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Abstract—In this work we present a sparse distributed recursive
least-squares (dRLS) algorithm for adaptive sensor networks.
The algorithm allows to prune weights by exploiting sparse
Bayesian learning, while at the same time adding automatic
regularization to improve numerical stability. With this r eduction
of computational complexity, the amount of energy consumption
and data to be transmitted between neighboring nodes will
decrease. This makes it suitable for the use in wireless sensor
networks (WSNs), where energy and bandwidth constraints are
typically of a great concern. Furthermore, the proposed algorithm
works totally decentralized with no need for a fusion center.

I. I NTRODUCTION

The standard RLS algorithm is well known in the field of
adaptive signal processing. However, without proper regu-
larization, it suffers from numerical instabilities in case of
poor excitation signals. To overcome this problem, a sparse
Bayesian method for automatic regularization adjustment and
weight pruning was developed in [1]. In this contribution,
following the approach of the relevance vector machine [2],
the authors start from a linear-in-parameters model and define
independent zero-mean Gaussian priors over all the weights.
Solving for the precision parameters (inverse variances) of
the priors using the Bayesian evidence procedure leads to
a method to obtain these coefficients. In case of a sparse
weight vector, some precision parameters, also called hyper-
parameters, tend to very large numbers, which means that the
corresponding weights are unimportant since their distributions
are highly peaked at zero. By pruning these weights (and as
the consequence, the corresponding entries in the input auto-
correlation matrix) sparse estimation is implemented. Since
WSNs are typically characterized by limited communica-
tion capabilities and energy constraints, pruning of irrelevant
weights would lead to a reduced communication load and
lower energy requirements.
In [3], a distributed RLS scheme is presented, where each
node in a sensor network has an access to input measurement
data and a desired signal. The proposed algorithm works
decentralized with a collaboration path through the network,
shown in Figure 1. The aim is to estimate a global weight
vector that is least-squares optimal over the errors of all nodes.
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Fig. 1. A collaboration path through the network with N nodes.
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Fig. 2. An M -th order FIR filter at the node k with the inputxk[i], the
desired signaldk[i], and the node-errorǫk[i].

The error at each node is defined as the difference between the
desired signal and a linear combination of the weights with
the input data (see Fig. 2).
In our work, we present an algorithm that implements the
sparse Bayesian estimation method in a distributed fashion.
We show how to add regularization by assuming a prior
distribution over the weights. We also show how to incor-
porate the decentralized computation of the hyper parameters
into the spatio-temporal dRLS recursion. With this method
it is possible to prune irrelevant parameters and reduce the
computational complexity for the whole network.

II. SIGNAL MODEL

With the filter orderM and the number of sensor nodes
N , we first define the global weight vectorw[i] =
[w1[i], w2[i], . . . , wM [i]]T and the corresponding input data
vectorsxk[i] = [xk[i], xk[i− 1], . . . , xk[i−M + 1]]T at each
of the nodesk = 1, . . . , N . Furthermore, we introduce a



linear-in-parameters model for the desired signaldk[i] at each
node with additive Gaussian perturbationǫk[i] according to
Figure 2,

dk[i] = w
T [i]xk[i] + ǫk[i]. (1)

The whole network accesses the snapshot matrices

D̃i = [d1[i], d2[i], . . . , dN [i]]T (N × 1)

and

X̃i = [x1[i],x2[i], . . . ,xN [i]]
T

(N ×M)

at time i. To collect all the data up to time instant i we define
global matricesDi andXi with

Di =
[

D̃
T
1 , D̃T

2 , . . . , D̃T
i

]T

(i ·N × 1)

and

Xi =
[

X̃
T
1 , X̃T

2 , . . . , X̃T
i

]T

(i ·N ×M).

With omitted time index inw[i] for an uncluttered notation,
we obtain the likelihood function

p(Di|w) = (2π)−
i·N
2 |Λi|

1

2

exp

{

−
1

2
(Di −Xiw)T

Λi(Di −Xiw)

}

over the weights based on the time-exponentially and spatially
weighted model (1). The spatio-temporal diagonal weighting
matrix is defined as

Λi = σ−2 diag
(
[λi−1

Γ, λi−2
Γ, . . . , λΓ,Γ]

)
, (2)

with forgetting factor0 ≪ λ ≤ 1, a diagonal spatial weight-
ing matrix Γ = diag (γ1, γ2, . . . , γN ), the spatial weighting
factorsγk ≥ 0 andσ2 as the known noise variance.
To introduce regularization, we define a zero mean Gaussian
prior over the weights

p(w|A) = (2π)−
M
2 |A|

1

2 exp

{

−
1

2
w

T
Aw

}

,

with diagonal matrixA = diag([α1, α2, . . . , αM ]) that con-
tains precision (inverse variance) hyperparametersαj with
j = 1, . . . , M for each weightwj .

