting data. In order to prove the au-
thenticity of one communication party the other one creates a challenge that could only
be answered correctly by one that knows the shared secret (Figure 3.1b). Such systems
provide a high security level—if they are implemented correctly—and can be implemented
efficiently to be used for RFID tags. That is the reason why authentication methods
based on symmetric-key algorithms are presented in Section 3.3. A problem that occurs
in symmetric-key authentication systems is the distribution of the shared secret. By using
public-key cryptography a secure communication channel between two parties can be
constructed. Public-key cryptography works by having different keys for encrypting and
decrypting data. The key that is used for encryption is called public key because it is
used by others to encrypt data that could only be read by the owner of the private key
(decryption key). The public key does not need to be kept secret. By encrypting the
data with the public key it can be ensured that only the holder of the private key can

32
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decrypt the message. Public-key cryptography provides so-called digital signatures (Fig-
ure 3.1c) to prove the origin of data. However, the key-distribution problem between two
parties cannot be solved in a direct way because the secure distribution of a shared secret
implies the knowledge of a shared secret (Dent and Mitchell [11], on page 241). Other-
wise, the public-key exchange might be corrupted by a third party in the middle that
catches the transport messages of the public keys and changes the transported keys. The
attacker would then work as a “man in the middle” that could read messages of both par-
ties. Instead the public-key establishment can be done by using a supporting public-key
infrastructure (abbreviated PKI) which implies high infrastructural effort and commu-
nication effort. Public-key cryptography methods are also very complex computational
problems which usually results in a higher chip size and more energy consumption than
symmetric-key cryptography. Another way to implement an authentication protocol is to
use zero-knowledge functions. These functions are similar to public-key cryptography
[11] but have an additional property: An attacker that observes the communication cannot
learn anything about the secret key. Figure 3.1d shows an example for a zero-knowledge
protocol. The person who has to be authenticated (“Bob”) enters the room first and goes
through the left or right corridor to door “B” behind the wall without being observed by
anyone else. Then door “A” is opened and the “observer” looks into the room. He tells
Bob to appear on the left or on the right side of door “B” without knowing on which side
Bob was before. The chance is 50% that he already stands on the right side and does
not need to open door “B” to get to the other side which can only be done by a person
who has the right key. When this procedure is repeated and Bob always appears on the
correct side then the probability increases (1 − 0.5r) that he is the owner of the correct
key to door “B” with every round “r”. An eavesdropper could just peek into the room
through door “A” and therefore sees just the same as the observer. Protocols that use
the zero-knowledge principles are complex and imply a lot of communication effort and
therefore they are unsuitable for low-cost tags. ISO/IEC 9798-5 [30] contains different
entity authentication mechanisms based on zero-knowledge techniques.

3.2 The Advanced Encryption Standard

In 1997 the National Institute of Standards and Technology (abbreviated NIST) started
an international competition on finding a new block-cipher algorithm standard that should
become the successor of the outdated DES algorithm (see Dent and Mitchell [11], page
52). The requirements for the so-called Advanced Encryption Standard (abbreviated AES)
were a supported block size of 128 bits and the support of 128, 192 and 256 bits of key
length. At the beginning of the selection phase there were 22 submitted algorithms, but
because not all did fulfill the entry requirements only 15 were considered for the evaluation
process. Finally, there were five candidates for the AES. The winner was the “Rijndael”
algorithm [10] that was submitted by Joan Daemen and Vincent Rijmen and became the
new block-cipher standard in 2001.
The original algorithm supports a variable block size with the values of 128, 192 or 256
bits analog to the key size. For AES only the 128-bit block-size version was used. At the
beginning of the encryption, the plain text is stored in the 128-bit “State” (see Figure
3.2) which is a matrix of bytes with four columns and four rows. The key is also stored
in a byte matrix with four rows but variable columns (4, 6 or 8). A cipher round can be
subdivided into four functions that are sequentially applied on the State.
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Figure 3.1: Different Ways to Authenticate

The first one is called “SubBytes” and is a nonlinear function that is applied on each
byte of the State according to a substitution table. This table is also called S-box and
defines a unique output value for every of the 256 possible input values. The substitution
is therefore invertible. The next function “ShiftRows” performs a cyclic shift of each State
row with different offset which can be seen in Figure 3.3b. In “MixColumns”, a new
value (bj,i) for each byte of the State matrix (aj,i) is calculated by a matrix multiplication
according to Equation 3.1. Each State column is interpreted as a GF (28) polynomial that
is multiplied modulo x4+1 with another polynomial 3x3+x2+x+2 (cj,i, in matrix form).

b0,i
b1,i
b2,i
b3,i

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2



a0,i
a1,i
a2,i
a3,i

 (3.1)

The mathematical form of the MixColumns function hides the elegant simplicity that
allows the efficient implementation on computers since only logical shifts and additions are
used. Finally, the “AddRoundKey” function is applied on the State. With this function
the previously calculated “round key” is connected with the State using a logical XOR
(⊕). The number of rounds Nr depends on the chosen key size and is 10 for the 128-bit
key, 12 for the 192-bit key and 14 for the 256-bit key. In the last round the “MixColumns”
function is left out. Another part of the algorithm is the calculation and selection of the
round keys which is also called “Key Schedule”. The calculation of the round keys is done
in two steps. The first step is called “Key Expansion” and calculates the key material for
the used round keys which is (Nr + 1) ∗ 128 bits. In the second step called “Round Key
Selection” the key material for the actual round key is chosen. To save memory the key
material does not need to be precalculated and can be calculated on-the-fly (one round-
key per round is calculated depending on the last one). For decryption the on-the-fly key
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scheduling is a bit more complex because the keys have to be calculated in the inverse
order and the inverse of the MixColumns matrix is also more complex. This makes the
AES decryption procedure slower than encryption (cf. Plos et al. [50] on page 122—3,084
cycles for encryption versus 4,505 for decryption on an 8-bit microcontroller).

3.3 Authentication for Symmetric-Key Cryptography

Security is a very complex topic which has to be considered on every design level. The
best tested cryptographic algorithm is worthless when the implementation or the protocol
that uses this algorithm is insecure. The protocol below shows a very naive and insecure
example of a self-made authentication protocol.

Reader → Tag : AuthRequest

Tag → Reader : ENCRY PT (tag identity string)

First, the reader sends an authentication request to the tag. Upon receiving the re-
quest, the tag calculates a response by encrypting a string that uniquely identifies the tag
and sends it back to the reader. After extraction and comparison of the “tag identity string”
with an expected answer, the authentication protocol terminates successfully. The prob-
lem gets evident when an attacker eavesdropping the communication is considered. In



CHAPTER 3. AUTHENTICATION METHODS AND PRIVACY 36

that case the attacker could build a tag that always answers to the “AuthRequest” like
the eavesdropped tag in order to fake its authenticity (cf. replay attack). In Section 3.1
it was already stated that for constrained RFID tags symmetric-key cryptography with
a challenge-response authentication protocol is a good trade-off between security and im-
plementation costs. In the following, some examples of challenge-response authentication
protocols are given.
ISO/IEC 9798-2 and 9798-4 contain protocols for unilateral authentication and for mu-
tual authentication. In terms of RFID three different authentication methods can be
distinguished. A Reader ⇒ Tag authentication is called “Interrogator Authentication”,
a Tag ⇒ Reader authentication is a “Tag Authentication” and Reader ⇔ Tag is called
“Mutual Authentication”. Some of the ISO/IEC 9798-* protocols include time stamps
to guarantee freshness of the received messages which need synchronized clocks on both
sides. Providing these clocks is not trivial even for PCs (see Dent and Mitchell [11], page
179) and unfeasible for RFID tags. Instead so-called “nonces” are used to guarantee fresh-
ness of the material. A nonce is usually a randomly chosen number that should only be
used once (nonce = Number used ONCE). In challenge-response protocols nonces are
used for creating the challenge. Therefore, the security of such a protocol depends on
the randomness of the created challenge and its uniqueness. The following example of
a Tag-Authentication protocol was adopted from S. Dominikus et al. [12] which uses
derived versions of authentication protocols from the ISO/IEC 9798 standard.

Reader → Tag : InventoryRequest

Tag → Reader : ID

Reader → Tag : AuthRequest || ID || RR

Tag → Reader : ENCRY PT (RT || RR) || RT

After the tag was successfully inventoried and transmitted its ID, the reader sends a
request for a tag authentication that includes the tag ID and the nonce RR (= challenge).
The tag encrypts the challenge together with a randomly chosen nonce RT and sends it
back to the reader. The reader checks the correctness of the response by decrypting the
message and if the message contains the original challenge then the authentication was
successful. One possible attack on this protocol is to eavesdrop the communication and
save the challenge-response pairs. When enough different pairs are collected the tag could
be cloned. Therefore, the length of the challenge is important to make this kind of attacks
uninteresting for attackers. For this authentication method the collection of challenge-
response pairs might only be a theoretical attack since the number of trials it takes to
find all pairs is at least 2l (where “l” is the length of the challenge in bits). Furthermore,
for cloning the tag an enormous tag memory would be needed. When the other way of
unilateral authentication is considered then the attack becomes more interesting for an
attacker. In the following, an Interrogator-Authentication example is given that was
also adopted from S. Dominikus et al. [12].
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Reader → Tag : InventoryRequest

Tag → Reader : RT

Reader → Tag : ReaderAuth || RT || ENCRY PT (RR || RT ) || RR

Tag → Reader : ID

In this protocol the tag answers to the inventory with a nonce RT instead of its ID.
The reader uses the nonce for addressing the tag and to calculate a valid response together
with another nonce RR that is created by the reader itself. If the response is decrypted by
the tag and contains the correct challenge then the tag replies its ID. The transmission of
the plain tag ID is not a good practice in terms of privacy. This problem is faced in the
last protocol example in this section that shows a Mutual Authentication protocol.

Reader → Tag : InventoryRequest

Tag → Reader : RT

Reader → Tag : ReaderAuth || RT || ENCRY PT (RR || RT ) || RR

Tag → Reader : ENCRY PT (RT ⊕ ID || RR)

This protocol equals the “Interrogator Authentication” example except the last line.
Instead of the plain ID the tag uses an XOR to combine RR with the ID and encrypts
the result together with the concatenated nonce RR. The reader uses the tag’s answer
to prove its authenticity and to extract the tag ID. In Section 3.4 another authentication
protocol is discussed that uses hash functions for authentication and to hide the tag ID.

