
Lecture 5

Semi-structured, Weakly Structured, and Unstructured

Data

1 Learning Goals

At the end of this fourth lecture, you:

• would have acquired background knowledge on some issues in standardization

and structurization of data;

• would have a general understanding of modeling knowledge in medicine and

biomedical informatics;

• would get some basic knowledge on medical Ontologies and be aware of the

limits, restrictions, and shortcomings of them;

• would know the basic ideas and the history of the International Classification of

Diseases (ICD);

• would have a view on the Standardized Nomenclature of Medicine Clinical

Terms (SNOMED CT);

• would have some basic knowledge on Medical Subject Headings (MeSH);

• would be able to understand the fundamentals and principles of the Unified

Medical Language System (UMLS).

2 Advance Organizer

Abstraction Process of mapping (biological) processes onto a series

of concepts (expressed in mathematical terms)

Biological system Collection of objects ranging in size from molecules to

populations of organisms, which interact in ways that

display a collective function or role

Coding Any process of transforming descriptions of medical

diagnoses and procedures into standardized code

numbers, i.e., to track health conditions and for
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reimbursement, e.g., based on Diagnosis Related

Groups (DRG)

Data model Definition of entities, attributes, and their relationships

within complex sets of data

DSM Diagnostic and Statistical Manual for Mental

Disorders, a multiaxial, multidimensional

categorization of all (known) mental health disorders,

used for clinical diagnostics

Extensible Markup

Language (XML)

Set of rules for encoding documents in machine-

readable form

GALEN Generalized Architecture for Languages,

Encyclopedias and Nomenclatures in Medicine, project

aiming at the development of a reference model for

medical concepts

ICD International Classification of Diseases, the

archetypical coding system for patient record

abstraction (est. 1900)

Medical Classification Provides the terminologies of the medical domain

(or parts of it), 100+ classifications in use

MeSH Medical Subject Headings is a classification to index

the world medical literature and forms the basis for

UMLS

Metadata Data that describes the data

Model A simplified representation of a process or object,

which describes its behavior under specified conditions

(e.g., conceptual model)

Nosography Science of description of diseases

Nosology Science of classification of diseases

Ontology Structured description of a domain and formalizes the

terminology (concepts-relations, e.g., IS-A relationship

provides a taxonomic skeleton), e.g., gene ontology

Ontology engineering Subfield of knowledge engineering, which studies the

methods and methodologies for building ontologies

SNOMED Standardized Nomenclature of Medicine, est. 1975,

multiaxial system with 11 axes

SNOP Systematic Nomenclature of Pathology (on four axes:

topography, morphology, etiology, function), basis for

SNOMED

System features Static or dynamic; mechanistic or phenomenological;

discrete or continuous; deterministic or stochastic;

single-scale or multi-scale

Terminology Includes well-defined terms and usage

UMLS Unified Medical Language System is a long-term

project to develop resources for the support of

intelligent information retrieval
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3 Acronyms

ACR American College of Radiologists

API Application Programming Interface

DAML DARPA Agent Markup Language

DICOM Digital Imaging and Communications in Medicine

DL Description Logic

ECG Electrocardiogram

EHR Electronic Health Record

FMA Foundational Model of Anatomy

FOL First-order logic

GO Gene Ontology

ICD International Classification of Diseases

IOM Institute of Medicine

KIF Knowledge Interchange Format

LOINC Logical Observation Identifiers Names and Codes

MeSH Medical Subject Headings

MRI Magnetic Resonance Imaging

NCI National Cancer Institute (US)

NEMA National Electrical Manufacturer Association

OIL Ontology Inference Layer (description logic)

OWL Ontology Web Language

RDF Resource Description Framework

RDF Schema A vocabulary of properties and classes added to RDF

SCP Standard Communications Protocol

SNOMED CT Systematized Nomenclature of Medicine—Clinical Terms

SOP Standard Operating Procedure

UMLS Unified Medical Language System

4 Key Problems

Slide 5-1: Mathematically Seen Our World Is Complex and High

Dimensional

Key problems in dealing with data in the life sciences include:

• Complexity of our world

• High-dimensionality (curse of dimensionality (Catchpoole et al. 2010))

• Most of the data is weakly structured and unstructured

(continued)
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(continued)

A grand challenge in health care is the complexity of data, implicating two

issues: structurization and standardization. As we have learned in Lecture 2,

very little of the data is structured. Most of our data is weakly structured

(Holzinger 2012). In the language of business there is often the use of the

word “unstructured,” but we have to use this word with care; unstructured

would mean—in a strict mathematical sense—that we are talking about total

randomness and complete uncertainty, which would mean noise, where

standard methods fail or lead to the modeling of artifacts, and only statistical

approaches may help. The correct term would be unmodeled data—or we

shall speak about unstructured information. Please mind the differences.

To the image in Slide 5-1: Advances in genetics and genomics have

accelerated the discovery-based (¼hypotheses generating) research that pro-

vides a powerful complement to the direct hypothesis-driven molecular,

cellular, and systems sciences.

For example, genetic and functional genomic studies have yielded impor-

tant insights into neuronal function and disease. One of the most exciting and

challenging frontiers in neuroscience involves harnessing the power of large-

scale genetic, genomic, and phenotypic datasets, and the development of

tools for data integration and data mining (Geschwind and Konopka 2009).

5 Review on Data

Fig. 1 See Slide 5-2
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Slide 5-2: Remember: Standardization Versus Structurization

Before we proceed, please review the four different definitions of data in

terms of structurization and standardization: well-structured and standardized

data, semi-structured data (e.g., XML), weakly structured data (e.g., Omics

data), and “unmodelled data”—unstructured information (text).

Do not confuse structure with standardization (see Slide 2-9). Data can be

standardized (e.g., numerical entries in laboratory reports) and

non-standardized. A typical example is non-standardized text—imprecisely

called “Free-Text” or “unstructured data” in an electronic patient record

(Kreuzthaler et al. 2011; Holzinger 2011; Holzinger et al. 2013c).

Well-structured data is the minority of data and an idealistic case when

each data element has an associated defined structure, relational tables, or the

resource description framework RDF, or the Web Ontology Language OWL

(see Lecture 3).

Note: Ill-structured is a term often used for the opposite of well-structured,

although this term originally was used in the context of problem solving

(Simon 1973).

Semi-structured is a form of structured data that does not conform with the

strict formal structure of tables and data models associated with relational

databases but contains tags or markers to separate structure and content, i.e.,

they are schema-less or self-describing; a typical example is a markup

language such as XML (see Lectures 3 and 4).

Weakly structured data is the most of our data in the whole universe,

whether it is in macroscopic (astronomy) or microscopic structures (biol-

ogy)—see Lecture 5.

Non-structured data or unstructured data is an imprecise definition used for

information expressed in natural language, when no specific structure has

been defined. This is an issue for debate: Text has also some structure: words,

sentences, paragraphs. If we are very precise, unstructured data would meant

that the data is complete randomized—which is usually called noise and is

defined by (Duda et al. 2000) as any property of data which is not due to the

underlying model but instead to randomness (either in the real world, from

the sensors or the measurement procedure).
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5.1 Well-Structured Data

Slide 5-3: Example: Well-Structured Data

A look on the typical view of a hospital information system shows us the

organization of well-structured data: Standardized and well-structured data is

the basis for accurate communication. In the medical domain, many different

people work at different times in various locations. Data standards can ensure

that information is interpreted by all users with the same understanding.

Moreover, standardized data facilitate comparability of data and interopera-

bility of systems. It supports the reusability of the data, improves the effi-

ciency of health-care services and avoids errors by reducing duplicated

efforts in data entry. Remember: Data standardization refers to (a) the data

content; (b) the terminologies that are used to represent the data; (c) how data

is exchanged; and (d) how knowledge, e.g., clinical guidelines, protocols,

decision support rules, checklists, standard operating procedures are

represented in the health information system.

Note: The opposite, i.e., non-standardized data is the majority of data and

inhibit data quality, data exchange, and interoperability.

Remark: Care2x is an Open Source Information System, see: http://care2x.

org

See Lecture 10 for more details.

Fig. 2 See Slide 5-3
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5.2 Semi-structured Data

Slide 5-4: Example: Semi-structured Data: XML

This is a Medical example for semi-structured data in XML (Holzinger 2003).

The eXtensible Markup Language (XML) is a flexible text format

recommended by the W3C for data exchange and derived from SGML

(ISO 8879), (Usdin and Graham 1998).

