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Preface 
 
 
In many fields of engineering it is necessary to determine the solutions of systems of 
nonlinear polynomial equations with several indeterminates.  
 
Computing a lexicographic Groebner Basis from the original input polynomials, and 
subsequently the solutions points, is a promising procedure. Many commercially available 
software packages offer the computation of Groebner Bases. However, problems that involve 
polynomials of  high degree and/or with many indeterminates cannot be solved. Allthough, in 
theory the algorithm eventually terminates, the demand of memory and computations to be 
performed often exceeds the capabilities of the computer.   
 
The software package gfloat, that is introduced in this thesis, computes all solutions of a 
system of polynomials. Using gfloat the computational effort to compute a lexicographic 
groebner basis is significantly reduced, thus it is often possible to obtain results, where 
commercial software fails. Two specific approaches are used to improve the performance: 
(1) The usage of floating point/modular coefficients for the polynomials  
(2) Computing a lexicographic Groebner Basis indirectly by conversion from a total degree 
reverse lexicographic Groebner Basis. 
 
I wish to thank Prof. Peter Dietmaier for his patience, advice and support during the long 
process of work on this thesis. Also I want to thank Dr. Siegfried Lösch, the original creator of 
gfloat [Lösch 1996] who introduced me to the world of Groebner Bases and gave me a great 
deal of inspiration. 
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1. Groebner Bases 
 
 
This section will NOT dig into the mathematics of Groebner Bases, it will just provide the 
mathematical techniques that were required to make the software gfloat. From a 
mathematical point of view it will not be of any interest, because no formal proofs are given - 
the focus is strictly on explaining general ideas of the algorithms that are used. It is the goal 
that a reader with no experience in abstract algebra could actually use this paper as a 
manual to rewrite gfloat. So all algorithms used in gfloat are explained and lots of examples 
are given. Over the whole section, the paper largely follows the ideas developed in  
[Cox, Little, O’Shea 1992] and [Becker, Weispfennig 1993]. 
Still abstract description is being used: it is the main advantage of abstract algebra, that it 
describes properties of strictly defined objects, no matter what the actual nature of the object 
is. In the case of this paper we will see that the concept of residue class rings finds its 
application on modular arithmetic as well as the transformation of the monomial ordering of 
Groebner Bases.  
First we will define some objects that will be used over and over again. 
 
 

1.1 Basics 
 
1.1.1 Algebraic objects 
 
(1.1.1.1) 
 
A commutative ring consists of a set R and the binary operations ⋅ + and – (i.e. multiplication, 
addition and subtraction). The operations are defined on R and satisfy the following 
conditions for all a,b,c ∈ R 
 
(i) (a±b)±c = a±(b±c) and (a⋅b)⋅c = a⋅(b⋅c) - the operations are associative   
(ii)  a±b = b±a and a⋅b = b⋅a - the operations are commutative 
(iii)  (a±b)⋅c = a⋅c±b⋅c - the operation ⋅ is distributive 
(iv) There are neutral elements 0,1∈ R such that a = a±0 and a = a⋅1 
(v) The operation - is the inverse of + such that a - b = 0. 
 
 
The most common commutative ring is the set of integers Z, multiplication addition and 
subtraction are defined for Z, zero and one are its neutral elements. In this paper we will 
mainly find the commutative ring k[x1, x2, ..... xn] i.e. the set of all polynomials in the 
indeterminates x1, x2, ..... xn with the monomial coefficients from the field k. 
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(1.1.1.2) 
 
A field consists of a set R and the binary operations ⋅ / + and – (i.e. multiplication, division, 
addition and subtraction). The operations are defined on R and satisfy the following 
conditions for all a,b,c ∈ R 
 
(i) (a±b)±c = a±(b±c) and (a⋅b)⋅c = a⋅(b⋅c) - the operations are associative   
(ii)  a±b = b±a and a⋅b = b⋅a - the operations +-⋅ are commutative 
(iii)  (a±b)⋅c = a⋅c±b⋅c and (a±b)/c = a/c±b/c  - the operations /⋅ are distributive 
(iv) There are neutral elements 0,1∈R such that a = a±0 and a = a⋅1 
(v) The operation - is the inverse of + such that a - a = 0. 
(vi) The operation / is the inverse of ⋅ such that  a / b = 1. 
 
So a field has the same properties (i) to (v) as the ring - so every field is a ring - additionally 
division is defined over R. The set of rational numbers Q, the real numbers R or the complex 
numbers C are fields. The set of integers Z is not a field because a division of two integers 
not necessarily yields another integer. 
 
Dealing with algebraic equations polynomials are the principal objects being used. 
Polynomials in just one variable x1 are called a univariate polynomials, ones with using 
more variables x1, x2, ........ xn are called polyvariate polynomials.  
 
 
 (1.1.1.3) 
 
A monomial in n variables x1, x2, ........ xn is a product of the form 
 

ααααα =⋅⋅⋅⋅ xx......xxx n321
n321  

 
where all of the exponents α are non - negative integers. 

The total degree |α| of the monomial xα is defined as |α| =  α1 + α2 + .... + αn . 
 
 
(1.1.1.4) 
 
k being a field, a polynomial f in  x1, x2, ........ xn is a finite linear combination of monomials 
in the form  
 
        f a x

m

m

m
= ⋅∑ α

α       a k∈  

aαm are the coefficients of the polynomial, each expression xαm is called a term, 

and  aαmxαm is a monomial. 
The total degree deg(f) of the polynomial f  is defined as the maximium |αm| .
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The poynomial g = 5x2y3z - 3y2z2 + 7xz2 - 3  for example lies in k[x,y,z] with k =Z. 
It has four monomials and the total degree deg(g) = 6. 
For the time being just use integer coefficients will be used, later we will introduce 
polynomials with modular coefficients and floating point coefficients. 
 
 
1.1.2 Monomial Orderings 
 
Taking an univariate polynomial that consists of the terms 2, -3x2, 5x and 8x3 we would 
intuitively write it in the form f = 8x3 - 3x2 + 5x + 2. What we do is sorting the terms of the 
polynomial by decreasing degree of the monomials. 
Taking a polynomial g in k[x,y,z] consisting of the terms 3xy2, -7z3 and 5xz one can easiliy 
realize that the monomials 3xy2 and -7z3 both have a total degree of 3. Which one should be 
written first in the polynomial? We obviously need more complex rules to sort the monomials 
of polyvariate polynomials. 
 
 
(1.1.2.0) 
 

A monomial ordering on k[x1, x2, ..... xn ] is any relation > on the set of monomials xα that 
satisfies the following: 
(i) > is a total ordering. 

 That means that every strictly decreasing sequence of terms xα   
   α(1) > α(2) > α(3) > .........   
 eventually terminates. 

(ii) If xα > xβ and γ ∈ +
0Z  then xαγ > xβγ . 

(iii) > is a well ordering. 

 That means that every set of terms xα  has a smallest element under > 
 
 
There are several different monomial orderings. For our purposes we need two of them, 
the lexicographic ordering denoted as >lex and the total degree reverse lexicographic 
ordering, denoted as >tdegrevl 
 
 
1.1.2.1 Lexicographic Ordering 
 
(1.1.2.1) 
 

Let xα and xβ be terms in  k[x1, x2, ..... xn ] and α =(α1, α2, .... αn ),  β = (β1, β2, ... βn) be 
the exponent vectors of the terms. 

We say xα  >lex xβ if, in the vector difference α - β, the left-most nonzero entry is positive. 
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Some Examples in k[x,y,z] with the ordering x >lex y >lex z: 
 
(1) xy2 >lex y3z3 since  
 α =(1,2,0),  β = (0,3,3) and α -β = (1,-1,-3) 
(2) xy2z3 >lex xy2z since  
 α =(1,2,3),  β = (1,2,1) and α -β = (0,0,2) 
 
Please note that there are many different >lex orderings, corresponding how the variables 
are set e.g. z >lex x >lex y is a different ordering from x >lex y >lex z. In fact for n variables 
there are n! lexicographic orderings corresponding to the permutation of the position of the 
variables. 
 
Taking the monomials from the above example with the ordering z >lex x >lex y we get 
 
(1) z3y3 >lex xy2 since  
 α =(3,3,0),  β = (0,1,2) and α -β = (3,2,-2) 
(2) z3xy2 >lex zxy2 since  
 α =(3,1,2),  β = (1,1,2) and α -β = (3,0,0) 
 
The lexicographic ordering has its name because it is like the alphabetic ordering used in 
dictionaries and telephone books. The exact definition of alphabetic ordering would be a 
lexicographic ordering with a > b >c > ..... > y > z. 
 
 
1.1.2.2 Total Degree Reverse Lexicographic Ordering 
 
(1.1.2.2) 
 

Let xα and xβ be terms in  k[x1, x2, ..... xn ] and α =(α1, α2, .... αn ),  β = (β1, β2, ... βn) be 
the exponent vectors of the terms. 

We say xα  >tdegrevl xβ if 
 
(i)  |α| > |β| 
or 
(ii) If |α| = |β|, the right-most nonzero entry in the vector difference α - β, is negative.  
 
 
Some Examples in k[x,y,z] with the ordering x >tdegrevl y >tdegrevl z: 
 
(1) xy2z3 >tdegrevl x3yz since  
 rule (i) applies: The total degree |α |= 6 > |β| = 5  
(2) x5yz >tdegrevl x4yz2 since  
 rule (ii) applies because |α |= |β| = 7.and furthermore 
 α =(5,1,1),  β = (4,1,2) and α -β = (1,0,-1)
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As for the lex there are n! different tdegrevl orderings for n variables.  
The question may arise why we need different monomial orderings at all. It will be shown that 
applying the same algorithms -for example the Normalform algorithm and Buchberger’s 
algorithm- to polynomials sorted with respect to different monomial orderings returns very 
different results. 
Only a lexicographic Groebner Basis allows to calculate the roots of system of polynomial 
equations allthough, on the way to find a lexicographic Groebner Basis it can be useful to 
compute a total degree reverse lexicographic Groebner Basis.  
 
All monomial orderings determine the unique position of the terms within the polynomial, 
consequently one term in the polynomial will be maximimum term with respect to >. This term 
will be written first in a polynomial sorted w.r.t a certain monomial ordering >. Now this first 
term in a polynomial plays such an important role that it has a specific name: leading term 
(also calles headterm). 
 
 
(1.1.2.3) 
 

Let  f = Σxα be a polynomial in k[x1, x2, ..... xn ] and > be a monomial ordering. 
 
(i) The leading term or headterm of a polynomial f is 
 LT(f) = HT(f) = the maximum term w.r.t > 
 
(ii) The leading coefficient of f is 
 LC(f) = the coefficient ot the leading term LT(f) 
 
(iii) The leading monomial of f is 

 
)f(LC
)f(LT)f(LM =  i.e. the leading term with coefficient = 1. 

 
 
 
1.1.3 Division of Polynomials - Normalform Algorithm 
 
 
In this section an algorithm to divide a polyvariate polynomial g ∈ k[x1, x2, ..... xn] by a set of 
other polynomials f1, f2, ...... fs ∈ k[x1, x2, ..... xn ] will be described . We will see that the 
division algorithm for univariate polynomials is just a special case of the general division 
algorithm to be described. 
In order to develop analogies between the division algorithms we want to revise the 
frequently used division algorithm for a univariate polynomial g ∈ k[x1] by another univariate 
polynomial f ∈ k[x1] before we look at the generalized one. 
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(1.1.3.1) 
 
Taking the univariate polynomials g,f ∈ k[x] one can write every g as a product g = qf + r. 
Following the algorithm to find q and r is presented. 
 
Input: g, f 
Output: q, r 
 
q:= 0; r := f; 
WHILE r ≠ 0 AND LT(f) divides LT(r) DO 

 q := q + 
)f(LT
)r(LT  

 r := r - g
LT(f)
LT(r)

⋅  

 
In (1.1.3.1) g is the dividend, f is the divisor, q stands for quotient and r stands for remainder. 
So every polynomial can be written as quotient times divisor plus remainder.  
Now we will give an example for the division algorithm taking g=3x5-4x3+x2-2 and f=x2+x-2. 
After the first run of the WHILE loop we have:  
 

2xx2x3

x6x3x3
x3)2xx()2xx4x3(

234

345

32235

−++−

+−−

=−+÷−+−

 

 

where q=3x2, and r=-3x4+2x3+x-2. Obviously the term 
LT(f)
LT(r) =3x2 is designed in that way that 

the expression g
LT(f)
LT(r)

⋅  = -3x5-3x4+6x3 cancels the leading term of r. In the next run of the 

WHILE loop the term -3x2 will be added to the quotient and consequently the expression  

g
LT(f)
LT(r)

⋅  = 3x4+3x3-6x2 again cancels the leading term of the remainder r. 

So the degree of the remainder drops each time the WHILE loop is performed because the 
leading term - the one with the highest degree - is cancelled each time. 
Repeating the WHILE loop two more times we have: 
 

22-20x                    
                                

  2- 5x-x5           

x6x3x3
2xx2x3

    x6x3x3
10x5x3x3)2xx()2xx4x3(

23

234

234

345

232235

M

−++

−++−

+−−

−+−=−+÷−+−
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The leading term of the remainder r=20x-22 is not divisible by the leading term of the divisor 
LT(f) the condition of the WHILE loop evaluates to false and the algorithm terminates with the 
result q=3x3-3x2+5x-10 and r=20x-22. We can write 
 

g = 3x5-4x3+x2-2 = (3x3-3x2+5x-10)⋅(x2+x-2) + 20x-22 = fq + r. 
 
Please note that the remainder comes to its final value r=20x-22 when the leading term of the 
divisor can not divide r (or r becomes zero). 
The generalized division algorithm will be given now. 
 
 
(1.1.3.2) 
 
Given a a monomial ordering >, a polynomial g ∈ k[x1, x2, ..... xn] sorted w.r.t > and a set set 
of polynomials f1, f2, ...... fs ∈ k[x1, x2, ..... xn ] sorted w.r.t > g can be written as 
 
g = a1f1 + a2f2 + ...... +asfs + r  
 
where r, a1, a2, ......, as∈ k[x1, x2, ..... xn ]. We say g is divided by f1, f2, ...... fs. 
Furthermore r, a1, a2, ......, as are found using the following algorithm: 
 
 
Input: g, f1, f2, ...... fs  
Output:  a1, a2, ......, as ,r 
 
a1:= a2 :=  ..... as := r := 0 
p := g 
WHILE p ≠ 0 DO 
 i := 1 
 divisionoccurred := false 
 WHILE i ≤ s AND divisionoccurred = false DO 
  IF LT(fi) divides LT(p) THEN 

   ai := ai + 
)f(LT
)p(LT

i
 

   p := p - i
i

f
)LT(f

LT(p)
⋅  

   divisionoccurred :=true 
  ELSE 
   i:= i +1 
 IF divisionoccurred = false THEN 
  r:= r + LT(p) 
  p:=p - LT(p) 
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The generalized division algorithm follows the same principals as the one for univariate 
polynomials. 
 
•  As a result the dividend g will be written as a linear combination of the divisors  

f1, f2, ...... fs plus a remainder r. 
•  The algorithm consequently eliminates the leading terms of the dividend p using the 

headterms of the dividends. 
•  The remainder r is changed if none of the leading terms of the divisors divides the  

leading term of the dividend, when this happens the headterm of the dividend p is 
moved to the remainder. 

 
As there are several divisors, it may be possible that several of their laeding terms divide the 
leading term of the dividend. If this happens the first polynomial in the list of divisors will be 
used to eliminate the headterm of the dividend. 
 
We will take g=x2y2-x2y-3xy+6x2 and f1=y2-2x, f2=x2y+3xy as an example, the polynomials 
are sorted w.r.t. tdegrevl ordering. 
Both, the leading terms of f1 and f2 divide the headterm of the divisor, so we take the first 
polynomial f1. After elimination of the headterm by multiplying f1 with the factor x2 and 
subtracting this from g we find the situation: 
 

( ) ( )
( )

0r   , x6xy3x2yx

x2yx
0xy3xy

xx2yx6xy3xyyx

232

322

2

22
2222

=+−+−

+−

⋅+
⋅−

=+−−

 

 
The headterm of p, LT(p)=-x2y is not divisible by LT(f1)=y2, so we take f2 multiplied by –1 and 
subtract it again: 
 

( ) ( )
( ) ( )

 0r  ,    x6            x2           

xy3+          yx
0r   , x6xy3x2yx

x2yx
1xy3xy

xx2yx6xy3xyyx

23

2

232

322

2

22
2222

=+

+

=+−+−

+−

−⋅+
⋅−

=+−−

 

 
The new leading term 2x3 is not divisible by LT(f1) or LT(f2) so it is added to the remainder. 
However, the new leading term of p, LT(p)=6x2 is still not divisible by one of the headterms of 
fi so we also have to add it to the remainder. Now p is zero and the algorithm terminates. We 
obtain the final result: 
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( ) ( )
( ) ( )

23

32

23

2

232

322

2

22
2222

x6x2r ,      0                                   
x2r ,      x6                               

 0r  ,    x6            x2           

xy3+          yx
0r   , x6xy3x2yx

x2yx
1xy3xy

xx2yx6xy3xyyx

+=

=

=+

+

=+−+−

+−

−⋅+
⋅−

=+−−

 

 
Note that the remainder is a sum of monomials, none of which is divisible by the leading 
terms LT(f1), LT(f2). 
In accordance with (1.1.3.2) we can write g=x2y2-x2y-3xy+6x2 as a sum of products  
a1f1, a2f2 and a remainder r, g=x2y2-x2y-3xy+6x2 = (x2)⋅(y2-2x) + (-1)⋅(x2y+3xy) + 2x3 + 6x2  
 
For the next example we will take the same monomial ordering, the same dividend g and 
even the same divisors f1,f2. The only difference is in the order in the list of the divisors, now 
f1=x2y+3xy and f2=y2-2x.  
Surprisingly the result is totally different: 
 

( ) ( )
( ) ( )

0r,                     0                        

xy3yx          
0r,                    xy3yx         

x6-                    xy3
0r,         x6xy3yxxy3

xy3yx
x3x2y

1yxy3yxx6xy3yxyx

2

2

22

222

222

2

2
2222

=

++

=−−

+

=+−−−

−−

−⋅−
−⋅+

=+−−

 

 
This time we can write g as a sum of products of f1, f2 with a zero remainder. 
g=x2y2-x2y-3xy+6x2 = (y-1)⋅(x2y+3xy) + (-3x)⋅(y2-2x).  
The generalized division algorithm has obviously some properties that are different from the 
one for univariate polynomials. 
•  The order of the divisors f1, ... ,fs matters, both in the results of the remainder r and  

the factors  a1, ... ,as. 
•  The remainder may be nonzero, even if the dividend can be written as a sum  

g=a1f1+a2f2+...... +asfs of multiples of the divisors. 
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The Normalform algorithm is a version of the generalized division algorithm that is a 
cornerstone of the theory and applications of Groebner Bases. In principle it performs exactly 
the same operations as the generalized division algorithm, the only difference is, that it just 
delivers the remainder of the division, the factors a1  a2,...., as are not determined. Another 
difference in the algorithm is, that it does not only check the leading terms, it considers all the 
terms of the dividend. Starting from the first monomial it looks for a term t that is is a multiple 
of of one of the LT(f1),....,LT(fs), which is eliminated subsequently. If no more term in r can 
be eliminated  the algorithm terminates. 
 
 
(1.1.3.3) 
 
Given a a monomial ordering >, a polynomial g ∈ k[x1, x2, ..... xn] sorted w.r.t > and a set set 
of polynomials B={f1, f2, ...... fs} ∈ k[x1, x2, ..... xn ] the remainder r of a division g by  
f1, f2, ...... fs called the Normalform of g modulo B will be denoted as 
 
r = NF(g) mod B. 
The NF(g) mod B is found by the following algorithm: 
 
Input: g, f1, f2, ...... fs  
Output: r 
 
r := 0 
p := g 
WHILE p ≠ 0 DO 
 i := 1 
 divisionoccurred := false 
 WHILE i ≤ s AND divisionoccurred = false DO 
  IF LT(fi) divides LT(p) THEN 

   p := p - i
i

f
)LT(f

LT(p)
⋅  

   divisionoccurred :=true 
  ELSE 
   i:= i +1 
 IF divisionoccurred = false THEN 
  r:= r+ LT(p) 
  p:=p - LT(p) 
 
 
It is a key question in the theory of ideals and Groebner bases to determine if a polynomial g 
can be written as a sum g=a1f1+a2f2+...... +asfs of multiples of polynomials f1, ... ,fs. The 
normalform of g mod {f1, ... ,fs} provides an answer to that problem. As we have seen in the 
example above NF(g) mod {f1, ... ,fs} =0 is a sufficient condition for g=a1f1+a2f2+..... +asfs.
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1.2 Varieties, Ideals and Groebner Bases 
 
 

1.2.1 Varieties 
 
 
The final goal of this section is to describe a way to find the solutions of a system of algebraic 
equations. We need to define an object that describes the set of all the solutions.  
 
(1.2.1.1) 
 
Let k be a field, and let f1, f2, ...... fs be polynomials in k[x1, x2, ..... xn ]. Then we set the  
affine variety V(f1, f2, ...., fs) 
 
( ) ( ) ( ){ }  .si1 all for  0a,...,af  :  ka,...,af,.....,f,fV n1i

n
n1s21 ≤≤=∈=  

 
 
Thus an affine variety V(f1, f2, ...., fs) ⊂ kn is the geometric object in the n-dimensional 
space kn that is defined by the system of equations f1 (x1,... xn ) = f2(x1,... xn )  =  .... = fs 
(x1,... xn )  = 0. This geometric object consists of the set of n-tuples (a1,... ,an ) ∈ kn - these 
are the solution points of the system of equations fi = 0. 
The trivial solution x1 = x2 = ... = xn  = 0 always exists. Please note that apart from the trivial 
solution there can be an infinite number of solution points (if the dimension of the variety is 
greater zero) or no solution point at all (if the equations fi = 0 are contradictory), however if 
there is a finite number of non-trivial solution points we say that the variety is zero 
dimensional. 
 
Visualizing the geometric object that is being defined by the variety using the field of rational 
numbers R makes it easier to understand varieties. In the following some examples of 
varieties in Rn are given. Allthough the affine space of the variety can have arbitrary 
dimension we will only use examples in the plane R2 and the 3-dimensional space R3 . 
 
 
(1) 
The first example is set in R2[x,y]  the variety V = (y - x3 + 3x2 + 1). This is equivalent to the 
equation y =  x3 - 3x2 - 1. So this variety obviously can be represented as the graph of the 
polynomial function y =  x3 - 3x2 - 1. The dimension of the variety is one and the number of 
solution points thus is infinite. 
 
(2) 
The second example is set in R3[x,y,z] the variety V = (x2 + y2 + z2 - 9), which is the sphere 
of radius = 3 with the center located at the origin; the number of solution points infinite, the 
dimension is two. 
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(3) 
The next example has more than one polynomial, again k = R3[x,y,z] , V = (z, x2+y2+z2-4). 
The first equation z = 0 represents the plane that is spanned by the x- and y- coordinate axis, 
x2 + y2 + z2 = 9 is again a shpere. The variety is the intersection of the plane with the sphere 
which is a circle located in the plane z = 0 with the radius = 3 and the center in the origin. 
 
(4) 
Adding another polynomial we have the variety V = (x2-y2-z2-1, z, x2+y2+z2-9) ⊂ R3[x,y,z]. 
The equation x2-y2-z2 = 1 describes a hyperboloid of revolution obtained by rotating the 
hyperbola x2-y2 = 1 around the x-axis. It is easy to see that the solution is zero dimensional, 
the variety consists of four points. 