3.4 Privacy for RFID Tags

Privacy is one of the major concerns of RFID-technology critics and one of the reasons
why the impact has not yet become as it was predicted at the beginning of the RFID hype
in the early 2000’s (Florian Michahelles from ETH Zürich in his presentation on “When
will RFID embrace our everyday lifes?” for the RFIDSec 2012 in Nijmegen [18]). The
early adopters were the companies Metro and Wal-Mart. Both tried to integrate RFID
technology into their logistic systems. Wal-Mart started its RFID program in 2003 with
the goal that all pallets from external suppliers should be tagged with RFID labels until
2006. Metro went one step beyond and claimed that all articles in the store would be
tagged by 2006. Both programs were shut down because of public campaigns that were
concerned that using RFID labels would result in a loss of privacy. This development is
not surprising and is well known for technologies that are hyped like RFID technology.
The phases of an over-hyped technology are best explained in the Hype-Cycle Diagram
in Figure 3.4 that was introduced by Jackie Fenn in 1995 (see Gartner [19] for a detailed
explanation). At the beginning the interest in the technology gets pushed by the media
and others until the “Peak of Inflated Expectations” is reached. Then there comes a steep
slope down to the “Trough of Disillusionment” because it gets evident that the expec-
tations were too high and the technology lacks acceptance. Further developments show
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the real benefits of the technology and new fields of applications are discovered (“Slope of
Enlightenment”). At the “Plateau of Productivity” the technology has evolved and the
products become widely accepted. Furthermore, Michahelles [18] stated in his presenta-
tion that RFID technology is currently in the “Trough of Disillusionment” and that for a
successful adoption both technology and acceptance (business and consumer) are needed.
From the consumer’s perspective, the latter will not be given until the privacy issues are
solved.

In times of Facebook and YouTube where people upload their personal data, private
photos and videos on the Internet to share them with strangers it is hard to find a general
definition of the term “Privacy”. The OECD (Organisation for Economic Co-operation
and Development [46]) defines privacy as follows:

“It is the status accorded to data which has been agreed upon between the
person or organisation furnishing the data and the organisation receiving it
and which describes the degree of protection which will be provided.”

This definition—even though it has an economic background—implies some important
expressions. It implies that no general rules can be defined that will match for all persons
in all situations. There needs to be some agreement on which and how data has to be
protected and the control has to be kept by the creator or owner of the data. For an
automated and non-transparent system like RFID where the user lacks control over the
communication flow it must be ensured that no personal data can be accessed without
authorization. The following citation was taken from the Directive 95/46/EC [14] of the
European Parliament and defines the term “personal data”.

“... shall mean any information relating to an identified or identifiable natural
person (‘data subject’); an identifiable person is one who can be identified,
directly or indirectly, in particular by reference to an identification number or
to one or more factors specific to his physical, physiological, mental, economic,
cultural or social identity”
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Figure 3.5: Consumer Privacy Problem, Figure Provided by Courtesy of Ari Juels [31]

Figure 3.5 is a very famous illustration from Ari Juels work “RFID Security and
Privacy: A Research Survey” [31], and shows what could happen if personal data is not
protected. The man gets scanned by an RFID reader and all products with attached RFID
labels respond with a unique ID. Not only the things themselves give information that can
be used to characterize the man in an obviously awkward way, also the uniqueness of the
serial numbers can be used to track the man and to study his preferences, consumerism,
etcetera. Methods how to provide privacy in RFID systems are explained in the following.

Privacy-Preserving Methods

Security does not automatically imply privacy and the whole privacy problem is not solved
by just encrypting the data and using distinguished authentication protocols. A tag that
offers its identity directly or indirectly to every reader—even though no other personal
data is transmitted—by sending any information that can be used to track the tag is a
privacy risk. Basically there are two categories of privacy-provisioning strategies for RFID
systems. The first one can be classified as “Physical Methods” and the second one are
“Protocol-Based Methods”.
Examples for physical methods are shielding of tags (e.g., Faraday Cage approach [33])
which could be achieved by metal layers that shield the tag against reader fields. This
method could be used in electronic passports (see Figure 3.7a) to prohibit reader access
when the passport is closed, or in wallets to prohibit any access to RFID-enabled cards
that are inside. An akin approach could be made in an active way by using a “Jamming
Device” that produces its own radio field to fully disturb the reader communication in
the environment—which might not be legal—or just partially by listening to the reader
communication and preventing the tags from answering to privacy-critical requests. An-
other way that is already integrated in the EPC Gen 2 protocol is called killing (see Figure
3.7b). Once an RFID tag is out of its working area (e.g. a consumer good that was bought)
the RFID functionality is deactivated by putting the transponder into a permanent and
irreversible state in which no more tag communication can be performed. This can also
be done by physically separating the transponder chip from its antenna or by destroying
the chip itself. “Killing or discarding tags enforces consumer privacy effectively, but it
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eliminates all of the post-purchase benefits of RFID for the consumer” (Jules [31]). In the
same work Jules et al. present a Blocker-Tag Approach (see Figure 3.7c) that works for
RFID protocols using a so-called “Tree-Walking Singulation Algorithm” for the inventory
procedure which is similar to the deterministic inventory that is shown in Figure 2.11. A
blocker tag simulates all tags inside a certain UID range and therefore blocks the access to
tags inside this range. The work also shows how this approach can be made more “reader-
friendly” so that a reader recognizes that a certain UID range is blocked and leaves it out.

Protocol-based methods often involve cryptography in some form (e.g., symmetric-
key or public-key cryptography or hash functions) whether on reader or tag side (see
Pateriya and Sharma [47] for an overview). Non-cryptographic approaches were presented
for example by Nathan Good et al. [21] who suggest not storing any data on the tags that
could be used to directly link information to the products (e.g., the ISBN or EPC) or any
transactional information. Instead the tag holds some information that can be used as a
link to a local database. Furthermore, Good et al. propose the use of random numbers
instead of unique identifiers to prevent unauthorized creation of bibliographic directories,
but they also state that this does not prohibit tracking. Also Inoue and Yasuura [29]
present two approaches to enhance privacy. The first approach uses a public ID stored in
a ROM and a private ID stored in a RAM of the tag. The idea is that the public ID can
only be read if no private ID was stored. Using a public ID is helpful and wanted inside the
production and distribution phase of the product life cycle for tracking purposes. Upon
purchasing the product a private ID is stored in the RAM and so the public ID is veiled.
This prevents the unique identification of the product on a global domain but keeps this
option for a local domain. The second idea suggested in this work, separates the tag’s ID
into a “Class ID” and a “Pure ID”. In analogy to EPC (see Figure 2.19) this would be
the Item Reference (including the Company Prefix) for the Class-ID part and the Pure-ID
part would be the Serial Number. By “killing” or rewriting the Class ID the global linkage
between the article and the product is destroyed. However, both approaches also do not
prevent point-to-point tracking.
Privacy protocols based on cryptography do not automatically imply that the tags need
to implement some kind of cryptographic function as Juels et al. showed [32]. In this
work the use of RFID tags for banknotes and the created privacy problems are discussed.
The underlying assumption is that such tags have to be very cheap which implies that
they lack security capabilities. Therefore a public-key cryptographic algorithm is only
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implemented on the reader side and the tag does not implement any security algorithm
at all. The tag itself contains only the public-key encrypted ID which gets periodically
re-encrypted together with a nonce (a random number to vary the cipher text) by a reader.
The original ID can only be decrypted by the holder of the private key which is a law-
enforcement agency. It is concluded that the privacy level served by this system is not
comprehensive.
There are several papers on privacy provisioning by using hash functions. Ha et al. [25]
present a protocol for RFID tags that uses a hash function together with a session state
for veiling the tag’s ID and to prevent an attacker from tracking a tag by connecting him
with a previous session (cf. forward privacy). However, Sun and Zhong [55] show how this
protocol can be broken by tracking a tag by observing an unsuccessful previous session and
present their own hash-based protocol which is explained in the following as an example
for a hash-based privacy protocol (see Figure 3.7).
First, the reader generates a random number called rR that is sent to the tag (1). The tag
receives the rR and generates its own random number rT (2). Then the tag computes the
“hash” (Q) over the tag’s ID and the two random numbers rR and rT (3), and updates
its own ID by calculating the hash value over the ID and writing the result back (4). The
Q value is separated into a left and a right side (LT and RT) and the tag transmits the
left part of Q together with the calculated random number to the reader (5). Now, the
reader knows everything except the tag’s ID to do the same calculation of Q as the tag
before. Therefore, the reader tries all IDs inside its database (6), and because the tag’s
ID might already be hashed more often than the ID saved in the database—this happens
when the protocol is terminated before the reader updates the tags ID in step (8)—the
reader also has to apply the hash function multiple times. The constant “t” defines the
upper limit of hash rounds for one ID trial which is described in the paper as the “number
of the unsuccessful session runs to be allowed for T” (T is the abbreviation for tag). If the
reader found a hashed ID that results in a Q’ where the left part matches the LT(Q) that
was transmitted by the tag, then the reader transmits the right part of the calculated Q’
(7) and updates the database by writing the new hashed ID back. If the reader did not
find an ID that delivered the right Q’, then the reader terminates the session. The tag
then compares the reader’s RT(Q’) with its RT(Q) and decides if the authentication was
successful or not (10).
In that work the authors only estimate the computational and storage costs on the tag
side which is justified by following quote.

“In the RFID system, the tag is usually treated as the resource-constrained
electronic device, but the reader is always powerful enough to provide the
security service.”

It is of course true that the reader does not have such strict constraints but the com-
putational effort of such a protocol on reader side could lead to significant delays and
therefore reduce the inventory rate dramatically. Assuming a few thousand tags in the
reader database, hashing all of them—in a worst case scenario up to “t” times which was
stated by the authors to be “1000 or 10000”—is an enormous effort. This would have to
be done, for example, if a not listed tag—which could also be an attacker—sends an LT
that matches none of the tag IDs in the reader database.
There exist further works on privacy for RFID systems and similar to security there is not
one right way to preserve privacy but many wrong ways. In the end it is a trade-off be-
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tween the privacy level, implementation costs of the tags, infrastructural effort, inventory
speed, etcetera.



Chapter 4

Verification and Validation of a
Hardware Design

Long before the first integrated circuit (abbreviated IC) was designed, the complexity of
electronic circuits was quite low compared to state-of-the-art ICs and consisted only of a
few discrete components which could be soldered by hand. The use of increasingly complex
electronic devices for military purposes around World War II pushed the development of
new techniques which simplified the manufacturing process and lowered the production
costs. The invention of the transistor around 1948 was the first step to modern digital
technique but it took several years until the transistors replaced the dominant vacuum
tubes (see Kilby [37]). The main reason for the low acceptance of the transistor at the
beginning was the low transit frequency compared to the vacuum tubes. In 1949 lamination
and etching techniques led to printed circuit boards that connected passive components—
like resistors, capacitors and coils—and active components (vacuum tubes and transistors)
by using conducting paths instead of wires. In the early 1950s Lathrop and Nall developed
a photolithographic process to interconnect transistors in a substrate. G.W.A Dummer,
who worked for the Royal Radar Establishment, was the first person who realized the
potential of integrated circuit technology. The following citation is from Dummer in 1952
on a conference in Washington, D.C. and was taken from Saxena [51].

“With the advent of the transistor and the work on semi-conductors generally,
it now seems possible to envisage electronic equipment in a solid block with no
connecting wires. The block may consist of layers of insulating, conducting,
rectifying and amplifying materials, the electronic functions being connected
directly by cutting out areas of the various layers”

It took six more years until the first integrated circuit was developed. An oscillator
that consisted of bipolar transistors was designed by Jack Kilby in 1958 during his work
for Texas Instruments. The idea for the realization of an integrated circuit was born
when Kilby was alone at the laboratory because he was a new employee and the other
laboratory workers went on summer vacation. He was thinking about how to make the
circuit production with semiconductors more cost efficient and realized that the passive
components could be made out of the same materials as the active components. The
conclusion of his thoughts was that it should be possible to build a whole circuit without
external wiring for the interconnection of the components. After the vacation he presented
his ideas to his chief who supported his work on the IC technology. Kilby was not the only

43
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person who worked in this field. In a patent from 1959, Boby Noye the manager of Fairchild
R&D showed transistors in a common substrate that consisted of n-regions and p-regions
(diffusion regions) that were connected over a metal-layer with an oxide as the insulating
material. In the following years, many companies concentrated on the development of
new IC technology which allowed to use more and more integrated components to build
complex ICs. The rapid development since the first IC in 1958 by Kilby led Gordon E.
Moore to the following prediction that Moore presented in an article in 1965 [44].