XML is often classified as semi-structured; however, this is in some way

misleading, as the data itself is still structured, but in a flexible rather than a

static way (Forster and Vossen 2012). Such data does not conform to the

formal structure of tables and data models as for example in relational

databases, but at least contains tags/markers to separate semantic elements

and enforce hierarchies of records and fields within these data.

Slide 5-5: Example: Generic XML Template for a Medical Report

This example by Rassinoux et al. (2003) shows how XML can be used in the

hospital information system: The structure of any new document edited in the

Patient Record (here: DPI) is based on a template defined in XML format

(left). These templates play the role of DTDs or XML schemas as they

precisely define the structure and content type of each paragraph, thus

validating the document at the application level. Such a structure embeds a

<HEADER> and a <BODY>. The header encapsulates the properties that

are inherent to the new document and that will be useful to further classify it,

according to various criteria, including the patient identification, the docu-

ment type, the identifier of its redactors and of the hospitalization stay, or

ambulatory consultation to which the document will be attached in the patient

(continued)

Fig. 3 See Slide 5-4
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(continued)

trajectory, etc. The body encapsulates the content, and is divided into two

parts: The <STRUCDOC> part describes the semantic entities that compose

the document. The <FULLDOC> part embeds the document itself with its

page layout information, which can be stored either as a draft, a temporary

text or as a definitive text. This format guarantees the storage of dynamic and

controlled fields for data input, thus allowing the combination of free text and

structured data entry in the document. Once the document is no longer

editable, it is definitively saved into the RTF format. A CDATA section is

utilized for storing the rough document whatever its format, as it permits to

disregard blocks of text containing characters that would otherwise be

regarded as markup (Rassinoux et al. 2003).

Slide 5-6: Comparison of XML: RDF/OWL in Bioinformatics

On top in this slide you can see a sample XML describing genes from

Drosophila melanogaster involved in long-term memory. Nested within the

gene elements, are sub-elements related to the parent. The first gene includes

two nucleic acid sequences, a protein product, and a functional annotation.

Additional information is provided by attributes, such as the organism. This

example illustrates the difficulty of modeling many-to-many relationships,

such as the relationship between genes and functions. Information about

functions must be repeated under each gene with that function. If we invert

the nesting, then we must repeat information about genes with more than a

single function. Below the XML we see the information about genes using

both RDF and OWL. Both genes are instances of the class Fly Gene, which

has been defined as the set of all Genes for the organism D. melanogaster. The

functional information is represented using a hierarchical taxonomy, in which

Long-Term Memory is a subclass of Memory (Louie et al. 2007).

Remark: Drosophila melanogaster is a model organism and shares many

genes with humans. Although Drosophila is an insect whose genome has only

about 14,000 genes (half of humans), a remarkable number of these have very

close counterparts in humans; some even occur in the same order in the fly’s

DNA as in our own. This, plus the organism’s more than 100-year history in

the lab, makes it one of the most important models for studying basic biology

and disease (see for example http://www.lbl.gov/Science-Articles/Archive/

sabl/2007/Feb/drosophila.html).

Note: The relational data model requires preciseness: The data must be

regular, complete and structured. However, in Biology the relationships are

(continued)
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(continued)

mostly un-precise. Genomic medicine is extremely data intensive and there is

an increasing diversity in the type of data: DNA sequence, mutation, expres-

sion arrays, haplotype, proteomic, etc. In bioinformatics many heterogeneous

data sources are used to model complex biological systems (Rassinoux

et al. 2003; Achard et al. 2001). The challenge in genomic medicine is to

integrate and analyze these diverse and huge data sources to elucidate phys-

iology and in particular disease physiology. XML is suited for describing

semi-structured data, including a kind of natural modeling of biological

entities, because it allows features as for example nesting (see Slide 5-6 on

top). Still a key limitation of XML is that it is difficult to model complex

relationships; for example, there is no obvious way to represent many-to-

many relationships, which are needed to model complex pathways. On top in

Fig. 5-9 we can see a sample XML, describing genes involved in the long-

term memory of a sample specimen d. melanogaster. Nested within the gene

elements, are sub-elements related to the parent. The first gene includes two

nucleic acid sequences, a protein product, and a functional annotation. Addi-

tional information is provided by attributes, such as the organism. This

example illustrates the difficulty of modeling many-to-many relationships,

such as the relationship between genes and functions. Information about

functions must be repeated under each gene with that function. If we invert

the nesting (i.e., nesting genes inside function elements), then we must repeat

information about genes with more than a single function. At the bottom in

Slide 5-6 we see the same information about genes, but using RDF and OWL.

Both genes are instances of the class Fly Gene, which has been defined as the

set of all Genes for the organism D. melanogaster. The functional information

is represented using a hierarchical taxonomy, in which Long-Term Memory

is a subclass of Memory (Louie et al. 2007).

5.3 Weakly Structured Data

Slide 5-7: Example: Weakly Structured Data—Protein–Protein

Interactions

Here we see a human protein interaction network and its connections: Pro-

teins likely to be under positive selection are colored in shades of red (light

red, low likelihood of positive selection; dark red, high likelihood). Proteins

estimated not to be under positive selection are in yellow, and proteins for

which the likelihood of positive selection was not estimated are in white (Kim

et al. 2007).
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5.4 On the Topology of Data

Data has shape!

Slide 5-8: On the Topology of Data: Data Has Shape!

Such data does not conform to the formal structure of tables and data models

as for example in relational databases, but at least contains tags/markers to

separate semantic elements and enforce hierarchies of records and fields

within these data.

Slide 5-9: Again: What Is a Mathematical, What Is a Physical Space?

Such data does not conform to the formal structure of tables and data models

as for example in relational databases, but at least contains tags/markers to

separate semantic elements and enforce hierarchies of records and fields

within these data.

There are many different types of topology:

Point-set topology, aka general topology, studies properties of spaces and the

structures defined on them, where the spaces may be very general, and do not have

to be similar to manifolds (a manifold of dimension n is a topological space that

near each point resembles an n-dimensional Euclidean space). General topology

provides the most general framework where fundamental concepts of topology such

as open/closed sets, continuity, interior/exterior/boundary points, and limit points

can be defined (Gaal 1966).

Algebraic topology uses tools from abstract algebra to study topological spaces.

The basic goal is to find algebraic invariants that classify topological spaces up to

homeomorphism (Hatcher 2002). A function f: X ! Y between two topological

spaces (X, TX) and (Y, TY) is called a homeomorphism if f is bijective, continuous,
and the inverse function f� 1 is continuous.

Before we go into examples, let us answer the question: “What is a space?”
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6 Networks ¼ Graphs + Data

6.1 Networks in Biological Systems

Slide 5-10: Complex Biological Systems: Key Concepts

The concept of network structures is fascinating, compelling, and powerful

and applicable in nearly any domain at any scale.

Network theory can be traced back to graph theory, developed by

Leonhard Euler in 1736 (see Slide 5-11). However, stimulated by works for

example from Barabási et al. (1999), research on complex networks has only

recently been applied to biomedical informatics. As an extension of classical

graph theory, see for example Diestel (2010), complex network research

focuses on the characterization, analysis, modeling and simulation of com-

plex systems involving many elements and connections, examples including

the internet, gene regulatory networks, protein–protein networks, social rela-

tionships and the Web, and many more. Attention is given not only to try to

identify special patterns of connectivity, such as the shortest average path

between pairs of nodes (Newman 2003), but also to consider the evolution of

connectivity and the growth of networks, an example from biology being the

evolution of protein–protein interaction (PPI) networks in different species

(Slide 5-11). In order to understand complex biological systems, the three

following key concepts need to be considered:

(i) emergence, the discovery of links between elements of a system

because the study of individual elements such as genes, proteins, and

metabolites is insufficient to explain the behavior of whole systems;

(ii) robustness, biological systems maintain their main functions even

under perturbations imposed by the environment; and

(iii) modularity, vertices sharing similar functions are highly connected.

Network theory can largely be applied for biomedical informatics,

because many tools are already available (Costa et al. 2008).
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6.2 Network Theory

6.2.1 Basic Concepts of Networks

Slide 5-11: Networks on the Example of Bioinformatics

A graph G(V, E) describes a structure which consists of nodes aka vertices V,
connected by a set of pairs of distinct nodes (links), called edges E{a, b} with
a, b ∈ V; a 6¼ b.

Graphs containing cycles and/or alternative paths are referred to as net-

works. The vertexes and edges can have a range of properties defined as

colors, which also may have quantitative values, referred to as weights. In this

slide we see the basic building block symbols of a biological network as used

in bioinformatics. The blue dots are serving as network hubs, the red block is

a critical node (on a critical link), the white balls are bottle necks, the stars

second order hubs etc. (Hodgman et al. 2010).