V = (x2-y2-z2-1, z, x2+y2+z2-9) = { 0z,2y,5x =±=±=  }. 
 
 

1.2.2 Ideals 
 
 
In this section the basic algebraic object of this paper will be introduced.  
 
(1.2.2.1) 
 
Let R be a ring. Taking f1, f2, ...... fs ∈ R we set the ideal I = 〈f1, f2, ...., fs〉 
 

  

Rh,...,h,h : fhf,.....,f,fI s2

s

1 = i
1iis21









∈== ∑  

 
This is equivalent to the following definintion: 
 
(1.2.2.2)  
 
Let R be a ring. Taking the f,g and h ∈R the subset I ⊂ R is an ideal if it satisfies: 
 
(i) 0 ∈ I 
(ii) if f,g ∈ I the f + g ∈ I 
(iii) If f∈ I then hf ∈ I. 
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We will now give an interpretation for ideals as a set of polynomials in the polynomial ring 
k[x1 , ... ,xn] and call this a polynomial ideal. That set can be derived from a number of 
generating polynomials. Taking an ideal I =〈 f1,f2,...,fs 〉 ⊂ k[x1 , ... ,xn] and the polynomials 
h1,h2,...,hs+1∈ k[x1 , ... ,xn] we find an element g1 of the ideal using 1.2.2.2 (iii) : 
 
g1 = h1 f1+ h2f2 + ,..., + hsfs ∈ I 
 
and further elements g2, .... ,  gt  
 
g2= h1 f1+ h2f2 + ,..., + hsfs + hs+1g1∈ I 
...... 
gt= h1 f1+ h2f2 + ,..., + hsfs + hs+1g1+ ...... + hs+t gt-1 ∈ I 
 

As we see above, every element g1 , ..., gt itself is a linear combination i

s

1i
ifh∑

=

.  

Thus a polynomial ideal I =〈 f1,f2,...,fs 〉 can be seen as the set of all polynomial consequences 
generated from the basis polynomials f1,f2,...,fs. 
 
For example we take the ideal I =〈3x-y2+xy, xy2-x2y+1〉 and the polynomials h1= x-y, h2=-2. 
Generated by the basis we can write one element of the ideal as 
 
( x-y)(3x-y2+xy) + (-2)(xy2-x2y+1) = 3x2y-4xy2+3x2-3xy+y2-2∈ 〈3x-y2+xy, xy2-x2y+1〉. 
 
Another example of an ideal in the ring of integers Z see section 1.4.1. 
In order to get a better picture about the concept of polynomial ideals an analogy with linear 
algebra can be made. Ideals and subspaces are similar: A subspace is formed by a span of 
the vectors v1,v2,......,vn the elements of the subspace are linear combinations  
a1v1+a1v2+......+a1vn with a1, ... ,an being scalars. Both, subspaces and polynomial ideals are 
linear combinations of ‘generators’. In the case of ideals the generators are polynomials 
f1,f2,...,fs instead of the vectors v1,....,vn and the generators are multiplied by polynomials 
h1,h2,...,ht instead of scalars a1, ... ,an. 
 
 
(1.2.2.3) 
 
Given an ideal I =〈 f1,f2,..., fs 〉∈ k[x1 , ... ,xn] that is generated by the polynomials f1,f2,...,fs . 
We will call f1,f2,...,fs the basis of I. 
 
Note that one ideal can have many different bases, a Groebner Basis is just one that has 
special properties. The crucial fact is now, that it is possible to change the basis of an ideal 
without changing the ideal itself. As we will see in later sections, Buchberger’s Algorithm 
produces a Groebner Basis by continuously changing the basis of a given ideal.   
Furthermore the Hilbert Basis Theorem states, that every ideal has a finite basis i.e. a finite 
number of generating polynomials.
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(1.2.2.4) 
 
A Variety that is determined by all the polynomials of an ideal I =〈 f1,f2,...,fs 〉∈ k[x1 , ... ,xn] will 
be denoted as V(I). 
Given an ideal I =〈 f1,f2,...,fs 〉 and the variety V(I) then V(I) = V( f1,f2,...,fs ) 
 
In other words: the variety determined by an ideal is equivalent to the variety determined by 
the basis of the ideal. 
This is the most important observation, because this links varieties, which are geometric 
objects, to ideals, which are algebraic objects. Every variety V(f1,f2,...,fs)is not only 
determined by its polynomials f1,f2,...,fs  but equivalently by the ideal I =〈 f1,f2,...,fs 〉 generated 
by these polynomials.  
As it is possible to change the basis of an ideal without changing the ideal itself, we now 
have a powerful tool to determine the solution points of a variety V(f1,f2,...,fs): We change the 
basis of the ideal to a groebner basis g1,g2,...,gt and determine the variety V(g1,g2,...,gt) which 
is equivalent to the variety V(f1,f2,...,fs). 
 
 

V f f V I f f V I g g V g gs s t t( ,... ) ( ,... ) ( ,... ) ( ,... )1 1 1 1
is equivalent to is equivalent to is equivalent to → =  → =  →

 
 

1.2.3 Groebner Bases and their Properties 
 
 
Following a definition for S-polynomials will be given. In later sections these polynomials will 
play a key role in computing a Groebner Basis. 
 
(1.2.3.1) 
 
Let f,g∈ k[x1 , ... ,xn] be nonzero polynomials. The least common multiple of the leading terms 
of f and g will be denoted as LCM(LM(f),LM(g)). An S-Polynomial S(f,g) is defined as 
 

g
)g(LT

))g(LM),f(LM(LCMf
)f(LT

))g(LM),f(LM(LCM)g,f(S ⋅−⋅=  

 
We take f=2x3y -3xy+1, g=3 x2y2+5x2-y as an example in R[x,y] with tdegrevl ordering. 
We find LM(f)= x3y, LM(g)= x2y2, LCM(x3y, x2y2)=x3y2, LT(f)=2x3y, LT(g)=3x2y2. 
 

S f g
y

f
x

g x y
xy y

x y
x x xy x y x

( , ) = ⋅ − ⋅ = − + − − − = − − + −
2 3

3
2 2

5
3 3

3
2

5
3 2 3

3 2
2

3 2
3 2 3

 

 
The point about S-Polynomials is, that they are cancelling the leading terms of the 
polynomials f and g. In the example the leading terms multiplid with the factors both yield x3y2 
and thus are cancelled.  
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Now we are ready for the definition of Groebner Bases. 
 
(1.2.3.2) 
 
Given a polynomial f ∈ k[x1 , ... ,xn] and an ideal I =〈 g1,g2,...,gs 〉∈ k[x1 , ... ,xn] that is 
generated by the polynomials g1,g2,...,gs . 
We will call G = {g1,g2,...,gs}a Groebner Basis of I if all the remainders rij = NF(S(gi,gj)) = 0 
where S(gi,gj) are the S-polynomials of the pairs i≠j and i,j ≤ s. 
 
This definition can be used to determine if the basis of a given ideal is a Groebner Basis. All 
we need to do is check if all possible S-polynomials reduce to zero. Considering the ideal I=〈 
y-x2, z-x3 〉 we want to check if G={y-x2, z-x3} is a Groebner Basis w.r.t. to lex ordering y>z>x 
of I. The only possible S-polynomial is S(y-x2, z-x3)= -zx2+yx3 because the pairs i=j are not to 
be checked.  
Using the Normalform algorithm one finds that NF(-zx2+yx3) mod G yields 0 and thus G is a 
Groebner Basis. 
 
 
(1.2.3.3) 
 
Let G = { g1,g2,...,gs } be a Groebner Basis of an ideal I∈ k[x1 , ... ,xn] and f a polynomial. 
 
Then r = NF(f) mod G is uniquely determined. Particularly r is determined no matter how 
g1,g2,...,gs are listed when using the Normalform algorithm. 
Furthermore NF(f) mod G = 0 if and only if f∈ I 
 
 
Now the ideal membership problem for a polynomial f can be solved. One needs to fix a 
monomial ordering, find a Groebner Basis and compute the normalform of f mod the 
Groebner Bases. If f reduces to zero f is an element of the ideal. 
 
Still every ideal has many different Groebner Bases, there are even different Groebner 
Bases with respect to a specific monomial ordering. These Groebner Bases are sometimes 
larger than necessary, some of the basis polynomials can be eliminated using the following 
criterion. 
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(1.2.3.4) 
 
Let G = { g1,g2,...,gs } be a Groebner Basis of a polynomial ideal I∈ k[x1 , ... ,xn] and gi∈ G. 
If LT(gi) is divisible by one of the other leading terms of G-{gi} then G-{gi} is also a Groebner 
Basis. 
 
In other words, if the leading term of a base polynomial gi in a Groebner Basis is divisible by 
one of the leading terms of the other basis polynomials then gi can be eliminated from the 
Groebner Basis. 
 
 
(1.2.3.5) 
 
Given a an ideal I≠{0} with the Groebner Basis G = { g1,g2,...,gs } we will call 
G’ = { g’1,g’2,...,g’s } with  g’i= NF(gi) mod G-{gi}  a reduced Groebner Basis.  
 
For a given monomial ordering > every ideal I≠{0} has a unique reduced Groebner Basis. 
 
So the reduced Groebner Basis of an ideal is obtained by reducing every base polynomial 
g1,g2,...,gs modulo the other base polynomials.  
The fact that every ideal has a unique Groebner Basis for a given monomial ordering allows 
to determine if two sets of polynomials { f1,f2,...,fs } and {g1,g2,...,gt } generate the same ideal. 
Fixing a monomial ordering and computing the reduced Groebner Basis for  〈f1,f2,...,fs〉 and 
〈g1,g2,...,gt〉, the ideals are equal if and only if the Groebner Bases are the same. 
 
 
(1.2.3.6) 
 
Given an ideal I =〈f1,f2,...,fs 〉⊂k[x1 , ... ,xn] we will call Ik⊂k[xk+1, ... ,xn] = I∩ k[xk+1, ... ,xn] 
the kth elimination ideal of I. 
G = { g1,g2,...,gs} is a Groebner Basis of I with respect to lex ordering where x1>x2>....>xn . 
Then for every 0 ≤ k ≤ n every set of polynomials  
 
Gk = G ∩ k[xk+1 , ... ,xn] = G - { g∈k[x1 , ... ,xk] } 
 
is a Groebner Basis of the kth elimination ideal Ik.  
 
This is called the elimination theorem. 
Elimination ideals Ik are subsets of the original ideal, precisely the intersection of the original 
ideal I with the subspace k[xk+1 , ... ,xn]. This subspace -and thus the subset Ik- does not 
contain any monomials with the variables x1,x2,....,xk , in other words Ik consists of all 
consequeces of f1,f2,...,fs which eliminate the variables x1,x2,....,xk. 
We obtain a Groebner Basis Gk of a kth elimination ideal Ik simply by removing all 
poynomials that contain variables x1,x2,....,xk from the Groebner Basis G. 
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For example we take the Ideal I=〈x2+y+z-1, x+y2+z-1, x+y+z2-1〉 that has a Groebner Basis 
w.r.t  x>y>z  G = { g1,g2,g3,g4 } with 
 
  g1=x+y+z2-1    g2=y2-y-z2+z 
  g3=2yz2+z4-z2     g4=z6-4z4+4z3-z2 
 
With the elimination theorem we find the elimination ideals: 
I1 = I ∩ R[y,z] = 〈y2-y-z2+z, 2yz2+z4-z2, z6-4z4+4z3-z2〉 
I2 = I ∩ R[z] =〈 z6-4z4+4z3-z2 〉 
 
Zero dimensional ideals, that is ideals of zero dimensional varieties (see 1.2.1) have special 
properties. One can show, that for every zero dimensional ideal I =〈f1,f2,...,fs 〉⊂k[x1 , ... ,xn], 
there exists an univariate elimination ideal In-1⊂k[xn] and further a univariate polynomial gs 
that generates the elimination ideal In-1 = 〈fs〉. Following (1.2.3.6) fs is the Groebner basis of 
In-1 and thus fs is the univariate polynomial with the minimum degree, because all other 
polynomials in the ideal In-1 are multiples of the Groebner base polynomial fs. So by looking 
at the degree of the univariate polynomial of a lexicographic Groebner Base one can 
immediately determine the maximium number of solutions for the variable xn. 
In our example the degree of g4= z6-4z4+4z3-z2 is 6 and there is a maximum of 6 different 
(maybe complex) solutions for z. 
 
In summary one can say Groebner Bases w.r.t a lex ordering x1>x2>....>xn  deliver a system 
of equations, that allows successive elimination of the variables. Provided that a variety is 
zero dimensional, computing a reduced lex Groebner Basis G = { g1,g2,...,gn} is a 
systematic approach to find all the solution points because the Groebner Basis will be in the 
form: 
 
  g1(x1), 
  g2(x1,x2), 
  ......, 
  gn(x1,x2,....,xn) . 
 
We find the solution values for x1 using g1. Substituting the solution values for x1 into 
g2,...,gn we find the solution values for x2 using g2 etc ..... until we have all the solution 
points. 
 
In the above example they are (1,0,0), (0,1,0), (0,0,1), (-1+ 2 ,-1+ 2 ,-1+ 2 ) and 
(-1- 2 ,-1- 2 ,-1- 2 ). 
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1.3 Computation of Groebner Bases 
 
 

1.3.1 Buchberger's Algorithm 
 
In this section systematic ways to find Groebner Bases will be explored. A Groebner Basis 
G={g1,g2,...,gt} for a given Ideal I =〈f1,f2,...,fs〉 can be produced following Buchberger's 
algorithm. 
A rudimentary version of the algorithm will be presented now, an improved, more efficient 
version that was used for the implementation of gfloat will be described later. 
 
 
(1.3.1.1) 
 
Given an ideal I ⊂ k[x1 , ... ,xn] = 〈f1,f2,...,fs 〉  the following algorithm (Buchberger's 
Algorithm) produces a Groebner Basis G = { g1,g2,...,gs } of the ideal I. 
 
 
Input:   A basis B = {f1, f2, ....., fs} of the ideal I 
Output: A Groebner Basis G = {g1,g2,...,gt} of I. 
 
P = a set of polynomial Pairs P := {fi,fj} where i≠j and i,j≤s 
G := B 
t := s 
WHILE P ≠ {} DO 
 fi,fj :=a pair in P 
 P = P - fi,fj 
 w = NF( Spoly (fi,fj)) 
 IF w  ≠ 0 THEN 
  t := t + 1 
  ft := w 
  G = G ∪ {ft} 
  P = P ∪ {fi,ft} where i<t  
 
 
The following very small example will illustrate the algorithm. Given is the ideal  
〈x3-2, x2y-2y2+x〉 using tdegrevl ordering. Before the iteration (in the WHILE loop) of the 
algorithm starts, the pairset P has to be initialized. P := {fi,fj} where i≠j and i,j≤s, so P consists 
of all possible combinations of polynomials f where fi≠fj. In the given example there are only 
two polynomials in the input basis B, so there is just one pair f1f2 in the pairset. So before 
entering the while loop, P={f1f2} and G= {f1,f2}. 
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In the first loop of the iteration, the pair f1f2 is taken from the pairset, the S-polynomial made 
from f1f2 is Spoly(f1f2) = 2y2x-x2-2y. Now the polynomial w is determined, where w is the 
normalform of Spoly(f1f2) modulo the base G. As none of the headterms of the polynomials in 
G divides any of the terms of Spoly(f1f2), it is already in normalform. So w=2y2x-x2-2y≠0 and 
the new polynomial f3=w is added to the basis G. Also the pairs f1f3 and f2f3 are added to the 
pairset. At the end of the first iteration P={f1f3 ,f2f3} and G= {f1,f2,f3}. 
 
In the second loop pair f1f3  is taken from the pairset to make the S-polynomial  
Spoly(f1f3) = 1/2x4+x2y-2y2. Please note that any pair can be taken from the pairset P; f1f3 is 
just an arbitrary choice. In the first step of the normalform algorithm f1 is used for reduction. 
With 1/2x4+x2y-2y2 - 1/2x⋅f1 w reduces to w = x2y-2y2+x. In another reduction step with  
x2y-2y2+x - f2 one finds that w reduces to zero. So at the end of the second iteration of 
Buchberger's algorithm the basis G= {f1,f2,f3} has remained unchanged, the pairset P={f2f3} 
just became smaller by the pair that was taken out to build the S-polynomial.  
 
In the third loop the remaining pair f2f3 is taken for Spoly(f2f3) = -2y3+1/2x3+2xy. This 
polynomial can be reduced once using w = -2y3+1/2x3+2xy - 1/2⋅f1 = -2y3+2xy+1. So the 
situation is P={f1f4,f2f4,f3f4} and G= {f1,f2,f3,f4}  where f4 is the polynomial -2y3+2xy+1 that 
was added. 
 
In the following loop one finds that the normalform NF(Spoly(f2f4)) modulo G yields zero 
reducing  Spoly(f2f4)=-2y4+x3y+xy2+1/2x2+y using (-y)⋅f4, y⋅f1 and 1/2⋅f3. It is easy to verify 
that the remaining two pairs f1f4and f3f4 also produce S-polynomials that reduce to zero 
modulo the base G. As there is no more pair left in the pairset P, the algorithm terminates, 
the Basis G={x3-2,x2y-2y2+x,2y2x-x2-2y,-2y3+2xy+1} is a tdegrevl Groebner Basis of the ideal 
〈x3-2, x2y-2y2+x〉. 
 
Concluding it can be said, that a Groebner Basis is obtained from an abitrary base by making 
all possible S-polynomials from the original base and applying the normalform algorithm to 
these S-polynomials. If the normalform of an S-polynomial does not reduce to zero it is 
added to the base and new S-polynomials are made with the base polynomial just added. 
The algorithm terminates when no more S-polynomials are left to be reduced. 
 
 

1.3.2 Selection Strategies and Syzygy Criteria  
 
 
This simple version of Buchberger's Algorithm shows some deficiencies: It does not produce 
a reduced Groebner Basis and it is not very efficient. The further can be resolved easily, in 
order to obtain a reduced Groebner Basis of an ideal one has to reduce every base 
polynomial  modulo the other base polynomials. This is performed by the subalgorithm 
REDUCEALL. In this algorithm every basepolynomial gi of a Basis G={g1,g2,...,gs} is being 
reduced modulo the other polynomials G-{gi}  until none of the base polynomials  is 
reduceable by G-{gi}. 
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During the iteration of Buchberger's Algorithm pairs fi,fj are selected from the pairset P and 
the S-polynomials made from the pairs are being reduced. The Algorithm produces a 
Groebner Basis no matter which of the pairs is selected, so some optimization can be 
achieved by choosing 'optimal' pairs in order to accelerate the algorithm. It has bee 
suggested to choose pairs fi,fj in P such that LCM (fi,fj) is as small as possible w.r.t the 
chosen ordering. The normalform reduction of these S-polynomial are more likely to yield 
nonzero, so new elements of the Groebner Basis are found sooner in the process of the 
algorithm. 
Another selection strategy for pairs that has been proposed, was to choose pairs fi,fj where 
the leading monomial of the headterm of the corresponding S-Polynomial is minimal w.r.t. the 
chosen ordering. 
Very effective but somewhat more complex is the so called sugar strategy [Giovini, Mora, 
Niesi, Robbiano, Traverso 1991] 
In gfloat the first pair fi,fj in P is selected for S-Polynomial. The pairs in P are being sorted 
with their LCM's being minimal w.r.t. to the choosen ordering >, so  always the pair with the 
least LCM(fi,fj)  is taken. 
 
 
Zero reductions of polynomials during Buchbergers algorithm are a waste of time, because 
they do not have any effect on the result. The so called syzygy criteria are being used to 
eliminate superflous zero reductions of S-Polynomials. [Gebauer, Möller 1988] 
 
(1.3.2.1) 
 
Given an ideal I ⊂ k[x1 , ... ,xn] = 〈f1,f2,...,ft〉  w.r.t. > and a set of Pairs P = { fi,fj } where fi,fj ∈ 
{f1, f2, ......, ft-1} the normalform NF(S-poly(fifj)) of the S-poly of any pair fi,fj fulfilling one of 
the following criteria is zero. 
 
Criterion M: M holds for a pair fi,fk if there exists a j<k such that fj,fk divides properly fi,fk. 

M stands for multiple. 
 
Criterion F: F holds for a pair fi,fk if there exists a j<i such that fj,fk = fi,fk. 

F stands for first (the first pair that is equivalent). 
 
Criterion B: Bk holds for a pair fi,fj if j<k, HT(,fk) divides properly fi,fj and fi,fk ≠ fi,fj ≠ fj,fk. 

B stands for backward as the criterion eliminates pairs that were built in a 
previous loop of Buchberger’s algorithm 

 
For examples see 1.3.3. 
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In the subalgorithm UPDATE_PAIRS each time a new polynomial ft is added to the Base G 
the new pairs fi,ft with i≤t are added to the pairset P. Then all pairs are elimited, where one of 
the syzygy criteria hold. Finally the remaining pairs in the pairset are sorted w.r.t. >. 
 
 
(1.3.2.2) 
 
Given an ideal I=〈f1,f2,..., ft〉 ⊂ k[x1 , ... ,xn] w.r.t. > and a set of Pairs P = {fk,fl} where  
fk,fl∈ {f1, f2, ......, ft-1} the algorithm UPDATE_PAIRS(ft) produces a set of pairs P = {fi,fj} 
where fi,fj∈ {f1, f2, ......, ft} , none of the criteria M,F or B hold and  {fi,fj} are sorted w.r.t. >. 
 
 
Input:   A basis B = {f1, f2, ......, ft-1} of the ideal I and an additional polynomial 

generator ft of the ideal I 
 A set of pairs P = {fk,fl} where fk,fl∈ {f1, f2, ......, ft-1}   

Output: An updated pairset {fi,fj} where fi,fj∈ {f1, f2, ......, ft} 
 
 
N := {fi,ft} the set of new pairs where i<t 
IF criterion M holds for any pair fi,ft where i<t 
 N := N - fi,ft 
IF criterion F holds for any pair fi,ft where i<t 
 N := N - fi,ft 
P := P ∪ N 
IF criterion B holds for any pair fi,fj where i,j≤t 
 P := P - fi,fj 
sort P w.r.t. > 
 
 
Another subalgorithm, REDUNDANT, is being used to remove redundant elements from the 
base. In REDUNDANT the criterion given in  (1.2.3.4) is applied to the base G. 
Adding REDUCEALL, REDUNDANT and UPDATE_PAIRS leads to an improved version of 
Buchbergers algorithm. [Gebauer, Möller 1988] 
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(1.3.2.3) 
 
Given an ideal I ⊂ k[x1 , ... ,xn] = 〈f1,f2,...,fs〉 the following improved version of Buchberger's 
Algorithm produces a reduced Groebner Basis G = { g1,g2,...,gs } of the ideal I. 
 