“The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year... Certainly over the short term this rate can
be expected to continue, if not to increase. Over the longer term, the rate of
increase is a bit more uncertain, although there is no reason to believe it will
not remain nearly constant for at least 10 years. That means by 1975, the
number of components per integrated circuit for minimum cost will be 65,000.
I believe that such a large circuit can be built on a single wafer.”

This quote is well known as the Moore’s Law and is one of the most cited and inter-
preted quotes in the history of modern technology and still has not lost validity. The time
period between doubling of the complexity of ICs was corrected by Moore from one year
to two years in 1975 and in the current version 18 months are proposed. The interpreta-
tion of Moore’s prediction is not only restricted to the complexity of ICs but also on the
capacity of computer storage media, the computing power, etcetera. It is obvious that
the increasing complexity of ICs also influenced the way of designing electronic circuits.
State-of-the-art processors consist of millions or even billions of transistors which is of
course unmanageable to be designed, routed and tested by hand. Pure schematic designs,
as they were used at the beginning of the electronic circuits, are unthinkable in todays
digital design.
The fist hardware description language “ISP” appeared in 1971 and was originally used as
a notation in Bells at al. “Computer structures: readings and examples” [4]. The name
of the HDL is derived from the intended use for describing the behavior of instruction set
processors (abbreviated ISP). ISP was extended to be more suitable as a general descrip-
tive tool for register transfer (abbreviated RT—a term that was also invented by Bell)
systems as well as a design tool and for simulation purposes. The synthesis functionality
of the ISP-derived tools were limited to special hardware (Digital Equipment Corporations
PDP-16 modules) and could not prevail. In the 1980s logic synthesis became an inter-
esting research field for many universities and electronic design automation companies
began to adopt the research results to create tools for automatic logic synthesis. At this
time, the development of new synthesizeable hardware description languages (abbreviated
HDL) became more interesting, since the advantages of an abstract descriptive language
to handle complex digital systems were obvious.
The most commonly used hardware description languages nowadays are VHDL and Ver-
ilog, whose roots go back to the late 1980s and 1990s, respectively. These languages are
the only one that are widely supported by many automatic synthesis tools. The key
concepts for both languages are mostly the same and so it is a question of preferences
which language is used by a hardware designer (see Table 4.1 and Kaeslin[34] page 177 for
details). Another characteristic of both HDLs is that they only support simple function-
ality to verify hardware modules. As the complexity of the hardware designs increased,
the verification functionalities did not longer suffice the requirements of the industry, like
reusability, functional coverage, constraint random stimulus generation, etcetera. Hence,
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Feature VHDL Verilog

Industry standard IEEE 1076 IEEE 1364
Initial version 1987 1995
Current revision 2008 2009 (SystemVerilog)
Syntax style Ada C
Characteristic verbose and strict concise
Logic system 9 states 4 states, 8 strengths
Scoping yes no
Strong typing yes no
*EDA support yes yes

*) Electronic Design Automation

Table 4.1: VHDL and Verilog Comparison

dedicated hardware-verification languages (HVL) like OpenVera and e were created to
fulfill those requirements. In 2005 Accellera, a consortium of EDA companies, developed
hardware-verification features based on the HVL OpenVera and merged them with the
Verilog IEEE standard 1364-2005 in 2009. The result was the new SystemVerilog IEEE
standard 1800-2009 which combined design and verification in a single language.
This chapter starts with an introduction of a digital VLSI design flow in Section 4.1 to
introduce the flow itself and the used terminology which is used in the following sections.
Afterwards, different verification metrics that are used to measure the verification progress
are then discussed in Section 4.2. Section 4.3 shows an enhanced version of the traditional
verification approach based on the scripting language Tcl and compares this approach to
a modern SystemVerilog test bench based on the verification methodologies OVM/UVM.
Section 4.4 describes the executable specification which was used at the beginning of the
project to verify the system-level design and lateron as a reference for the hardware im-
plementation. Finally the laboratory setup is illustrated and described in Section 4.5.

4.1 Introduction of a Digital VLSI Design Flow

All explanations of this Section are related to Figure 4.1 which shows a typical VLSI flow.
The different development layers of the digital flow are placed on the left side of the figure.
On the right side there are the related tasks and milestones. Of course the flow should
not be seen as “waterfall-model” which is worked through layer by layer and task by task.
In practice there are cases that need revision of a previous task, e.g., a problem is found
in the Executable Specification and so the System Layer needs to be revised. The time
before tape-out is called “pre-silicon” and testing in this phase is called “verification”.
After the tape-out the “post-silicon” phase begins. Testing is then called “validation”
because the correct functioning of the chip is validated.
Every project begins with a phase where the tasks, sub-tasks and goals of the project are
defined from a behavioral perspective. This is called here the System Layer with the
related milestone Specification. All the desired functionality, characteristics (like power
consumption, performance, costs) and operating conditions are defined at the System
Layer. Also the project strategy, which parts are designed in-house and which are bought,



CHAPTER 4. VERIFICATION AND VALIDATION OF A HARDWARE DESIGN 46

hardware/software trade-offs and alternatives are discussed. In order to split the project
into sub-tasks, which can be executed independently, data exchange related things like
protocols, data formats, interfaces, etcetera need to be set out in the specification.
When the specification is done, a refinement process begins at the Algorithm Layer
where a collection of suitable algorithms is selected and analyzed to serve the defined re-
quirements. The goal is to find the best solution in terms of computation speed, memory
requirements and logic complexity which often is a trade-off. The result is an Executable
Specification that is used as a proof of concept to verify the specification and serves the
system architect as a basement for his work.
A system architect then begins his work on the Architecture Layer with a high level
description of the future integrated circuit by defining the basic hardware blocks and the
interplay of these blocks to implement the selected algorithm. It is the first step from the
specification to a hardware implementation in which the system architect decides on the
target technology and cell libraries, transfers algorithm functions to a feasible hardware
implementation and estimates the hardware costs in terms of chip size, power consumption
and costs. The resulting document contains an abstract overview of the circuit design that
includes data paths, controllers, analog parts, e.g., level-shifters and voltage regulators,
memories and important signals. After the main blocks are defined, the system architect
refines the digital blocks and creates a register transfer level (RTL) description of these
blocks which contains memory elements (registers) and the computational logic. Further
considerations imply clocking, the use of microcontrollers instead of hardwired logic, the
memory organization, testing strategies, etcetera. The result is a more detailed description
of the previously defined blocks that is written down in the System Architecture Descrip-
tion that also contains a floorplan of the integrated circuit.
The Logic Layer (also called Digital Front-End) contains the description of the digital
hardware in a chosen hardware description language (mostly VHDL or Verilog) and on
a selected abstraction level (RTL or gate-level). Normally it is not necessary to describe
every part of an integrated circuit on gate-level, since the logic synthesis automatically
creates a gate-level netlist out of the RTL code. In some cases the description on gate-level
is necessary when the synthesis of the RTL code produces an awkward gate-level descrip-
tion. After the creation of the gate-level netlist, the Electrical Rule Check, simulation and
verification with timing parameters of the gates can be performed.
On the Physical Layer (also called Digital Back-End), the step from the gate-level
description of the integrated circuit to the actual layout is done. The layout flow includes
the placement of the gates and their interconnection (Place and Route) based on the
Floorplan, the Clock-Tree Generation to guarantee an even clock distribution in order to
fulfill the timing requirements and the extraction of the timing parameters for the gates
based on the layout. The digital layout flow is of course almost completely automated.
However, the connection of the digital layout to the analog parts and pads is performed
by a layout artist. In order to have a high yield of functioning chips after the fabrication
process, certain design rules have to be taken into account by the layout artist like the
minimum distance of wires or the even distribution of layers on all regions of the chip. The
checking of the design rules is done automatically in the Design Rule Check. In the Layout
versus Schematic it is checked that all components that are part of the schematic are used
in the layout and all connections between those components are established. The timing
information changes because of the created layout which makes it necessary to verify the
correct timing of the circuit again.
After the layout is done and the verification procedure did not find anymore bugs or tim-
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Figure 4.1: VLSI Design Flow with Related Tasks and Milestones

ing problems, the fabrication of the integrated circuit begins by sending the layout to a
manufacturer. This step is called Tape-Out and is critical since no further changes of the
layout—that would influence the ongoing fabrication process—are possible. The fabrica-
tion process—that takes several weeks—includes the creation of the masks that are used
for the photolithographic process (respectively the creation of the diffusion regions), the
production of the wafers, the cutting of the dies and the bonding and packing. The finished
chip is then validated in the laboratory under the specified temperature conditions, with
different supply voltages within the specified range and other previously defined operating
conditions. Post-silicon validation is mainly done manually which results in higher costs
compared to the pre-silicon verification.
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4.2 Verification Coverage Metrics

The majority of costs arise after the tape-out which makes a good and efficient verification
strategy very important, since a bug that is found after tape-out results in higher costs
than a bug that is found before. In order to measure the verification progress there are
different metrics to measure the coverage of a verification process. The following text
gives a short overview about three commonly used verification coverage metrics. For more
information see Tasiran et al. [56].

4.2.1 Code-Coverage Metric

A very simple form of a coverage metric is the so-called “Code Coverage” which also
appears in software programming languages. Every HDL code consists of declarations,
assignments, branches, loops, function calls and others. Branches like “if ... else” or
conditional loops are called control-flow instructions and can be represented by a control
flow graph where each branch is a possible way trough the code path. To achieve 100 %
branch coverage each branch needs to be accessed at least once during the simulation. A
more accurate way to calculate the code-coverage rate is to check that each existing path of
the control-flow graph was accessed at least once. This requires an algorithm that choses
all accessible paths through the control flow graph which is not a trivial problem. It is
also not necessary—and could lead to an enormous verification effort—to check all existing
paths since a sub path might already be part of another path. Therefore a heuristically
selected subset of paths—that contains only linearly independent paths—is normally used
for the path coverage. Besides the two described ways to implement the code-coverage
metric there exist other forms like expression coverage or code line coverage (see
Tasiran et al. [56], page 3).
The implementation of the code-coverage metric is quite easy and therefore it is used in
many commercial simulation tools. To calculate the coverage rate the number of accessed
paths or branches is divided by the number of existing paths or branches and multiplied
by 100. The significance for hardware verification is not comparable to sequential software
programs since hardware tasks run in parallel. Nevertheless, code coverage metrics are
useful and a rate of 100 % should be the goal of every verification engineer but further
metrics are needed to guarantee complete functional verification.

