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Engine Temperature Nodel for
Air-Cooled 2-Stroke Engines

How to reach emission reduction with low technical complexity in the sector of small 2-stroke engines?

In the sector of hand held power tools 2-stroke engines are still the major propulsion technology. With this engine concept it will be very challenging to fulfill the upcoming regulations regarding emissions. In general these
engines are very cost sensitive and complex technologies have to be avoided. A promising approach to address these difficulties is the use of an electronic carburetor or a fuel injection system for more accurate fuel metering.
In combination with sensors that detect environmental conditions and the engine state an ECU (engine control unit) can perform optimized operations strategies. However, the use of sensors in this engine segment is very
difficult. The cost factor and reliability issues are the main reasons for this. A way to avoid a sensor and still be able to predict a physical value is to implement a model of the system that requires available parameters only.
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Modelled engine: Modelling approach Test bench measurements Thermodynamic Analysis
e A5cm3 Aim Measurement of: Assumptions and input parameters for determination of the effective in-
e 2.2KW@9000min- e Create a simple model with real-time capability (ECU) e Exhaust gas composition cylinder heat transfer coefficient and gas temperature
e 2-stroke e Calibration of the model with test bench measurements e Exhaust gas temperature * In-cylinder heat transfer model (Woschni/Huber) 1990
« Air cooled Approach * Engine temperature (spark plug) * Mass flow of aspirated air derived from the measured fuel mass flow and
 Stratified * Partition of the engine in four major thermal cells * Mass fuel flow the exhaust gas composition
scavenging — Cylinder top * Engine speed and torque * Trapping efficiency of air and fuel derived from the exhaust gas
« Hand held — Cylinder intake side * In-cylinder pressure composition
application — Cylinder exhaust side at various operating points * Residual gas concentration derived from previous studies (3D-CFD)

* Fuel Specification (C/H/O ratio, caloric value)

 Temperature of cylinder and piston

Assumption for determination of the heat transfer coefficient between the
cells and the environment

* Empirical models according to literature (flow through cooling fins)

— Piston
* Heat source = convection combustion gas into cells, friction
* Heatsink -2 convection cells into environment
Necessary model parameters
* Geometry, heat conduction coefficients , heat transfer coefficients
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Simulation Stationary Operation Simulation Transient Cycle Summary and Outlook
e Good correlation between test bench Cell mass according to CAD data: Chosen solution to improve transient * Sensors in small air-cooled 2-stroke
measurements and simulation * Temperature differences behavior: engines challenging to implement
results higher temperature gradient in the In order to maintain the simplicity of the = models instead of sensors
simulation model, the mass of the thermal cells was
At some operating points differences - due the neglected engine components scaled by a multiplication factor * Athermal model for air-cooled 2-stroke
of ~20°C (crankcase, crankshaft, ...) — improved transient behavior engines was implemented and calibrated
 Solution strategies - low calibration effort —>simple model can be calculated in a ECU
- additional thermal cells —calibration of the model by the analysis
- adjustment of parameters Parameters adjusted of a small set of test bench measurements
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