Input:  A basis B = {f1, f2, ......, fs} of the ideal I 
Output: A Groebner Basis G = {g1,g2,...,gt} of I. 
 
 
preprocessor: 
B := REDUCEALL(B) 
 
initialization: 
P is a set of polynomial Pairs {fi,fj}  
P := {}  
G := {f1} 
FOR t=2 TO s 
 UPDATE_PAIRS(ft) 
 G = G ∪ {ft} 
 
iteration: 
WHILE P ≠ {} DO 
 fi,fj := the first pair in P 
 P = P - fi,fj 
 w = NF( Spoly (fi,fj)) 
 IF w  ≠ 0  
  t := t + 1 
  ft := w 
  G = G ∪ {ft} 
  REDUNDANT (ft)  
  UPDATE_PAIRS(ft) 
 
postprocessor: 
G := REDUCEALL(G) 
 
 
This is the version of Buchberger’s Algorithm that is implemented in gfloat. In order to give a 
good understanding about it a detailed example is given now. Like in section 1.3.1 p.20 the 
ideal 〈x3-2, x2y+x-2y2〉 is given, but this time a Groebner Basis is computed using 
lexicographic ordering.  
Apart from some additional comments, this example uses output that was created by gfloat. 
Because of that the polynomials have floating point coefficients. 
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1.3.3 Example 
 
 
   Input Base: (real) 
 
g_{f1}  =  +0.1e1 [29953.0] * x ^ 3  
-0.2e1 [29953.0] 
; 
 
g_{f2}  =  +0.1e1 [29953.0] * x ^ 2  * y  
+0.1e1 [29953.0] * x  
-0.2e1 [29953.0] * y ^ 2  
; 
 
Preprocessor: 
reduce: Selected for reduction: f1 
f1 is not reduceable 
reduce: Selected for reduction: f1 
f1 is not reduceable 
reduce: Selected for reduction: f2 
f2 is not reduceable 
 
New pairs: 
(f1,f2) = x^3y 
pairs after update: 
{(f1,f2)} 
 
Buchberger main loop: run 1 
Basis: [f1, f2, ] 
 
Spoly with f1 and f2: 
-0.1e1 [29953.0]* x ^ 2  
+0.2e1 [29953.0]* x * y ^ 2  
-0.2e1 [29953.0]* y  
; 
f3 is not reduceable 
 
New pairs: 
(f1,f3) = x^3, (f2,f3) = x^2y 
 
pairs after update: 
{(f1,f3) (f2,f3)} 
 
Buchberger main loop: run 2 
Basis: [f1, f2, f3, ] 
 
Spoly with f2 and f3: 
+0.2e1 [29953.0]* x * y ^ 3  
+0.1e1 [29953.0]* x  
-0.4e1 [29954.0]* y ^ 2  
; 
 
f4 is not reduceable 
 
New pairs: 
(f1,f4) = x^3y^3,  (f2,f4) = x^2y^3, (f3,f4) = x^2y^3 
critM cancelled: (f1,f4) 
critF cancelled: (f3,f4) 
pairs after update: 
{(f1,f3) , (f2,f4)} 
f1 is redundant 
f2 is redundant 
 
Buchberger main loop: run 3 
Basis: [f3, f4, ] 
 
Spoly with f2 and f4: 
-0.5e0 [29953.0]* x ^ 2  
+0.3e1 [29953.0]* x * y ^ 2  
-0.2e1 [29953.0]* y ^ 4  
 
NForm: using f3  curr_mon = 1 
First Poly (base poly): 
g_{f3}  =  +0.1e1 [29953.0] * x ^ 2  
-0.2e1 [29953.0] * x  * y ^ 2  
+0.2e1 [29953.0] * y;  
 
Second Poly (to be reduced): 
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f5 := -0.5e0 [29953.0]* x ^ 2  
+0.3e1 [29953.0]* x * y ^ 2  
-0.2e1 [29953.0]* y ^ 4  
; 
 
 f5 reduced to: 
+0.2e1 [29953.0]* x * y ^ 2  
-0.2e1 [29953.0]* y ^ 4  
+0.1e1 [29953.0]* y  
 
f5 is not reduceable 
 
New pairs: 
(f3,f5) = x^2y^2, (f4,f5) = xy^3 
pairs after update: 
{(f1,f3), (f3,f5)(f4,f5)} 
 
Buchberger main loop: run 4 
Basis: [f3, f4, f5, ] 
 
Spoly with f4 and f5: 
+0.5e0 [29953.0]* x  
+0.1e1 [29953.0]* y ^ 5  
-0.25e1 [29953.0]* y ^ 2  
; 
f6 is not reduceable 
 
New pairs: 
(f3,f6) = x^2, (f4,f6) = xy^3, (f5,f6) = xy^2 
critB canceled: (f3,f5) 
critM cancelled: (f4,f6) 
pairs after update: 
{(f1,f3), (f3,f6)(f5,f6)} 
f4 is redundant 
 
Buchberger main loop: run 5 
Basis: [f3, f5, f6, ] 
 
Spoly with f5 and f6 
-0.2e1 [29953.0]* y ^ 7  
+0.4e1 [29953.0]* y ^ 4  
+0.5e0 [29953.0]* y  
; 
f7 is not reduceable 
 
New pairs: 
(f3,f7) = x^2y^7, (f5,f7) = xy^7, (f6,f7) = xy^7 
critM cancelled: (f3,f7) 
critF cancelled: (f6,f7) 
critF cancelled: (f5,f7) 
pairs after update: 
{(f1,f3), (f3,f6)} 
f3 is redundant 
f5 is redundant 
 
Buchberger main loop: run 6 
Basis: [f6, f7, ] 
 
S-polynomial of f3 and f6 
 -0.2e1 [29953.0]* x * y ^ 5  
 +0.3e1 [29953.0]* x * y ^ 2  
 +0.2e1 [29953.0]* y  
; 
 
Groebner: run 6 NormalForm: run 1 using f6  
Groebner: run 6 NormalForm: run 2 using f6  
Groebner: run 6 NormalForm: run 3 using f7  
Groebner: run 6 NormalForm: run 4 using f7  
f8 reduced to zero 
 
Buchberger main loop: run 7 
Basis: [f6, f7, ] 
 
Spoly with f1 and f3: 
+0.2e1 [29953.0]* x ^ 2 * y ^ 2  
-0.2e1 [29953.0]* x * y  
-0.2e1 [29953.0]; 
 
Groebner: run 7 NormalForm: run 1 using f6  
 f8 reduced to: 



1.3 Computation of Groebner Bases 
 
 
 

 
- 28 - 

-0.4e1 [29953.0]* x * y ^ 7  
+0.1e2 [29953.0]* x * y ^ 4  
-0.2e1 [29953.0]* x * y  
-0.2e1 [29953.0] 
 
Groebner: run 7 NormalForm: run 2 using f6  
 f8 reduced to: 
+0.1e2 [29953.0]* x * y ^ 4  
-0.2e1 [29953.0]* x * y  
+0.8e1 [29953.0]* y ^ 12  
-0.2e2 [29953.0]* y ^ 9  
-0.2e1 [29953.0] 
 
Groebner: run 7 NormalForm: run 3 using f6  
 f8 reduced to: 
-0.2e1 [29953.0]* x * y  
+0.8e1 [29953.0]* y ^ 12  
-0.4e2 [29954.0]* y ^ 9  
+0.5e2 [29953.0]* y ^ 6  
-0.2e1 [29953.0] 
 
Groebner: run 7 NormalForm: run 4 using f6  
 f8 reduced to: 
+0.8e1 [29953.0]* y ^ 12  
-0.4e2 [29954.0]* y ^ 9  
+0.54e2 [29953.0]* y ^ 6  
-0.1e2 [29953.0]* y ^ 3  
-0.2e1 [29953.0] 
 
Groebner: run 7 NormalForm: run 5 using f7  
 f8 reduced to: 
-0.24e2 [29953.0]* y ^ 9  
+0.56e2 [29953.0]* y ^ 6  
-0.1e2 [29953.0]* y ^ 3  
-0.2e1 [29953.0] 
 
Groebner: run 7 NormalForm: run 6 using f7  
 f8 reduced to: 
+0.8e1 [29951.0]* y ^ 6  
-0.16e2 [29954.0]* y ^ 3  
-0.2e1 [29953.0] 
 
f8 is not reduceable 
New pairs: 
(f6,f8) = xy^6, (f7,f8) = y^7 
critF cancelled: (f6,f8) 
pairs after update: 
{(f7,f8)} 
 
Buchberger main loop: run 8 
Basis: [f6, f7, f8, ] 
 
S-polynomial of f7 and f8 
; 
 
Postprocessor: 
reduce: Selected for reduction: f1 
f1 is not reduceable 
reduce: Selected for reduction: f1 
f1 is not reduceable 
reduce: Selected for reduction: f2 
f2 is not reduceable 
 
 
 
 Fully reduced Groebner Base: 
 
g_{f6}  =  +0.1e1 [29953.0] * x  
+0.2e1 [29953.0] * y ^ 5  
-0.5e1 [29953.0] * y ^ 2  
 
g_{f8}  =  +0.1e1 [29951.0] * y ^ 6  
-0.2e1 [29951.0] * y ^ 3  
-0.25e0 [29951.0] 
 
The ideal is zero dimensional! 
Set of reduced Terms [1,y,y^2,y^3,y^4,y^5]  
The number of solutions is less or equal 6 



1.4 Converting the Monomial Ordering of Groebner Bases 
 

 
 

 
- 29 - 

1.4 Converting the Monomial Ordering of Groebner Bases 
 
 
Only a lexicographic Groebner Basis allows to evaluate the actual roots of a system of 
polynomial equations. For zero dimensional ideals it is possible to transform a Groebner 
Basis w.r.t. a certain monomial ordering to a Groebner Basis w.r.t. a different monomial 
ordering. It turns out, that it is much more efficient in terms of number and size of the 
polynomials involved to use total degree reverse lexicographic ordering to compute a 
Groebner Basis. This already beginning to show in the extremely small examples from the 
previous section, the bigger the problems get (in terms of polynomial degree and number of 
indeterminates) the bigger grows the difference in the computational effort. 
That is why in most cases it is faster to compute a lexicographic Groebner Basis indirectly by 
first finding the total degree basis and subsequently converting it to a lexicographic basis. 
Unfortunately the conversion algorithm only works for zero dimensional ideals, but still its 
advantages are huge. Many problems where it is totally impossible to find a Groebner Basis 
using Buchberger's algorithm with lexicographic ordering can easily be solved using total 
degree reverse lexicographic ordering and conversion of the basis. 
 
 

1.4.1 Residue Class Rings 
 
 
Before it is possible to outline the idea of the conversion algorithm it is necessary to explain 
the concept of residue class rings and its connection with Groebner Bases. We will start by 
defining residue class rings and providing two examples for them.  
 
 
(1.4.1.1) 
 
Given a ring R and an ideal I ⊂ R. For each b ∈ I the residue class of b modulo I is defined 
as the set [b]=b+I={b+ss∈ I} where b is called the representitive of the residue class b+I. 
The set {b+Ib∈ R} containing all residue classes determined by I will be denoted as  
R/I (R modulo I).  
In the case that I is a principal ideal (i.e. the ideal is of the kind I=〈a〉 where a ∈ R is  solely 
generated by the element a) the generator a of the ideal is called the modulus of R/I. 
 
Please note, that that up to now we have used ideals only in the special case of polynomial 
ideals. Referring to (1.2.2.1) the definition of ideals is a much more general one. An ideal can 
be a subset of any ring, yet we have only regarded the special case where I was a subset of 
the polynomial ring k[x1, x2, ..... xn ]. 



1.4 Converting the Monomial Ordering of Groebner Bases 
 

 
 

 
- 30 - 

For a more general example of an ideal consider the ring R = Z where Z is the set of 
integers. An ideal I ⊂ Z = 〈7〉 consists of all integers that are multiples of 7,  
I = { ...., -14, -7, 0, 7, 14, ....}.  
Following 1.4.1.1 the set of all residue classes Z modulo 7 is Z/〈7〉 = {b+〈7〉b∈Z}. With the 
ideal 〈7〉 consisting of all integer multiples of 7 we obtain a total of seven residue classes and  
Z/〈7〉 = {b+〈7〉 b∈ Z} = {0+〈7〉,1+〈7〉, .... ,5+〈7〉,6+〈7〉}. 
Minimal representitives of Z/〈7〉 are {0,1,2,3,4,5,6} what explains the term 'residue class', 
the minimal representitives are the possible remainders of a reduction a/I where a∈R (in the 
example a/〈7〉 where a∈Z ). 
A visualization of the residue classes of Z/〈7〉 ={[0],[1],[2],[3],[4],[5],[6]} may illustrate this, 
here [0] denotes the residue class 0+〈7〉, [1] is equivalent to 1+〈7〉 etc... .  
 
 
 ... ... ... ... ... ... ... 
 14 15 16 17 18 19 20 
 7 8 9 10 11 12 13 

Z/〈7〉 =    {  [0], [1], [2], [3], [4], [5],      [6]   } 
 -7 -6 -5 -4 -3 -2 -1 
 14 -13 -12 -11 -10 -9 -8 
 ... ... ... ... ... ... ... 
 
 
Z/〈7〉 is generated by a pricipal ideal since 7 is its only generator, so 7 is called the modulus 
of this residue class ring. This special case of a residue class ring over the ring of integers N, 
which is generated by an ideal with a single, prime gerator - the modulus - will play an 
important role in the next section where it will be used to define modular arithmetic.    
 
In the following operations (+ - ⋅) i.e. addition, subtraction multiplication will be defined for 
residue classes. It can be shown that under these operations the set of residue classes R/I 
forms a ring, the so called residue class ring R/I.  
 
 
(1.4.1.2) 
 
Given a ring R and an ideal I ⊂ R  and the set of all residue classes as R/I. Taking the 
residue classes [a],[b]∈R/I and definig the operations  
 
(i) [a]±[b] = [a±b]  
(ii) [a]⋅[b] = [a⋅b] 
 
One can show that R/I is a ring, with unity [1]=1+I and zero element [0]=I. It is called the 
residue class ring of R modulo I. 
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Using our example Z/〈7〉 for two small examples we find  
 
 [8] + [10] = [1] + [3] = [4] is equivalent to [8 + 10] = [18] = [4] . ... rule (i). 
 [-4] ⋅ [9] = [3] ⋅ [2] = [6] is equivalent to [-4 ⋅ 9] = [-36] = [6]  ... rule (ii). 
 
This is a remarkable step: Now we are able to perform computations with residue classes in 
R/I, we can use any representitive of the residue class for these computations. Again: all this 
is not restricted to integer ideals - it applies to all ideals. For the rest of this chapter we will 
look at polynomial residue class rings R/I over the polynomial ring k[x1 , ... ,xn] that is defined 
by the ideal I ⊂ k[x1 , ... ,xn].  
 
 
(1.4.1.3) 
 
Given is a field  k[x1 , ... ,xn] and the ideal  I ⊂ k[x1 , ... ,xn]. The set of residue classes  
k[x1 , ... ,xn]/I is called residue class ring of k[x1 , ... ,xn] modulo the ideal I. 
 
(i)  Taking c,d ∈ k[x1 , ... ,xn] then c and d are only in the same residue class iff  

NF(c) mod I = NF(d) mod I. 
(ii) NF(c) mod I and NF(d) mod I are the standard representitives of c and d.   
 
 
In other words: two polynomials c,d are in the same residue class if they have the same 
normalform modulo the ideal I.   
Combining the fact that representitives of the same residue class have the same normal form 
with the rules on (+ - ⋅ ) in residue class rings leads to the following useful correspondences. 
 
 
(1.4.1.4) 
 
Given is a field  k[x1 , ... ,xn] and the ideal  I ⊂ k[x1 , ... ,xn]. The set of residue classes  
k[x1 , ... ,xn]/I is called residue class ring of k[x1 , ... ,xn] modulo the ideal I. 
 
(i) NF(c) mod I + NF(d) mod I = NF(c + d) mod I 
(ii ) NF(NF(c) mod I ⋅ NF(d) mod I) mod I = NF(c ⋅ d) mod I 
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1.4.2 The Set of Reduced Terms 
 
 
In order to illustrate the set of reduced terms it is useful to take a look at the normalform 
algorithm (1.1.3.3). We can see that the algorithm terminates when all the monomials in the 
reduced polynomial can not be divided by any of the headterms of the basis polynomials. 
The set of terms that cannot be divided by any of the headterms of a Groebner Basis is 
called the set of reduced terms.  
It is clear that a polynomial that is in normal form (i.e. it has been fully reduced modulo a 
Groebner Basis) only consists of monomials with reduced terms - if there were a non-
reduced term the polynomial is not in normal form. So every polynomial in normal form is a 
linear combination of reduced terms. 
Is this set of reduced terms finite? It can be shown, that a Groebner Basis of a zero 
dimensional ideal has to contain polynomials that have a leading term that is a power of each 
one of the indeterminates in the ideal (criterion 1.4.2.1 given below). These univariate 
headterms divide terms with higher exponents, so exponents of each indeterminate of the 
reduced terms are limited. If the exponents are limited the  number of headterms must be 
finite.  
 
 
(1.4.2.1) 
 
Let I ⊂ k[x1 , ... ,xn] be an ideal and G = { g1,g2,...,gs } be a Groebner Basis of I w.r.t to any 
monomial ordering > . Then the Ideal is zero dimensional iff there is a gi for each 1≤ i ≤ n with 

LT(gi)=(xn)α where 0<α∈N. 
 
The criterion can be used to check if an ideal (and the according variety) is zero dimensional. 
Taking the tdegrevl Groebner Basis G={x3-2,x2y-2y2+x,2xy2-x2-2y,2y3-2xy-1} from section 
1.3.1 we find that the ideal is zero dimensional because for each of the indeterminates x,y 
there is a headterm of the basepolynomials with a power of x and y, namely x3 and y3. So 
the set of reduced terms of this Groebner Basis is finite and the ideal is zero dimensional. 
  
Next the algorithm REDTERMS will be given that allows to determine the set of reduced 
terms. This algorithm is extremely useful, because it will turn out, that the number of reduced 
terms is equivalent to the number of solution points. 
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(1.4.2.2) 
 
Given the Groebner Basis G = { g1,g2,...,gs } of the ideal I ⊂ k[x1 , ... ,xn] and k1 , ... ,kn ∈ N. 
The algorithm REDTERMS produces the set of the reduced terms t∈RT(I(G)) such that   
x1k1 , ... ,xnkn does not divide t. 
 
Input:   A Groebner Basis G = {g1,g2,...,gt} of the ideal I and k1 , ... ,kn ∈ N  
Output: The set R of reduced terms 
 
R  := {1} 
FOR  i = 1 TO n DO 
 T := R 
 WHILE   T≠ {} DO 
  t := an element in T 
  T := T \ {t} 
 FOR l = 1 TO ki 
   t := t ⋅ xi 
   IF t is in normalform modulo G THEN 
    R := R ∪ {t} 
  END 
 END 
END 
 
 
As an example we will use the tdegrevl Groebner Basis from section 1.3.1 p.21  
G={x3-2,x2y-2y2+x,2xy2-x2-2y,2y3-2xy-1} and k1,k2 = (3,3). k1,k2 are the exponents from 
the univariate Headterms x3 and 2y3. Choosing k1 , ... , kn  like the exponents of the 
univariate headterms necessarily produces all reduced terms of the ideal. 
 
The three leftmost columns contain the loop variables of the algorithm's three loops. The 
outermost FOR loop's counter is i, the while loop's condition is an expression of T and the 
innermost loop's counter is l. The value of the counter is only printed when it was changed.  
The rightmost column shows the status and some comments. 
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i T l Computations 
- - - R = {1} 
1 - - Start of the outermost FOR loop 

T = R = {1} 
 {1} - WHILE loop 

t = 1, T = T \ t = { } 
 { } 1 inner FOR loop - l goes from 1 to k1 = 3 

t = 1⋅x = x, x is in NF mod G because no headterm of G divides x 
⇒ R = R ∪ t = {1, x} 

  2 t = x⋅x = x2 , x2 is in NF mod G ⇒ R = R ∪ t = {1, x,x2 } 
  3 t = x3 , x3 is not in NF mod G because the headterm of x3-2 divides x3 

⇒ R remains unchanged {1, x,x2 } 
inner FOR loop stops 

   WHILE LOOP stops 
2   T = R  = {1, x,x2 } 
 {1,x,x2}  WHILE loop 

t = 1, T = T \ t = {x,x2} 
 {x,x2} 1 inner FOR loop - l goes from 1 to k2 = 3 

t = y, y is in NF mod G ⇒ R = R ∪ t = {1, x,x2,y} 
  2 t = y⋅y = y2 , y2 is in NF mod G ⇒ R = R ∪ t = {1, x,x2,y,y2 } 
  3 t = y3 , y3 is not in NF mod G ⇒ R remains unchanged {1, x,x2,y,y2} 

inner FOR loop stops 
   WHILE loop 

t = x, T = T \ t = {x2} 
 {x2} 1 inner FOR loop - l goes from 1 to k2 = 3 

t = x⋅y, xy is in NF mod G ⇒ R = R ∪ t = {1, x,x2,y,y2,xy} 
  2 t = xy2 , xy2 is not in NF mod G ⇒ R = {1, x,x2,y,y2,xy} 
  3 t = xy3 , xy3 is not in NF mod G ⇒ R = {1, x,x2,y,y2,xy} 
   WHILE loop  -  t = x2, T = { } 
 { } 1 t = x2⋅y, x2y is not in NF mod R = {1, x,x2,y,y2,xy} 
  2 t = x2y2 , x2y2 is not in NF mod G ⇒ R = {1, x,x2,y,y2,xy} 
  3 t = x2y3 , x2y3 is not in NF mod G ⇒ R = {1, x,x2,y,y2,xy} 
   inner FOR loop stops 

WHILE loop stops 
outer FOR loop stops 
⇒ the algorithm terminates  

 
The returned set of reduced terms is R = {1, x,x2,y,y2,xy}. So all polynomials that are in 
normalform modulo I are a linear combination of these reduced terms, for example 
NF(2y6+y5-3x2) mod I = 5y2 + 8xy - 6x2 - x + 5.   
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1.4.3 Converting Groebner Bases 
 
 
The conversion algorithm only works for zero dimensional ideals, that is because of a 
fundamental property only they have. We know that for every zero dimensional ideal there 
exists a univariate polynomial in each indeterminate with its degree equivalent to the number 
of solutions - we can find it using Buchberger's algorithm with lexicographic ordering.  
Non-zero-dimensional ideals do not contain univariate polynomials, so the following will not 
work for them. 
Taking again the above Groebner Basis G={x3-2,x2y-2y2+x,2xy2-x2-2y,2y3-2xy-1} of the 
ideal I we want to find the univariate polynomial g1 that is of degree n and has y as its only 
indeterminate. 
 

g1 = Cn+1yn + Cnyn-1 + Cn-1yn-2+ .... + C2y + C1 
 
where C1, ... , Cn+1 are the constant rational coefficients we want to find. Please note that in 
this section for NF(x) mod I will be written NF(x).  Using (1.4.1.4) we know that 

 
NF(g1) = Cn+1NF(yn) + CnNF(yn-1) + .... + C2NF(y) + C1NF(1). 

 
Furthermore every polynomial in normal form modulo a Groebner Basis can be written as a 
linear product of the reduced terms of the ideal. Denoting the set of reduced terms as  
R1,R2, ... , Rs a polynomial in normal form is a linear product a1R1 + a2R2 +  ...  + asRs. We 
get 
 
NF(g1) =  Cn+1(a1R1 + a2R2 +  ...  + asRs)  
  + Cn(b1R1 + b2R2 +  ...  + bsRs)  
  + ....  
  + C2(c1R1 + c2R2 +  ...  + csRs)  
  + C1(d1R1 + d2R2 +  ...  + dsRs) . 
 
The expression represents the normal form of the univariate polynomial g1. Now it is 
rewritten and sorted such that we get a linear combination of the reduced terms R1,R2,...,Rs 
 
NF(g1) =   (a1Cn+1 + b1Cn +  ... c1C2 + d1C1)R1  
  + (a2Cn+1 + b2Cn +  ... c2C2 + d1C1)R2  
  + ....  
  + (as-1Cn+1 + bs-1Cn +  ... cs-1C2 + ds-1C1) Rs-1 
  + (asCn+1 + bsCn +  ... csC2 + dsC1) Rs 
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The univariate polynomial g1 is an element of the ideal I, consequently  NF(g1) = 0  (see 
1.2.3.3).  So the expressions in parenthesis, that represent the coefficients of the reduced 
terms R1,R2, ... , Rs, must yield zero. One gets s linear equations, one for each reduced 
term. Norming these equations by setting  Cn+1 = 1 makes the system solvable, the final 
equations to find the coefficients  C1 ,C2 ... Cn is  
 
   a1 + b1Cn +  ... c1C2 + d1C1 = 0 , 
  a2 + b2Cn +  ... c2C2 + d1C1 = 0 , 
   ....  
  as-1 + bs-1Cn +  ... cs-1C2 + ds-1C1= 0 , 
  as + bsCn +  ... csC2 + dsC1= 0 . 
 