4.2.2 Toggle-Coverage Metric

The idea behind the “Toggle Coverage” metric is to look at every point of the circuit that
could change during the simulation and check if every state has been reached. Usually
every point is seen as a binary node and the states are logical “0” and “1”. By splitting
the HDL code into two parts, the data path and the control path, more dedicated metrics
can be implemented with different investigation goals. The data-path part of the metric
is very useful to check if every register is correctly initialized, set, reset and all register
paths are used during the simulation. For the control-path part, the metric represents
the communication flow between different parts of the circuit which indicates the use of
all circuit features. The toggle-coverage metric in general is suitable to uncover parts of
the circuit that are not or not often enough accessed during the verification process. This
information is useful for verification engineers to write directed tests to exercise these parts.
On the other hand it is not always possible to automatically extract useful informations
and to locate the weakness of the tests. Although the insufficiently exercised parts of the
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circuit could be identified, generating the stimuli that will exercise those parts could be a
difficult task.

4.2.3 Functional-Coverage Metric

The verification features of SystemVerilog (SV)—respectively the methodologies OVM
and UVM (see 4.3.3)—are strongly related to the “Functional-Coverage” metric. Since
SystemVerilog uses constrained random verification instead of a directed testing approach,
a metric is needed to check which functionalities have been tested during the simulation.
The advantage of functional coverage is that missing functionalities that were specified
and implemented in the SV model will be reported. This would not be the case for toggle
coverage or code coverage because only the already implemented HDL code is checked.
The disadvantage is a notable additional effort for creating a good functional-coverage
metric. A very good knowledge of the whole system and a lot of experience is needed
to locate the critical parts of the system in order to implement a metric that is suitable
to measure the coverage. Ideally, hardware designers and verification engineers work in
parallel on the implementation of the previously defined specifications. While the hardware
designers implement the digital hardware in an HDL, the verification engineers create a
verification plan and implement a model of the system that is used to crosscheck both
implementations. The verification plan serves as a basis for the creation of the functional-
coverage metric. SV uses so-called “cover points” to define which information should be
gathered during the simulation. This information is then used after the simulation to check
which cover points were exercised and which are missing. The knowledge about missed
cover points is important for the verification engineer to detect weaknesses or possible
improvements of the verification environment. When a cover point is never reached even
though the test was started many times with random seeds, the verification engineer needs
to adjust the constraints for the constrained random verification to pull the tests into the
right direction. Although functional coverage seems to be more complex and requires
more expertise than other metrics, it is the best way to guarantee high coverage and is
indispensable for complex designs. Furthermore, it should be used together with other
metrics like code coverage to check that the functional coverage points are sufficient or if
more corner cases need to be checked (see Spear [53], page 330).

4.3 Script-Based Verification versus OVM/UVM

Many electronic design automation (EDA) programs support different scripting languages
like Tcl (e.g., Cadence, Mentor Graphics, Synopsis etcetera). In many companies Tcl is
also used for writing automated functional hardware-design tests. In the following chap-
ter, an example for a typical Tcl test bench is discussed.

4.3.1 An Advanced Tcl Test Bench

Compared to traditional Verilog verification environments, the Tcl-based verification en-
vironment in Figure 4.2 works on a higher level of abstraction, which allows to write
complex tests with little effort. This results from a paradigm change—time domain to
functionality. In a simple Verilog verification environment, it has to be taken care of sig-
nal transitions and the time when they occur. The Tcl stimuli file in Figure 4.2 consist
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Figure 4.2: Tcl Test Bench

only of high-level commands, which are interpreted by the Tcl test bench and produce
one or more sub commands. These sub commands trigger tasks in the Verilog test bench,
which are sequences that take care of correct signal transitions. For a person that writes
the stimuli files, this means that the time domain has not to be taken into account and
the focus is on the DUT’s functionality. Also some of the result checking can be handled
by the Tcl test bench, e.g., protocol-specific functionality like parity-bit checking. In the
Tcl stimuli file the collected information is used to decide if the test was passed or failed.
Typically, the Tcl verification environment consists of a set of tests, each directed to a
certain device functionality. These so-called directed tests are checked to ensure that the
functionality declared in the specification is fulfilled. For larger designs, a verification
plan that describes the features and how they are tested, is therefore essential. Using only
directed tests to achieve 100 % verification coverage is unsuitable because of the enormous
number of directed tests it would need to verify a complex design. It is also impossible
for a verification engineer to think of every possible exception that could happen. The
solution for this problem is a self-checking test bench that uses constraint random veri-
fication, which randomly generates every valid stimuli for a DUT and checks the results
automatically using an abstract model of the design. Constraint random verification is
one of the main concepts in SystemVerilog which is the basis for methodologies like OVM
(open verification methodology) or UVM (universal verification methodology).

4.3.2 A Layered SystemVerilog Test Bench

A typical SystemVerilog environment is shown in Figure 4.3 (for detailed information see
Spear[53] page 19). Like the Tcl test bench in Section 4.3.1, this test bench uses different
layers to provide a high level of abstraction. On the lowest level of abstraction, the so-
called Signal layer, is the design under test (DUT) and its connection to the verification
environment. The Command layer consist of a Driver and a Monitor. The Driver converts
the input commands into signal transitions and drives it into the DUT. The Monitor works
the other way round and takes signal transitions from the DUT’s output and groups it to
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Figure 4.3: SystemVerilog Test Bench, adapted from Spear [53], page 19

commands. Assertions are command specific and therefore also part of the Command layer
and check for simple erratic behavior of the DUT. In the Functional layer, the Agent deals
with high-level transactions and splits them into simple commands that are then driven
by the Driver. The scoreboard also receives these commands and uses a model of the DUT
to predict its behavior. Finally, the Checker uses the Scoreboard output and compares it
to the transaction observed by the Monitor. The result of the comparison is then used
to decide if any further steps are needed, e.g., error logging, trigger functional coverage
or immediate stop of the test. The Scenario layer deals with only high-level functionality
and uses constraint-random values instead of hard-coded values like in a directed test.
A typical scenario for an RFID tag is an Inventory sequence. Hence, constraint-random
values are used, the Inventory sequence does not always consist of the same commands
and the result therefore also varies.
On top of the test-bench hierarchy is the Test layer that contains the Test and Functional
Coverage. These are the only blocks that should be changed during a verification process.
Everything else in the Environment should stay unchanged or should only be extended.
The Test conducts the functional blocks of the DUT by executing different scenarios and
also defines the settings and further constraints for the test run. The Functional-Coverage
block is used to control which test goals, defined in the verification plan, have been covered.
At the beginning of the verification process, many bugs will be found without setting any
further constraints in the Test and the coverage progress will proceed quickly. As soon as
the coverage progress got stuck or no further bugs are found, new constraints have to be
defined to reach uncovered functionality. At the very end of the verification process, the
constraints will be as restrictive as for directed tests to achieve 100 % coverage.

4.3.3 Verification Methodologies

SystemVerilog provides the language basement for many verification methodologies like
VMM (verification methodology manual) that was developed by Bergeron et al. [5] origi-
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nally for the hardware verification language OpenVera. OVM (open verification methodol-
ogy) and its successor UVM (universal verification methodology) are newer methodologies
and were developed for testing complex designs. UVM still uses many concepts and
ideas from VMM. UVM/OVM provides a package of SystemVerilog base classes and func-
tionality like reporting, inter-task communication, configuration, advanced OOP (object-
oriented programming) techniques like factories or call backs etcetera. Once written, the
code can be reused in other projects that use the same component. The main advantage of
these methodologies is the standardization of the verification concepts, which is essential
for complex designs. Of course this somehow leads to implementation overhead because
not every methodology function is used in every test bench, but there are standardized
solutions provided for the most common problems a verification engineer has to face when
creating a functional hardware verification environment. An OVM/UVM verification envi-
ronment looks very similar to the SystemVerilog environment shown in Figure 4.3, except
some terms differ or components like the Agent encapsulate more functionality. Hence,
UVM is the newest of the verification methodologies, the following section will describe
the UVM library and its features.

4.3.4 The Universal Verification Methodology’s Library

The UVM library comes with a bunch of classes which are used to implement the veri-
fication environment (see Accellera UVM Class Reference Manual[1]). Every UVM data
or hierarchical class is derived from the “uvm object” class (see Figure 4.4) and must
implement its pure virtual methods. The uvm object class contains basic functionality for
naming, creating, (un)packing, comparing etcetera.
Reporting is used to handle messages that are produced by UVM components. Every
uvm report object and its deductions provide an interface to a central report facility. This
facility is used to filter messages and trigger actions based on the report message argu-
ments. Report-message arguments consit of a unique id, a message text and optionally a
file name, a line number and the verbosity. The verbosity argument is a number that the
report facility uses to decide whether to issue a message or not, based on the configuration
of the report facility. When a report message is issued, then the action settings of the
uvm report object decides how to handle the message. Such actions can be printing of
the message, logging to a file, quitting the simulation etcetera and these actions can also
be combined.
Components like agents, sequencers, drivers or monitors are the hierarchical elements
that form the verification environment (Figure 4.5). Each component can be accessed by
its hierarchical path or through search methods. Configuration allows to set component
parameters, e.g., to change its behavior in a new test run. Another feature of the com-
ponents are phase hooks, which are triggered when a certain verification phase is entered
and executes component-specific code. Phasing is one of the central UVM principles which
partitions the verification process into different phases. UVM uses factories for compo-
nent instantiation, which is a powerful OOP design pattern to dynamically generate or
override objects. The main advantage of a factory construct is that an object that calls
the factory to create another object does not need to know the concrete implementation
of the object which should be created. It is enough to know the interface or the base class
of the object. This allows to change or extend components without the need that other
components have to take care which deduction of the base class is used. An example for
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Figure 4.4: Partial UVM Class Overview

the use of the factory is a verification environment that uses a model of an EPC Gen 2 tag
(derived from a uvm component) to verify the monitor observations. To verify optional
and specific EPC Gen 2 commands, like cryptographic commands, the standard model in
the factory is overridden in a uvm test file with an extend model without changing the
other components.
Since every component runs in an own task, inter-task communication is needed. In
UVM, components are connected trough transaction-level modeling (TLM) interfaces of
the library, so-called ports. TLM ports provide different methods, either blocking or
non-blocking, for data exchange in a mailbox-like way. The advantages of TLM ports
are the reusability due to non-hierarchically fixed connections, they are easy to use and
provide a high level of abstraction.
One difference to the SystemVerilog environment in Figure 4.3 is, that the UVM environ-
ment has no component named “Generator”. In UVM the generator is called sequencer
and is part of an active agent, which also contains the monitor and a driver. Passive
agents only contain a monitor component. The job of a sequencer is to execute one or
more sequences in parallel, selected by a uvm test, and to guide the driver to set the
correct DUT signals. On the top level of the test-bench hierarchy is the uvm test class.
The instantiation of the uvm test class sets the configuration of the components, chooses
the sequences and defines further constraints for the randomization. At the beginning
of the test phase the test object may contain only the instantiation of the environment
and a default configuration of its components. Even by exhaustive testing, with wide
constraints, some functions of the DUT may never be touched. This can be discovered
in the functional coverage report at the end of the test run. To pull the test run into a
certain direction, i.e., to cover every exceptional case, the test class is the right place to
create such forces.
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4.4 Executable Specification