6.2.2 Computational Graph Representation

Slide 5-12: Computational Graph Representation

In order to represent network data in computers it is not comfortable to use

sets; more practical are matrices. The simplest form of a graph representation

(continued)

Fig. 4 See Slide 5-12
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(continued)

is the so-called adjacency matrix. In this Slide we see an undirected (left) and

a directed graph and their respective adjacency matrices. If the graph is

undirected, the adjacency matrix is symmetric, i.e., the elements aij ¼ aji
for any i and j.

Left: a simple undirected binary graph and its mapping in a square

adjacency matrix (symmetric), right: a directed and weighted graph

(nonsymmetric); there is full correspondence between the network, the

graph, and the adjacency matrix.

Slide 5-13: Example: Tool for Node-Link Visualization

This Tool is a nice example on the usefulness of adjacency matrices: The

InfoVis Toolkit is an interactive graphics toolkit developed by Jean-Daniel

Fekete at INRIA (The French National Institute for Computer Science and

Control). The toolkit implements nine types of visualization: Scatter Plots,

Time Series, Parallel Coordinates, and Matrices for tables; Node-Link dia-

grams, Icicle trees, and Tree maps for trees; Adjacency Matrices and Node-

Link diagrams for graphs. Node-Link visualizations provide several variants

(eight for graphs and four for trees). There are also a number of interactive

controls and information displays, including dynamic query sliders, fisheye

lenses, and excentric labels. Information about the InfoVis toolkit can be

found at http://ivtk.sourceforge.net

The InfoVis Toolkit provides interactive components such as range sliders

and tailored control panels required to configure the visualizations. These

components are integrated into a coherent framework that simplifies the

management of rich data structures and the design and extension of visuali-

zations. Supported data structures include tables, trees, and graphs. All

visualizations can use fisheye lenses and dynamic labeling (Fekete 2004).

6.2.3 Network Metrics

Slide 5-14: Some Network Metrics (1/2)

The truly multidisciplinary network science has led to a wide variety of

quantitative measurements of their topological characteristics (Costa

et al. 2007). The identification between a graph and an adjacency matrix

(continued)
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(continued)

makes all the powerful methods of linear algebra, graph theory, and statistical

mechanics available to us for investigating specific network characteristics:

Order (a in Figure Slide 5-14) ¼ total number of nodes n

Size ¼ total number of links:

X

i

X

j

aij

Clustering Coefficient (b in Slide 5-14) ¼ the degree of concentration of

the connections of the node’s neighbors in a graph and gives a measure of

local inhomogeneity of the link density, i.e., the level of connectedness of the

graph. It is calculated as the ratio between the actual number ti of links

connecting the neighborhood (the nodes immediately connected to a chosen

node) of a node and the maximum possible number of links in that

neighborhood:

Ci ¼ 2ti
k ki � 1ð Þ

For the whole network, the clustering coefficient is the arithmetic mean:

C ¼ 1

n

X

i

Ci

Path length (c in Slide 5-14) ¼ is the arithmetical mean of all the

distances; The characteristic path length of node i provides information

about how close node i is connected to all other nodes in the network and is

given by the distance d(i,j) between node i and all other nodes j in the

network.

The Path length l provides important information about the level of global

communication efficiency of a network:

l ¼ 1

n n� 1ð Þ
X

i 6¼j

dij

Note: Numerical methods, e.g., the Dijkstra’s algorithm (1959), are used
to calculate all the possible paths between any two nodes in a network.
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Slide 5-15: Some Network Metrics (2/2)

Centrality (d in Slide 5-15) ¼ the level of “betweenness-centrality” of a

node i; it indicates how many of the shortest paths between the nodes of the

network pass through node i. A high “betweenness-centrality” indicates that

this node is important in interconnecting the nodes of the network, marking a

potential hub role (refer to Slide 5-11) of this node in the overall network.

Nodal degree (e in Slide 5-15) ¼ number of links connecting i to its

neighbors. The degree of node i is defined as its total number of connections.

ki ¼
X

i

aij

The degree probability distribution P(k) describes the p(x) that a node is
connected to k other nodes in the network.

Modularity (f in Slide 5-15) ¼ describes the possible formation of com-

munities in the network, indicating how strong groups of nodes form relative

isolated subnetworks within the full network (refer also to Slide 5-11).

Two further metrics include:

Density ¼ the ratio between m and the maximum possible number of

links that a graph may have:

δ ¼ 2m

n n� 1ð Þ

Path ¼ a series of consecutive links connecting any two nodes in the

network, the distance between two vertices is the length of the shortest path

connecting them, the diameter of a graph is the longest distance (the maxi-

mum shortest path) existing between any two vertices in the graph:

D ¼ maxdij

Slide 5-16: Some Network Topologies

Regular network (a in Slide 5-16) has a local character, characterized by a

high clustering-coefficient (c in Slide 5-16) and a high path length (L, Slide

(continued)
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(continued)

5-16). It takes a large number of steps to travel from a specific node to a node

on the other end of the graph. A special case of a regular network is the:

Random network, where all connections are distributed randomly across

the network; the result is a graph with a random organization (outer right in

Slide 5-16). In contrast to the local character of the regular network, a random

network has a more global character, with a low C and a much shorter path

length L than the regular network. A particular case is the:

Small-world network (center of Slide 5-16) which are very robust and

combine a high level of local and global efficiency. Watts and Strogatz

(1998b) showed that with a low probability p of randomly reconnecting a

connection in the regular network, a so-called small-world organization

arises. It has both a high C and a low L, combining a high level of local

clustering with still a short average travel distance. Many networks in nature

are small-world (e.g., Internet, protein networks, social networks, functional

and structural brain network), combining a high level of segregation with a

high level of global information integration. In addition, such networks can

have a heavy tailed connectivity distribution, in contrast to random networks

in which the nodes roughly all have the same number of connections.

Scale-free networks (B in Slide 5-16) are characterized by a degree

probability distribution that follows a power-law function, indicating that

on average a node has only a few connections, but with the exception of a

small number of nodes that are heavily connected. These nodes are often

referred to as hub nodes (see Slide 5-11) and they play a central role in the

level of efficiency of the network, as they are responsible for keeping the

overall travel distance in the network to a minimum. As these hub nodes play

a key role in the organization of the network, scale-free networks tend to be

vulnerable to specialized attack on the hub nodes.

Modular networks (c in Slide 5-16) show the formation of so-called

communities, consisting of a subset of nodes that are mostly connected to

their direct neighbors in their community and to a lesser extend to the other

nodes in the network. Such networks are characterized by a high level of

modularity of the nodes.

Slide 5-17: Small-World Networks

Taking a connected graph with a high graph diameter and adding a very small

number of edges randomly, results in the small world phenomenon: the

diameter drops drastically. It is also known as “six degrees of separation”

(continued)
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(continued)

since, in the social network of the world, any person turns out to be linked to

any other person by roughly six connections (Milgram 1967). The human

short-term memory uses small world networks between the neurons.

In the Slide we see the random rewiring procedure for interpolating

between a regular ring lattice (rightmost) and a random network (leftmost),

without altering the number of vertices or edges in the graph. We start with a

ring of n vertices, each connected to its k nearest neighbors by undirected

edges. We choose a vertex and the edge that connects it to its nearest neighbor

in a clockwise sense. With probability p, we reconnect this edge to a vertex

chosen uniformly at random over the entire ring, with duplicate edges for-

bidden; otherwise we leave the edge in place. We repeat this process by

moving clockwise around the ring, considering each vertex in turn until one

lap is completed. Then we consider the edges that connect vertices to their

second-nearest neighbors clockwise. We randomly rewire each of these edges

with probability p, and continue this process, circulating around the ring and

proceeding outward to more distant neighbors after each lap, until each edge

in the original lattice has been considered once. For intermediate values of p,

the graph is a small-world network: highly clustered like a regular graph, yet

with small characteristic path length, like a random graph (Watts and Strogatz

1998a).

6.2.4 Graphs from Point Cloud Datasets

Slide 5-18: Graphs from Point Cloud Datasets

There are many ways to construct a proximity graph representation from a set

of data points that are embedded in ℝd.

Let us consider a set of data points {x1, . . ., xn} ∈ ℝd .