Finally we get an answer about the degree of the univariate polynomial. As there is a linear 
expression for every reduced term R1,R2, ... , Rs we need s indeterminates C1,C2 ... Cn to 
obtain a solvable system of linear equations, n = s  
 
 
(1.4.3.1) 
 
Given the Groebner Basis G of the zero dimensional ideal I ⊂ k[x1 , ... ,xn] the following is 
equivalent 
 
(i) The number of reduced terms RT(I(G)) is n. 
(ii) The univariate polynomial of minimum degree g1 ∈ I is of degree n. 
(iii) The number of solution points of the variety determined by the ideal is n. 
 
 
Similar to the procedure to find a univariate polynomial  
 

g1 = Cn+1yn + Cnyn-1 + Cn-1yn-2+ .... + C2y + C1 
 
it is possible to find another polynomial  
 

g2 = x + f(y) = Cn+1x + Cnyn-1 + Cn-1yn-2+ .... + C2y + C1 
 
which is the next lexicographic base polynomial. Equivalently one can determine the 
coefficients of ANY polynomial in the ideal that has the same number of monomials as the 
number of reduced terms.  
This method to convert a Groebner Basis w.r.t. a certain monomial ordering to a Groebner 
Basis w.r.t. a different monomial ordering was first published by [Faugère, Gianni, Lazard, 
Mora 1993]. The algorithm that was implemented in gfloat is called CONVGROEBNER 
[Becker, Weispfennig 1993]. 
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(1.4.3.2) 
 
Given a  zero dimensional ideal I ⊂ k[x1 , ... ,xn] and its Groebner Basis G w.r.t. a monomial 
ordering > . The algorithm CONVGROEBNER produces the reduced Groebner Basis F of I 
w.r.t. a different monomial ordering >' and the set of reduced terms R of F. 
 
Input:   A Groebner Basis G of the ideal I w.r.t to a monomial ordering > 
  the set U of reduced terms of G  
Output: the Groebner Basis F of  I w.r.t to a monomial ordering > ' 
  the set R of reduced terms of F  
 
 
F := {}; H:= {} 
t := 1; R  := {1} 
create a new indeterminate C1 
C = {C1}; q:= C1 
WHILE MINTERM(H,t) ≠ false  DO 
 t := MINTERM(H,t) 
 h := NF (t) mod G(I) 
 p := h + q 
 S := the system of linear equations in C from p = 0 where 
         each equation sj is the linear expression representing the coefficient  
         of the reduced term uj ∈ U  
 IF S has a solution THEN 
  g := t + ∑Ciri with r ∈ R 
  H := H ∪ {t} 
  F := F ∪ {g} 
 ELSE 
  R := R ∪ {t} 
  create a new indeterminate Ct 
  C = C  ∪ {Ct} 
  q = Ct⋅h + q 
END 
 
 
The algorithm basicly takes terms t with increasing monomial order w.r.t. to >'. The 
normalform of these terms is multiplied with a new indeterminate Ct and added to p which 
represents the normalform of the new base polynomial (i.e. the univariate polynomial). 
Rearranging the coefficients of the reduced terms delivers the expressions that makes up the 
system of linear equations S. Solving this system delivers a polynomial of the Groebner 
Basis w.r.t. the new ordering >'.  H is the set of headterms w.r.t. the new ordering >'.  
The WHILE loop stops when the subalgorithm MINTERM delivers false. 
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The algorithm is a generalization of the ideas introduced for the univariate polynomial. It 
builds the new basis polynomials taking terms that are minimal  w.r.t. the new term ordering 
and cannot be divided by any of the headterms h ∈ H of the new Groebner Basis. These 
inevitably must be the reduced terms in the new Groebner Basis. The auxiliary algorithm 
MINTERM finds these terms. It is clear that MINTERM differs, depending on the new term 
order >' . For our purposes we want to obtain a lexicographic Groebner Basis so we use a 
version called LMINTERM. 
 
 
(1.4.3.3) 
 
Given is the set of all terms T in [x1 , ... ,xn] , its subset S ⊂ T and a term t ∈ T. Furthermore 
there is a set of terms M = {v ∈ T | t <lex v  and any s∈ S does not divide v}. The algorithm  
LIMINTERM returns u where 
if M≠{} u is the minimal element ∈ M w.r.t. lexicographic ordering  
if M = {} u :=  false . 
 
Input:   A finite set of terms S ⊂ k[x1 , ... ,xn] and a term t. 
Output: If it exists, the minimal term u where u >lex t and u is not divisible by any s∈S. 
  If u does not exist, false. 
 
u := t 
FOR i = 1 TO n 
 u := u ⋅ xi 
 IF u is not divisible by any s ∈ S  THEN 
  return u 
 ELSE 

  i
i

x in )u(reedeg  where       
x
uu =ν=
ν  

return false 
 
The variable n is the number of indeterminates. Now consider t = xy2, S={x6,y} ∈ [x,y,z] and 
z>y>x as an example. 
 

i Computations 
- u = xy2 
1 u = x1⋅u = x⋅xy2 
 s2 = y divides u 
 u = y2 = x2y2/x2 = u/x1ν where ν = degree of x1 
2 u = x2⋅u = y⋅y2 
 s2 = y divides u 
 u = 1 = y3/y3 = u/x2ν where ν = degree of x2 
3 u = x3⋅u = z 
 No term sk ∈ S = {x6,y} divides u 

⇒ the algorithm returns u=z and terminates  
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LMINTERM ({x6,y}, xy2) returns z as minimal term > xy2 w.r.t. lexicographic ordering that is 
not divisible by any of the terms sk ∈ {x6,y} . 
 
Finally here is a thorough example for CONVGROEBNER. The Groebner Basis w.r.t. total 
degree reverse lexicographic ordering G = {x3-2,x2y-2y2+x,2xy2-x2-2y,2y3-2xy-1} from 
section 1.3.1 will be converted into a lexicographic Groebner Base with x>y. 
Using criterion 1.4.2.1 one can see that the ideal of the Basis is zero dimensional  
(see p. 31), the transformation algorithm is applicable. The algorithm REDTERMS (1.4.2.2) 
yields the set of reduced terms T = {1,x,x2,y,y2,xy} (see example p. 33) , so the degree of the 
univariate polynomial will be six, the system has 6 solution points. 
Below a very detailed description of every step in the algorithm is given. 
 
 
 WHILE 
Loop 

Computations 

- Initialization:  
F := {}; H:= {} 
t := 1; R  := {1} 
create a new indeterminate C1, the set of indeterminates C = {C1}; q:= C1 

WHILE 
Loop 1 

LMINTERM (H={}, t=1) := y, the while loop is entered and t := y 
h := Normalform of t modulo the tdegrevl Groebner Basis G; so h := y 
p := h + q = y + C1 
The system S consists of two equations C1= 0 and 1 = 0, one indeterminate and two 
equations, obviuosly unsolvable 
R := R ∪ {t} = R ∪ {y} = {1,y} 
a new indeterminate C2 is created and C = C  ∪ {C2} = {C1,C2} 
q = Ct⋅h + q = C2⋅y + C1 

WHILE 
Loop 2 

LMINTERM (H={}, t=y) := y2, the while loop is entered and t := y2 
h := Normalform of t modulo the tdegrevl Groebner Basis G; so h := y2 
p := h + q = y2 + C2⋅y + C1 
The system S consists of three equations C1= 0, C2= 0 and 1 = 0, it has two 
indeterminates and three equations, obviuosly unsolvable 
R := R ∪ {t} = R ∪ {y2} = {1,y,y2} 
a new indeterminate C3 is created and C = C  ∪ {C3} = {C1,C2,C3} 
q = Ct⋅h + q = C3⋅y2 +C2y + C1 

WHILE 
Loop 3 

LMINTERM (H={}, t=y2):= y3, so  t = y3 
h := NF(y3)= xy + ½ 
p := h + q = xy + 1/2 + C3y2 + C2y + C1 
S := C1 + 1/2= 0, C2= 0, C3= 0 and 1 = 0, System is unsolvable 
R := R ∪ {y3} = {1,y,y2,y3} 
C4 is created and C  = {C1,C2,C3,C4} 
q = C4⋅(xy + 1/2) + C3⋅y2 +C2y + C1 
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 WHILE 
Loop 

Computations 

 
WHILE 
Loop 4 

 
t = LMINTERM (H={}, t=y3):= y4, so   
h := NF(y4)= 1/2x2 + 3/2y 
p :=  1/2x2 + 3/2y + C4⋅(xy + 1/2)  + C3y2 + C2y + C1 
S := C1+1/2 = 0, C2+3/2= 0, C3= 0, C4= 0 and 1/2= 0, System unsolvable 
R := {1,y,y2,y3,y4}; C5 is created and C  = {C1,C2,C3,C4,C5} 
q = C5⋅(1/2x2 + 3/2y) + C4⋅(xy + 1/2) + C3⋅y2 +C2y + C1 

 
WHILE 
Loop 5 

 
t = LMINTERM ({}, y4):= y5, so   
h := NF(y5)= 5/2y2 - 1/2x 
p :=  5/2y2 - 1/2x + C5⋅(1/2x2 + 3/2y) + C4⋅(xy + 1/2)  + C3y2 + C2y + C1 
S := C1+ 1/2⋅C4 = 0, C2 + 3/2⋅C5 = 0, C3 + 5/2 = 0, C4= 0, 1/2⋅C5= 0 and 
        -1/2 = 0, 5 indeterminates for 6 equations - the System is unsolvable 
R := {1,y,y2,y3,y4,y5};  C  = {C1,C2,C3,C4,C5,C6} 
q = C6⋅(5/2y2 - 1/2x) + C5⋅(1/2x2 + 3/2y) + C4⋅(xy + 1/2) + C3⋅y2 +C2y + C1 

 
 
Up to now the crucial step - the creation of system S of linear equations – has not been 
described in detail.  
 
 

WHILE 
Loop 

Computations 

 
WHILE 
Loop 6 

 
t = LMINTERM ({}, y5):= y6, so   
 
h := NF(y6)= 2xy + 5/4 
p :=  2xy + 5/4 + C6⋅(5/2y2 - 1/2x) + C5⋅(1/2x2 + 3/2y) + C4⋅(xy + 1/2)  +   
        C3y2 + C2y + C1 
p := 0 and the right side of the equation is rewritten with linear expressions of C  as 
coefficients of the reduced terms  T = {1,y,x,y2,xy,x2} 
0 = 1⋅(C1+ 1/2⋅C4 + 5/4) + y⋅(C2 + 3/2⋅C5) + x⋅(-1/2C6) + y2⋅(C3 + 5/2C6) +  
       xy⋅(C4+ 2) + x2⋅(1/2⋅C5) 
       The right side of the equation can only yield zero if all the equations in  
        parenthesis are zero, we get the system of linear equations 
S := C1+ 1/2⋅C4 + 5/4 = 0, C2 + 3/2⋅C5 = 0, -1/2C6 = 0, C3 + 5/2C6 = 0, 
        C4+ 2 = 0 and 1/2⋅C5 = 0. 
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WHILE 
Loop 

Computations 

 
WHILE 
Loop 7 

 
Rewriting this as a matrix gives a clear description of the situation. Each column 
represents one of the indeterminates in C, each row contains coefficients of one of 
the reduced terms of G. 
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This system is solvable, the solution is  C1= 1/4, C2= 0, C3= 0, C4= -2, C5= 0 and C6= 
0.    
 
With these solutions we are able to build the first polynomial g1 of the lexicographic 
Groebner Basis:  
 
g := t + ∑Ciri = y6 + C6⋅y5 + C5⋅y4 + C4⋅y3 + C3⋅y2 + C2⋅y  + C1⋅1  
      = y6 -2 y3 - ¼ 
 
H := H ∪ {t} = { y6} 
 
F := F ∪ {g} = {y6 -2 y3 - 1/4} 
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WHILE 
Loop 

Computations 

 
WHILE 
Loop 8 

 
t = LMINTERM ({ y6}, y6):= x, so   
h := NF(x)= x 
 
p :=  x + C6⋅(5/2y2 - 1/2x) + C5⋅(1/2x2 + 3/2y) + C4⋅(xy + 1/2)  +   
        C3y2 + C2y + C1 
 
The corresponding system of linear equations is  
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This system is also solvable:  C1= 0, C2= 0, C3= -5, C4= 0, C5= 0 and C6= 2.    
 
This leads to the second lexicographic basepolynomial: 
g := t + ∑Ciri = x + C6⋅y5 + C5⋅y4 + C4⋅y3 + C3⋅y2 + C2⋅y  + C1⋅1  
      = x +2 y5 – 5 
 
H := H ∪ {t} = {x,y6} 
F := F ∪ {g} = {x +2 y5 - 5,y6 -2 y3 - 1/4} 
 

 
WHILE 
Loop 9 

 
t = LMINTERM ({ x,y6}, x):= false 
 
⇒ The WHILE clause is false and the algorithm terminates returning the lexicographic 
Groebner Basis F = {x +2 y5 - 5,y6 -2 y3 - 1/4} and the set of reduced terms R = 
{1,y,y2,y3,y4,y5} of the new Basis. 

 
This result is equivalent to the lexicographic Groebner Basis that was computed in the 
example at the end of section 1.3.3
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2. Modular and Floating Point Arithmetic 
 
One of the problems with Buchberger’s algorithm is the handling of the integer coefficients of 
the basis polynomials. In order to eliminate certain monomials in the NORMALFORM 
algorithm, the monomials must be multiplied with factors that lead to coefficients that are 
relatively prime – which in turn leads to higher factors for subsequent reduction steps. As a 
result the size of the integer coefficients constantly grows. 
Consider for example the input equations: 
-919 z2 + 705zy + 526zx - 312y2 + 202yx - 761x2 + 804z - 996y - 252x + 343 = 0, 
-175z2 - 58zy + 544zx + 893y2 - 174yx + 915x2 + 443z - 335y - 566x - 869 = 0 
98z2 + 527zy - 380zx - 880y2 - 768yx - 465x2 + 642z - 213y - 743x - 494 = 0. 
Fixing a monomial ordering x>y>z the lexicographic Groebner Basis can be found quite 
easily – only 16 loops in Buchbergers algorithm (i.e. 16 calls of NORMALFORM) with all in all 
183 reduction steps have to be performed. Still the Groebner Basis looks like this: 
 
+ 341055958306876246095792918212230317 z^8 
- 1432087427892630215178638067202166088 z^7  
+ 3140243500329355650937848024495615486 z^6  
- 7112528412481438316906750327582144595 z^5  
+ 16910069706909592774384412990438658596 z^4  
- 28863025932078164149243369438006214231 z^3  
+ 28072531806464518807591314465507762769 z^2  
-12525008535845455607958821781995996574 z  
+ 1423090554022796549457065521843903850  
 
 
798733303146252903075677656169929777749310044363901349790524626835034656361677131315969591958280471861
673160848808780221605590575418986782039452522251771987993516083300713059 y  
+45297186596635372248843409944683967640744493854777010108043686015439356578486122174973180453151913469
41514475907372692195510149235351301049911057839583557486006847743393225196 z^7 
−12705873921609838057274440213509111295642540637888600140134835948231725926794849052711406866393459094
241022663296879860962453865801630363570752773151187830553529522654457868576 z^6  
+24074210220854535192564503670885241519807304728693945157014219326481275655974757359291225417492327360
618095037627539894925805545223200731215219923875320731812463266807299185672 z^5  
−61021718178959306987620604468410964952747390609056119321330709106334726904480230441723112030998718568
531089918584968249452735890827119000393213001109677498975492551940830798475 z^4  
+13990108166382515972848365710738603953490429635593857966381490247237058355073206603824341680874579177
1387460461237309585447436395190611102843367958009638270487292943034592415876 z^3  
−18922482709149771018018522238447311643908858474316551133863470112882607650406192252970334950642661554
9817972202391467700252475562483002646963085686957930995606170498696885274921 z^2  
+11008623840370858097017392082451107836188234027241173801565900861051334563958186629046701283378130792
9241839082572069387230404006092982336680633705328107658965609026165453025927 z  
+13760854054783190291514372755398400583672606068134002248554788273282087478484813801460259953783757456
734199595638908452835949335225135356722147518822969134425112648355138272652  
 
 
798733303146252903075677656169929777749310044363901349790524626835034656361677131315969591958280471861
673160848808780221605590575418986782039452522251771987993516083300713059 x  
+87000244395656512149885354665870915128596416911666134782739952551184531989105887967291458237548742791
10467943446809079146973884181005916658957677288591922644766977333991220000 z^7 
−24359730723465369010572637651039911663256900067560753484312576300801680749783299825564652100199256404
153021370158348160218292758596015539583176340676048714323540064180281974990 z^6  
+46034468832417368411320593617781708291273629068915294882528394713706107266092556951510448732227921782
259744131792781243577834859005463785065700467300995877989353216118822194674 z^5  
−11700805277962026276596295007010903664316855832955734972006845342133979050679295885709662927470714737
0413727274621562110475729914590657810164615432161272984055990855187539907773 z^4  
+26750296433199653551004328915639283768361534716153082457069555831067016835019609802407600351314678374
2747027934024082979587505717558683075096953605905585187754451882888636207346 z^3  
−36172387932173070700274626391875325046446135587571567104728238361609959585168968908052314521091999668
7328944402383775404506316305205218072519491934755938693289400115126000951172 z^2  
+20935691771561572598332333522446656811369515875889747491011080048671116088416603422952090295369258655
7720745571610423113909174905977695868880159707921509590609748348806724532505 z  
−25300786711117364941467035796821295903926516943242249466186648867628456983508137381561310270172727175
645193786997896174299607718335581494827784731954248804798019355014232574579  
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It is obviuos that these large numbers can not be stored in regular integer data types like int 
or long int. They can only be processed using multiple precision integer arithmetic, which 
consumes a lot of processor performance as well as memory. 
In Buchberger’s algorithm the overwhelming majority of execution time is spent in the 
NORMALFORM and SPOLY routines, which are basicly multiplying and adding monomials. 
Compared to multiple precision integer computations, the term operations are fast. So in 
terms of consumption of memory and processor time Buchberger’s algorithm is largely a task 
of manipulating very big integers (see section 4.2). 
It is the main idea of gfloat to use floating point arithmetic instead of integer arithmetic, which 
limits the size of the polynmial coefficients. Thus the effort to compute Groebner Bases is 
reduced drastically. 
 
 

2.1 Multiple Precision Floating Point Arithmetic 
 
 
Floating point arithmetic represents numbers with a limited precision, they are inherently 
inaccurate. This inaccuracy varies, depending on the operations that were previously 
executed with this floating point number. 
Modifying an existing software for computation of Groebner Bases simply by changing the 
integer polynomial coefficients to hardware floating point data types like float or double 
does not produce the desired result. Even for small examples the coefficients of the resulting 
Groebner Bases are very inaccurate, even totally incorrect. That makes it necessary to 
monitor the inaccuracy during floating point operations. 
 
 
(2.1.1) 
 
An integer n can be represented by a floating point number f = m⋅bx where 0 ≤ m < 1 is the 
mantissa, b is the base and x is the exponent of the floating point number.  
The number of digits in the mantissa is called mantissa length. 
 
 
As an example take an integer 451614; representing it by a floating point number with  
base=10 and a mantissa length of 4 decimal digits one finds that using m=0.4516, and  x=6  
 

f = 0.4516E6 = m⋅bx = 0.4516 ⋅ 106  = 451600 
 
The floating point representation of 451614 is not accurate, this is the case because the 
mantissa is not large enough to store all the digits of the integer. The number has to be 
truncated to fit into the mantissa, that produces inaccuracy. The size of the mantissa 
determines the precision of the floating point representation. A floating point with infinitely 
large mantissa is equivalent to an integer. 
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Taking a base b=2 leads to binary floating point numbers. Different representations are 
possible for mantissa and exponent. The method used for the following examples was 
chosen because it is equivalent to the representation of multiple precision software floats that 
are being used in gfloat. Hardware floating point numbers are usually different, e.g. 
ANSI/IEEE 754-1985 standard. 
 
Taking a look at the accuracy of floating point numbers two main reasons for inaccuracy can 
be identified: 
 
• rounding error 
• subtractive cancellation 
 
Rounding takes place whenever the result of an arithmetic operation needs to be truncated 
to fit into the mantissa. This starts already during the conversion from integer to floating point 
format if the integer cannot be represented exactly. The maximum rounding error for a binary 
float is ½ bit. For every arithmetic operation (except for addition and subtraction of floats with 
equivalent exponents) the result is rounded, so in the worst case there is a loss of accuracy 
of n/2 bits after n operations. Fortunately rounding errors have a tendency to even out over a 
large number of operations so the actual situation is much better [Knuth 1981]. 
 
Subtractive cancellation takes place whenever two floating point numbers of nearly the same 
size are subtracted. As an example take two binary floating point numbers  
a = 0.110110001100001110110011110110E111000 = 61013772159942656 and  
b = 0.110110001100001110100110110101E111000 = 61013716258258994.  
Performing the subtracion a-b = c leads to the following situation: 
 
 
 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 E 1 1 1 0 0 0 a 
- 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 E 1 1 1 0 0 0 -b 
__________________________________________________________________________________________________ 
 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 E 1 1 1 0 0 0 c 
 
 
During subtraction some of the leading bits of the mantissa are cancelled to zero. The crucial 
point is, that floating point numbers are normalized, that means the leading bit of the 
mantissa is always 1 [Knuth 1981]. Consequently the mantissa is shifted to the left for each 
leading zero and the exponent is decremented for every shift. During the shifting the bits on 
the right side of the mantissa are filled with arbitrary values, usually zeros.  
 
 
 1 1 0 1 0 0 0 0 0 1 x x x x x x x x x x x x x x x x x x x x E 1 0 0 1 0 0 c 
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So after a subtractive cancellation of n leading bits in the mantissa, the last n bits of the 
result contain arbitrary values (indicated with x). The precision loss of the mantissa can be 
calculated from the exponent of the floating point number, because it is decremented for 
every shifting step. In the above example the precision loss is  
 

111000 bin – 100100bin = 56 – 36 = 20 bits. 
 

It is important to realize, that the effect of subtractive cancellation depends on the nature of 
the algorithm. If no subtractions of nearly equal floats are performed, no precision loss will 
occur. In this case rounding errors will be the predominant source of inaccuracy. However, 
Buchberger’s algorithm is very sensitive towards subtractive cancellation, because it is 
designed to eliminate certain terms in the polynomials. During that process the coefficients of 
the other terms are also subtracted what causes a permanent precision loss. Hardware 
floating point arithmetic mantissa length is by far not suficcient to preserve enough accuracy 
through the whole algorithm, is it necessary to use software floating point arithmetic.  
 
 
Software floating point arithmetic uses the same techniques as hardware, but it does not use 
the hardware logic that is provided for the standard floating point data types float and 
double. It rather uses software to implement the same arithmetic operations. It has the 
advantage over harware arithmetic that it is very flexible, it is possible to use arbitrariliy long 
mantissas. The disadvantage of course is, that it is very much slower than hardware logic. 
 