The most important step in a hardware design is the specification, since it is the step on
which the actual implementation and the verification plan etcetera base on. A mistake
in the specification step that is found during implementation or lateron could lead to an
enormous cost overhead caused by redesigning of the system. The most serious mistakes
are conceptual flaws, which can easily be avoided by simulating the system in a virtual
environment, a so-called Executable Specification. The specified system and its communi-
cation to its environment is simulated on a high level of abstraction. By using high-level
programming languages like C#, an abstract model of the system can easily be generated
with the comfort of object-oriented concepts. This model is used to prove the concepts
defined in the specification. It can also be a advantageous during implementation, to
compare the behavior of the model and the implementation.
The Executable Specification that was used in this project, contains the classes shown in
Figure 4.6. Here, the “SecuredDevice” is the simulated system and the “BackendSystem”,
the “Reader” and the “Microcontroller” form its environment. The “BackendSystem”
generates the symmetric keys for the “SecuredDevices” which are derived from its master
key and the EPC of the tag. In order to use the security-enhanced functionality of the
“SecuredDevice”, the “Reader” needs to know this key. To receive the key of a certain
tag, a secure communication channel between “Reader” and “BackendSystem” needs to
be established. This is done by using a public-key method like RSA (or ECC) for mutual
authentication and by exchanging a session key. The session key is then used to secure
the further communication using a symmetric-key method like AES, e.g., to exchange
the key of the “SecuredDevice”. The “Reader” knows different EPC Gen 2 commands
including the “Authenticate” command, which is device specific and can be used to im-
plement different authentication methods. The “Microcontroller”, which is part of the
laboratory setup and communicates over a wired interface with the “SecuredDevice”, is
not simulated. Main component of the Executable Specification is the “SecuredDevice”,
consisting of an EPC Gen 2 tag, an AES core and the wired interfaces. The EPC Gen 2
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tag understands all mandatory commands and reacts according to the standard. Figure
4.7 shows the console output of the Executable Specification on start-up. The “Reader”
to “BackendSystem” communication is done automatically. UHF commands can be send
interactively by typing commands into the console. The communication flow on message
transfer level is printed in the console. Furthermore, the state of the “SecuredDevices”
can be printed, containing all relevant information to control its behaviour.

4.5 Validation and the Laboratory Setup

Validation of an integrated circuit is a task that is not completely automated like the
verification process and usually consists of several steps that need to be done by hand.
The validation strategy is part of the system-architect description and needs to be imple-
mented and verified like the other integrated-circuit functionalities. There are different
verification strategies (see Söser [52], page 133).
The standard verification strategy is the external verification, which involves an exter-
nal test hardware to check the correct functionality of the chip. Therefore, the external
hardware generates a test pattern and checks the behavior of the circuit and returns the
result. The generation of the test patterns can either be deterministic, random or pseudo
exhaustive. Deterministic validation implies the selection of the test patterns by hand,
e.g., a test script. For the pseudo-exhaustive strategy an additional error simulation model
is needed that generates test patterns that can be used to check for a specific error.
The specialized-hardware validation strategy can only be used for a small amount of
manufactured chips. Typically the chips are integrated into the destination hardware and
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Figure 4.7: Executabel Specification Start-Up Console Output

then verified. Additional costs that might occur when a chip is not correctly working must
be taken into account.
Another validation strategy is called built-in self test (abbreviated BIST) which is a
validation procedure that is either triggered automatically when the chip is powered and
the BIST functionality was not deactivated, or is triggered externally. Like for the external
verification there exist different ways to generate and select test patterns that are applied
to the system. The difference is, that the generation of test patterns, the sequential control
of the verification process and the result checking is done inside the chip.
Prototype validation is done before the chip is released for mass production. Besides
the validation of the chip functionality, the temperature behavior, the behavior when the
voltage supply is lower or higher then the normal supply voltage, the power consumption,
etcetera are characterized. When errors are found during validation, the error source can
be found by using laboratory equipment like different kinds of microscopes, structural
analysis of the chip with lasers or X-rays, ion beams or by probing of the chip signals with
fine needles (only possible when test pads are available for the signals).
Besides the validation that is done after the chip was manufactured there are tests that are
performed to monitor the manufacturing process. Thus, for example, the scribe border—
which is the line that is used to cut out the dies—is used to generate monitoring structures
of every used process layer that allows optical assessment of the manufacturing process.
Early detection of errors is necessary to save costs because the later the error is detected
the more unnecessary manufacturing steps are performed. The course of this cost factor
that is produced at different detection times during the production is shown in Figure 4.8.
It is assumed—according to Söser [52] on page 132—that the costs for an undetected error
increase by a factor of 10 during the listed production steps.
For the validation of the EPC Gen 2 chip a laboratory setup like in Figure 4.9 is used.
The chip (“Secured Tag”) is connected to the verification environment over four pins. Two
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pins are used for the wired interfaces I2C and one pin for OWI, respectively. Depending
on the interface that is used, a different wiring with passive components like pull-up resis-
tors, capacitors or diodes are needed for the SCL and SDA pins. The other pins are the
antenna-connector pins that are connected to the signals that carry the signal ground and
the carrier with the modulated subcarrier. To demodulate the backscattered answer of
the tag, a low-pass filter is applied to the antenna signal before it is sampled by the data
acquisition (abbreviated DAQ) card. The validation process is controlled by a computer
that runs a validation script. The script generates the output signals of the DAQ card
and checks the correctness of the tag answers. An example for a validation script is shown
in code listing 4.1. At the beginning of the script the radio signals are disabled and the
I2C interface is configured. The actual communication is done by the “I2C Write” and
“I2C Read” commands. With the given “pass” argument the script interpreter expects
that the tag will response correctly and will report any misbehavior at protocol level.
Further arguments are the I2C slave address of the tag, the destination or source address
and the data. For the “I2C read” command an optional length and expected answer pair
can be set, which is checked for correctness when the “pass” argument was set. Besides
the protocol-specific commands, there are a couple of commands to control the validation
process, e.g., the “SYS Wait” command that waits for the stated number of milliseconds.
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Listing 4.1: Validation Script Example

# I n i t i a l i z e
SYS RF o f f # Disab le RF
SYS Power 0

SYS VDD on # Enable I2C @ 400 kHz
SYS I2C on
SYS I2C Frequency 400

# 1 . Enable AES core r e g u l a t o r
I2C Write pass D1 0000 01

# 2 . Reset the AES Core
I2C Write pass D1 0000 02

# 3 . S t a r t the i n t e r r o g a t o r a u t h e n t i c a t i o n
I2C Write pass D1 0000 03

# 4 . Wait u n t i l c h a l l e n g e was c r e a t e d
SYS Wait 1

# 5 . Read c h a l l e n g e data
I2C Read pass D1 0030 16 00000000000000000000000000000000

. . .



Chapter 5

Practical Implementation of an
EPC Gen 2 Tag

The goal of the practical part of this work was to design and implement a security enhanced
passive EPC Gen 2 tag, which combines both contactless and contact-based authentica-
tion methods. Besides the EPC Gen 2 UHF interface, the tag should also have two wired
interfaces (I2C and a One-Wire Interface, see Section 5.1.5). For the cryptographic oper-
ations an AES core was used. Starting point was a complete hardware implementation of
an EPC Gen 2 tag, including the wired interfaces, an EEPROM memory, etcetera and a
verification environment. The main part of the practical work was to integrate the AES
core, connect it to the tag interfaces and implement specific cryptographic commands. At
the beginning a virtual authentication system was designed, including the EPC Gen 2 tag,
a reader device and a trust-provisioning backend system. The system was simulated in a
so-called “Executable Specification” using the high-level programming language C# (see
Section 4.4). After the implementation of the tag, the system was verified using Tcl script
tests and the SystemVerilog based OVM (Open Verification Methodology, Section 4.3.3).
Finally, the layout of the EPC Gen 2 tag was created, verified with simulations and a test
chip was produced. In the following, an overview of the tag design is given in Section 5.1
and implementation-related problems are discussed in Section 5.2.

5.1 Design Overview

Figure 5.1 shows the system-level view of the tag design that contains the digital and
the analog top modules, the AES core, the EEPROM and the UHF and wired interfaces.
All components are connected to the digital top module, which controls the data flow
between them. Since every component in Figure 5.1 has its own voltage domain, the
analog part of the system contains voltage regulators, charge pumps, voltage-level shifters
and comparators that notify the digital top that the components are ready to use or not.
The voltage supply is established either via the electric field of the UHF interface (passive
RFID technology) or the wired interfaces. Access to the AES core or the EEPROM over
the external interfaces is performed indirectly by the AES and memory-control units of the
digital part of the system. The controllers regulate access rights, locks, activate voltage
supply on demand and convert the external request into signals that can be handled by
the components. In the following sections the components and interfaces of the EPC Gen
2 tag will be discussed in more detail. The interaction of the components will be described

59
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Figure 5.1: System-Level Overview of the EPC Gen 2 Tag Implementation

and the functionality and underling concepts explained.

5.1.1 AES Core

The AES core consumes about 1/16 of the chip area and has its own voltage regulator.
When a cryptographic function is requested, the regulator is turned on and a comparator
checks if the voltage supply is stable. The access to the AES core is established via a
simple bus system where the core acts as a slave device and receives control signals from
outside. All communications, including data exchange, triggering functions or reading sta-
tus information, are accomplished memory mapped (see Figure 5.2) by reading or writing
the according registers. Apart the cryptographic functionality, the AES core implements
a series of countermeasures against implementation attacks.

5.1.2 AES Controller

The access to the AES core over the UHF or the I2C/OWI interface is handled by the
AES Controller. The AES Controller is connected to the AES core as shown in Figure 5.3.
Because the I2C/OWI interface and the AES Controller run in different clock domains, a
synchronization of the control signals is necessary (see synchronization problem in Section
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5.2.1). To prevent parallel access from different components of the chip to the AES core,
the control signals are multiplexed on transaction basis following the principle of “first
come, first served”.The AES Controller then checks the signals and generates valid bus
signals for the AES core. Furthermore, a series of additional functionalities such as address
mapping from/to I2C, clock switching and clock generation for the AES core etcetera are
implemented. Main part of the AES Controller is the finite-state machine that handles
different kinds of authentication services (see Figure 5.4). The authentication services are
explained in the following.

I2C Tag-Authentication Method

In order to authenticate the tag, an interrogator calculates a randomized challenge and
sends it via I2C to the tag by writing to the AES Data registers (see Figure 5.2). To start
the response calculation, the interrogator writes to the AES Control register and triggers
the encryption functionality of the tag. The finite-state machine of the AES Controller
then transits from IDLE to LOAD CONFIG. In this state the AES Controller loads the
configuration settings from the EEPROM and configures the AES Core. When the config-
uration procedure is done, the state transits to AES START. The state change activates
the internal clock generation and safely switches the clock source (see implementation
problem in Section 5.2.2 ) of the AES Controller. The finite-state machine stays in the
AES BUSY state as long as the AES core has not finished the encryption. After the
calculation is finished, the clock source gets disabled again and the AES Controller takes
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over the control of the AES core. After an error check the state transits back to IDLE.
During the whole procedure the interrogator can check the status of the encryption by
reading the AES Status register. Finally the interrogator can read the encrypted data
from the AES Data register and decrypt it to proof the tag’s authenticity.