To each data point we associate a vertex of a proximity graph G to define a

set of vertices V ¼ v1, v2, . . . , vnf g. Determining the edge set ℰ of the

proximity graphG requires defining the neighbors of each vertex vi according
to its embedding xi.

Consequently, a proximity graph is a graph in which two vertices are

connected by an edge if the data points associated to the vertices satisfy

particular geometric requirements. Such particular geometric requirements

are usually based on a metric measuring the distance between two data points.

A usual choice of metric is the Euclidean metric. Look at the slide:

(a) is our initial set of points in the plane ℝ2

(continued)
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(b) ε-ball graph vi � vj if xj∈B vi; εð Þ
(c) k-nearest-neighbor graph (k-NNG): vi � vj if the distance between xi and

xj is among the k-th smallest distances from xi to other data points. The

k-NNG is a directed graph since one can have xi among the k-nearest

neighbors of xj but not vice versa.

(d) Euclidean Minimum Spanning Tree (EMST) graph is a connected tree

subgraph that contains all the vertices and has a minimum sum of edge

weights. The weight of the edge between two vertices is the Euclidean

distance between the corresponding data points.

(e) Symmetric k-nearest-neighbor graph (Sk-NNG): vi � vj if xi is among

the k-nearest neighbors of y or vice versa.
(f) Mutual k-nearest-neighbor graph (Mk-NNG): vi � vj if xi is among the

k-nearest neighbors of y and vice versa. All vertices in a mutual k-NN

graph have a degree upper-bounded by k, which is not usually the case

with standard k-NN graphs.

(g) Relative Neighborhood Graph (RNG): vi � vj if there is no vertex in B
(vi; D(vi, vj)) \ B(vj; D(vi, vj)).

(h) Gabriel Graph (GG)

(i) The β-Skeleton Graph (β-SG):

For details please refer to Lézoray and Grady (2012), or to a classical

graph theory book, e.g., Harary (1969), Bondy and Murty (1976), Golumbic

(2004), Diestel (2010).

Slide 5-19: Graphs from Images

In this slide we see the examples of:

(a) a real image with the quadtree tessellation,

(b) the region adjacency graph associated to the quadtree partition,

(c) irregular tessellation using image-dependent superpixel Watershed Seg-

mentation (Vincent and Soille 1991)

(d) irregular tessellation using image-dependent SLIC superpixels (Lucchi

et al. 2010)

SLIC ¼ Simple Linear Iterative Clustering
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Slide 5-20: Example: Watershed Algorithm

A straightforward implementation of the original Vincent–Soille algorithm is

difficult if plateaus occur. Therefore, an alternative approach was proposed

by Meijster and Roerdink (1995), in which the image is first transformed to a

directed valued graph with distinct neighbor values, called the components

graph of f. On this graph the watershed transform can be computed by a

simplified version of the Vincent–Soille algorithm, where fifo queues are no

longer necessary, since there are no plateaus in the graph (Roerdink and

Meijster 2000).

Slide 5-21: From Graphs to Images: Watershed + Centroid

The original natural digital image is first transformed into grey scale, then the

Watershed algorithm is applied and then the centroid function calculated, the

results are representative point sets in the plane.

Fig. 5 See Slide 5-21
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Slide 5-22: Graphs from Images: Voronoi $ Delauney

The Delaunay Triangulation (DT): vi � vj if there is a closed ballB �; rð Þwith
vi and vj on its boundary and no other vertex vk contained in it. The dual to

the DT is the Voronoi irregular tessellation where each Voronoi cell is

defined by the set {x ∈ Rn | D(x, vk) � D(x, vj) for all vj ¼ vk}. In such a

graph, 8 vi, deg (vi) ¼ 3 (Lézoray and Grady 2012).

Slide 5-23: Points ! Voronoi ! Delauney

This animation shows the construction of a Delaunay graph: First the red

points on the plane are drawn, then we insert the blue edges and the blue

vertices on the Voronoi graph, finally the red edges drawn build the Delaunay

graph (Kropatsch et al. 2001).

Slide 5-24: Example: Graph Entropy Measures

In this Slide we see the evaluated information-theoretic network measures on

publication networks. Here from the excellence network of RWTH Aachen

University. Those measures can be understood as graph complexity measures

which evaluate the structural complexity based on the corresponding concept.

A possible useful interpretation of these measures helps to understand the

differences in subgraphs of a cluster. For example one could apply commu-

nity detection algorithms and compare entropy measures of such detected

communities. Relating these data to social measures (e.g., balanced score

card data) of subcommunities could be used as indicators of collaboration

success or lack thereof. The node size shows the node degree, whereas the

node color shows the betweenness centrality, and darker color means higher

centrality (Holzinger et al. 2013a).

Fig. 6 See Slide 5-22
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Slide 5-25: Example for a Medical Knowledge Space

A further example shall demonstrate the usefulness of graph theory and

network analysis: This graph shows the medical knowledge space of a

standard quick reference guide for emergency doctors and paramedics in

the German speaking area. It has been subsequently developed, tested in the

medical real world and constantly improved for 20 years by Dr. med. Ralf

Müller, emergency doctor at Graz-LKH University Hospital and is practically

in the pocket of every emergency and family doctor and paramedics in the

German speaking area (Holzinger et al. 2013b).

Up to know we know that Graphs and Graph-Theory are powerful tools to

map data structures and to find novel connections between single data objects

(Strogatz 2001; Dorogovtsev and Mendes 2003). The inferred graphs can be

further analyzed by using graph-theoretical and statistical and machine learn-

ing techniques (Dehmer et al. 2011). A mapping of the already existing and in

the medical practice approved “knowledge space” as a conceptual graph and

the subsequent visual and graph-theoretical analysis may provide novel

insights on hidden patterns in the data. Another benefit of the graph-based

data structure is in the applicability of methods from network topology and

network analysis and data mining, e.g., small-world phenomenon (Barabasi

and Albert 1999; Kleinberg 2000), and cluster analysis (Koontz et al. 1976;

Wittkop et al. 2011).

The graph-theoretic data of the graph seen in this slide include:

Number of nodes ¼ 641, number of edges ¼ 1,250, red are agents, black

are conditions, blue are pharmacological groups, grey are other documents.

The average degree of this graph ¼ 3.888, the average path length ¼ 4.683,

the network diameter ¼ 9.

Fig. 7 See Slide 5-25

6 Networks ¼ Graphs + Data 223



Slide 5-26: Medical Details of the Graph

The nodes of the sample graph represent: drugs, clinical guidelines, patient

conditions (indication, contraindication), pharmacological groups, tables and

calculations of medical scores, algorithms, and other medical documents; and

the edges represent three crucial types of relations inducing medical rele-

vance between two active substances, i.e., pharmacological groups, indica-

tions, and contraindications. The following example will demonstrate the

usefulness of this approach.

Slide 5-27: Example for the Shortest Path

This example shows us how convenient we can find which path between two

nodes is the shortest as well as the navigation way between these nodes.

Computing shortest paths is a fundamental and ubiquitous problem in net-

work analysis. We can for example apply the Dijkstra-algorithm, solves the

shortest path problem for a graph with non-negative edge path costs, produc-

ing a shortest path tree. This algorithm is often used in routing and as a

subroutine in other graph algorithms: For a given node, the algorithm finds

the path with lowest cost (i.e., the shortest path) between that node and every

other node(Henzinger et al. 1997).

Slide 5-28: Example for Finding Related Structures

Here we see the relationship between Adrenaline (center black node) and

Dobutamine (top left black node), Blue: Pharmacological Group,

(continued)

Fig. 8 See Slide 5-27
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(continued)

Dark red: Contraindication; Light red: Condition, the Green nodes (from dark

to light) are:

1. Application (one or more indications + corresponding dosages)

2. Single indication with additional details (e.g., “VF after 3rd Shock”)

3. Condition (e.g., VF, Ventricular Fibrillation)

6.3 Network Examples

6.3.1 The Human Brain as Network

Slide 5-29: Example: The Brain Is a Complex Network

Our brain forms one integrative complex network, linking all brain regions

and subnetworks together (Van Den Heuvel and Hulshoff Pol 2010). Exam-

ining the organization of this network provides insights in how our brain

works. Graph theory provides a framework in which the topology of complex

networks can be examined, and thus can reveal novelties about both the local

and global organization of functional brain networks. In the slide we can see

how the modeling of the functional brain by a graph works: edges are the

connections between regions that are functionally linked. First, the collection

of nodes is defined (A), second the existence of functional connections

between the nodes in the network needs to be defined, resulting in a connec-

tivity matrix (B). Finally, the existence of a connection between two points

can be defined as whether their level of functional connectivity exceeds a

certain predefined threshold (C) (Van Den Heuvel and Hulshoff Pol 2010).