 
It uses the same representation (2.1.1) as binary and decimal floating point arithmetic, the 
only difference is, that it uses so called processor words instead of decimal- or binary digits. 
A word is the basic processing unit in the arithmetic-logical unit (ALU) of the processor, a 
32bit processor has a word length of 32 bits. A word is usually represented by the data type 
long int. Now how can a processor word be a digit? Taking a look at decimal digits one 
finds, that there are ten different symbols 0,1,2,…,9 for a digit. Basically the symbols 
0,1,2,…,9 only indicate one of the ten possible states of the digit. The point is, that other 
symbols could also be used to represent the states 0,1,…,9 of the digit, for instance every 
number could be represented by a set of 4 bits. So 784 could be represented as 
 
 

784 =  7⋅102 8⋅101 4⋅100 = [0111]⋅102 + [1000]⋅101 + [0010]⋅100. 
 
 
Remember that the position of a digit represents a multiplication of the digit with the base 
raised by the position. 
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Now that is exactly the idea of using words as digits. A word with a length of w-bits can be in 
2w different states. So a word can represent 2w different numbers. Summarizing one can say 
that w-digit (word digit) representation uses ′digits′ with 2w ′symbols′ represented by the bit 
states. Everything else is equivalent to binary or decimal floating point representation.  
 
For an example consider a w-digit floating point representation of 1037. w=64, so the base b 
of this representation is 264. First we will rewrite 1037  as multiples of the powers of the base. 
 

1037= 54210108624275221⋅(264)1 + 12919594847110692864⋅(264)0 
 
The factors could be taken as w-digits for an integer w-digit representation of 1037: 
 
 

1037 = [54210108624275221][12919594847110692864] 
 
          [ w-digit in position 1]  [w-digit in position 0] 
 
 
The w-digit is the expression in brackets. It does not matter how the digit is represented, 
binary decimal or hexadecimal, as long as it defines the 264 states of the w-digit. Taking 
(2.2.1) the floating point representation would be 
 

1037 =[0].[54210108624275221][12919594847110692864]E[2] 
 
Software floating point representation uses w-digits because they make it convenient to build 
a mantissa. The mantissa digits are simply represented by an array of words (long integers). 
Additionally a lot of arithmetic (addition and subtraction of words for example) is directly 
supported by the hardware. 
In gfloat the software floating point arithmetic was not written by ourselves, it was taken from 
the GNU MP multiple precision library. Nevertheless it is necessary to understand w-digit 
floating point representation to implement the subtractive cancellation controll. 
 
Now we are ready for a few examples of subtractive cancellation. First we will again consider 
the example from the beginning of section 2 (p.42). This time the Groebner Basis is 
computed using multiple precision floating point arithmetic, two different mantissa lengths 
were chosen. First a mantissa length of 300 bits was chosen, for the second computation the 
mantissa had 500 bits. The third equation of the basis is printed below, in order to point out 
the differences the same monomials are always printed together. The first coefficient is from 
the floating point number with 300 bit mantissa, the second with 500 bit. 
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0.1e1 * x  
0.1e1 * x  
 
+0.10892277065818831987537531307425425569418288185237789583741447413183230066966592013924407062e2 * z ^ 7 
+0.10892277065818831987537531307425425569418288185237789583741447413183230066912838738552646932e2 * z ^ 7  
 
−0.30497952980689669389284569446815075987812642940443130072368184969039206041109962272231473561e2 * z ^ 6  
−0.30497952980689669389284569446815075987812642940443130072368184969039206040875759568377090353e2 * z ^ 6  
 
+0.57634342591056552565606994611195859806848595526198418124232316991544340183286297298535523568e2 * z ^ 5  
+0.57634342591056552565606994611195859806848595526198418124232316991544340182990604844947323288e2 * z ^ 5 
 
−0.14649201719612707819398044057557401560322411526924870810761150772447567554031195173399573823e3 * z ^ 4  
−0.14649201719612707819398044057557401560322411526924870810761150772447567554060434667489372780e3 * z ^ 4  
 
+0.33490899062088453242520429428117077381194370479713906158828567708920376897758483908549205017e3 * z ^ 3 
+0.33490899062088453242520429428117077381194370479713906158828567708920376897892801532814290414e3 * z ^ 3 
 
−0.45287191343703979116686737397749226068111933923430218981217607119994847431066921216899452149e3 * z ^ 2  
−0.45287191343703979116686737397749226068111933923430218981217607119994847431227249595855742799e3 * z ^ 2  
 
+0.2621111663817543450688443340111319825085297986353276915841442768371678073448920902150936584411e3 * z  
+0.2621111663817543450688443340111319825085297986353276915841442768371678073456498231481465584460e3 * z  
 
−0.316761384700703255038710914521566449343413925162427092953537932332005613083253797846942137155305e2  
−0.316761384700703255038710914521566449343413925162427092953537932332005613084127162296030335280283e2 

 
 
In the shaded positions, the results are different. Obviously the last digits of the first (300 bit) 
coefficient have been currupted by subtractive cancellation and rounding errors. Allthough 
only about 200 multiplication and addition operations were performed the loss of accuracy is 
quite sizeable.  
From this example one might get the impression, that it is possible to determine the number 
of correct bits from a floating point operation, just by reperforming it with larger mantissa and 
taking the results as correct if they do not differ. 
However, that is NOT so. When leading mantissa bits are cancelled, the bits that are entered 
on the right side during the shifting are usually constant (zeros). Whatever mantissa length is 
chosen, the incorrect bits in the result will hold the same values. So even if all bits of two 
floats are incorrect, they still have the same uncorrect value. That shows the following 
example given by Rump [Rump 1988].  

 
f(a,b) = 33.75b2 + a2(a2b2 – b6 – 121b4 - 2) + 5.5b8 + a/2b 

 
Evaluating f(a,b) for a=77617 and b=33096 one finds the following wrong results for the 
hardware data type float and double and the result for a 128 bit software float which is 
correct for the first 11 decimal digits. 
 
 
float   f= 1.17260304005317 
double  f= 1.17260304005317863185 
SW float  f= -0.827396059903165622456064540059894416999033115786 
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Still it is possible to find a correct result by constantly raising the mantissa length, because 
eventually the floats will be large enough to store correct bits. That certainly is an 
inconvenient method and not suited for bigger problems. It is necessary to find some 
estimate for the floating point error. 
Only interval arithmetic can produce truly reliable error estimates because it uses strictly 
worst case criteria. The application of worst case criteria on the other hand is what makes 
interval arithmetic very pessimistic, the real error is often much smaller than the estimate 
[Knuth 1981]. That is because interdependencies of errors are neglected. 
Applying interval arithmetic to floating point arithmetic huge mantissas would be needed to 
obtain a significant result, that would leave no advantage over integer arithmetic. So gfloat 
uses only an error estimate instead of exact error tracking. 
 
Considering the fact, that rounding errors are small compared to the error due to subtractive 
cancellation, a usable estimate for the error of a floating point number is the number of 
cancelled digits. In gfloat 10 percent of the mantissa are reseved for rounding errors. That is 
a purely empirical value. If 90 percent of the mantissa has been cancelled, it is assumed that 
the float has no significant bits any more. 
Cancellation controll is performed on bit level, every single bit that is cancelled is recorded.  
 
 
(2.1.2) 
 
Using multiple precision floating point variables a,b with a wordlength of w bits and 
performing an addition or subtraction r=a±b the number of bits that are cancelled is CB.  
hi  is the position of the leading bit in the highest digit of the multiple precision float i, expoi is 
its exponent. 
 
CB = max(ha, hb) - hr + w(max(expoa,expob) - expor) 
 
 
We will again take the example a-b for a=61013772159942656 and b=61013716258258994 
but this time the numbers will be represented as 48bit mantissa floating point numbers with 
w=16 bit wordlength. The 48 bit mantissa is split into a 48/16 = 3 word w-digit mantissa, the 
base is 216 so 
 

a = [0].[0000000011011000] [1100001110110011] [1101100000000000] E [4] 
b = [0].[0000000011011000] [1100001110100110] [1101010000000000] E [4] 

 
If we want to check this we take (2.1.1) and find that  
a = 11011000 bin⋅(216)3 + 1100001110110011bin⋅(216)2 + 1101100000000000bin⋅(216)1  what is 
equivalent to a = 216⋅248 + 50099⋅232 + 55269⋅216 = 61013772159942656. Now we come to 
the subtraction. 
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     Accurate mantissa part of a, 40 bit 
 

  a = [0].[0000000011011000] [1100001110110011] [1101100000000000] E [4] 
- b = [0].[0000000011011000] [1100001110100110] [1101010000000000] E [4] 

 
             hb = 8 
 
The unshifted result r = a-b is  
 

r = [0000000000000000] [0000000000001101] [0000010000000000] E [4]. 
 
The first w-digit is zero so the mantissa is shifted to the left once and the exponent is 
decremented, after that we have the final result  
 
 
   Accurate mantissa part of r, 20 bit 
 

r =  [0000000000001101] [0000010000000000] [xxxxxxxxxxxxxxxx] E [3]. 
 
        hr =4 
 
A and b have the same leading bit position ha = hb = 8 and the leading bit position of the 
result hr = 4. The exponents expoa = expob = 4 and expor = 3. So with wordlength w=16 the 
number of cancelled bits is CB = max(ha, hb) - hr + w(max(expoa,expob) - expor)  
CB = max(8,8) – 4 + 16(max(4,4) – 3) = 20bits. 
 
Please note that expression (2.1.2) not only indicates loss of bits (for CB>0), but also may 
return a gain (for CB<0). This can actually happen if two floats are added such that the 
mantissa of the result needs to be shifted to the right in order to be able to store it. Then one 
incorrect bit on the right side of the mantissa is eliminated. 

This case can be detected by an increment of the exponent. Please note that this reflects 
only the very special view of error estimate based on mantissa shifting operations. Interval 
arithmetic delivers a different error estimate.

 
 1 1 0 1 1 0 x x x E 1 0 0  
+ 1 0 1 1 0 0 x x x E 1 0 0  
____________________________ 
 
 1 1 0 0 0 1 0 x x E 1 0 1  
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Obviously subtractive cancellation leads to polynomial coefficients with a different number of 
accurate mantissa bits. In following computations it happens, that two operands have 
different mantissa errors. Apart from the additional cancellation that may occur, the error of 
the result needs to be defined.  
 
 
(2.1.3) 
 
Using multiple precision floating point variables a,b,r with a wordlength of w (in bits) the 
number of accurate bits is aba,abb. The position of the leading bit in the highest digit of the 
multiple precision float i is hi , its exponent is expoi . Expressions (2.1.3.1) to (2.1.3.3) define 
the accurate bits abr of the result for the following arithmetic operations. 
 
Please note that it is assumed that the exponent of a is greater equal exponent of b. 
 
(2.1.3.1)  For addition and subtraction r = a±b  

abr = min (aba, abb+abc) where abc= w(expoa-expob) + ha - hb 
(2.1.3.2)  For multiplication and division r = a⋅b, r = a/b 

abr = min (aba,abb) 

(2.1.3.3)  For square root ar =  
abr = aba 

 
Expression (2.1.3.1) looks somewhat confusing, the following may illustrate the situation. A 
floating point addition is performed by adding the mantissa bits that represent the same 
integer bit, so the mantissas have to be shifted relative to each other before adding. 
 
   ha      w    w 
 
                        
                        
                        
        abc  hb 
 
       (abc + abb) 
 
                        
    abr 
 
 
White indicates zeros, the gray area is the accurate mantissa part and black are corrumped 
bits. One can see that abc can be interpreted as the number of accurate bits in operand a 
that have a higher position after shifting than the highest nonzero bit of operand b. 

operand a

operand b

result r
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Evaluating the correct digits for multiplication and division is difficult to handle precisely. That 
is because the exact arithmetic computations are very costly, for multiplication for instance 
one shift and add operation for each mantissa bit is required. In order to avoid this the  
GNU-mp library uses numerical algorithms in highly optimized assembler code. For our 
purposes exact arithmetic was assumed, what leads to (2.1.3.2). 
Finding the exact square root of a number with interval arithmetic reveals a reduction of the 
relative error to the half. However in GNU-mp arithmetic Newton interation is used for square 
roots, it consists of multiplication and addition operations. Consequently the error is 
estimated to be constant (2.1.3.3).  
 
Now we have a tool to monitor the precision loss in multiple precision floating point 
operations. For rounding errors 10 percent of the mantissa are reserved, but what happens if 
the rounding error exceeds this part of the mantissa?  
And there are even more problems: it is impossible to determine if an expression r=a-b 
represented by two floats yields exactly zero. We will again take the example from the 
beginning of section 2.1 where an integer a=451614 is represented by a four decimal digit 
float 0.4516E6. Taking b=451638 it will be represented by the same floating point number! 
Now consider a polynomial operation where p= 79415 x2 + 451614xy and  
q =9353y2 + 451638xy. Performing r = p – q with integer coefficients we obtain 
 

r = p–q = 79415 x2 + 451614xy – 9353y2 - 451638xy = 794115 x2 - 9535y2 –24xy 
 
The same operation in floating point arithmetic yields 
 
r = p–q = 0.7941e5x2 + 0.4516e6xy – 0.9353e4y2 - 0.4516e6xy = 0.7941e5x2 - 0.9535e4y2 

 
The term xy was has been cancelled falsely. Of course with a larger mantissa this would not 
have happened, but it is impossible to find out if which mantissa length has to be used such 
that false cancellation of terms cannot occur. 
Buchberger’s algorithm reacts unpredictably upon false cancellation of terms. It may happen 
that this cancellation changes the structure of the ideal what in turn affects the solutions. The 
consequences may be disastrous, it has to be made sure that this cannot happen. 
 
In order to address these two problems, checking if the rounding errors are exceeding the 
reserved part of the mantissa and determination if a subtraction yields exactly zero, a 
combination of floating point and modular arithmetic is introduced. 
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2.2 Modular Arithmetic 
 
It will be the aim of this section to introduce a 'modular arithmetic' in order to create 
polynomials that have 'modular' coefficients - coefficients where the basic arithmetic 
operations  (+ - ⋅ /) are defined differently than for integers. Using these modular coefficients 
for the polynomials it will also be possible to compute Groebner Bases. These so called 
modular Groebner Bases are then used to find important properties about their varieties. 
Also modular arithmetic will be irreplaceable on the way to compute Groebner Bases with 
floating point coefficients.  
 
Modular arithmetic is another application of the concept of residue class rings that was 
already introduced in section 1.4.1. Basically modular arithmetic uses the residue classes of 
a residue class ring Z/〈m〉 where the ideal lies in the ring of integers and is of the kind I=〈m〉 
with m ∈ N+. Consequently I is a principal ideal, the generator m of the ideal is called the 
modulus of Z/〈m〉. Modular coefficients are the standard representitives of Z/〈m〉. 
As an example we will again use the residue class ring Z/〈7〉 with its seven residue classes 
[0],[1],[2],[3],[4],[5] and [6]. 
 
 
 ... ... ... ... ... ... ... 
 14 15 16 17 18 19 20 
 7 8 9 10 11 12 13 

Z/〈7〉 = {  [0], [1], [2], [3], [4], [5], [6]   } 
 -7 -6 -5 -4 -3 -2 -1 
 14 -13 -12 -11 -10 -9 -8 
 ... ... ... ... ... ... ... 
 
 
The first step to obtain a modular arithmetic will be to define a way to determine the residue 
class membership of an integer and its standard representitive. 
 
(2.2.1) 
 
Given a set of integer residue classes Z/〈m〉, with a prime modulus m∈Z and two integers c,d 
∈Z. The remainder upon division c/m will be denoted rem(c/m). 
 
(i)  Taking c>0 and d<0 then c and d are only in the same residue class iff  

rem(c/m) = rem(d/m) + m. 
(ii) Taking c>0 and d>0 respectively c<0 and d<0 then c,d are only in the same residue  

class iff rem(c/m) = rem(d/m). 
(iii) The rem(c/m) is the standard representitive of c>0 and rem(d/m) + m is the  

standard representitive of d<0. The standard representitive is called the modular 
coefficient of the residue class [c] 
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Applying this to our example Z/〈7〉 we want determine the residue class membership of  
13, -13,8 and -8. Rem(13/7)=6 and rem(8/7)=1, rem(-13)+7= -6+7=1 and rem(-8)+7=6 so we 
find that 13∈[6] and -8∈[6] furthermore -13∈[1] and 8∈[1] what can also be seen in the 
illustration above. 
 
(2.2.1) (iii) also provides a way to find the standard representitives of each residue class of Z/
〈m〉 because all the remainders r are within -m < r < m (m being the modulus) if the the 
remainder is negative just add the modulus needs to be added. One immediate consequence 
is that modular coefficients all are in the range 0 ≤ r < m, they cannot grow larger. 
 
Please recall that for two residue classes a and b the operations (+ - ⋅) are defined as 
[a]±[b] = [a±b] and [a]⋅[b] = [a⋅b] with unity [1] and zero element [0]. Also given a ring R and 
an ideal I ⊂ R  the set of all residue classes denoted as R/I is a ring under the  
operations (+ - ⋅).  
 
The following examples show integer operations and its modular eqiuvalents in Z/〈7〉. The  
representitives of the residue classes are modular coefficients (standard representitives). 
 
 

integer operation modular operation 
modulus = 7 

  
17+23=40 [3]+[2]=[5] 
13⋅23=299 [6]⋅[2]=[5] 
15-31= -16 [1]-[3]=[5] 

 
 
In the previous sections it has been stated, that the polynomial ring k[x1, x2, ..... xn ] 
is formed over a field k. In a field the four basic algebraic operations (+ - ⋅ /) are defined. In 
the residue class ring only (+ - ⋅) were defined. In order to be able to use modular arithmetic 
for polynomial coefficients it is necessary to find a modular operation for division of two 
modular coefficients.  
 
This can be achieved using the so called extended euclidean algorithm which was first 
described around 300 B.C. by the famous ancient Greek mathematician Euclid [Becker, 
Weispfennig 1993]. 
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(2.2.2) 
 
Given a ring R and a,b∈R the following algorithm computes d=gcd(a,b), the greatest 
common divisor of a and b as well as s and t satisfying d=as+bt. 
QUOT,REM := A/B will denote a division A/B where QUOT is the quotient and REM is the 
remainder. 
 
input:  a,b 
output: d,s,t  
 
A:=a, B:=b 
S:=1, T:=0 
U:=0, V:=1 
WHILE B≠0 DO 

QUOT,REM := A/B 
A:=B, B:=REM 
S1:=S, T1:=T 
S:=U, T:=V 
U:=S1 - QUOT⋅U 
V:=T1 - QUOT⋅V 

d:=a 
s:=S 
t:=T 
 
 
 
As an example take a=25, b=31991. The following table shows the situation at the end of 
each WHILE loop.   
 

 QUOT REM A B S T S1 T1 U V 
Loop1 0 25 31991 25 0 1 1 0 1 0 
Loop2 1279 16 25 16 1 0 0 1 -1279 1 
Loop3 1 9 16 9 -1279 1 1 0 1280 -1 
Loop4 1 7 9 7 1280 -1 -1279 1 -2559 2 
Loop5 1 2 7 2 -2559 2 1280 -1 3839 -3 
Loop6 3 1 2 1 3839 -3 -2559 2 -14076 11 
Loop7 2 0 1 0 -14076 11 3839 -3 31985 -25 
 
At the end of loop7 the condition of the WHILE loop B≠0 no longer holds, the loop stops and 
the algorithm returns d=1, s= -14076, t=11. So the greatest common divisor of 25 and 31991 
is 1 which is not a surprise considering that 31991 is a prime. One can easily verify that  
1 = d = as + bt = 25⋅(-14076) + 31991⋅11 . 
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Before we continue to develop the idea of modular arithmetic it may be worth to point out 
some interesting relationships between greatest common divisors and Groebner Bases. Per 
definition the Euclidean algorithm is not restricted to the ring of integers Z, it works in any ring 
R. Considering the ring of univariate polynomials k[x] the algorithm computes the greatest 
common divisor of two univariate polynomials f1(x), f2(x). Cascading the algorithm one can 
determine the gcd of any set of univariate polynomials f1(x) ... fi(x). In order to develop this 
the following relationship is used.  

 
 gcd (f1(x) ... fi(x)) = gcd(f1(x),gcd (f2(x)... fi(x))) 

 
The gcd of a set of polynomials is equivalent to the gcd of the first polynomial and the gcd of 
all other polynomials. This can be repeated over and over again until the 'innermost' 
expresion is a gcd of the two polynomials fi-1(x),fi(x) which can be computed with the 
Euclidean algorithm. 
 

 gcd (f1(x) ... fi(x)) = gcd(f1(x),gcd (f2(x),gcd(f3(x),( .... ,gcd(fi-1(x),fi(x)))))   
 
The crucial point is, that the greatest common divisor of a set of polynomials gcd(f1(x) ... 
fi(x)) is a Groebner Basis of the ideal  〈f1(x) ... fi(x)〉. Looking at this aspect of gcd's of 
polynomials in one variable Buchberger's algorithm can be seen as a generalization of the 
Euclidean algorithm for the ring of polyvariate polynomials k[x1 ..... xn]. Furthermore it makes 
sense to consider a Groebner Basis of a polyvariate a ideal as a set of greatest common 
divisors of the generating polynomials of the ideal. 
 
Back to modular arithmetic: The extended Euclidean algorithm delivers d=gcd(a,b) and 
additionally two factors s,t that satisfy d = as + bt. In the following the modular operations will 
take place in the residue class ring Z/〈m〉 where m is the prime modulus. Now if we choose 
modulus m and an arbitrary number a as inputs for the algorithm - like in the above example 
where m=b=31991 and a=25 - the gcd(a,m) is always one. This can also be expressed in 
modular arithmetic. 
 

as + mt = gcd(a,m) = 1   ⇒  [a]⋅[s] + [m]⋅[t] = [1] 
 
Applying the modular operations defined above we find [m]⋅[t] = [mt]. The expression mt 
obviously is a multiple of the modulus m and thus belongs to the residue class [0], so 
[mt]=[0]. Per definition [0] is the neutral element in the ring so finally the above expression 
can be written as 
 

[as] + [mt] = [as] + [0] = [as] = 1 
[as] = 1 ⇔ [s] = [1/a] 

 
As the expression [as] equals 1, s obviously is the multiplicative inverse of a. So 

 
[as] = 1  ⇔  [s] = [1/a] 
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Again taking the above example and a modular arithmetic with modulus=31991 we have 
[a]=[25] and [1/a] = [-14076]=[-14076+31991]=[17915]. So the modular coefficient of 1/25 is 
[17915]. In order to verify we have to check  
 

[1]=[25][-14076]=[25⋅(-14076)]=[25⋅17915]  
 
Now it is easy to find the modular coefficients of rational numbers. For instance  
 

[8568/25] = [8568]⋅[1/25]=[8568mod31991]⋅[-14076mod31991]=[2902]. 
 
Finally we have a definition for the division operation in modular arithmetic. This makes  
Z/〈m〉 a field and thus it is possible to define the polynomial ring Z/〈m〉[x1, x2, ..... xn ] 
over the field Z/〈m〉. In other words we can use modular arithmetic for coefficients in a 
polynomial ring. 
 
 
(2.2.3) 
 
Given a ring Z then Z/〈m〉 forms a field defining the following operations for [a],[b]∈Z/〈m〉. 
[1/a] will be called the multiplicative inverse element of a. 
 
(i) [a]+[b] = [a+b]  
(ii) [a]⋅[b] = [a⋅b] 
(iii) [1/a] = [s] where [s] is delivered by the extended Euclidean algorithm eucl_ex(a,m)  
 
The unity is [1] and the zero element is [0]. There is no multiplicative inverse for [0].   
 