I2C Interrogator-Authentication Method

An interrogator authentication is triggered by an I2C write to the AES Control register.
This transfers the AES Controller state from IDLE to CREATE CHLNG, where the
internal random-number generator is used to calculate a challenge for the interrogator.
When the challenge was created the AES Controller waits until the interrogator reads the
challenge, calculates the response and writes the result back. Then the AES Controller
decrypts the response—which actually is an AES encryption (see I2C Tag-Authentication
Method 5.1.2)—and compares the result to the stored challenge. When the challenge and
the response match, the tag enters the SECURED state.

UHF Tag-Authentication Method

The EPC Gen 2 V2.0 standard defines an “Authenticate” command frame that can be
used by tag manufacturers to implement their own authentication methods and to integrate
them in a so-called Cryptographic Suite (CS). The standard only defines a skeleton frame
with fields that are supposed to select a CS by its identifier, one that defines how the
response is handled and a length parameter. Everything else—how the authentication is
done and what state transitions are caused by the authentication result—is defined by
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the CS and its selected method. Figure 5.5 shows a timing diagram where a reader sends
a valid “Authenticate” command to the tag. When the tag receives the command code,
the AES-core voltage regulator is switched on. It takes a few microseconds until the AES
core is powered and can be used. The “Authenticate” header selects the AES CS that
identifies the following embedded frame. Parameters like the authentication method, key-
material selection, the challenge data etcetera are defined inside this frame. Hence, the
AES voltage supply is stable immediately before the challenge is received, the challenge
data can be written to the AES core without buffering the data. The creation of the
bus signals for the AES core to write the challenge is done in the READ CHLNG state
of the AES Controller. After receiving the challenge some additional parameters like a
method identifier and a random number (cf. “salting”) are added. Finally, the tag receives
and checks the tag identifying handle and a CRC checksum that are again part of the
“Authenticate” command. When all received parameters are valid, the UHF Controller
signals the AES Controller to start the encryption procedure (see I2C Tag-Authentication
Method 5.1.2). The result of the encryption (or an error code) is then packed into a UHF
frame and transmitted to the reader. To proof the authenticity of the tag, the reader
decrypts the tag response and compares the result with the original challenge.

5.1.3 EEPROM

The electrically erasable programmable read-only memory (abbreviated EEPROM) is used
in many tags to store information that must not be deleted even though the tag is not
constantly supplied with power. In this context, this is also referred to as non-volatile
memory. The EEPROM that is used for this tag has a storage capacity of 4096 bits
and is separated—according to the EPC Gen 2 V2.0 standard—into four memory banks.
Besides the EPC Gen 2 memory banks - that store the Electronic Product Code (EPC),
the ISO/IEC 15963 allocation class identifier [13], kill and access passwords, etcetera - the
EEPROM also stores the tag configuration and implementation-specific information. The
following description of the working principles of an EEPROM refers to Figure 5.6 which
was adapted from Kuo et al. [39] page 314 and Gawlik [20]. An EEPROM memory cell
consists of a memory transistor and an upstream access transistor. The access transistor
selects the memory cell for reading or writing and is needed to prevent an unwanted
connection between data line and signal ground. This would occur if the memory transistor
is self-conducting, due to an uncharged floating gate after a logic “1” was written. The
memory transistor saves a logic symbol by charging or discharging its floating gate. When
the floating gate is charged a logic “0” is stored, an uncharged gate represents a logic “1”.
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Writing Procedure

Condition: VB+ = 0 V, VGacc = 12.5 V, VGmem = 0 V, data = “0” (0 V) or “1” (12.5 V)

In the erased state of the memory cell the floating gate is charged (“0”) and the memory
transistor blocks. The access transistor conducts and connects the drain of the memory
transistor with the data line. When 0 V are applied to the data line the floating gate
stays charged. For a logic “1”, 12.5 V are applied to the drain of the memory transistor.
This discharges the floating gate because of an electron breakthrough (Fowler-Nordheim
tunnelling [41]) caused by the strong electric field between the gate and the drain terminals.
The electrons tunnel trough the (only a few nanometers thick) SiO2 layer between the drain
and the floating gate. The threshold voltage of the memory transistor is now negative and
the transistor therefore self-conducting. A write cycle requires about 3-5 milliseconds.

Reading Procedure

Condition: VB+ = 5 V, VGacc = 5 V, VGmem = 5 V, data = ?

For the reading procedure the access transistor is conducting and 5 V are applied to
the gate of the memory transistor. If the floating gate is charged, the memory transistor
blocks and the data line is pulled to 5 V (pull-up resistor). In the uncharged state, the
memory transistor conducts and connects the data line with signal ground. Reading is
much faster than writing and takes only a few nanoseconds.

Erasing Procedure

Condition: VB+ = 5 V, VGacc = 20 V, VGmem = 20 V, data = 0 V

To charge the floating gate very high voltages—in terms of low-power digital integrated
circuits—are needed. The access transistor connects the memory transistor’s drain to
signal ground. Since a high electric field is applied between the gate and the drain,
electrons can tunnel trough the insulator and charge the floating gate. The memory cell is
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now in its default state (erased) and the memory transistor is blocking due to the increased
threshold voltage. An EEPROM memory has only limited erasing (writing) cycles (1,000
- 100,000) and each cycle consumes typically about 5 milliseconds.

5.1.4 Memory Controller

The Memory Controller is a comfortable interface from the digital top module to the indi-
vidual memory cells, each representing a single EEPROM bit (Figure 5.6). As described
in Section 5.1.3, depending on the type of EEPROM access, the memory-cell internal tran-
sistors need a certain wiring in order to execute a functionality. The setting of the correct
signals is the main task of the Memory Controller. Over the interface, the digital top
module selects a memory address, the access mode (read or write), data input etcetera.
Then the Memory Controller checks the selected address for validity and maps the address
to a physical EEPROM address. Furthermore, it is checked if the voltage levels for the
memory access are stable and if the memory is not locked. To exclusively pick a certain
memory cell, the address is decoded into a row and a line signal (shown in Figure 5.7).
The memory-cell transistor terminals are then wired according to the selected functional-
ity. For a read access, the active memory cell forces the bit io line to signal ground if a “0”
bit is read. When a logic “1” was stored before, the memory cell enters a high-impedance
state which pulls the line up to the maximum positive voltage level over a pull-up resis-
tor. The same bit line is also used for writing a bit to the EEPROM. Since the memory
cell works with other voltage levels than the Memory Controller, level shifters are needed
to convert between the two voltage-level domains. Besides the level shifters, other analog
parts like voltage regulators or charge pumps to generate the high voltages that are needed
for the memory cells to work correctly are used. Furthermore, comparators are needed to
signal the Memory Controller that an EEPROM functionality is available or not.

5.1.5 I2C and One-Wire Interface

Besides the UHF interface, the implemented EPC Gen 2 tag has two wired interfaces to
communicate with external devices and to establish access to the tag functionality and
the EEPROM. The I2C interface is — according to its specification[48] — “a simple bidi-
rectional 2-wire bus for efficient inter-IC control”. The name is derived from its intended
use to interconnect integrated circuits (IIC - I2C). For a bidirectional connection with an
8-bit data bus, the transfer rate is between 100 kbit/s (in Standard mode) and 3.4 Mbit/s
(in High-speed mode). With the so-called Ultra-Fast mode, an unidirectional connection
with up to 5 Mbit/s data-transfer rate can be achieved. A simple I2C connection contains
at least a master device and one or more slaves (see Figure 5.8). For complex connections
with more than one master, an additional bus arbitration and collision detection is needed.
Each slave has a unique bus address by which the slave is selected at the beginning of a
data transfer. The two communication wires are called SDA (data line) and SCL (clock
line). Both wires are connected to a pull-up resistor that pulls the lines high when no
device forces the line to the signal ground. Only masters can force the SCL line. Theo-
retically, an unlimited amount of slaves could be connected to one master, but because of
the increasing capacitance — when a slave is added — this would lead to a slower transfer
rate. At the moment the I2C bus allows only 7 or 10 (less used) address bits. Figure
5.9 shows the two signal lines from the beginning to the end of an I2C transaction. Ev-
ery transaction begins with the START condition where the master forces SDA to signal
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ground while SCL is still high. During further communication, the clock remains under
the control of the master but the SDA line is shared. Regardless of whether the master or
the slave controls the SDA line, it has to be stable during the clock is high. The STOP
condition signals that a transaction is complete, which is defined as an SDA signal transfer
from low to high while the clock remains high.
After the master starts a transaction by performing a START condition (Figure 5.10),
one slave address is transmitted followed by a bit that selects a read (high) or write (low)
transaction. For the ninth bit (ACK) the master releases the SDA line. The slave that is
associated with the transmitted address acknowledges the request with a low SDA signal.
Depending on the transaction type (read or write), either the master or the slave starts
sending data and the device has to acknowledge every transmitted byte until the STOP
condition is sent.

The One-Wire Interface (OWI) uses only one wire to establish a bidirectional com-
munication with data rates between 1 kbit/s up to 125 kbit/s. The same line is also used
for external power supply of the tag over a capacitor, which is either part of the chip or
is connected from the outside (Figure 5.11). Furthermore, a diode is needed to ensure
that the energy flow is unidirectional and the capacitor does not feed the energy back over
the communication wire. Compared to the I2C protocol, the OWI differs only in the rep-
resentation of the logic symbols and the START/STOP conditions. The communication
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wire between the master and a slave is connected to VDD over a pull-up resistor. Both
sides are able to force the line to signal ground over a transistor, which is used for signal
modulation. A logic symbol is represented by the time the line is pulled down and released
again (pulse-width modulation). Since the clock line is missing, the synchronization has
to happen implicitly. To start a transaction, the master pulls the line down for a certain
time (START condition). The low phase of the START condition defines the timing for
the bit representation (sampling points). Every bit symbol, independently from the com-
munication direction, begins with a low phase that is triggered by the master. This allows
the slave to synchronize on every single bit. Afterwards, either the master or the slave
takes control over the communication wire to generate a valid symbol. The symbol ends
with a variable high phase that must be long enough to recover the energy of the capacitor
that supplies the slave.

5.1.6 Digital UHF Component

The digital UHF component is responsible for the decoding and execution of received EPC
Gen 2 commands. The preprocessing of the UHF signal — the removing of the carrier
signal and the demodulation of the subcarrier signal— is done in the analog domain.
Besides the extraction of the data signal also the supply voltage is extracted from the
reader field and passed to the digital domain. After the analog preprocessing, the UHF
data signal (demod) is sampled and interpreted by the digital UHF component (Figure
5.12). If a valid EPC Gen 2 command is received, the Command FSM is responsible
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Figure 5.11: OWI Single Master with Multi-Slave Connection

for the extraction and checking of the command parameters and the execution of the
received command. The Command FSM is connected to a series of other components,
like the Memory Controller (Section 5.1.4), the AES Controller (Section 5.1.2), a CRC
generator (cyclic redundancy check), etcetera. Depending on the particular commands
and the current state of the EPC Gen 2 FSM, the Command FSM communicates with
these components and generates a response. The response is then encoded and passed
to the analog part of the chip via the mod signal, where this signal is modulated on the
carrier signal that comes from the reader field.

