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Abstract

In a Time Projection Chamber (TPC), the possible ion feedback and also the primary ionization of high
multiplicity events result in accumulation of static charge inside the gas volume (space charge). This
charge introduces electrical field distortions and modifies the cluster trajectory and shape along the drift
path, affecting the tracking performance of the detector. In order to calculate the track distortions due to
an arbitrary space charge distribution in the TPC, the Green’s function for a TPC geometry was worked
out. This analytical approach finally permits accurate predictions of track distortions due to an arbitrary
space charge distribution by solving the Langevin equation.

Basic concept

Figure: Simulated TPC hits

1. Analytical solution of the LAPLACE equation: Green’s function for a coaxial cavity

Three representations of the Green’s function with different
convergence regions were derived. Each one is a sum over
two of the three labels of the eigenfunctions of the homoge-
neous boundary value problem. The coefficients correspond
to one-dimensional Green’s functions in the third variable,
which are found by the method of particular integrals. An-
other method to derive solution (2), which leads to the same
result, is given in [1]. The third representation is an innovative
one using modified Bessel function of purely imaginary order,
which can also be derived by a Sommerfeld-Watson trans-
formation. These Green’s functions lead to fast converging
representations for every electric field component (Er ,Eφ,Ez)
for any 3D space charge distribution ρ(r , φ, z) within a TPC
field cage, and not only radially symmetric ones. The detailed
derivations can be found in [2].
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Figure: Regions of slow convergence

Simulated space charge distributions and resulting potentials (E field components)
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Figure: Expected scenario; left: space charges; right: resulting potential

Pb-Pb collisions were simulated (HiJing) in order to
estimate the charge distributions from single events
and the pile up within the gas volume.

Possible Ion sources:
1. PI: Primary Ionization from the tracks within the

gas volume
2. ROC-IFB: Ion Feedback from tracks within the

read out chamber (from the prev. event)
3. ILK: Ion leakage − typically suppressed by the

gating grid

Numbers and possible scenarios for the Alice TPC:
Ion clearing time (drift volume): ∼ 0.156s
Pile-Up: ∼ 480 min.bias (at a event rate of ∼ 3000Hz)

I Expected: PI plus ROC-IFB: (basically radialsy-
metric) ρ(r , z) ≈ (3− 0.9 · z)/r2 × 10−10C/m3

I Unlikely: Additional ILK due to unexpected prob-
lems with the gating grid
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Figure: Unlikely scenario; left: space charges; right: resulting potential

2. Solving the LANGEVIN equation: Lorenz angle calculations
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Magbolz vs. Langevin calc. for E=400 V/cm, B=0.5 T
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Figure: NeCO2N2 gas - solid lines: Magboltz; dotted lines: Langevin

I Lorenz angle depends on the gas composition and
the angle between the E and B field

I It can be calculated by means of MC techniques
(see Magboltz [3]) or by solving the Langevin
equation (for const. mobility µ)

I Sizable differences between the Magboltz and
Langevin velocity components are possible

Two example gases:

1. NeCO2N2 (90/10/5) (e.g. Alice TPC): ωτ∼0.31
→ good agreement (∆φmax∼0.1◦)

2. P10 - ArCH3 (90/10) (e.g. Star TPC): ωτ∼2.01
→ good agreement at small angles, but not for
large ones (∆φ∼1◦ at ∠(E,B)∼10◦)
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Magbolz vs. Langevin calc. for E=135 V/cm, B=0.5 T

Angle between E and B [degrees]

A
ng

le
 re

sid
ua

ls 
[d

eg
re

es
]

φE×B

φBtrans

Lorenzangle

Figure: P10 gas (ArCH4) - solid lines: Magboltz; dotted lines: Langevin

Expected space point distortions in the Alice TPC
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Figure: Space point distortions due to
B field inhomogeneities

By solving the Langevin equa-
tion e.g. within Garfield [4] we
can include nearly every effect
which disturbs the drifting elec-
tron:
I inhom. B field
I inhom. E field due to space

charges or field cage imper-
fections

I gas density properties like
drift velocity and diffusion
(and P/T variations)

(∆r ,∆φ,∆z)
∝

(∆B,∆E,∆N)
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Figure: combined effect of B field and
expected space charges

Summary & Outlook

I We present a fast converging analytical solution of the Laplace equation for a typical TPC
geometry which can be used to calculate the electric field inhomogeneities due to arbitrary
space charge configurations

I We show that the Langevin approximation of the Lorenz angle is sufficient for a gas composi-
tion of NeCO2N2 as used in the Alice TPC

I Now possible: Fast and accurate predictions of space point distortions due to space charges
and more ...

I FUTURE PLANS: Locating space charge clouds within the gas volume through laser measure-
ments and an inverse model which can be used for an event-by-event space charge correction
within TPCs
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