 
Now we will apply arithmetic with modular coefficinets to Groebner Basis computation. 
Taking the same input equations as in the example p.42, namely -919 z2 + 705zy + 526zx - 
312y2 + 202yx - 761x2 + 804z - 996y - 252x + 343 = 0, -175z2 - 58zy + 544zx + 893y2 - 
174yx + 915x2 + 443z - 335y - 566x - 869 = 0 and 98z2 + 527zy - 380zx - 880y2 - 768yx - 
465x2 + 642z - 213y - 743x - 494 = 0. We will first convert the integer polynomials to modular 
polynomials. Taking the modulus 31991 we find  

 
h1 = x2 + 27871xy + 30436y2 + 18412xz + 8743yz  + 6391z2 + 7357x+ 18414y+ 29846z+ 10425, 

h2 = x2+ 9230xy+ 3742y2 + 560xz+ 24404yz+ 19579z2 + 3181x+ 11887y + 22097z + 3810, 
h3 = x2+ 8051xy+ 28553y2 + 26144xz+ 14928yz+ 6054z2 + 6331x+ 1858y+ 7016z+ 27589 

 
As expected, all the coefficients are greater equal zero and smaller equal than 31990, 
depending on which residue class the integer coefficient belongs to. 
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A monomial ordering x>y>z is fixed and the total degree reverse lexicographic Groebner 
Basis is computed. The result consists of six polynomials 
 

f1 = 1 z4 + 10459z3 + 18694xz + 8873yz + 13360z2 + 17046x + 16299y + 5684z + 26444, 
f2 = xz2 + 20375z3 + 17516xz + 20807yz + 30836z2 + 22281x + 13846y + 22143z + 5192, 
f3 = yz2 + 13384z3 + 23800xz + 17262yz + 29087z2 + 17725x + 7145y + 11312z + 15230, 

f4 = x2 + 14389xz + 9959yz + 8506z2 + 28318x + 23660y + 21071z + 19134, 
f5 = xy + 29467xz + 22446yz + 31546z2 + 18666x + 9405y + 15315z + 2068, 

f6 := y2 + 5615xz + 4594yz + 12907z2 + 3101x + 266y + 31011z + 28801, 
 
It is one of the main benefits of modular arithmetic, that the monomial coefficients cannot 
grow. On the other hand the information about the actual solutions of the input equations is 
lost, because the modular coefficient gives only information about the residue class of the 
according integer coefficient. It is impossible to find out which integer in the residue class 
was the original coefficient [Lazard 1992]. 
 
Still, only the structure (i.e. the terms in the polynomials) of a Groebner Basis can tell a lot 
about the solution set. In earlier sections criterion (1.4.1.4) was introduced, that allowed to 
determine if the ideal of a given Groebner Basis is zero dimensional – it is, if there is a 
univariate headterm for every basis polynomial. Applying this to the above example we find 
that HT(f1) = z4, HT(f4) = x2 and HT(f6) = y2 so the ideal is zero dimensional, there exists a 
finite set of solution points.  
If the ideal turned out to be zero dimensional, we can even find out the number of actual 
solutions because the number of reduced terms of this Groebner Basis is equivalent to the 
number of discrete points in the according variety (see 1.4.3.1). In order to  find all reduced 
terms of a Groebner Basis the algorithm REDTERMS (1.4.2.2) can be used. For the example 
REDTERMS returns the reduced terms 
 

Reduced Terms (f1,f2,f3,f4,f5,f6) = {1,x,y,yz,xz,z,z2,z3} 
 
There are eight reduced terms and therefore eight solutions, the total degree of the 
univariate polynomial is also eight, what can be verified with the lexicographic Groebner 
Basis that was given at the beginning of section 2.1 (p.42)  
 
In summary we found that modular Groebner Bases can be used to find the dimension of the 
solution set of a given problem, additionally one can determine the number of solutions if it is 
finite. Please note, that it is NOT necessary to compute a lexicographic Groebner Basis in 
order to get this information (example!), the criteria work on every Groebner Basis.  
That is important because the size and number of polynomials involved in Buchberger’s 
algorithm makes it often impossible to compute a lexicographic Groebner Basis, even with 
modular arithmetic. 
So for many problems, where it is sufficient to find the number of solutions, for example 
position analysis in kinematics, computing a modular total degree reverse lexicographic 
Groebner Basis can deliver the desired information. Additionally the computation of modular 
Groebner Bases takes only a tiny fraction of time, compared to integer or floating point 
arithmetic (see section 4.2). 
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In the previous section it turned out to be impossible to find out if an integer subtraction a-b 
yielded zero when the integers were in floating point representation. In modular arithmetic 
this is no problem: For an integer subtraction that yields zero, the corresponding modular 
operation also yields zero, because the integer zero is always a member of the residue  
class [0]. 
Unfortunately all multiples of the modulus are also member of [0] (see 2.2.1). This has 
undesired consequences on polynomials with modular coefficients: all monomials with 
integer coefficients that are multiples of the modulus have the modular coefficient [0] and are 
thus cancelled.  
For example take the input polynomial h3 = 98z2 + 527zy - 380zx - 880y2 - 768yx - 465x2 + 
642z - 213y - 743x - 494 from above example. Converting it to a modular polynomial with 
modulus m=107 we obtain 
 

h3 := x2 + 41xy + 18y2 + 71xz + 6yz + 87z2 + 49x + 26y + 103 
 
The monomial 697z has vanished. Considering that the integer coefficient 642 can be 
expressed as  6⋅107 it is clear that the modular coefficient is [0], the term has been cancelled 
allthough its integer coefficient is nonzero.  
 
This of course raises serious problems; it was already mentioned in the previous section that 
false cancellation must not occur in Buchberger’s Algorithm. But is it possible to find out if a 
modular monomial had been cancelled falsely? 
 
It may help to recompute the modular Groebner Basis with several different moduli. If the 
result is equivalent, meaning that the structure of the terms in the bases are identical (the 
coefficients will of course be different) that is a strong hint that it is correct. Still it is not very 
secure and not satisfying. 
Combining modular with multiple precision floating point arithmetic will open new ways to 
address this problem. 
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2.3 Combined Modular and Floating Point Arithmetic 
 
 
In both, modular and floating point represenatation of integers some specific information 
about the original number is lost.  
In floating point representation the ‘big picture‘ about the represented integer is still correct. 
Only a limited part of digits of the integer is represented, these are the most significant digits 
(highest places). So floating point arithmetic is accurate within the part of the mantissa that 
has not been currupted by rounding errors or cancellation. It gives a coarse idea about the 
absolute value of the represented integer, but no information about the exact value. 
In contrast to that, modular representation is perfectly able to distinguish integers that are in 
close neighbourhood. Integers within plus/minus half of the modulus will be assigned to 
different residue classes thus having different modular coefficients. So the information about 
the exact value in the least significant digits of the integers is preserved. Modular arithmetic 
gives a good idea about the detailed location of the represented integer but no information 
about its order of magnitude. 
 
So combining them gives us the best of two worlds. Floating point information is suited to 
have an approximation of the integer value of the monomial coefficient. Modular information 
is suited to find out, if the integer value of a coefficient is exactly zero and the term has to be 
cancelled. 
 
These properties allow it to solve the problems mentioned in previous sections. 
 
• It is possible to determine when all the significant digits in the mantissa have been  

cancelled (cancellation failure). This is indicated by a subtraction where the floating 
point coefficient is zero and the modular coefficient is nonzero. In that case the 
mantissa length needs to be increased and the computation must be restarted. 
 Please note that only the result of the modular operation decides, if a floating point 
zero is interpreted as a real zero or as a cancellation failure. 

 
•       In order to find out if an expression yields zero the modular and the floating point 

coefficient must be zero. Rounding error and subtractive cancellation make it possible 
that a floating point operation yields nonzero even if the corresponding integer result is 
zero. So a new definition for a zero result is given here: A subtraction of two floating 
point numbers is zero if all significant digits in the mantissa were cancelled. Significant 
are these digits, that are neither reseved for rounding errors nor have been corrupted 
by subtractive cancellation. 

 
•       It is possible to detect false cancellations of monoms in modular arithmetic. That 

happens when the integer represented by the modular coefficient is a multiple of the 
modulus. The modular result of the operation is zero, the floating point result is 
nonzero.A false cancellation makes it necessary to reperform the modular Groebner 
Basis computation with a different modulus. 
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•  Still there exists a very rare case where a modular result is zero and the float result is 
nonzero, that was NOT caused by a multiple of the modulus. It happens, when the 
rounding errors exceed the reserved area of the mantissa (rounding failure) and the 
modular zero is a real zero. This is very unusual, because normally all mantissa bits 
are cancelled in subtractions before the rounding errors becomes so big. 
It is a strong indicator for rounding failure if computations with several different moduli 
yield modular zero and floating point nonzero at the very same operation  
(i.e. the same monom and the same NORMALFORM reduction step). Interpreting this 
as a false modular cancellation would assume, that the integer coefficient was a 
multiple of of each of the moduli, which is extremely unlikely. 
After rounding error failure the computation has to be reperformed with increased 
mantissa length. 

 
For combined modular and floating point arithmetic remains only the very unlikely 
occurrence, that the integer coefficient is a multiple of the modulus and all significant 
mantissa bits are cancelled in the floating point operation (cancellation failure). Then the 
corresponding monomial would be cancelled falsely. 
This can be summarized in the coefficient test [Lösch 1996] 
 
 
(2.3.1) 
 
Two integers a,b are represented by a pair a multiple precision floating point coefficient af,bf 
and a modular coefficient am,bm. A subtraction r=a-b is represented by rf=af-bf and  
rm=am-bm. The floating point result rf is defined to be 0.0 (zero) if all significant bits in the 
mantissa are cancelled. 
The following coefficient test interprets the result of the subtraction: 
 
 
IF rm = [0] THEN 
 IF rf = 0.0 THEN 
  r = 0 or r is a multiple of the modulus and cancellation failure 
 ELSE 
  r ≠ 0 
  repeat the computation with a different modulus  
  IF several computations with different moduli fail at the same monom THEN 
   r = 0, 
   rounding failure, repeat computation with longer mantissa 
ELSE  
 -- REMARK: rm ≠ [0] -- 
 IF rf = 0.0 THEN 
  cancellation failure, repeat computation with longer mantissa 
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Repeating the computation with different moduli lowers the likelihood of a false monomial 
cancellation. As it was described for rounding failure, the integer coefficient would have to be 
a multiple of each of the different moduli. 
 
As a final check gfloat automatically substitutes the solution points back in the input 
equations. At this point – to the latest - a wrong result due to false momial cancellation 
should be identified. 
 
Finally here is the combined modular / floating point Groebner Basis of the example that has 
been used allthrough this chapter. 
 
It was computed with floating point mantissas of 8*64 = 512 bits. Please note that the 
number enclosed in brackets at the end of the floating point coefficient indicates the 
estimated number of correct bits, i.e. the number of bits that have not been affectd by 
subtractive cancellation minus the 10% of the mantissa that is reserved for rounding error. 
One can see that only about half of the mantissa digits is estimated to be correct. 
 
x 0.1e1 [454.0]x 
+ 28044z ^ 7  +0.1089227706581883198753753e2 [249.0]z ^ 7  
+ 27472z ^ 6  -0.3049795298068966938928457e2 [249.0]z ^ 6  
+ 2050z ^ 5  +0.5763434259105655256560699e2 [248.0]z ^ 5 
+ 15052z ^ 4  -0.1464920171961270781939804e3 [249.0]z ^ 4  
+ 22332z ^ 3  +0.3349089906208845324252043e3 [249.0]z ^ 3 
+ 29078z ^ 2  -0.4528719134370397911668674e3 [249.0]z ^ 2  
+ 13105z  +0.2621111663817543450688443e3 [251.0]z  
+ 17394  -0.3167613847007032550387109e2 [250.0] 
  
 
y +0.1e1 [321.0]y 
+8054z ^ 7 +0.5671127824294711193315534e1 [265.0]z ^ 7 
13072z ^ 6  -0.1590752992464534263326171e2 [265.0]z ^ 6 
+ 19237z ^ 5  +0.3014048635010577687625064e2 [265.0]z ^ 5 
+ 14625z ^ 4  -0.763981142874492876673927e2 [266.0]z ^ 4 
+ 6301z ^ 3  +0.1751536853574871220319548e3 [266.0]z ^ 3 
+ 4208z ^ 2  -0.2369061441987345040434043e3 [266.0]z ^ 2 
+ 7905z  +0.1378260277492788156505013e3 [267.0]z 
+ 19986 -0.1722834643375762010812741e2 [267.0] 
  
 
z ^ 8  0.1e1 [268.0]z ^ 8 
+ 13246z ^ 7  -0.4198980821217797764832158e1 [268.0]z ^ 7 
+ 1523z ^ 6  +0.9207414278638166822057289e1 [268.0]z ^ 6 
+ 26822z ^ 5  -0.2085443235705534398174908e2 [268.0]z ^ 5 
+ 8953z ^ 4  +0.4958151087832397532925266e2 [268.0]z ^ 4 
+ 21630z ^ 3  -0.8462841721154659659203303e2 [268.0]z ^ 3 
+ 30387z ^ 2  +0.8231063297010439778904865e2 [268.0]z ^ 2 
+ 6218z  -0.3672420384626639418144958e2 [268.0]z 
+ 17318 +0.4172601355764394266778568e1 [268.0] 
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3. The software gfloat 
 
Gfloat finds the solution points of systems of nonlinear polynomial equations by evaluating a 
lexicographic Groebner Base of the input system. The key point is, that gfloat uses combined 
modular and floating point arithmetic for the polynomial coefficients, what results in a drastic 
reduction of computation time. 
The error in the floating point computations is estimated by monitoring subtractive 
cancellation of mantissa digits. Multiple precision Floating point arithmetic with arbitrary 
mantissa length is used, what makes it possible to increase the precision of the computations 
if necessary.  
The solution of the input equations consists of four steps (Figure 3a). First a modular 
Groebner Basis is computed. Usually that is a total degree reverse lexicographic basis. 
During this process, all the steps, that were necessary to produce the Groebner Basis are 

recorded in a trace file [Traverso 1988]. 
Superfluous computations occur in Buchberger’s 
algorithm, S-polynomials that reduce to zero have 
no effect on the result. These operations are 
omitted in the trace file. At the end of the first step 
the number of solution points can already be 
determined from the structure of the modular 
Groebner Basis.  
The second step, trace performs exactly the 
operations that have previously been recorded in 
the trace file. It uses modular/floating point 
arithmetic so the output of step two is a floating 
point Groebner Basis. Usually one will first 
compute a total degree reverse lexicographic 
Groebner Basis and then convert it to a 
lexicographic Basis, because this is much faster 
than directly making a lexicographic Basis. But it 
the other is also possible as indicated by the 
dashed arrow in Fig. 3a.  
The total degree reverse lexicographic Basis is 
then converted into a lexicographic Groebner 
Basis. This is only possible for systems with a 
finite number of solution points (zero dimensional 
solution).  
The final routine roots numerically finds the 
actual solutions of the lexicographic base using 
Laguerre’s method. 
For a detailed description of installation and 
operation of gfloat see appendix A. 

Convert

Roots

Lexicographic
Floating Point
Groebner Basis

Trace

Modular

Tdegrevl.
Floating Point
Groebner Basis

Modular Groebner
Basis

Trace
File

Input Polynomials

Solutions

Fig. 3a 
Flow-Chart of gfloat 
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The structure of gfloat is shown in Figure 3b. The central routine is gfloat. It invokes the 
modules modular, trace, convert and roots which actually compute the Groebner Basis and 
the solutions. These four modules are in fact independent executables that are built 
seperately, they are activated by a system call. The floating point arithmetic routines are 
compiled seperately and linked during the built.  
The modules are not directly controlled by the gfloat, they are rather selecting some options 
according to the ‘options‘ file in the ‘gfloat‘ directory. For details about the options see 
appendix A.  
 
 

 
 

 
 
Each of the routines modular, trace and convert produces an output file that the subsequent 
routine uses as input. That may look inefficient, but there are reasons for that: The four 
modules of gfloat are fully encapsulated. The tasks performed by each of the modules are 
not similar enough, that the benefit of sharing code would have outweighed the additional 
overhead. Error checking is very simple, if the file with the result from the previous step was 
not generated an error is assumed and the execution is aborted. 
 
Gfloat keeps track of some indicators (see 4.2) by regularely writing them to a status file with 
the extension .buchb_info. That makes it possible to see the progress of the algorithm in the 
modular run. Additionally one can estimate the memory necessary for the trace by 
multiplying the mantissa size with the maximum number of monoms. 
The most important results of the different modules are written to a file with the  
extension .result. It is a kind of summary of every run of gfloat. 

gfloat

modular trace convert roots

Floating
Point
Library

GNU Multiple Precision Library

 
Fig. 3b 

The structure of gfloat 
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3.1 Modular 

 
 
The first module produces a reduced modular Groebner Basis and records the operations 
that were performed to obtain this Basis. Buchberger’s algorithm is implemented exactly like 
in (1.3.2.3). Criterion (1.4.3.1) and the algorithm REDTERMS (1.4.2.2) are applied to the 
Groebner Basis to find out, if the solution of the input equations is zero dimensional and the 
number of solutions (if finite). 
The options (that are set in the ‘options’ file) allow the following selections: 
 
• The modulus of the modular arithmetic. 
• The monomial ordering (tdegrevl or lex) that is used for the polynomials. 

Consequently the according Groebner Basis is found. Please note that the 
subsequent trace run will use the same ordering. 

 
All the decisions in Buchberger’s Algorithm are taken in the modular run, the trace simply 
repeats the operations that modular writes to the trace file. Particularely the selection of the 
pairs (see section 1.3.2) the decision which monom to eliminate in the NORMALFORM 
reduction (1.1.3.3) and, most important, the application of the syzygy criteria (1.3.2.1) is 
performed in this module. 
Some statistics about the status of the algorithm are automatically logged into a .buchb_info 
file (see A.2). That makes it possible to check during runtime if the algorithm is already 
terminating (see section 4.2). 
 
 

 

 
Modular 

Input Equations

Trace File Modular 
Groebner 

Basis 

Options: 
• monomial ordering 
• modulus 
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3.2 Trace 

 
 
The second module takes the input equations and uses the information in the trace file to 
build the same Groebner Basis that was already found in the modular run, only with  
modular/floating point coefficients. 
The following options are available: 
 
• The monomial ordering (tdegrevl or lex) of the basis to be computed. 
• The mantissa length for the multiple precision floating point arithmetic. 
• The option ‘delete previous output’ is normally set to ‘YES’. However, sometimes  

the modules trace and convert have to be rerun, usually because of a failure in the 
coefficient test (2.3.1). In this case previous results could be reused when setting 
‘delete previous output’ to ‘NO’. 

 
All the actions will be taken in trace are recorded in the trace file. Each instruction is encoded 
in a record, which takes one line in the file. A record starts with one character that identifies 
instruction type and additional characters with informations about the operands. 
 
s ………… Sort the base 
c ………… Number of polynomials that reduced to zero 
0 ………… NORMALFORM reduction step in PREPROCESSOR 
1 ………… Construction of S-Polynomial (see 1.2.3.1) 
2 ………… NORMALFORM reduction step in POSTPROCESSOR 
3 ………… NORMALFORM reduction step of S-Polynomial 
4 ………… Polynomials in irredundant Groebner Basis 
5 ………… Cancellation of redundant basis polynomial 

 

 
Trace 

Input EquationsTrace File 

Floating Point 
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Basis 

Options: 
• monomial ordering 
• mantissa length 
• delete previous output 
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3.3 Convert 
 
 

 
 
The Convert module is only executed if previously a total degree reverse lexicographic 
Groebner Basis was computed. Then the tdegrevl Basis is converted into a lexicographic 
Base following the CONVGROEBNER algorithm (1.4.3.2). Substantial speeding up of 
CONVGROEBNER was achieved by using correspondence (1.4.1.4 (ii)) for NORMALFORM 
computations.  
The output Basis is stored in a file with the extension .lex[mant] where [mant] is the mantissa 
length in bits. The options are the same as in the trace. 
 
Please note that if a coefficient test (2.3.1) fails in this module, the trace run has to be 
repeated also. The same applies if longer mantissas are selected in order to obtain a higher 
precision of the result. 
The floating point coefficient with the lowest precision is detected automatically and printed to 
the .result file (see A.2), that makes it possible to find out if the estimated error is already 
larger than the numerical precision of the roots module. 
 

 
Convert 

tdegrevl 
Floating Point 

Groebner Basis 

Options: 
• delete previous output 
• mantissa length 

Lexicographic 
Floating Point 

Groebner Basis 
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3.4 Roots 
 
 
In order to find the actual solution points of the lexicographic Groebner Basis first of all the 
roots of the univariate polynomial pn(x) have to be found (n being the degree of the 
polynomial). Laguerre’s method [Press et al. 1990] is used to find a root ri.  

Then the degree of the polynomial is reduced to pn-1(x) by dividing
i

n
1n rx

)x(p)x(p
−

=− .  

So the next root can be evaluated in the reduced polynomial p n-1(x) and so on until all are 
found. These roots are then substituted to the other basis polynomials to obtain the 
remaining coordinates. Note that each root of the univariate polynomial represents just one 
solution point, because all other lexicographic base polynomials substituted with the value of 
ri become linear expressions.  
Laguerre’s method is a numerical algorithm that iterates in the complex plane and 
approximates one root of a polynomial. There are other methods that are converging faster, 
but Laguerre’s method is extremely stable, because it always finds its way to a root, even if 
the starting point of the iteration is very far away. 
 
 
(3.4.1) 
 
Taking a univariate polynomial pn(x) of degree n the following algorithm (Laguerre’s method) 
finds an iteration value ri approximating a root Ri of pn(x) such that |Ri-ri| < |eps|. 
 
Input:   a univariate polynomial pn (x) of degree n 

a starting point rs of the iteration 
an approximation error eps. 

Output: an approximation ri of a root Ri  
 
i=1 
ri = rs 
DO 

] )r(''p)r(np)r('p)1n( [)1n(b ii
2

i −−⋅−=  

)  | b)r('p|  ,  | b)r('p|  max(
)r(pna

ii

i

−+
⋅

=  

ri+1 = ri -a 
WHILE |a| ≥ |eps| 
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It is extremely effective to combine Horner’s Scheme with Laguerre’s method. It is very fast 
to evaluate the value of the polynomial and the derivatives in the iteration point, because it is 
not necessary to compute expressions with high powers. Additionally it can be used to 

perform the division 
i

n
1n rx

)x(p)x(p
−

=− . 

 
A problem arises with Laguerre’s method. The expression for b in (3.4.1) includes a square 

root. The standard formula for finding the root z =x+yi of a complex number z=c+di is 
 

 
2

cdcx
22 ++

=  and 
2

cdc)dsgn(y
22 −+

⋅= . 

 
When the iteration converges towards a real solution, the imaginary part of b goes towards 

zero and in the evaluation of the square root the expressions cdc 22 −+ becomes 

cc 2 − what leads to subtractive cancellation of all mantissa bits if c<0. That can be avoided 

for the formula 
2

cdcx
22 ++

=  by multiplying it with 
cdc

cdc
22

22

−+

−+ . The analog 

procedure for the formula of y avoids cancellation for c>0.  
 
 
(3.4.2) 
 

Given a complex number z=c+di and its square root z = x+yi. The following expressions 

compute z  avoiding subtractive cancellation. 
 

(3.4.2.1) for c>0: 
2

cdcx
22 ++

= , 
c2dc2

b)dsgn(y
22 ++

⋅=  

(3.4.2.2) for c<0: 
c2dc2

bx
22 −+

= , 
2

cdc)dsgn(y
22 −+

⋅=  

 
As an example consider the univariate polynomial p5=256x5-1024x4+992x3-752x2+265x-75 
with a starting point r1=0. In the first loop of the iteration p(0)=-75, p’(0)=265, p’’(0)=-1504. 