6.3.2 Systems Biology and Human Diseases

Slide 5-30: Representative Examples of Disease Complexes

Insight into the biology of molecular networks is an important field, as

anomalies in these systems underlie a wide spectrum of polygenetic human

disorders, ranging from schizophrenia to congenital heart disease (CHD).

Understanding the functional architecture of networks that organize the

development of organs, see for example Chien et al. (2008), lays the founda-

tion of novel approaches in regenerative medicine, since manipulation of

(continued)
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such systems is necessary for success of tissue engineering technologies and

stem cell therapy.
Lage et al. (2010) developed a framework for gaining new insights into the

systems biology of the protein networks driving organ development and

related polygenic human disease phenotypes, exemplified with heart devel-

opment and CHD. In the slide we see examples of four functional networks

driving the development of different anatomical structures in the human

heart. These four networks are constructed by analyzing the interaction

patterns of four different sets of cardiac development (CD): proteins

corresponding to the morphological groups “atrial septal defects,” “abnormal

atrioventricular valve morphology,” “abnormal myocardial trabeculae mor-

phology,” and “abnormal outflow tract development,” CD proteins from the

relevant groups are shown in orange and their interaction partners are shown

in grey. Functional modules annotated by literature curation are indicated

with a colored background. Centrally in the Figure is a hematoxylin–eosin

stained frontal section of the heart from a 37-day human embryo, where

tissues affected by the four networks are marked; AS (developing atrial

septum), EC (endocardial cushions, which are anatomical precursors to the

atrioventricular valves), VT (developing ventricular trabeculae), and OFT

(developing outflow tract).

Slide 5-31: Example: Cell-Based Therapy

In this slide we see an overview of the modular organization of heart

development: (A) Protein interaction networks are plotted at the resolution

of functional modules. Each module is color coded according to functional

assignment as determined by literature curation. The amount of proteins in

each module is proportional to the area of its corresponding node. Edges

indicate direct (lines) or indirect (dotted lines) interactions between proteins

from the relevant modules. (B) Recycling of functional modules during heart

development. The bars represent functional modules and recycling is indi-

cated by arrows. The bars follow the color code of (A) and the height of the

bars represent the number of proteins in each module, as shown left on the y

axis (Lage et al. 2010).

Note: Phenotype ¼ an organism’s observable characteristics (traits), e.g.,

morphology, biochemical/physiological properties, behavior. Phenotypes

result from the expression of an organism’s genes as well as the influence

of environmental factors and the interactions between them. Genotype ¼
inherited instructions within its genetic code.
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6.3.3 Gene Networks

Slide 5-32: Identifying Networks in Disease Research

Diseases (e.g., obesity, diabetes, and atherosclerosis) result from multiple

genetic and environmental factors, and importantly, interactions between

genetic and environmental factors. This slide shows the vast networks of

molecular interactions. It can be seen that the gastrointestinal (GI) tract,

vasculature, immune system, heart, and brain are all potentially involved in

either the onset of diseases such as atherosclerosis or in comorbidities such as

myocardial infarction and stroke brought on by such diseases. Further, the

risks of comorbidities for diseases such as atherosclerosis are increased by

other diseases, such as hypertension, which may, in turn, involve other

organs, such as kidney. The role that each organ and tissue type plays in a

given disease is largely determined by genetic background and environment,

where different perturbations to the genetic background (perturbations

corresponding to DNA variations that affect gene function, which, in turn,

leads to disease) and/or environment (changes in diet, levels of stress, level of

activity, and so on) define the subtypes of disease manifested in any given

individual. Although the physiology of diseases such as atherosclerosis is

beginning to be better understood, what have not been fully exploited to data

are the vast networks of molecular interactions within the cells.

We see clearly in the Slide that there is a diversity of molecular networks

functioning in any given tissue, including genomics networks, networks of

coding and noncoding RNA, protein interaction networks, protein state net-

works, signaling networks, and networks of metabolites. Further, these net-

works are not acting in isolation within each cell, but instead interact with one

another to form complex, giant molecular networks within and between cells

that drive all activity in the different tissues, as well as signaling between

tissues. Variations in DNA and environment lead to changes in these molec-

ular networks, which, in turn, induce complicated physiological processes

that can manifest as disease. Despite this vast complexity, the classic

approach to elucidating genes that drive disease has focused on single

genes or single linearly ordered pathways of genes thought to be associated

with disease. This narrow approach is a natural consequence of the limited set

of tools that were available for querying biological systems; such tools were

not capable of enabling a more holistic approach, resulting in the adoption of

a reductionist approach to teasing apart pathways associated with complex

disease phenotypes. Although the emerging view that complex biological

systems are best modeled as highly modular, fluid systems exhibiting a

plasticity that allows them to adapt to a vast array of conditions, the history

of science demonstrates that this view, although long the ideal, was never

(continued)
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within reach, given the unavailability of tools adequate to carrying out this

type of research. The explosion of large-scale, high-throughput technologies

in the biological sciences over the past 15–20 years has motivated a rapid

paradigm shift away from reductionism in favor of a systems-level view of

biology (Schadt and Lum 2006).

6.4 The Essence: Three Types of Biomedical Networks

Slide 5-33: Three Main Types of Biomedical Networks

In this Slide we see the three main types of biological networks: (1) a

transcriptional regulatory network has two components: transcription factor

(TF) and target genes (TG), where TF regulates the transcription of TGs;

(2) PPI networks: two proteins are connected if there is a docking between

them; (3) a metabolic network is constructed considering the reactants,

chemical reactions, and enzymes (Costa et al. 2008).

6.4.1 Transcriptional Regulatory Networks

Slide 5-34: Example Transcriptional Regulatory Network

The extreme complexity of the E. coli transcriptional regulatory network. In

this graphical representation, nodes are genes, and edges represent regulatory

interactions. The network was reconstructed using data from the RegulonDB.

This figure highlights the extreme complexity in regulatory networks. To

obtain a deeper understanding of regulatory complexity, scientists must first

discover biologically relevant organizational principles to unravel the hidden

architecture governing these networks (Salgado et al. 2006).

The complexity of organisms arises rather as a consequence of elaborated

regulations of gene expression than from differences in genetic content in

terms of the number of genes. The transcription network is a critical system

that regulates gene expression in a cell. Transcription factors (TFs) respond to

changes in the cellular environment, regulating the transcription of target

genes (TGs) and connecting functional protein interactions to the genetic

information encoded in inherited genomic DNA in order to control the timing

and sites of gene expression during biological development. The interactions

between TFs and TGs can be represented as a directed graph: The two types

(continued)
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of nodes (TF and TG) are connected by arcs (see Slide 5-33, arrows) when

regulatory interaction occurs between regulators and targets. Transcriptional

regulatory networks display interesting properties that can be interpreted in a

biological context to better understand the complex behavior of gene regula-

tory networks. At a local network level, these networks are organized in

substructures such as motifs and modules.Motifs represent the simplest units

of a network architecture required to create specific patterns of inter-

regulation between TFs and TGs. Three most common types of motifs can

be found in gene regulatory networks:

(1) single input,

(2) multiple input and

(3) feed-forward loop

Target genes belonging to the same single and multiple input motifs tend

to be co-expressed, and the level of co-expression is higher when multiple

transcription factors are involved.

Modularity in the regulatory networks arises from groups of highly

connected motifs that are hierarchically organized, in which modules are

divided into smaller ones. The evolution of gene regulatory networks mainly

occurs through extensive duplication of transcription factors and target genes

with inheritance of regulatory interactions from ancestral genes while the

evolution of motifs does not show common ancestry but is a result of

convergent evolution (Costa et al. 2008).

6.4.2 Protein–Protein Networks

Slide 5-35: Network Representations of Protein Complexes

The interactions between proteins are essential to keep the molecular systems

of living cells working properly. PPI is important for various biological

processes such as cell–cell communication, the perception of environmental

changes, protein transport and modification. Complex network theory is

suitable to study PPI maps because of its universality and integration in

representing complex systems. In complex network analysis each protein is

represented as a node and the physical interactions between proteins are

indicated by the edges in the network.

Many complex networks are naturally divided into communities or mod-

ules, where links within modules are much denser than those across modules

(e.g., human individuals belonging to the same ethnic groups interact more

(continued)
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than those from different ethnic groups). Cellular functions are also organized

in a highly modular manner, where each module is a discrete object com-

posed of a group of tightly linked components and performs a relatively

independent task. It is interesting to ask whether this modularity in cellular

function arises from modularity in molecular interaction networks such as the

transcriptional regulatory network and PPI network.