5.1.7 Analog UHF Component

Before any data can be processed by the digital part of the EPC Gen 2 tag, the signal has
to take a long way through the analog domain. When the tag’s dipole antenna enters the
reader field, the electromagnetic waves induce a small voltage (Figure 5.13). This voltage is
then rectified before a voltage multiplier (charge pump) amplifies the signal. The received
energy is saved in a capacitor and powers the voltage regulator that serves as a stabilized
voltage source for the other chip components. The band gap works as a reference voltage
source for the voltage regulator. When the chip is supplied by the voltage regulator, the
Power-On-Reset component initializes the digital components with a generated active-low
reset signal. In order to extract the modulated data signal, the subcarrier frequency of the
antenna signal is separated from the carrier frequency. This is achieved by an envelope and
low-pass filter that is attached to the signal coming out of the voltage multiplier. To finally
generate the demod signal, which is forwarded to the digital UHF component, the signal
amplitude has to be converted to match the digital signal levels. The analog-to-digital
signal conversion is performed by a Schmitt Trigger (see Hartl et al. [27] pages 373-378,
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Figure 5.12: Digital UHF Component of the EPC Gen 2 Tag

for further information). This preprocessing step also removes the ripples and produces a
clean demod signal. The opposite communication way works by influencing the reflected
electromagnetic field of the reader (called backscattering). Ideally, the tag absorbs half of
the energy that it reflects. By switching a capacitive or resistive load that is connected in
parallel to the antenna, the amount of reflected energy is influenced. The change of the
reflected energy is recognized and interpreted by a reader. For further information on the
communication principles of an electromagnetic-coupled RFID system and a UHF front-
end, see Plos[49] pages 12-13 and 18-23. As the EPC Gen 2 standard works with high
carrier frequencies —between 860 MHz and 960 MHz— the chip clock is not extracted
from the carrier frequency of the reader field. Instead, an integrated oscillator generates
the chip clock. Since the clock timing is quite critical, some kind of mechanism needs
to be implemented to calibrate the clock. Some tags use so-called phase-locked loops
(PLL) to automatically adjust the internal clock timing to match the readers data signal.
PLLs are analog modules that regulate a voltage-controlled oscillator source to match the
phase and frequency (also multiples) of a source signal. Alternatively, trim bits stored in
a non-volatile memory can be used to adjust the timing of the clock generator. Besides
the components mentioned and explained above, a variety of other analog components
exist that are related to the digital domain but will not be explained any further. These
are a random-number generator, other charge pumps and voltage regulators, comparators,
etcetera.

5.2 Implementation-Related Problems

Since the starting point of this project was an already implemented and tested EPC
Gen 2 tag with an integrated cryptographic module, the very first step was to study the
implementation and to find a project entry point. The actual implementation was done
in parallel to another big part related to testing and verification, which is discussed on
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Figure 5.13: Analog UHF Component of the EPC Gen 2 Tag

a theoretical basis in Chapter 4. The last part was the physical implementation of the
integrated circuit, which is called back-end design or physical design and is discussed in
Section 4.1. Of course a project is never completely straightforward. Concepts that look
promising at the beginning of the implementation need to be adjusted sometimes later on
to deal with new implemented functionalities. This makes it difficult to subdivide a project
into small selfcontained and sequentially processed steps. A retrospective overview of the
implementation steps is shown in Figure 5.14 . At the beginning of the implementation, the
cryptographic core was removed from the hardware design and replaced by the AES core.
Some of the cryptographic-core related parts were not removed completely but adjusted to
fit the AES core. The next step was to connect the AES core to the I2C bus. First, the I2C
module generated the control and clock signals for the AES core on its own. The AES core
interface was mapped into the I2C memory. By reading or writing to this memory region
an interrogator was able to access the AES module and its functionality. This approach
was good enough to implement the tag authentication over I2C. For the interrogator
authentication, another abstraction layer between I2C and the AES core was inserted.
The AES Controller implemented not only the finite-state machine that was needed to
create a challenge-response authentication protocol (to create a randomized challenge and
check the interrogator answer). Also solutions for synchronization of the asynchronous
control signals between the I2C module and the AES Controller, and the AES core and
the AES Controller were needed. Furthermore, the AES Controller implemented three
different clock sources to feed the AES core with a working clock during cryptographic
operations. Switching from one clock source to another is not trivial, because it must be
ensured that the old clock is not disconnected during its duty cycle and the new clock is not



CHAPTER 5. PRACTICAL IMPLEMENTATION OF AN EPC GEN 2 TAG 71

AES Core Integration

I²C to AES Connection

AES Controller Implementation

UHF to AES Connection

I²C Tag Authentication

I²C Interrogator Authentication

UHF Tag Authentication

Figure 5.14: Implementation Steps (left) and Implemented Functionalities (right)

faded in during its duty cycle. Both situations would lead to a cropped clock that could
cause malfunction of the connected flip-flops. For the UHF tag authentication, the AES
Controller was connected to the digital UHF part of the tag. Since the AES Controller
works in the same clock domain as the digital UHF part, there was no need to synchronize
the control signals. Only the finite-state machine of the AES Controller was extended
to serve the implemented UHF functionality. The following section covers problems that
occurred during the implementation steps.

5.2.1 Signal Synchronization and Metastability

Since the tag acts as a slave in the I2C communication and the master controls the clock
line, it is obvious that the I2C module and the AES Controller work in different clock
domains. To put it simple, a chip design where two or more parts work with different
clock frequencies is called an asynchronous design. When information exchange is needed
between the different clock domains, some kind of signal synchronization needs to be done.
Without the synchronization of the signals, setup and hold time violations could occur.
Figure 5.15 shows two clock domains, where the first one runs on a slow clock and the
second one samples the input signal on a faster clock. Transferred to the implementation,
the first clock domain represents the I2C module and the second one represents the AES
Controller. Since signal o rises and falls at inconvenient times, a direct connection of
signal o and signal i would lead to the noted violations. These violations lead —in simple
terms— to an unknown sampling result. At first sight, the problem results only in a
possibly missed sampling point which is detected at the next rising clock edge. Hence, the
synchronization is realized by two sequentially arranged flip-flops that are triggered on the
negative edge of clk2, which delays the sampling input at least for two clock cycles. So the
problem that the synchronization flip-flops combat is not the delay of the signal nor the
unknown sampling result. The actual problem is a characteristic of every bistable memory
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element called metastability and the resulting undefined behavior of the circuit that is
connected to it. The problems is quite understandable when the flip-flop is compared to
the mechanical system in Figure 5.16. At the beginning the ball lies on the left side of
the hill, representing a logic-“1” state of the flip-flop. A certain amount of work is needed
to bring the ball uphill over the summit until it finally remains in the “0” position. In a
digital integrated circuit there is only a small time window, called setup and hold time,
in which the signal strength (cf. force “F”) is applied to the flip-flop state. If the force
is not strong enough or long enough applied the ball will not cross the summit. This is
the case that can be compared to the missed sampling point. In a worst-case scenario the
amount of work is just high enough to bring the ball on top of the hill, where it remains
for an unknown amount of time in a state that is neither “1” nor “0”. For the flip-flop
this means that the output signal is undefined for a time that could be longer than a
whole clock period. Of course the noise, the transistor leakage current and other effects
will bring the signal sooner or later to a defined state. But for a connected flip-flop, the
metastable signal input could again lead to metastability when the setup time is again
violated and so on. The result could be undefined or incorrect behavior of one small part
of the integrated circuit that spreads all over the chip. The probability that a flip-flop
remains in a metastable state for a time that is long enough to violate the setup time of a
connected flip-flop, depends mainly on the clock frequency, the logic path between the flip-
flops and the flip-flop properties. A higher clock frequency leads to less time for a signal
transition and increases the probability for metastability. Compared to the mechanical
system, a higher clock frequency corresponds to a higher and broader hill.
Kaeslin [34] discusses the problem in Chapter 7 (pages 373 - 385) and states clearly that
metastability is unavoidable when synchronizers are needed, but the probability that this
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effect occurs can be reduced to a reasonable value. The mean time between errors (MTBE)
that are produced by a single-stage synchronizer is calculated by Equation 5.1 (Kaeslin
[34] page 380 equation 7.2).

tMTBE =
eK2∗tal

K1 ∗ fclk ∗ fd
(5.1)

In this equation fclk is the synchronizer clock frequency, fd is the frequency of the asyn-
chronous input signal and tal is the allowance time for a state change of the synchronizer
flip-flop. The allowance time is calculated as the difference of the synchronizer clock pe-
riod, the maximum propagation delay (longest combinatorial path) to the next flip-flop
and the setup time of this flip-flop (Equation 5.2).

tal = Tclk −max(tprop.delay)− tsetupff (5.2)

K1 and K2 are the metastability characteristics of the synchronizer flip-flop that should
be served by the manufacturers. According to the equation for the MTBE, there are only
three factors that designers can use to influence the robustness of the synchronizer. The
choice of designated synchronization flip-flops, with known values for K2 and K1, is not
always available. When the clock frequency can be reduced, this has an enormous effect
on the stability of the synchronizer. This can be achieved by an additional clock divider
that feeds the synchronizer. The most capable factor is the allowance time for resolving
metastability of the synchronizer.
A simple and very effective solution is to use a dual-stage synchronizer that reduces the
maximum combinatorial path length behind the first synchronization flip-flop and there-
fore increases the tal up to a factor of two. Figure 5.17 compares a single-stage synchronizer
and a dual-stage synchronizer at different clock speeds. The metastability values for the
synchronization flip-flops (K1 = 100 ps and K2 = 27.2 GHz) were taken from Kaeslin [34]
table 7.2 page 382 for a 130 nm Xillinx XC2VPro4 CLB technology. For the calculation
of the MTBE at different fclk, an fd of 10 MHz, a setup time of the connected flip-flop of
0.5 nanoseconds and a maximum propagation delay of 4 nanoseconds for the single-stage
synchronizer were assumed. For the dual-stage synchronizer the assumed propagation de-
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lay was reduced to 0.1 nanoseconds, which causes an increased tal. The graph shows that
the fclk has a huge impact on the robustness of the synchronizer. At a clock frequency
of 200 MHz the MTBE is just about 4 seconds. By using a dual-stage synchronizer, the
MTBE increases to a number that is so overwhelmingly huge that it is very unlikely that
this error ever will appear. Besides the dual-stage synchronizers, there are other multi-
stage synchronizers that are used when more synchronization robustness is needed, e.g.,
for higher clock frequencies.