With n=5 we get b= )1504)(75(2654[4 2 −−−⋅ =820, the maximum of the absolute value 

max( |265+820| , |265-820| ) is 1085, so 
1085

)75(5a −⋅
= = -0,34562. The value after the first 

iteration is r2 = r1-a = 0.34562. In the second iteration step the value turns complex,  
r3= 0.2193+0.7473i. In the following iterations r converges towards r∞=0.25+0.5i. 
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3.5 The Floating Point Library  

 
The floating point library contains all routines that are necessary to controll the floating point 
arithmetic. All these routines are compiled into a big object file and linked to the modules that 
use multiple precision floats. 
 
The arithmetic part of the library is the GNU multiple precision library gmp-2.0.2 (1). We just 
added the part that monitores the subtractive cancellation. Consequently a design was 
chosen that seperates the arithmetic part strictly from the error tracking. The code of gmp-
2.0.2 was not modified, instead the data structure and the functions of the FP arithmetic are 
just wrappers with some additional functionality.These wrappers have exactly the same 
interface as the GNU-mp functions and structures.The header file is even equivalent, only 
the the prefix ‘a’ was added to the function names. Thus two main goals were achieved.  
First the total encapsulation of the arithmetic part makes it easy to incorporate eventual later 
versions of the arithmetic library. Additionally maximum protection of the existing GNU code 
was realized, of course for the cost of some extra overhead. 
Second the equality of interfaces would make it easy to implement the new multiple precision 
floating point arithmetic in applications that already use the gmp-2.0.2. 
 
Each multiple precision float operation completes three steps:  
 
• First the number of correct result mantissa bits without cancellation is evaluated using 

(2.1.3.1) to (2.1.3.3). 
• Then the arithmetic operation is performed by a call of the GNU-mp floating point 

library. 
• In a third step that is only necessary for addition and subtraction the number of lost  

bits is determined with expression (2.1.2). 

                                                 
(1) GMP is one of many software products provided by GNU (Free Software Foundation). Everyone is free to use 
and redistribute the sourcecode, for details on licensing see http://www.gnu.org 
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4. A Problem from Kinematic Synthesis 
 
 
This section demonstrates the capabilities of the software gfloat and points out some 
characteristic behaviour of Buchberger’s Algorithm. For that a problem from kinematic 
synthesis was chosen. Figure 4a shows the mechanism to be synthesized. It is a planar four 
bar linkage for rigid bodies connected by revolute pairs with parallel axes of rotation. 
 
 
 

 
 

Fig. 4a 
The mechanism to be synthesized 

 
 
The coupler curve is traced by the coupler point C during the motion of the mechanism, it is 
defined by the nine design parameters a,b,c,p,q, x1,y1,x2 and y2. For this example the 
specific synthesis problem is considered, where the positions of the pivots are fixed, the 
according values for x1,y1,x2 and y2 are given. So the five remaining design parameters 
a,b,c,p and q need to be found. We want to synthesize all mechanisms such that their 
coupler curves pass through a set of five specific points P1,P2…P5. The coordinates 
x1,y1,x2,y2 of the pivots and the points P1,P2…P5 are printed in the tables below. 
 

i Pi (x,y) 
1 (0.25 | 0.25) 
2 (0.25 | 0.5) 
3 (0.25 | 0.75) 
4 (0.75 | 0.25) 
5 (0.75 | 0.75) 

Pivot 
Coordinates 

 

x1 0 
y1 0 
x2 1 
y2 0 
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4.1 Mathematical Description and Solution 
 
 
The coupler curve of the planar four bar mechanism is described by an algebraic equation of 
degree six with the parameters a,b,c,p,q,x2 (and the indeterminates x and y). It can be 
derived by algebraization of the kinematic structure of the mechanism [Hiesleitner 1991]. 
 
(4.1) 
 
Equation 4.1.1 describes the coupler curve of the mechanism to be synthesized 
 
(4.1.1) 

 
b2(x2 + y2) 3 – 2bd(bx +px +qy)(x2 + y2)2 + (A1x2 + 4bd2qxy + A2y2)(x2 + y2) - 
2d(A3x + A4y)(x2 + y2) + A5x2 – 4bd2(a2 – b2 + f2)qxy + A6y2 – 2d(e2 – a2)(A7x + A8y) 
+ d2(e2 – a2)f2  =  0 

 
with the expressions 
 
(4.1.2) d= x2 
 

(4.1.3) 22 qpe +=  

 

(4.1.4) 22 q)pb(f +−=  

 
(4.1.5) A1 = b2 (-2a2 + d2) + (-2b2 + d2)e2 + (a2 + b2 - c2 + 2d2)(b2 + e2 - f2) 
 
(4.1.6) A2 = b2 (-2a2 + d2) + (-2b2+ d2)e2 + (a2 + b2 - c2)(b2 + e2 - f2) 
 
(4.1.7) A3 = -2a2b2 + a2 - b2 - c2 + d2)e2 + ½(a2 + 2b2 - c2 + d2 - e2 - f2)(b2 + e2 - f2) 
 
(4.1.8) A4 = -bq(a2 - 2b2 + c2 - d2 + e2 + f2) 
 
(4.1.9) A5 = a2b2(a2 -  2d2) + (-2a2c2 + (b2 - c2) 2 + 2a2d2 - 2c2d2 + (a2 + d2) 2 )e2 + 

(b2 – 2d2)e4 + (b2 + e2 - f2)(-((a2 + b2 - c2 + d2)(a2 + e2)) + (a2 + d2)(b2 + e2 - f2)) 
 
(4.1.10) A6 = a 2b2(a2 -  2d2) + (-2b2c2 + (a2 - c2) 2 + 2b2d2 – 2c2d2 + (b2 + d2) 2 )e2 + 

(b2 - 2d2)e4 + (b2 + e2 - f2)(-((a2 + b2 - c2 - d2)(a2 + e2)) + (a2 - d2)(b2 + e2 - f2)) 
 
(4.1.11) A7 = - a2b2 + (-a2 + c2 - d2)e2 + ½(b2 + e2 - f2)(2a2 - c2 + d2 + f2) 
 
(4.1.12) A8 = b(-c2 + d2 + f2)q 
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Taking (4.1.1) and substituting the expressions (4.1.2) to (4.1.12) one obtains a polynomial 
function f(x,y) with the parameters a,b,c,p,q and x2. A value for x2 is given, so five 
parameters remain in the function. 
Taking the points P1,P2…P5 and substituting their coordinates for the indeterminates x and y 
delivers five equations with the design parameters a,b,c,p,q as unknowns. The solution 
values for a,b,c,p,q of this system of equations define the mechanisms with their coupler 
curves passing through the given points. 
 
Buchberger’s algorithm shows better terminating behaviour on input polynomials of lower 
degree, so the expressions a2, b2 and c2 are substituted with a2=p1, b2=p2 and c2=p3, finally 
renaming p=p4 and q=p5 the system of input eqations for gfloat is ready. Each of the 
polynomials is of total degree eight and consists of 78 monomials. 
 
Equation 1: 
5 - 80*p1 + 320*p1^2 - 20*p4 + 240*p1*p4 - 640*p1^2*p4 - 16*p2*p4 + 128*p1*p2*p4 + 16*p3*p4 - 128*p1*p3*p4 
+ 40*p4^2 - 160*p1*p4^2 + 320*p1^2*p4^2 + 80*p2*p4^2 - 1024*p1*p2*p4^2 + 64*p2^2*p4^2 - 96*p3*p4^2 + 
128*p1*p3*p4^2 - 128*p2*p3*p4^2 + 64*p3^2*p4^2 - 192*p2*p4^3 + 1664*p1*p2*p4^3 - 384*p2^2*p4^3 + 
384*p2*p3*p4^3 + 128*p2*p4^4 - 768*p1*p2*p4^4 + 1088*p2^2*p4^4 - 256*p2*p3*p4^4 - 1280*p2^2*p4^5 + 
512*p2^2*p4^6 - 20*p5 + 160*p1*p5 - 32*p2*p5 + 256*p1*p2*p5 + 32*p3*p5 - 256*p1*p3*p5 + 192*p2*p4*p5 - 
512*p1*p2*p4*p5 - 320*p2*p4^2*p5 + 256*p1*p2*p4^2*p5 - 256*p2^2*p4^2*p5 + 256*p2*p3*p4^2*p5 + 
512*p2^2*p4^3*p5 - 256*p2^2*p4^4*p5 + 40*p5^2 - 160*p1*p5^2 + 320*p1^2*p5^2 + 144*p2*p5^2 - 
768*p1*p2*p5^2 + 64*p2^2*p5^2 - 96*p3*p5^2 + 128*p1*p3*p5^2 - 128*p2*p3*p5^2 + 64*p3^2*p5^2 - 
192*p2*p4*p5^2 + 1664*p1*p2*p4*p5^2 - 384*p2^2*p4*p5^2 + 384*p2*p3*p4*p5^2 + 256*p2*p4^2*p5^2 - 
1536*p1*p2*p4^2*p5^2 + 1664*p2^2*p4^2*p5^2 - 512*p2*p3*p4^2*p5^2 - 2560*p2^2*p4^3*p5^2 + 
1536*p2^2*p4^4*p5^2 - 320*p2*p5^3 + 256*p1*p2*p5^3 - 256*p2^2*p5^3 + 256*p2*p3*p5^3 + 512*p2^2*p4*p5^3 - 
512*p2^2*p4^2*p5^3 + 128*p2*p5^4 - 768*p1*p2*p5^4 + 576*p2^2*p5^4 - 256*p2*p3*p5^4 - 1280*p2^2*p4*p5^4 + 
1536*p2^2*p4^2*p5^4 - 256*p2^2*p5^5 + 512*p2^2*p5^6 = 0 
 
Equation 2: 
 325 - 2080*p1 + 3328*p1^2 - 520*p4 + 3744*p1*p4 - 6656*p1^2*p4 + 160*p2*p4 - 512*p1*p2*p4 - 160*p3*p4 + 
512*p1*p3*p4 + 1040*p4^2 - 1664*p1*p4^2 + 3328*p1^2*p4^2 - 416*p2*p4^2 - 5120*p1*p2*p4^2 + 
1280*p2^2*p4^2 - 1920*p3*p4^2 - 512*p1*p3*p4^2 - 2560*p2*p3*p4^2 + 1280*p3^2*p4^2 + 768*p2*p4^3 + 
11776*p1*p2*p4^3 - 4608*p2^2*p4^3 + 4608*p2*p3*p4^3 - 512*p2*p4^4 - 6144*p1*p2*p4^4 + 9472*p2^2*p4^4 - 
2048*p2*p3*p4^4 - 10240*p2^2*p4^5 + 4096*p2^2*p4^6 - 1040*p5 + 3328*p1*p5 - 1280*p2*p5 + 4096*p1*p2*p5 
+ 1280*p3*p5 - 4096*p1*p3*p5 + 1536*p2*p4*p5 - 8192*p1*p2*p4*p5 - 3584*p2*p4^2*p5 + 4096*p1*p2*p4^2*p5 - 
4096*p2^2*p4^2*p5 + 4096*p2*p3*p4^2*p5 + 8192*p2^2*p4^3*p5 - 4096*p2^2*p4^4*p5 + 1040*p5^2 - 
1664*p1*p5^2 + 3328*p1^2*p5^2 + 3936*p2*p5^2 - 6144*p1*p2*p5^2 + 1280*p2^2*p5^2 - 1920*p3*p5^2 - 
512*p1*p3*p5^2 - 2560*p2*p3*p5^2 + 1280*p3^2*p5^2 + 768*p2*p4*p5^2 + 11776*p1*p2*p4*p5^2 - 
4608*p2^2*p4*p5^2 + 4608*p2*p3*p4*p5^2 - 1024*p2*p4^2*p5^2 - 12288*p1*p2*p4^2*p5^2 + 
14848*p2^2*p4^2*p5^2 - 4096*p2*p3*p4^2*p5^2 - 20480*p2^2*p4^3*p5^2 + 12288*p2^2*p4^4*p5^2 - 
3584*p2*p5^3 + 4096*p1*p2*p5^3 - 4096*p2^2*p5^3 + 4096*p2*p3*p5^3 + 8192*p2^2*p4*p5^3 - 
8192*p2^2*p4^2*p5^3 - 512*p2*p5^4 - 6144*p1*p2*p5^4 + 5376*p2^2*p5^4 - 2048*p2*p3*p5^4 - 
10240*p2^2*p4*p5^4 + 12288*p2^2*p4^2*p5^4 - 4096*p2^2*p5^5 + 4096*p2^2*p5^6 = 0 
 
Equation 3: 
225 - 720*p1 + 576*p1^2 - 180*p4 + 1008*p1*p4 - 1152*p1^2*p4 + 240*p2*p4 - 384*p1*p2*p4 - 240*p3*p4 + 
384*p1*p3*p4 + 360*p4^2 - 288*p1*p4^2 + 576*p1^2*p4^2 - 432*p2*p4^2 + 320*p2^2*p4^2 - 480*p3*p4^2 - 
384*p1*p3*p4^2 - 640*p2*p3*p4^2 + 320*p3^2*p4^2 + 576*p2*p4^3 + 1152*p1*p2*p4^3 - 896*p2^2*p4^3 + 
896*p2*p3*p4^3 - 384*p2*p4^4 - 768*p1*p2*p4^4 + 1344*p2^2*p4^4 - 256*p2*p3*p4^4 - 1280*p2^2*p4^5 + 
512*p2^2*p4^6 - 540*p5 + 864*p1*p5 - 480*p2*p5 + 768*p1*p2*p5 + 480*p3*p5 - 768*p1*p3*p5 - 192*p2*p4*p5 - 
1536*p1*p2*p4*p5 - 192*p2*p4^2*p5 + 768*p1*p2*p4^2*p5 - 768*p2^2*p4^2*p5 + 768*p2*p3*p4^2*p5 + 
1536*p2^2*p4^3*p5 - 768*p2^2*p4^4*p5 + 360*p5^2 - 288*p1*p5^2 + 576*p1^2*p5^2 + 912*p2*p5^2 - 
768*p1*p2*p5^2 + 320*p2^2*p5^2 - 480*p3*p5^2 - 384*p1*p3*p5^2 - 640*p2*p3*p5^2 + 320*p3^2*p5^2 + 
576*p2*p4*p5^2 + 1152*p1*p2*p4*p5^2 - 896*p2^2*p4*p5^2 + 896*p2*p3*p4*p5^2 - 768*p2*p4^2*p5^2 - 
1536*p1*p2*p4^2*p5^2 + 2176*p2^2*p4^2*p5^2 - 512*p2*p3*p4^2*p5^2 - 2560*p2^2*p4^3*p5^2 + 
1536*p2^2*p4^4*p5^2 - 192*p2*p5^3 + 768*p1*p2*p5^3 - 768*p2^2*p5^3 + 768*p2*p3*p5^3 + 1536*p2^2*p4*p5^3 
- 1536*p2^2*p4^2*p5^3 - 384*p2*p5^4 - 768*p1*p2*p5^4 + 832*p2^2*p5^4 - 256*p2*p3*p5^4 - 1280*p2^2*p4*p5^4 
+ 1536*p2^2*p4^2*p5^4 - 768*p2^2*p5^5 + 512*p2^2*p5^6 = 0 
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Equation 4: 
25 - 80*p1 + 64*p1^2 - 60*p4 + 176*p1*p4 - 128*p1^2*p4 - 80*p2*p4 + 128*p1*p2*p4 + 80*p3*p4 - 128*p1*p3*p4 
+ 40*p4^2 - 96*p1*p4^2 + 64*p1^2*p4^2 + 272*p2*p4^2 - 512*p1*p2*p4^2 + 320*p2^2*p4^2 - 160*p3*p4^2 + 
128*p1*p3*p4^2 - 640*p2*p3*p4^2 + 320*p3^2*p4^2 - 320*p2*p4^3 + 640*p1*p2*p4^3 - 1408*p2^2*p4^3 + 
1408*p2*p3*p4^3 + 128*p2*p4^4 - 256*p1*p2*p4^4 + 2368*p2^2*p4^4 - 768*p2*p3*p4^4 - 1792*p2^2*p4^5 + 
512*p2^2*p4^6 - 20*p5 + 32*p1*p5 - 160*p2*p5 + 256*p1*p2*p5 + 160*p3*p5 - 256*p1*p3*p5 + 448*p2*p4*p5 - 
512*p1*p2*p4*p5 - 320*p2*p4^2*p5 + 256*p1*p2*p4^2*p5 - 256*p2^2*p4^2*p5 + 256*p2*p3*p4^2*p5 + 
512*p2^2*p4^3*p5 - 256*p2^2*p4^4*p5 + 40*p5^2 - 96*p1*p5^2 + 64*p1^2*p5^2 + 208*p2*p5^2 - 256*p1*p2*p5^2 
+ 320*p2^2*p5^2 - 160*p3*p5^2 + 128*p1*p3*p5^2 - 640*p2*p3*p5^2 + 320*p3^2*p5^2 - 320*p2*p4*p5^2 + 
640*p1*p2*p4*p5^2 - 1408*p2^2*p4*p5^2 + 1408*p2*p3*p4*p5^2 + 256*p2*p4^2*p5^2 - 512*p1*p2*p4^2*p5^2 + 
3200*p2^2*p4^2*p5^2 - 1536*p2*p3*p4^2*p5^2 - 3584*p2^2*p4^3*p5^2 + 1536*p2^2*p4^4*p5^2 - 320*p2*p5^3 + 
256*p1*p2*p5^3 - 256*p2^2*p5^3 + 256*p2*p3*p5^3 + 512*p2^2*p4*p5^3 - 512*p2^2*p4^2*p5^3 + 128*p2*p5^4 - 
256*p1*p2*p5^4 + 832*p2^2*p5^4 - 768*p2*p3*p5^4 - 1792*p2^2*p4*p5^4 + 1536*p2^2*p4^2*p5^4 - 
256*p2^2*p5^5 + 512*p2^2*p5^6 = 0 
 
Equation 5: 
405 - 720*p1 + 320*p1^2 - 540*p4 + 1200*p1*p4 - 640*p1^2*p4 + 432*p2*p4 - 384*p1*p2*p4 - 432*p3*p4 + 
384*p1*p3*p4 + 360*p4^2 - 480*p1*p4^2 + 320*p1^2*p4^2 - 1008*p2*p4^2 + 512*p1*p2*p4^2 + 576*p2^2*p4^2 - 
288*p3*p4^2 - 384*p1*p3*p4^2 - 1152*p2*p3*p4^2 + 576*p3^2*p4^2 + 960*p2*p4^3 + 128*p1*p2*p4^3 - 
1920*p2^2*p4^3 + 1920*p2*p3*p4^3 - 384*p2*p4^4 - 256*p1*p2*p4^4 + 2624*p2^2*p4^4 - 768*p2*p3*p4^4 - 
1792*p2^2*p4^5 + 512*p2^2*p4^6 - 540*p5 + 480*p1*p5 - 864*p2*p5 + 768*p1*p2*p5 + 864*p3*p5 - 
768*p1*p3*p5 + 576*p2*p4*p5 - 1536*p1*p2*p4*p5 - 192*p2*p4^2*p5 + 768*p1*p2*p4^2*p5 - 768*p2^2*p4^2*p5 + 
768*p2*p3*p4^2*p5 + 1536*p2^2*p4^3*p5 - 768*p2^2*p4^4*p5 + 360*p5^2 - 480*p1*p5^2 + 320*p1^2*p5^2 + 
720*p2*p5^2 - 256*p1*p2*p5^2 + 576*p2^2*p5^2 - 288*p3*p5^2 - 384*p1*p3*p5^2 - 1152*p2*p3*p5^2 + 
576*p3^2*p5^2 + 960*p2*p4*p5^2 + 128*p1*p2*p4*p5^2 - 1920*p2^2*p4*p5^2 + 1920*p2*p3*p4*p5^2 - 
768*p2*p4^2*p5^2 - 512*p1*p2*p4^2*p5^2 + 3712*p2^2*p4^2*p5^2 - 1536*p2*p3*p4^2*p5^2 - 
3584*p2^2*p4^3*p5^2 + 1536*p2^2*p4^4*p5^2 - 192*p2*p5^3 + 768*p1*p2*p5^3 - 768*p2^2*p5^3 + 
768*p2*p3*p5^3 + 1536*p2^2*p4*p5^3 - 1536*p2^2*p4^2*p5^3 - 384*p2*p5^4 - 256*p1*p2*p5^4 + 
1088*p2^2*p5^4 - 768*p2*p3*p5^4 - 1792*p2^2*p4*p5^4 + 1536*p2^2*p4^2*p5^4 - 768*p2^2*p5^5 + 
512*p2^2*p5^6 = 0 
 
For the floating point arithmetic a mantissa length of 5700 bit was chosen. The computation 
time for the lexicographic Groebner Basis took 109 seconds on a 600 MHz, 64 bit machine 
(AlphaStation). 
The system has 36 solutions, 18 of them are real, so there exist 18 mechanisms with the 
given pivot coordinates and their coupler curve going through the five given points. 
The solutions are printed in the following table where the real solutions are in the gray lines. 
 