The slide shows a hypothetical protein complex (A). Binary PPI are

depicted by direct contacts between proteins. Although five proteins (A, B,

C, D, and E) are identified through the use of a bait protein (red), only A and

D directly bind to the bait. (B) shows the true PPI network topology of the

protein complex is shown in. (C) depicts the PPI network topology of the

protein complex inferred by the “matrix” model, where all proteins in a

complex are assumed to interact with each other. Finally (D) demonstrates

the PPI network topology of the protein complex inferred by the “spoke”

model, where all proteins in a complex are assumed to interact with the bait;

but no other interactions are allowed (Wang and Zhang 2007).

Slide 5-36: Correlated Motif Mining (CMM)

Correlated motif mining (CMM) is the challenge to find overrepresented pairs

of patterns (motifs), in sequences of interacting proteins. Algorithmic solu-

tions for CMM thereby provide a computational method for predicting

binding sites for protein interaction. The task is basically to represent motifs

X and Y (Fig. 119) to truly represent an overrepresented consensus pattern in

the sequences of the proteins in VX, respectively VY, in order to increase the

likelihood that they correspond or overlap with a so-called binding site—a

site on the surface of the molecule that makes interactions between proteins

from VX and VY possible through a molecular lock-and-key mechanism.

We call {X, Y} a (kx ky kxy)-motif pair of a PPI network.

G ¼ (V, E, λ) if |Vx| ¼ kx, |Vy| ¼ ky and |Vx \ Vy| ¼ kxy.
It is called complete if all vertices from Vx are connected with all vertices

from Vy (Boyen et al. 2011).
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Slide 5-37: Steepest Ascent Algorithm Applied to CMM

Since the decision problem associated with CMM is in NP,1 we can effi-

ciently check if a motif pair has higher support than another which makes it

possible to tackle CMM as a search problem in the space of all possible (l,d)-

motif pairs. If we add the assumption that similar motifs can be expected to

get similar support, it has the typical form of a combinatorial optimization

problem. In combinatorial optimization, the objective is to find a point in a

discrete search space which maximizes a user-provided function f. A number

of heuristic algorithms called metaheuristics are known to yield stable results,

e.g., the steepest ascent algorithm (Aarts and Lenstra 1997), illustrated as

pseudocode in the slide.

6.4.3 Metabolic Networks

Slide 5-38: Metabolic Networks

Metabolism is primarily determined by genes, environment and nutrition. It

consists of chemical reactions catalyzed by enzymes to produce essential

components such as amino acids, sugars and lipids, and also the energy

necessary to synthesize and use them in constructing cellular components.

Since the chemical reactions are organized into metabolic pathways, in which

one chemical is transformed into another by enzymes and cofactors, such a

structure can be naturally modeled as a complex network. In this way,

metabolic networks are directed and weighted graphs, whose vertices can

be metabolites, reactions and enzymes, and two types of edges that represent

mass flow and catalytic reactions. One widely considered catalogue of met-

abolic pathways available on-line is the Kyoto Encyclopedia of Genes and

Genomes (KEGG). In the slide we see a simple metabolic network involving

five metabolites M1–M5 and three enzymes E1–E3, of which the latter

catalyzes an irreversible reaction (Hodgman et al. 2010).

1 NP ¼ nondeterministic polynomial time; in computational complexity theory NP is one of the

fundamental complexity classes.
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Slide 5-39: Metabolic Networks are Usually Big . . . Big Data

Such metabolic structures can be very large, as can be seen in this slide. The

enzyme-coding genes under TrmB (this is the thermococcus regulator of

maltose binding) acts as a repressor for genes encoding glycolytic enzymes

and as activator for genes encoding gluconeogenic enzymes control included

in the metabolic pathways shown in the slide (13 are unique to archaea and

35 are conserved across species from all three domains of life). Integrated

analysis of the metabolic and gene regulatory network architecture reveals

various interesting scenarios (Schmid et al. 2009).

Slide 5-40: Using EPRs to Discover Disease Correlations

Electronic patient records (EPR remain an unexplored, but rich data source

for discovering for example correlations between diseases). Roque

et al. (2011) describe a general approach for gathering phenotypic descrip-

tions of patients from medical records in a systematic and non-cohort depen-

dent manner: By extracting phenotype information from the “free-text”

(¼unstructured information) in such records they demonstrated that they

can extend the information contained in the structured record data, and use

it for producing fine-grained patient stratification and disease co-occurrence

statistics. Their approach uses a dictionary based on the International Classi-

fication of Disease (ICD-10) ontology and is therefore in principle language

independent. As a use case they show how records from a Danish psychiatric

hospital lead to the identification of disease correlations, which subsequently

can be mapped to systems biology frameworks.

Slide 5-41: Heatmap of Disease-Disease Correlations (ICD)

Roque et al. (2011) have used text mining to automatically extract clinically

relevant terms from 5,543 psychiatric patient records and mapped these to

disease codes in the ICD10. They clustered patients together based on the

similarity of their profiles. The result is a patient stratification, based on more

complete profiles than the primary diagnosis, which is typically used. Fig-

ure 124 illustrates the general approach to capture correlations between

different disorders. Several clusters of ICD10 codes relating to the same

anatomical area or type of disorder can be identified along the diagonal of

the heatmap, ranging from trivial correlations (e.g., different arthritis

(continued)
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disorders), to correlations of cause and effect codes (e.g., stroke and mental/

behavioral disorders), to social and habitual correlations (e.g., drug abuse,

liver diseases, and HIV).

6.5 Structural Homologies

Slide 5-42: Example: ὁμολογε�ω (Homologeo)

Homology (plural: homologies) origins from Greek ὁμολογε�ω (homologeo)

and means “to conform” (in German: übereinstimmen) and has its origins in

Biology and Anthropology, where the word is used for a correspondence of

structures in two life forms with a common evolutionary origin (Darwin

1859).

In chemistry it is used for the relationship between the elements in the

same group of the periodic table, or between organic compounds in a homol-

ogous series.

In mathematics homology is a formalism for talking in a quantitative and

unambiguous manner about how a space is connected (Edelsbrunner and

Harer 2010).

Basically, homology is a concept that is used in many branches of algebra

and topology. Historically, the term was first used in a topological sense by

Henry Poincaré (1854–1912).

In Bioinformatics, homology modelling is a mature technique that can be

used to address many problems in molecular medicine. Homology modelling

is one of the most efficient methods to predict protein structures. With the

increase in the number of medically relevant protein sequences, resulting

from automated sequencing in the laboratory, and in the fraction of all known

structural folds, homology modelling will be even more important to person-

alized and molecular medicine in the future. Homology modelling is a

knowledge-based prediction of protein structures. In homology modelling a

protein sequence with an unknown structure (the target) is aligned with one or

more protein sequences with known structures (the templates).

The method of homology modelling is based on the principle that homo-

logue proteins have similar structures. The prerequisite for successful homol-

ogy modelling is a detectable similarity between the target sequence and the

template sequences (more than 30 %) allowing the construction of a correct

alignment. Homology modelling is a knowledge-based structure prediction

relying on observed features in known homologous protein structures. By

(continued)
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exploiting this information from template structures the structural model of

the target protein can be constructed (Wiltgen and Tilz 2009).

Two well-known homology modelling programs, which are free for aca-

demic research, are

MODELLER (http://salilab.org/modeller) and

SWISSMODEL (http://swissmodel.expasy.org).

The slide shows the comparison of two proteins: The sequences of both

proteins are 95 % (53 of 56) identical (only residues 20, 30, and 45 differ), yet

the structures are totally different.

Slide 5-43: Towards Personalized Medicine

Homology modeling is a knowledge-based prediction of protein structures.

In homology modeling a protein sequence with an unknown structure (the

target) is aligned with one or more protein sequences with known structures

(the templates).

The method is based on the principle that homologue proteins have similar

structures.

Homology modeling will be extremely important to personalized and

molecular medicine in the future.

7 Future Outlook

Slide 5-: Future Outlook

All these approaches are producing gigantic amounts of highly complex

datasets, and the amounts are rising. In particular the amount of unstructured

data (or information respectively) rises. Predictive modeling and machine

learning are increasingly central to the business models of data-driven busi-

nesses (Dhar 2013).
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8 Exam Questions

8.1 Yes/No Decision Questions

Please check the following sentences and decide whether the sentence is true ¼
YES; or false ¼ NO; for each correct answer you will be awarded 2 credit points.