5.2.2 Clock Switching

This section focuses on the problem how to switch between different independent clock
signals for a digital component, without generating glitches or cropped clocks. Figure
5.18 shows a naive approach for a clock-switching circuit. Input of the clock-selection
multiplexer are three clock signals with different frequency and a signal that selects one
of the clocks to be fed forward to the output of the multiplexer. The problems of using
this simple solution are obvious. Since a multiplexer consists of different logic gates, any
change of the input signals could cause glitches on the output. The other problem is that a
change of the clock select signal immediately causes a clock change without taking care of
the signal phases. In a worst-case scenario, the clock switching happens while the current
clock is at the very beginning of the duty cycle and the selected clock is in a low phase or
vice versa (see Figure 5.18). To solve the clock-switching problem, it can be split into two
less-complex parts. The solution for the first part of the problem is called clock-gating
and ensures that only whole duty cycles are faded in on the output of the clock-gating
cell. For the second part of the problem —the correctly timed enabling of the clock—
the dual-stage synchronizer from Section 5.2.1 is used. The remaining problem is then
rather trivial and consists mainly of a logical OR gate that concatenates the outputs of
the clock-gating cell (Section 5.2.2).
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Clock Gating

Clock gating is a terminus that is strongly related to power-aware computing, where it is
used to dynamically disconnect components from their clock to save power. The power
saving is achieved by reducing the switching activity of components like gates or flip-flops.
When flip-flops toggle their state, power is consumed through the relatively high charging
and discharging currents. By using clock gating, the number of toggling flip-flops per
clock edge can be reduced to save power. Even though a flip-flop is disconnected from the
clock, a small amount of energy is consumed through a small leakage current between the
PN structures. Clock gating is supported by many EDA tools inherently, where optimized
clock-gating cells are inserted automatically to save energy. A clock-gating cell has a clock
and an enable signal input. The output of a disabled clock-gating cell is logic “0”. For
an enabled clock-gating cell the output is the correctly gated input clock. Besides the
energy saving there are other requirements that a clock-gating cell has to meet. When
the clock-gating cell is enabled, the next upcoming clock edge has to be passed to the
output immediately. The clock output must be free of glitches and the duty cycle of the
input clock must not be cropped by enable-signal glitches. Furthermore, a clock-gating
cell needs to be optimized for small delays and power consumption. There are many ways
to realize clock-gating. The first approach that would come to ones mind, is the use of
logic gates like the approach shown in Figure 5.19, left). It is obvious that this approach
is totally unsafe because enable-signal glitches are not filtered and also the state of the
clock signal is not taken into account. There are other clock-gating approaches that use
only logic gates like multiplexers or NOT/NAND gate combinations but all approaches
lack either of robustness or the energy consumption (see Kathuria et al. [36] for a good
overview). The use of latches (Figure 5.19, right) for clock gating provides the desired
robustness in terms of a clean clock output and has a good energy saving. Hence, the size
of a clock-gating cell is about 4.5 GE (according to Kaeslin, page 358). The gate clock
signal should be the clock source for multiple flip-flops. Figure 5.20 shows the timing
diagram for the clock-gating cells from Figure 5.19. In contrast to the and gated clk signal
that cuts parts of the input clock away, the latched gated clk contains only complete clock
cycles. Even though it is quite easy to build a latch-based clock-gating cell in Verilog
or VHDL, it has to be ensured that the inherited clock-gating cells of the according cell
library are used. The use of EDA supported clock-gating cells is necessary to guarantee a
regular clock distribution with a compensated jitter behaviour.
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Clock-Switching Solution

The first step of the clock-switching solution (Figure 5.21) is to synchronize the enable
signals coming from a superior controlling instance that runs in a different clock domain
than the clock signals on the clock-switching input (e.g., the AES Controller selects the
clock source of the AES core by setting one en signal). It has to be taken care that only
one en signal is activated simultaneously. By switching from one clock to another, the
Controller is responsible that enough time has passed between switching off the current
clock source and activating another one. If there is not enough time in between, two or
more clocks could run concurrently and produce an invalid clock signal on the output of
the OR gate. After the enable signal has been synchronized to the current clock domain, it
is forwarded to a clock-gating cell that takes care, that the chosen clock is neither cropped
nor glitches will appear on the output of the clock-gating cell (Section 5.2.2). The clean
clock signal is then passed to an OR gate that connects all clock-gating cell output signals.
Since only one cell is active, the OR gate delivers a clock signal that is qualified to be the
clock input of a component.



CHAPTER 5. PRACTICAL IMPLEMENTATION OF AN EPC GEN 2 TAG 77

clk [n:0]

en [n:0] D Q D Q

Synchronization Clock Gating

en
≥1clk

Figure 5.21: Clock-Switching Solution for Multiple Independent Clock Sources

5.2.3 Handshaking

In an asynchronous design, where two modules need to synchronize their work but the
clock frequency of one module is not known at the beginning or could also vary, a universal
handshaking solution is worthwhile to be found. The idea is to find a solution that
is independent from the clock frequencies of the participating modules and can be easily
reused for other modules. Figure 5.22 shows a problem that will occur sooner or later when
the handshaking between two modules is not implemented properly. It is assumed that
the signal-synchronization problem between the two modules (Section 5.2.1) has already
been solved. Module B waits for a request to start working and therefore samples the
request input signal. Eventually, Module A sends a request and since the time between
two sampling points of Module B is less than the request length, the request is detected.
While the request is handled, Module A waits for an acknowledge signal to take up its
work again. Depending on the time the request was detected, the acknowledge signal will
appear inside a certain time window. If the sampling point of Module A does not lay
inside this window, the acknowledge is missed and Module A is starving. On the other
hand, when the working speed of both modules drifts apart even more, the request signal
might appear longer than the handling of the request takes. This could not only lead to a
missed acknowledge but also to a request that is handled more than once. The problems
also occur when the working frequencies of the modules are exchanged. Therefore, it is
necessary to find a way to be independent from the sampling speed in both directions. The
approach in Figure 5.23 uses a shared RS flip-flop to buffer the request and acknowledge
signals. This ensures that no request or acknowledge signal is lost because of a too low
sampling rate. It has to be taken into account that the req mst and ack slv signals must
not be high at the same time. To guarantee this, the time for request handling must
exceed the request time and the time interval between two requests must be long enough.
If this cannot be guaranteed, a further “mutual-exclusion logic” needs to be added (e.g.
[¬req mst ∧ Q] between Q and the synchronizer to ensure that req mst must transit to
low before the slave gets the signal to start working). The timing diagram in Figure 5.23
shows the signal transitions according to the successful handshake procedure of Figure
5.22. By setting req mst to high the request phase starts and the RS flip-flop saves the
request. After two clock cycles the synchronization of the request signal has finished and
the slave starts working. During the request-handling phase the next clock edge of the
master appears and releases the req mst signal. At the end of the request-handling phase,
the slave pulls the ack slv signal to high which triggers the reset of the RS flip-flop. The
acknowledge phase lasts from resetting the RS flip-flop until the synchronization of the
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negated Q signal is done. This approach can also be used when the clock frequency of the
master is higher than the slave’s clock frequency. However, it has to be ensured that the
ack slv pulse is short enough so it cannot coincide with the next req mst pulse. Otherwise,
the mutual-exclusion logic needs to be implemented to assure that the synchronization
procedure of the master is delayed until the slave releases the ack slv signal.
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Chapter 6

Conclusions

In this thesis, the digital design of a security-enhanced UHF RFID tag was shown. The
basis of this work was a digital EPC Gen 2 tag design, which was extended to serve differ-
ent kinds of secure authentication methods. Authentication methods are used to identify
the tag itself or the reader to the other communication party. A secure and effective way
for authentication are challenge-response protocols that use symmetric-key cryptography.
For these cryptographic operations an AES (Advanced Encryption Standard) core was
added to the existing system and connected to a controller. This AES-controller com-
ponent implements the authentication functionality and the controlling of the AES core
by generating the bus signals. Besides the authentication via the air interface, the AES
controller also implements the “Tag Authentication” and the “Interrogator Authentica-
tion” methods over the I2C interface. The biggest challenges of the practical part of this
work were related to asynchronous design problems. Such problems occur when two or
more modules of the digital system are fed with different clocks. At the interface of these
modules it has to be ensured that the timing of the input signals is not violated to avoid
metastability of the flip-flops which could cause malfunction and undefined behavior of
the circuit. Different kinds of asynchronous design problems were explained and solutions
discussed.
Classical verification approaches are unfeasible for complex digital designs because the
effort for testing every design feature is too high. With classical methods like Tcl scripts
or Verilog test benches the estimation of the verification progress gets easier. In this work
the design methodologies OVM/UVM and their advantages were elucidated which are
the standardization of the verification process, the flexibility and reusability for similar
designs, checking of specified but missing functionality, better coverage metrics, etcetera.
In order to provide a broader view on the RFID topic, the thesis was introduced by a
historical overview followed by a chapter on the state-of-the-art RFID technology where
different fields of applications, different kinds of transponders and relating differentiation
features were shown. Since the implemented tag was a UHF tag, this technology was
explained in more detail from the generation of electromagnetic waves and the usage as a
communication medium to the used communication protocol. The EPC Gen 2 protocol
is very complex and supports optional cryptographic commands based on so-called cryp-
tographic suites. To make the implemented UHF authentication functionality clearer an
insight was given into the different protocol phases and the related commands. In another
part of the work the different ways of implementing authenticity-provisioning methods
were discussed and it was stated that challenge-response protocols with symmetric-key
cryptography provide a good trade-off between security and implementation costs for a
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constrained RFID tag. The AES algorithm was introduced as an example of a symmetric-
key block cipher and afterwards it was shown how the cipher can be used to implement
different authentication methods. Another part was about privacy and it was stated that
this is one of the major problems for the adoption of RFID systems, and because of the
missing privacy features the technology still lacks consumer acceptance. It was also stated
that security and privacy are not different words with the same meaning and that a se-
cured communication does not automatically preserve privacy. Afterwards, some works
on privacy were discussed and physical and protocol-related solutions for privacy preserv-
ing were shown. Finally, a hash-based authentication protocol with privacy preserving
features was illustrated and described in more detail.
The research on privacy features for RFID tags still seems to be unfinished and a global
privacy-standard for RFID applications is missing. In order to become the technology
that it was hyped to be and to reach the “plateau of productivity” (cf. Gartner’s hype
cycle) the privacy issues need to be fixed.



Appendix A

Definitions

A.1 Abbreviations

AES Advanced Encryption Standard
ASK Amplitude-Shift Keying
CRC Cyclic Redundancy Check
DBP Differential Biphase (Coding)
DES Data Encryption Standard
DUT Device Under Test
EAN European Article Number
EAS Electronic Article Surveillance
ECC Elliptic-Curve Cryptography
EEPROM Electrically Erasable Programmable Read-Only Memory
EIRP Effective Isotropic Radiated Power
EPC Electronic Product Code
EPC Gen 2 Electronic Product Code Generation 2
FSK Frequency-Shift Keying
FSM Finite-State Machine
GS1 Global Standards One
HDL Hardware Description Language
HF High Frequency
HVL Hardware Verification Language
IEEE Institute of Electrical and Electronics Engineers
ISBN International Standard Book Number
ISM Industrial Scientific and Medical
LF Low Frequency
Nonce Number Used Once
NRZ Non Return to Zero (Coding)
OOP Object-Oriented Programming
OVM Open Verification Methodology
PSK Phase-Shift Keying
RF Radio Frequency
RZ Return to Zero (Coding)
RFID Radio-Frequency Identification
ROM Read-Only Memory
RSA Rivest, Shamir and Adleman (Cryptography)
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RTL Register-Transfer Level
SRD Short-Range Device Frequencies
TID Tag Identifier
TLM Transaction-Level Modeling
UHF Ultra-High Frequency
UID Unique Identifier
UVM Universal Verification Methodology
VLSI Very Large Scale Integration

A.2 Used Symbols

AE Effective Aperture
AS (Back)Scatter Aperture
c Speed of Light
f Frequency
Gi Antenna Gain Factor
GND Common Ground Identifier
λ Wave Length
RR Nonce generated by the Reader
RT Nonce generated by the Tag
S Power Density
σ Radar-Cross Section
T Signal Period
VDD Supply-Voltage Identifier
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