Derivatization of Silylated Heptaphosphanes

Pierre Noblet < noblet.pierre@TUGraz.at>, Vittorio Cappello, Judith Baumgartner, Karl Hassler

Department of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 16, A-8010 Graz, Austria

Introduction .

It is long known that the reaction of sodium-potassium phosphanide Na_3P/K_3P with chlorosilanes $ClSiR_3$ proceeds to the heptaphosphanes $P_7(SiR_3)_3$ ^[1]. Here we report on the reactions of two silvlheptaphosphanes, $P_7(SiMe_3)_3$ and $P_7[Si(SiMe_3)_3]_3$.

Synthesis and Reactions .

P₇(SiMe₃)₃

By reaction of $P_7(SiMe_3)_3$ with one equivalent of KO'Bu or LiO'Bu, different isomers of the monoanion $[R_2P_7]^-$ (**A** or **B**) can be prepared. Contrary to the results of G.Fritz^[2], we found that both salts of $[(SiMe_3)_3P_7]^-$ are thermally stable for days.

The use of one equivalent of NaOtBu led to a mixture of symmetric and asymmetric monoanions ${f A}$ and ${f B}$.

From these monoanions, we were able to synthesize $(\text{SiMe}_3)_2 P_7 \text{Si}_2 \text{Me}_4 P_7 (\text{SiMe}_3)_2$. The reaction of A or B with Si(SiMe_3)_3Cl led to a mixture of at least three compounds $P_7(\text{SiMe}_3)_3, \qquad (\text{SiMe}_3)_2 P_7 \text{Si}(\text{SiMe}_3)_3, \qquad (\text{SiMe}_3)_2 P_7 \text{Si}(\text{SiMe}_3)_3, \qquad (\text{SiMe}_3)_P_7 \text{Si}(\text{SiMe}_3)_3 P_7$

The reactions with MgBr₂, HgCl₂, MgBr₂Et₂O, BrCH₂CH₂Br, DMF, ¹BuOH, Ph₂SnCl₂ gave differents results : either a degradation of the P₇-cage or a reformation of the starting product P₇(SiMe₃)₃.

We also discovered a new direct route for the preparation of the well known hexadecaphospanide $[P_{16}]^{2^{\rm c}}$ using an excess of KO^IBu (1:2) $^{[3]}$.

$P_7[Si(SiMe_3)_3]_3$

Due to the bulkiness of the substituent, $P_7[Si(SiMe_3)_3]_3$ reacted with KO'Bu or LiO'Bu in a way very different from $P_7(SiMe_3)_3$.

With one equivalent of KOtBu, a SiSi-bond instead of a SiP-bond was cleaved. A rearrangement occured quickly and led to the compounds C and D.

The reaction with one equivalent of LiO^Bu produced the asymmetric monoanion Li+[P₇[Si(SiMe₃)₃]₂]⁻ which further reacted with CF₃COOH to give [Si(SiMe₃)₃]₂P₇H. Here we report on the first crystal structure of a cage P₇R₂H.

Conclusion and Outlook

We showed that we can prepare preferentialy ${\bf A}$ or ${\bf B}$ using KOIBu or LiOIBu. Is this also possible with other silylsubstituents ?

We were able to link two cages starting from **A** and **B**. We plan to synthesize polymers starting from the heptaphosphanide ions $[P_7R]^{2}$. Further work in this field is in progress.

Acknowledgement

Austrian Science Foundation (FWF) – Project P19167

References .

[1] Schmidbaur H; Bauer A. Phosphorus, Sulfur, and Silicon, 1995, 102, 217-219

[2] Fritz G.; Uhlmann R. Z. Anorg. Allg. Chem, **1978**, 440, 168-170.
[3] Milyukov V.A.; Kataev A.V.; Sinyashin O.G.; Hey-Howkins E. Russian Chemical Bulletin, **2006**, *55*, 1295-1296.