01 One of the most exciting and challenging frontiers in neuroscience 
involves harnessing the power of large-scale genetic, genomic and 
phenotypic data sets.

� Yes
� No

2 total

02 In the medical domain, many different people work at different 
times in various locations, therefore standardized data is the basis 
for accurate communication.

� Yes
� No

2 total

03 XML is often classi�ied as semi-structured, however this is in some 
way misleading, as the data itself is still structured, but in a �lexible 
rather than a static way.

� Yes
� No

2 total

04 Non-standardized data is an realistic case and is the minority of 
data but support data quality, data exchange and interoperability
in information systems.

� Yes
� No

2 total

05 In order to understand complex biological systems, the three 
following key concepts need to be considered: emergence, 
robustness, and standardization.

� Yes
� No

2 total

06 A transcriptional regulatory network has two components: 
transcription factor (TF) and target genes (TG), where TF regulates 
the transcription of TGs.

� Yes
� No

2 total

07 The complexity of organisms arises rather as a consequence of 
elaborated regulations of gene expression than from differences in 
genetic content in terms of the number of genes.

� Yes
� No

2 total

08 In genetics, a sequence motif is a nucleotide or amino-acid 
sequence pattern that is widespread and has, or is conjectured to 
have, a biological signi�icance.

� Yes
� No

2 total

09 The decision problem associated with Correlated Motif Mining 
(CMM) is solvable in P.

� Yes
� No

2 total

10 Our brain forms one integrative complex network, linking all brain 
regions and sub-networks together.

� Yes
�

2 total

Sum of Question Block A (max. 20 points)

8 Exam Questions 235



8.2 Multiple Choice Questions (MCQ)

The following questions are composed of two parts: the stem, which identifies the

question or problem and a set of alternatives which can contain 0, 1, 2, 3, or

4 correct answers, along with a number of distractors that might be plausible—

but are incorrect. Please select the correct answers by ticking ☒—and do not

forget that it can be none. Each question will be awarded 4 points only if everything
is correct.

01 Homology …
� a) ... In mathematics homology is a formalism for talking in a quantitative 
and unambiguous manner about how a space is connected.
� b) ... origins from Greek ὁμολογέω (homologeo) and means “to conform”.
� c) ... is used for a correspondence of structures in two life forms with a 
common evolutionary origin.
� d) ... has its origins in Darwinian Biology.

4 total

02 The four network representations of protein networks include …
� a) ... protein complex structure.
� b) ... true PPI structure.
� c) ... Spoke model.
� d) ... Matrix model with bait in the center.

4 total

03 Homology modelling …
� a) … is extremely important for personalized and molecular medicine. 
� b) … is based on the principle that homologue proteins are very different. 
� c) … uses a protein sequence with known structures (targets) to align it 
with a protein structure with unknown structures (templates). 
� d) … is a knowledge-based prediction of protein structures.

4 total

04 Drosophila melanogaster …
� a) … is an insect which has only some 140 genes.
� b) … is a very recently found laboratory animal and very important for 
research in personalized medicine.
� c) … has been used for many years and is of no more use in genomics.
� d) ... is a model organism and shares many genes with humans.

4 total

05 The centrality of a network …
� a) ... measures the level of “betweeness” of a node (the “importance”).
� b) ... indicates how many of the shortest paths between the nodes of the 
network pass through node i.
� c) ... describes the possible formation of communities in the network. 
� d) ... indicates how strong groups of nodes form relative isolated sub-
networks within the full network.

4 total

06 Scale-free Topology …
� … ensures that there are short paths between pairs of nodes, allowing 
rapid communication between otherwise distant parts of the network.
� … is a set of techniques, applied from statistics, which analyze the 
topological structure of a network.
� … is used as a model to predict future values of a topological structure in 
networks. 
� … is a measure of similarity between two protein structures.

4 total
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07 Semi-structured data …
� a) ... does not conform with the formal structure of tables/data models 
associated with relational databases.
� b) ... means randomness, noise and uncertainty.
� c) ... enforces hierarchies of records and �ields within the data.
� d) ... contains tags/markers to separate semantic elements.

4 total

08 Data standardization refers to …
� a) ... the data content.
� b) ... the terminologies that are used to represent this data.
� c) ... how data is exchanged.
� d) ... how knowledge, e.g. clinical guidelines, protocols, decision support 
rules, checklists, standard operating procedures are represented in the health 
information system.

4 total

09 Metabolism …
� a) ... is the study of DNA-sequencing methods and produces a lot of complex 
data.
� b) ... is primarily determined by genes, environment and nutrition.
� c) ... consists of chemical reactions catalyzed by enzymes to produce 
essential components such as amino acids, sugars and lipids.
� d) ... is a process within genetics where regulatory metabolic elements have 
in�luence on nucleotide sequences. 

4 total

10 Phenotype …
� a) ... an organism's observable characteristics (traits).
� b) ... result from the expression of an organism's genes as well as the 
in�luence of environmental factors and the interactions between them.
� c) ... are inherited instructions within its genetic code.
� d) ... includes morphology, biochemical/physiological properties, 
behaviour, etc.

4 total

Sum of Question Block B (max. 40 points)

8 Exam Questions 237



8.3 Free Recall Block

Please follow the instructions below. At each question you will be assigned the

credit points indicated if your option is correct (partial points may be given).

01 Identifying networks in disease research is an important aspect of systems 
biology, where there is a high diversity of molecular networks within and 
between cells. Please identify in the following picture the networks and write 
the name of the network in the appropriate space!

1 each
4 total

02 A graph describes a structure which consists of nodes aka vertices , 
connected by a set of pairs of distinct nodes (links), called edges with 

. Please name the symbols in the following network example:

1 each
4 total
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03 In order to represent network data in computers it is not comfortable to use 
sets; more practical are matrices. The simplest form of a graph representation 
is the so called adjacency matrix. Please set up the adjacency matrices for the 
following graphs:

1 each
6 total

04 In Biomedicine networks of all kind play an extremely important role. Please 
assign the correct labels to the network metrics below:

Path length

Network size

Complete number of nodes 

Clustering coef�icient

Nodal degree

1 each
6 total
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05 Please draw a metabolic network, constructed considering the reactants,
chemical reactions and enzymes, consisting of A, B, C, D, E1 and E2

1 each
6 total

06 Please provide a simple example of a patient record in XML format: 1 each
4 total

Sum of Question Block C (max. 40 points)
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9 Answers

9.1 Answers to the Yes/No Questions

Please check the following sentences and decide whether the sentence is true ¼
YES; or false ¼ NO; for each correct answer you will be awarded 2 credit points.

01 One of the most exciting and challenging frontiers in neuroscience 
involves harnessing the power of large-scale genetic, genomic and 
phenotypic data sets.

� Yes
� No

2 total

02 In the medical domain, many different people work at different 
times in various locations, therefore standardized data is the basis 
for accurate communication.

� Yes
� No

2 total

03 XML is often classi�ied as semi-structured, however this is in some 
way misleading, as the data itself is still structured, but in a �lexible 
rather than a static way.

� Yes
� No

2 total

04 Non-standardized data is an realistic case and is the minority of 
data but support data quality, data exchange and interoperability
in information systems.

� Yes
� No

2 total

05 In order to understand complex biological systems, the three 
following key concepts need to be considered: emergence, 
robustness, and standardization.

� Yes
� No

2 total

06 A transcriptional regulatory network has two components: 
transcription factor (TF) and target genes (TG), where TF regulates 
the transcription of TGs.

� Yes
� No

2 total

07 The complexity of organisms arises rather as a consequence of 
elaborated regulations of gene expression than from differences in 
genetic content in terms of the number of genes.

� Yes
� No

2 total

08 In genetics, a sequence motif is a nucleotide or amino-acid 
sequence pattern that is widespread and has, or is conjectured to 
have, a biological signi�icance.

� Yes
� No

2 total

09 The decision problem associated with Correlated Motif Mining 
(CMM) is solvable in P.

� Yes
� No

2 total

10 Our brain forms one integrative complex network, linking all brain 
regions and sub-networks together.

� Yes
� No

2 total

Sum of Question Block A (max. 20 points)
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9.2 Answers to the Multiple Choice Questions (MCQ)

01 Homology …
� a) ... In mathematics homology is a formalism for talking in a quantitative 
and unambiguous manner about how a space is connected.
� b) ... origins from Greek ὁμολογέω (homologeo) and means “to conform”.
� c) ... is used for a correspondence of structures in two life forms with a 
common evolutionary origin.
� d) ... has its origins in Darwinian Biology.