P5 P4 P3 P2 P1 
-0.7119895e0 –
0.1138211e-247*I 

0.5e0 
+0.1302076e-228I

0.9628363e0 
+0.1035683e-228I

0.965678e0 
+0.1552071e-227I 

0.9628363e0 
+0.1302527e-227I

-0.4543939e0   
-0.2285656e-244I 

0.5e0 
+0.5157446e-229I

0.1442238e1 
+0.4108944e-229I

0.2014508e1 
+0.6157161e-228I 

0.1442238e1 
+0.5168069e-228I

-0.2424575e0 -
0.2089495e-241I 

0.5e0 
+0.199743e-229I 

0.4569168e1 
+0.159465e-229I 

0.1098491e2 
+0.2389315e-228I 

0.4569168e1 
+0.200592e-228I 

-0.2932242e-1 
+0.4203301e-241I 

0.9869704e0 
+0.5635832e-230I

0.1008133e1 
+0.4514939e-230I

0.6119911e3 
+0.676385e-229 

0.6117821e3 
+0.568052e-229I 

0.3980263e0 -
0.2534512e0I 

0.5e0-
0.1747453e-230I 

-0.4105941e-1 
+0.3817516e-1I 

0.7144235e0 
+0.1276755e1I 

-0.4105941e-1 
+0.3817516e-1I 

0.9716476e0 -
0.5544045e0I 

0.5e0 -
0.2896811e-230I 

0.321692e0 
+0.1581857e0I 

-0.1211619e-1 
+0.7403326e-1I 

0.321692e0 
+0.1581857e0I 

-0.3397962e0  
+0.6780031e-242I 

0.9199856e0  
+0.3172832e-229I

0.5103059e0  
+0.2530339e-229I

0.5899654e1  
+0.3791476e-228I 

0.7227844e1  
+0.3182739e-228I

-0.3030579e0 -
0.1117672e-240I 

0.5e0 
+0.2680747e-229I

0.2518219e1 
+0.2138702e-229I

0.4973225e1 
+0.3204588e-228I 

0.2518219e1 
+0.2690183e-228I

-0.295357e0 
+0.1215105e-240I 

0.600751e0 
+0.2585381e-229I

0.2113919e1 
+0.2062789e-229I

0.5656269e1 
+0.309083e-228I 

0.3534801e1 
+0.2594707e-228I

-0.6798624e0 
+0.3384061e-247I 

0.3647073e0 
+0.1171762e-228I

0.1309681e1 
+0.9321856e-229I

0.9563646e0 
+0.1396958e-227I 

0.6745428e0 
+0.1172374e-227I
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P5 P4 P3 P2 P1 

0.4375e0  
-0.25e0I 

0.5e0 - 
0.625e-1I 

0.3889523e-231 -
0.9769482e-231I 

0.6153846e0 
+0.9230769e0I 

0.487692e-230  -
0.1229657e-229I 

0.5913277e0 -
0.4514945e0I 

0.6634732e0 -
0.179996e0I 

0.2122194e0 -
0.9751928e-1I 

-0.1751174e-1 
+0.3078004e0I 

0.6521953e-1 -
0.7003233e-1I 

0.3980263e0  
+0.2534512e0I 

0.5e0  
+0.1596476e-231I

-0.4105941e-1  -
0.3817516e-1I 

0.7144235e0  -
0.1276755e1I 

-0.4105941e-1  -
0.3817516e-1I 

0.7947702e-1  
+0.4068757e0I 

0.5e0  
+0.6278324e-231I

0.8034421e0  -
0.3629949e-1I 

0.5642767e-1  
+0.7536877e-1I 

0.8034421e0  -
0.3629949e-1I 

0.3967213e0  
+0.7830428e-232I 

0.9105479e0  -
0.1701428e-228I 

0.5047077e0  -
0.1394856e-228I 

0.6521956e1  -
0.2104124e-227I 

0.4774117e1  -
0.1769499e-227I 

0.34375e0  -
0.9375e-1I 

0.15625e0  
+0.15625e0I 

-0.1475644e-230  
-0.591246e-231I 

0.1169231e1  
+0.1046154e1I 

-0.1859005e-229-
0.7426958e-230I 

0.7947702e-1  -
0.4068757e0I 

0.5e0  -
0.1506067e-229I 

0.8034421e0  
+0.3629949e-1I 

0.5642767e-1  -
0.7536877e-1I 

0.8034421e0  
+0.3629949e-1I 

0.4773832e0  -
0.2403675e0I 

0.5259869e0  -
0.143291e0I 

0.6626049e-1  -
0.5054367e-1I 

0.4925619e0  
+0.6548805e0I 

0.1563529e-1  -
0.1692409e-1I 

0.3969307e0  -
0.8096596e-232I 

0.4708243e0  
+0.1641263e-228I

0.1442457e0  
+0.1345299e-228I

0.1083213e1  
+0.2030305e-227I 

0.2004798e0  
+0.1707291e-227I

0.6578229e0  -
0.4562129e0I 

0.5e0 
+0.2527322e-230I

0.8673513e-1  -
0.7726016e-1I 

0.2921105e-1  
+0.3742502e0I 

0.8673513e-1  -
0.7726016e-1I 

0.34375e0  
+0.9375e-1I 

0.15625e0  -
0.15625e0I 

-0.7636332e-231  
-0.2358899e-231I 

0.1169231e1  -
0.1046154e1I  

-0.9613386e-230 
-0.2980129e-230I 

0.4375e0  
+0.25e0I 

0.5e0   
+0.625e-1I 

-0.6849788e-232  
+0.6286125e-232I

0.6153846e0  -
0.9230769e0I 

-0.8627516e-231  
+0.7896704e-231I

0.4043948e0  
+0.2718634e-233I 

0.5e0  
+0.4220932e-230I

0.2132792e0  
+0.349323e-230I 

0.872905e0  
+0.519313e-229I 

0.2132792e0  
+0.4379479e-229I

0.5291342e0  
+0.1557882e-233I 

0.6888236e0  
+0.2926627e-232I

0.2813733e0  
+0.2417981e-232I

0.8359968e0  
+0.2823988e-231I 

0.2002445e0  
+0.243652e-231I 

0.4902368e0  -
0.1348154e-234I 

0.5e0   
+0.10053e-231I 

0.1251908e0  
+0.8551922e-232I

0.1020083e1  
+0.1283154e-230I 

0.1251908e0  
+0.1083651e-230I

0.4773832e0  
+0.2403675e0I 

0.5259869e0  
+0.143291e0I 

0.6626049e-1  
+0.5054367e-1I 

0.4925619e0  -
0.6548805e0I 

0.1563529e-1  
+0.1692409e-1I 

0.7268108e0  -
0.132925e-239I 

0.5e0  -
0.8718622e-233I 

0.4319559e2  -
0.6374137e-233I 

0.6144426e2  -
0.9600833e-232I 

0.4319559e2  -
0.7986247e-232I 

0.5299309e0  -
0.1475939e-233I 

0.692948e0  
+0.126484e-232I 

0.2841671e0  
+0.1275431e-232I

0.8385634e0  
+0.2609398e-231I 

0.2044369e0  
+0.2177919e-231I

0.614548e0  -
0.2917544e-2I 

0.206577e0  
+0.4944974e0I 

-0.1088966e-1  
+0.4783234e-3I 

0.8065282e0  
+0.57444e0I 

-0.1253375e0  -
0.1266832e0I 

0.614548e0  
+0.2917544e-2I 

0.206577e0  -
0.4944974e0I 

-0.1088966e-1  -
0.4783234e-3I 

0.8065282e0  -
0.57444e0I 

-0.1253375e0  
+0.1266832e0I 

0.6479371e0  
+0.242742e-236I 

0.263625e0  -
0.162189e-232I 

0.1696275e1  -
0.9683111e-233I 

0.2849934e1  -
0.1519393e-231I 

0.6871755e0  -
0.124411e-231I 

0.6265086e0  -
0.486555e-235I 

0.5e0  -
0.2467973e-232I 

0.1626831e0  -
0.1238645e-232I 

0.8718604e0  -
0.1736948e-231I 

0.1626831e0  -
0.1366024e-231I 

0.5913277e0  
+0.4514945e0I 

0.5913277e0  
+0.4514945e0I 

0.2122194e0  
+0.9751928e-1I 

-0.1751174e-1  -
0.3078004e0I 

-0.1751174e-1  -
0.3078004e0I 

0.77104e0  
+0.4222508e-241I 

-0.5724022e0  -
0.8941979e-233I 

0.2151177e0  -
0.6679445e-233I 

0.1703965e0  -
0.1004748e-231I 

0.4413301e0  -
0.8376711e-232I 

0.6578229e0  
+0.4562129e0I 

0.5e0  -
0.8924435e-233I 

0.8673513e-1  
+0.7726016e-1I 

0.2921105e-1  -
0.3742502e0I 

0.8673513e-1  
+0.7726016e-1I 

0.9716476e0  
+0.5544045e0I 

0.5e0  -
0.6035043e-233I 

0.321692e0  -
0.1581857e0I 

-0.1211619e-1  -
0.7403326e-1I 

0.321692e0  -
0.1581857e0I  
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Taking the real sets of solutions for P1,P2…P5 the design parameters a,b,c,p,q for the four 
bar mechanisms are easily computed. Figure 4b shows the corresponding mechanisms and 
their coupler curves. The mechanisms are always depicted in such a position that the coupler 
point C coincides with point (0.25|0.25). 
For mechanisms with two closure modes, the curve of one of the modes is printed with a 
dashed line. 
 
 

 

Fig. 4b 
 

The synthesized four bar 
mechanisms of the 18 real 

solutions.
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4.2 Computational Aspects of Buchberger’s Algorithm 
 
 
In this section some of the specific properties of Buchberger’s algorithm will be 
demonstrated. The data is taken only from the above example (section 4.1), still the 
behaviour is very typical for this algorithm. All the following diagrams show the calculation of 
the total degree reverse lexicographic Groebner Basis, the characteristics for directly making 
a lexicographic Groebner Basis would be worse by several orders of magnitude. 
 
The most important characteristic of Buchberger’s Algorithm is, that the number and size of 
the polynomials to be stored during the computation of the Groebner Basis becomes 
extremely large. Figure 4c shows the number of monomials in memory during the whole 
algorithm. The x-axis shows the progress of the Groebner Basis computation by the number 
of S-Polynomials that were already reduced modulo the Basis. Buchberger’s algorithm  
terminates when all S-Polys are processed which is indicated here with 100%. The y-axis 
shows the number of monomials in memory during the algorithm. This is taken in relation to 
the starting size of the basis. At the beginning just the input equations have to be stored, so 
the starting value is 100% for the 390 monomials from the five input equations (p.72-73). 
 

 
Memory demand rises enormously, up to 50 times the initial amount, before it starts to fall. 
The tdegrevl Groebner Basis finally is just somewhat larger than the input. 
For floating point arithmetic the size of the coefficients is fixed, so the number of monomials 
is proportional to the used memory. For our example a maximum of 14.8 megabytes of 
polynomial data was stored. 
Using integer arithmetic memory demand would be a lot worse because the size of the 
coefficients also keeps growing.
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0 14% 27% 41% 55% 68% 82% 96%

Fig. 4c 
Memory demand in relation to input  
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In figure 4d the gray line again shows the number of monomials over the whole algorithm. 
This number of all monomials is a sum of the two black curves. The solid one shows the 
number of monomials in the actual base, the dashed line shows the number of monomials in 
redundant polys. As in the previous picture the number of monomials is shown in relation to 
the input. 
Redundant polynomials are not part of the ideal basis any more, but they still must be kept in 
memory. Recall, that the implemented version of Buchberger’s algorithm (1.3.2.3) uses a 
subroutine called REDUNDANT. In REDUNDANT criterion (1.2.3.4) is used to eliminate 
superfluous polynomials from the ideal basis. However, these polynomials cannot be deleted 
from memory, when there still is a pair within the set of pairs, that uses this polynomial. So 
this polynomial will be needed later to build an S-poly, but it is redundant in the base. 
 

 
 
In the starting point and at the end of the computation there can be no redundant 
polynomials. In the beginning, the active base as well as the redundant polynomials grow. 
Surprisingly,very soon the major part of the memory is NOT needed to store the active base, 
but rather for old, redundant polynomials that are only needed to build S-polynomials. 
For very large problems, where hardware memory is not sufficient and extensive swapping to 
the harddrive is necessary this particular property leaves an opportuninty for optimization. 
The redundant polynomials are not part of the base, they are not needed for NORMALFORM 
reductions. So they are used very rarely, namely just for building of specific S-polys. 
Substantial speedup of the computation could be achieved by keeping the active base 
polynomials in memory and writing the redundant polynomials to the hardrive.  
This idea is not implemented in gfloat but it may be a suggestion for further optimization.
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Fig. 4d 
Memory demand of active (black) and redundant (dashed) polynomials 
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The terminating behaviour of Buchberger’s algorithm is very specific, it is depicted in figure 
4e. Especially during computations of very large problems it can be interesting for the user to 
check the status of the algorithm in order to see if there is a chance to obtain a result. Gfloat 
keeps track of these indicators, for details see sections (3.1) and (A.2). 
Three characteristic indicators give a rather good idea about the progress that has been 
made. The black line is the number of polynomials in the base. The dark gray line is the 
number of pairs in the pairset i.e. the number of S-polynomials that need to be reduced. 
Finally the light gray line is the maximum number of monoms that may occur intermediately 
during the NORMALFORM reduction. (Usually during a normalform reduction the 
polynomials become longer for some reduction steps, later they shrink). 
Again the x-axis shows the progress of the algorithm in percent. The y-axis shows the above 
values in percent of their maximum. So each of the lines reaches 100 percent at the peak 
value of the specific indicator. 
 

 
 
The most secure indicator is the top of the number of pairs (dark gray line). At this point the 
basis is usually already a Groebner Basis and will remain unchanged, which can be seen 
from the horizontal black line. For termination the algorithm has to reduce the remaining S-
polynomials to zero. The memory demand also peaks at this point (see fig. 4c), so it is 
certain from that moment on that the algorithm will terminate. 
It is a fairly good indicator for termination, when the number of base polynomials starts to 
drop substantially. Unfortunately there are usually several local peaks, which makes it hard 
to decide if the absolute maximum was already reached. But ist usable to some extent, 
especially because it shows earlier than the peak of the pairs. 

Fig. 4e 
Terminating behaviour of Buchberger’s algorithm. 

 
Number of base polynomials – black 

Number of pairs – dark gray 
Maximum intermediate polynomial size – light gray
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The third indicator, maximum intermediate size of a polynomial (light gray line) is very vague. 
Here the signal is stabilization, not a peak. At first it grows very fast, then the growth slows 
and eventually stops totally. It shows very early, a long time before the actual peak of the 
pairs and before the maximum of base polynomials. 
It can also be used as somewhat of a negative indicator in the sense that termination is out 
of sight, as long as the maximum intermediate size of the polynomials keeps growing at the 
same pace. 
 
Figure 4e also very well shows the benefits of the trace. At about 40% of the computations 
the final Groebner Basis is obtained (peak of pairs, unchanged number of base polynomials), 
the following zero reductions of the remaining S-polynomials are only performed in the 
modular run. For the much more time consuming trace run they are omitted. 
 
Finally figure 4f shows some statistics about the runtime (in seconds) of the different 
modules. 
 
 

 
 
Clearely the trace is the bottleneck of the computation. The conversion is a lot faster but still 
takes twice the time of modular and roots together. 
 
Please note, that allthough the trace performs only 40% of the operations of the modular it 
takes 15 times longer. That difference can only be explained by the more time consuming 
arithmetic for the floating point coefficients. That very much strengthens the assumption 
made in section 2 (p.43) that from a computational point of view, finding Groebner Bases is 
largely a task of manipulating the monomial coefficients. 
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Fig. 4f 
Runtime of the modules 
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Appendix A: Installation and Usage of gfloat 
 
Installation and usage of gfloat is described in the files INSTALL and MANUAL which are 
included in the software. These files are expanded together with the sourcecode of gfloat and 
will be located in the uppermost directory gfloat-1.1 . 
 

A.1 Installation 
 
 
Please note that the GNU C Compiler gcc is required to install 
gfloat.  
If you have not installed the gcc on your machine you have to do so. 
See the GNU Website www.gnu.org for download if necessary. 
 
Three make targets are available 
 
1.) make 
2.) make clean 
3.) make remove 
 
1.) make 
The built of gfloat requires the GNU C-compiler gcc and the 
make utility.  
In order to perform the installation enter the directory  
gfloat-1.1 and type 
 
make 
 
The built will be finished when the message 'installation completed 
sucessfully !!' appears.  
In order to perform a little test enter the directory  
gfloat-1.1/gfloat and type 
 
gfloat sigi 
 
The solutions from the input system stored in sigi.inp are being 
computed.  
No error message should appear, the last output on the screen should 
consist 
of the six solution points. The detailed output is stored in the 
file 
gfloat-1.1/data/sigi.result  
 
 
2.) make clean 
If you want to remove all files created by the built, 
enter the directory gfloat-1.1 and type 
 
make clean 
 
Not only the objects and executables are being removed,  
the configuration files for the floating point arithmetic  
are also deleted. Now it is possible to rebuild the project, 
the fp-arithmetic will then be reconfigured.
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3.) make remove 
In order to remove all files and directories that were created  
for installation of gfloat enter the directory gfloat-1.0  
and type 
 
make remove  
 
Everything, all sourcefiles and all executables as well as the 
directory structure are being removed. Only use this make  
target if do not want to use gfloat again and remove it  
completely. 
 
 

A.2 Users Guide 
 
 
 
Table of contents: 
================== 
 
 
0. Introduction 
1. Directory Structure 
2. Operating gfloat 
3. Output created by gfloat 
4. Error Handling 
 
 
 
0. 
Introduction 
============ 
 
The software computes the solution points of systems of algebraic 
equations (polynomials). However, when the set of solution points 
is infinite (the solution body is NOT zero dimensional) no solutions 
can be found. 
Thus gfloat is suited for solution of two kinds of mathematical 
problems: 
(1) Determination if the set of solutions from a given system of  

input polynomials is finite (zero dimensional) or infinite 
(non-zero dimensional)  

(2)  Find the solution points of a given system of input polynomials 
(if thenumber of solution points is finite)  

 
The mathematical approach used in gfloat is to compute a 
lexicographic  
Groebner Basis and subsequently the solutions. The lexicographic  
Groebner Basis is obtained from a total degree reverse lexicographic 
Groebner  
Basis via conversion of monomial ordering. Floating point/modular 
arithmetic 
is used to represent the coefficients of the polynomials. 
 
 



Appendix A: Installation and Usage of gfloat 
 

 
 

 
- 84 - 

Gfloat is free software, you are welcome to redistribute and/or use 
parts 
of the code for your own purposes. The software is written in C, it  
was developped by 
 
Institute of General Mechanics 
University of Technology Graz 
Kopernikusgasse 24 
A-8010 Graz, Austria (Europe) 
 
If you have any questions, remarks or --> bugs <-- to report please 
feel free to contact: dietm@mech.tu-graz.ac.at 
 
 
1. 
The directory structure of gfloat 
================================= 
 
gfloat-1.1 contains three subdirectories. 
 
The subdirectory gfloat-1.1/gfloat contains input  
files and the executable 'gfloat'.  
 
The subdirectory gfloat-1.1/data contains output  
files created by the program. Enter the directory  
gfloat-1.1/data to see the output created by gfloat.  
See 3. for details about the naming conventions  
for the output files. 
 
The subdirectory gfloat-1.1/groebner_fl contains the source code, 
objects and executables.  
 
 
2. 
Operating gfloat 
================ 
 
Gfloat is operated from the directory gfloat-1.1/gfloat. 
Two files are required for input in gfloat. These two files 
are the input file and the options file, these files have  
to be in the gfloat-1.1/gfloat directory. 
 
 
2.0 
In order to compute the solutions of a system of equations stored in  
the input file [name].inp type as command line 
 
gfloat [name] 
 
The input file [name].inp will be opened and the lexicographic 
Groebner Base and the solution points of the input equations are  
computed. 
Example: the comand line 
 
gfloat sigi 
 
will compute the solutions of the input file sigi.inp that is 
delivered with gfloat. 
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2.1 
The input file '*.inp' 
It is created by the user and is used to feed the input equations to 
the program. The input file follows the following format: 
The first line contains the number of indeterminates. 
The second line contains the indeterminates seperated  
by commas, they also must be enclosed in braces or brackets. 
Please note that NO WHITE SPACE is allowed between the variable 
names and the commas. Next come the input equations each one 
preceded by a equals sign (=) and terminated by a colon (;). 
The input files sigi.inp and dietm.inp that are delivered  
in gfloat-1.1/gfloat, can be used as examples. 
 
2.2 
The 'options' file 
It is edited by the user. Several options can be set in this file,  
these options are altering the behaviour of gfloat. Comment lines 
are allowed in this file, each line that starts with an asterisk * 
will be regarded as a comment line and will subsequently be ignored 
by the program. 
Options.bak is a backup 'options' file with default settings. 
Copying options.bak to options will reset the options.  
The desription of the options follows below. 
 
2.2.1 
output in file 
Can be set to YES or NO. 
If this option is set to YES the screen output will be redirected  
to the file gfloat-1.1/data/*.out 
Set to YES the out put will appear on the screen. 
Example and default setting:  
output to file = NO 
 
2.2.2 
total degree reverse lex ordering 
Can be set to YES or NO 
If this option is set to NO the lexicographic groebner base will  
be computed directly. This is not suitable for 'big' input equations 
(i.e. many different indeterminates and/or high total degree of the 
input eaqutions). This setting is not efficient and is used to 
create examples. 
Set to YES gfloat will first compute a total degree reverse lex base 
and subsequently transform it to a lexicographic  Groebner base. 
This setting is the standard setting. 
Example and default setting:  
total degree reverse lex ordering = YES 
 
2.2.3 
new input file (deletes previous output) 
Can be set to YES or NO 
Set to YES all previously computed output is deleted. Please note 
that this options has to be set to YES if the input file was 
changed, otherwise severe errors may occur. 
However if the input file has not been changed and float is rerun 
(especially when it has been necessary to increase the mantissa 
length of the floats) it may be efficient to set it to NO 
Example and default setting:  
new input file (deletes previous output) = YES
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2.2.4 
modulus 
Can be set to any positive prime integer  
This sets the modulus used to perform the modular arithmetic. 
Every 'large' prime integer should work fine. 
When running a big problem it is useful to choose a high modulus. 
However it is useful to run a problem with several moduli to  
check if the results are identical. 
Example and default setting:  
modulus =  1073741827  
 
2.2.5 
mantissa length (in bits) 
Can be set to any positive integer  
Specifies the mantissa length for the floating point arithmetic. 
If a 'precision failure' occured during execution of gfloat 
the mantissa length can be increased via this option. It  
needs some experience to find the 'optimal'mantissa length.  
If chosen too small 'precision failures' will occur, if  
chosen too big the performance of suffers (because large 
mantissas consume time for the floating point arithmetic). 
For smaller problems 1000 bits may be enough, for very big problems  
10000 bits and more are not uncommon. 
Example and default setting: 
mantissa length (in bits) = 3000  
 
2.2.6 
numerical precision (in decimal digits)  
The numerical precision used for the laguerre solver 
used to find the solution points of the lexicographic 
Groebner Base. A numerical precision of [n] decimal 
places provides iteration until the first [n] decimal 
places of the floating point number are not changing 
any more. 
Example and default setting: 
numerical precision (in decimal digits) = 50  
 
2.2.7 
output level 
This option changes the amount of screen output that is 
created by the program. Every output level creates  
additional output to the level below.   
output level = 0 ... minimum output 
output level = 1 ... + output of final results 
output level = 2 ... + status output  
output level = 3 ... + detailed + intermediate results 
output level = 4 ... + very detailed status 
                     + more intermediate results 
output level = 5 ... + all other possible output 
Please not that an output level of 3 or higher 
substantially affects the performance of the program and 
may create very large amounts of output. High output_level 
from 3 to 5 in combination with 'output to file = YES'  
gives profound insight in the algorithms used by gfloat. 
Still output_level of more than 2 should only  
be used for small examples. 
Example and default setting: 
output level = 0  
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3.  
Output created by gfloat 
======================== 
 
Several different files are created by gfloat. These files  
are identified by the file extention. The filename [name] is the 
same as the input file [name].inp 
All these files are created in the /gfloat-1.1/data directory 
 
[name].result ....... A file that contains all results of gfloat. 
                      1.) the input data 
                      2.) all solution points 
                      3.) result of bachsubstitutions of solution  
                      points in input equations. 
                      4.)  The smallest precision in the  
                      lexicographic Groebner base.  
                      5.) Time needed for computation 
                      6.) Option setting chosen for computation 
 
[name].out .......... file that contains redirected screen output 
 
[name].buchb_info ... information about the base size during  
                      buchberger's algorithm. 
 
[name].tdgr[mant] ... total degree reverse lex ordering Groebner 
                      base, stored  in internal format. Do not edit 
                      this file !!! 
                      [mant] is the mantissa length. 
                      example: sigi.tdgr1000 is a tdgr base were 
                      floating point coefficients have a mantissa   
                      of 1000 bits. The input file was sigi.inp 
 
[name].lex[mant] ...  lexicographic groebner Base, stored  in   
                      internal format. Do not edit this file ! 
                      [mant] is the mantissa length. 
 
[name].lextrace ..... Tracefile for lexicographic Groebner Base 
                      of the file [name].in, stored in  
                      internal format, do not edit !!!! 
 
[name].tdgrtrace .... Tracefile for total degree reverse lex  
                      Groebner Base of the file [name].inp 
                      Stored in internal format, do not edit !!!! 
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4.  
Error handling 
============== 
 
4.1  
Unable to compile gfloat 
Please note that the GNU C-Compiler is required to compile gfloat. 
It is available over the internet, e.g. www.gnu.org 
 
4.2 
'Raise precision' 
A precision failure occures, if the mantissa of the floating 
point numbers is not big enough. Increase the mantissa length 
in the 'options' file and restart. 
 
4.3  
'Choose a different modulus' 
A multiple of the modulus was hit during the computation. Choose 
different  
modulus in 'options' file and restart. If this error occurs with 
several  
different moduli raise precision, and restart. 
Note that it is useful to use high moduli, because the probability 
of hitting 
a multiple of a high modulus is smaller.  
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