4 total

02 The four network representations of protein networks include …
� a) ... protein complex structure.
� b) ... true PPI structure.
� c) ... Spoke model.
� d) ... Matrix model with bait in the center.

4 total

03 Homology modelling …
� a) … is extremely important for personalized and molecular medicine. 
� b) … is based on the principle that homologue proteins are very different. 
� c) … uses a protein sequence with known structures (targets) to align it 
with a protein structure with unknown structures (templates). 
� d) … is a knowledge-based prediction of protein structures.

4 total

04 Drosophila melanogaster …
� a) … is an insect which has only some 140 genes.
� b) … is a very recently found laboratory animal and very important for 
research in personalized medicine.
� c) … has been used for many years and is of no more use in genomics.
� d) ... is a model organism and shares many genes with humans.

4 total

05 The centrality of a network …
� a) ... measures the level of “betweeness” of a node (the “importance”).
� b) ... indicates how many of the shortest paths between the nodes of the 
network pass through node i.
� c) ... describes the possible formation of communities in the network. 
� d) ... indicates how strong groups of nodes form relative isolated sub-
networks within the full network.

4 total

06 Scale-free Topology …
� … ensures that there are short paths between pairs of nodes, allowing 
rapid communication between otherwise distant parts of the network.
� … is a set of techniques, applied from statistics, which analyze the 
topological structure of a network.
� … is used as a model to predict future values of a topological structure in 
networks. 
� … is a measure of similarity between two protein structures.

4 total

07 Semi-structured data …
� a) ... does not conform with the formal structure of tables/data models 
associated with relational databases.
� b) ... means randomness, noise and uncertainty.
� c) ... enforces hierarchies of records and �ields within the data.
� d) ... contains tags/markers to separate semantic elements.

4 total
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08 Data standardization refers to …
� a) ... the data content.
� b) ... the terminologies that are used to represent this data.
� c) ... how data is exchanged.
� d) ... how knowledge, e.g. clinical guidelines, protocols, decision support 
rules, checklists, standard operating procedures are represented in the health 
information system.

4 total

09 Metabolism …
� a) ... is the study of DNA-sequencing methods and produces a lot of complex 
data.
� b) ... is primarily determined by genes, environment and nutrition.
� c) ... consists of chemical reactions catalyzed by enzymes to produce 
essential components such as amino acids, sugars and lipids.
� d) ... is a process within genetics where regulatory metabolic elements have 
in�luence on nucleotide sequences. 

4 total

10 Phenotype …
� a) ... an organism's observable characteristics (traits).
� b) ... result from the expression of an organism's genes as well as the 
in�luence of environmental factors and the interactions between them.
� c) ... are inherited instructions within its genetic code.
� d) ... includes morphology, biochemical/physiological properties, 
behaviour, etc.

4 total

Sum of Question Block B (max. 40 points)
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9.3 Answers to the Free Recall Questions

01 Identifying networks in disease research is an important aspect of systems 
biology, where there is a high diversity of molecular networks within and 
between cells. Please identify in the following picture the networks and write 
the name of the network in the appropriate space!

1 each
4 total

02 A graph describes a structure which consists of nodes aka vertices , 
connected by a set of pairs of distinct nodes (links), called edges with 

. Please name the symbols in the following network example:

1 each
4 total

Hub

Bottle neck

Critical node

Second order hub
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03 In order to represent network data in computers it is not comfortable to use 
sets; more practical are matrices. The simplest form of a graph representation 
is the so called adjacency matrix. Please set up the adjacency matrices for the 
following graphs:

1 each
6 total

04 In Biomedicine networks of all kind play an extremely important role. Please 
assign the correct labels to the network metrics below:

Path length

Network size

Complete number of nodes 

Clustering coef�icient

Nodal degree

1 each
6 total
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05 Please draw a metabolic network, constructed considering the reactants,
chemical reactions and enzymes, consisting of A, B, C, D, E1 and E2

1 each
6 total

06 Please provide a simple example of a patient record in XML format: 1 each
4 total

Sum of Question Block C (max. 40 points)
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Dhar V (2013) Data science and prediction. Commun ACM 56(12):64–73

Diestel R (2010) Graph theory, 4th edn. Springer, Berlin

Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the internet

and WWW. Oxford University Press, New York, NY

Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley, New York, NY

Edelsbrunner H, Harer JL (2010) Computational topology: an introduction. American Mathemat-

ical Society, Providence, RI

Fekete J-D (2004) The infovis toolkit. Information visualization, INFOVIS 2004. IEEE, Wash-

ington, DC, pp 167–174

Forster C, Vossen G (2012) Exploiting XML technologies in medical information systems. In:

Proceedings of the 25th Bled eConference eDependability: reliable and trustworthy

eStructures, eProcesses, eOperations and eServices for the future, Bled, Slovenia, pp 70–83

Gaal SA (1966) Point set topology, 2nd edn. Academic, New York, NY

Geschwind DH, Konopka G (2009) Neuroscience in the era of functional genomics and systems

biology. Nature 461(7266):908–915

Golumbic MC (2004) Algorithmic graph theory and perfect graphs. Elsevier, Amsterdam

Harary F (1969) Graph theory. Addison-Wesley, Reading, MA

Hatcher A (2002) Algebraic topology. Cambridge University Press, Cambridge

Henzinger MR, Klein P, Rao S, Subramanian S (1997) Faster shortest-path algorithms for planar

graphs. J Comput Syst Sci 55(1):3–23

Hodgman CT, French A, Westhead DR (2010) Bioinformatics, 2nd edn. Taylor & Francis, New

York, NY

Holzinger A (2003) Basiswissen IT/Informatik. Band 2: Informatik. Das Basiswissen für die

Informationsgesellschaft des 21. Jahrhunrets, Vogel Buchverlag, Wuerzburg.

Holzinger A (2011) Weakly structured data in health-informatics: the challenge for human-

computer interaction. In: Baghaei N, Baxter G, Dow L, Kimani S (eds) Proceedings of

INTERACT 2011 workshop: promoting and supporting healthy living by design. IFIP, Lisbon,

Portugal, pp 5–7

References 247



Holzinger A (2012) On knowledge discovery and interactive intelligent visualization of biomed-

ical data: challenges in human–computer interaction & biomedical informatics. In: Helfert M,

Fancalanci C, Filipe J (eds) DATA - international conference on data technologies and

applications. INSTICC, Rome, pp 5–16

Holzinger A, Ofner B, Stocker C, Valdez AC, Schaar AK, Ziefle M, Dehmer M (2013a) On graph

entropy measures for knowledge discovery from publication network data. In: Cuzzocrea A,

Kittl C, Simos DE, Weippl E, Xu L (eds) Multidisciplinary research and practice for informa-

tion systems, vol LNCS 8127, Springer lecture notes in computer science. Springer, Heidel-

berg, pp 354–362

Holzinger A, Simonic KM, Geier M, Ofner B, Müller R, Heschl S, Prause G (2013) Constraints of

list‐based knowledge interaction on an android app for emergency medicine. Medicine 2.0

London, Oral Presentation on 23 Sept 2013 (Online). http://www.medicine20congress.com/

ocs/index.php/med/med2013/paper/view/1479

Holzinger A, Stocker C, Ofner B, Prohaska G, Brabenetz A, Hofmann-Wellenhof R (2013c)

Combining HCI, natural language processing, and knowledge discovery - potential of IBM

content analytics as an assistive technology in the biomedical domain, vol LNCS 7947,

Springer lecture notes in computer science. Springer, Heidelberg, pp 13–24

Kim PM, Korbel JO, Gerstein MB (2007) Positive selection at the protein network periphery:

evaluation in terms of structural constraints and cellular context. Proc Natl Acad Sci U S A 104

(51):20274–20279

Kleinberg JM (2000) Navigation in a small world. Nature 406(6798):845

Koontz WLG, Narendra PM, Fukunaga K (1976) A graph-theoretic approach to nonparametric

cluster analysis. IEEE Trans Comput 100(9):936–944

Kreuzthaler M, Bloice MD, Faulstich L, Simonic KM, Holzinger A (2011) A comparison of

different retrieval strategies working on medical free texts. J Univ Comput Sci 17(7):1109–

1133

Kropatsch W, Burge M, Glantz R (2001) Graphs in image analysis. In: Kropatsch W, Bischof H

(eds) Digital image analysis. Springer, New York, NY, pp 179–197
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