III. PARAMETER LEARNING

A. Bayesian Estimation

By using Bayes’ theorem we obtain the posterior over the
weights given the data and the hyperparameters

p(w|Di,A) =
p(Di|w)p(w|A)

∫
p(Di|w)p(w|A)dw

. (3)

The maximum a posteriori estimate (MAP) ofw is obtained
by minimizing the objective function

L(w) =
1

2
(Di −Xiw)T

Λi(Di −Xiw) +
1

2
w

T
Aw,

which is equivalent to maximizing the numerator of (3) and
results in

ŵ = (XT
i ΛiXi + A)−1

X
T
i ΛiDi , (4)

where we define the regularized input auto-correlation matrix
estimate with

Φ̃ = X
T
i ΛiXi + A (5)

and its inverse as̃P = Φ̃
−1. Furthermore, the density of (3)

can be computed and reads

p(w|Di,A) = (2π)−
M
2 |Φ̃|

1

2

exp

{

−
1

2
(w − ŵ)T

Φ̃(w − ŵ)

}

.

B. Evidence Procedure

By ignoring the normalizing integral of Bayes’ theorem, the
posterior overA given the desired signalsDi is proportional
to the marginal likelihood times a prior overA, i.e.

p(A|Di) ∝ p(Di|A)p(A). (6)

Assumingp(A) to be flat over a logarithmic scale (cf. [2]), the
maximization of the posterior (6) is equivalent to maximizing
the marginal-likelihood

p(Di|A) =

∫

p(Di|w)p(w|A)dw. (7)

Equation (7) is the normalizing integral in the weight posterior
(3) and is often referred to as the marginal likelihood, since it
is obtained by marginalizing over the weights. It is computable
and given by

p(Di|A) =
|Λi|

1

2 |A|
1

2

(2π)
i·N
2 |Φ̃|

1

2

exp

{

−
1

2
D

T
i ΛiDi +

1

2
ŵ

T
Φ̃ŵ

}

. (8)

To maximize the marginal likelihood (8), we define a cost-
function Le(A) = − ln p(Di|A), that is

Le(A) =
1

2

(

iN ln(2π)− ln |Λi| − ln |A|

+ ln |Φ̃|+ D
T
i ΛiDi − ŵ

T
Φ̃ŵ

)

, (9)

which we would like to minimize. To do so (cf. [1]), we
make use of the identity∂

∂x
ln |B| = Tr(B−1 ∂B

∂x
) and the

optimization condition∂Le(A)
∂αj

= 0, i.e.

1

2
Tr(Φ̃−1 ∂Φ̃

∂αj

)−
1

2
Tr(A−1 ∂A

∂αj

) +
1

2
ŵ2

j = 0,

which for all j = 1, . . . , M gets an explicit equation

αj =
1

ŵ2
j + Φ̃

−1
jj

that could be iteratively reestimated at time instanti by using
the following formulas during one estimation loop with index l

until the objective-function (9) reaches a local minimum:

P̃
(l) = (XT

i ΛiXi + A
(l))−1

ŵ
(l) = P̃

(l)
X

T
i ΛiDi

α
(l+1)
j =

1

(ŵ
(l)
j )2 + P̃

(l)
jj

}

∀ j = 1, . . . , M. (10)



C. Time and Space Recursion

To distribute (10) over time and space in an efficient way,
we start by definingΦ = σ2

Φ̃ for the input auto-correlation
estimate update and reintroducing the time indexi in our
notation. From (5) we obtain

Φ[i] = λΦ[i− 1] + X̃
T
i ΓX̃i + σ2

A(1 − λ), (11)

where the last term in (11) corresponds to a full-rank update
that does not allow for a fast recursive computation of the
inverseP[i] = σ−2

Φ̃
−1[i]. According to [4], it is enough to

apply a rank-one update at time instanti and so we define pivot
vectorsv[i] = [0, 0, . . . , 1, 0, . . . , 0]T with only one nonzero
entry at positionq = 1+i mod M . With κ[i] = σ2(1−λ)αqM

we can rewrite (11) with two equations

Φ[i] = Φ̆[i] + X̃
T
i ΓX̃i (12)

and
Φ̆[i] = λΦ[i− 1] + κ[i]v[i]vT [i]. (13)

Equation (12) still has no fast recursive structure for the com-
putation of its inverse, but since the term̃XT

i ΓX̃i represents
the spatially weighted inputs of the whole network at timei, it
can be separated over the network, which leads to a rank-one
update at each node. The covariance matrix estimatePk[i] at
nodek can be computed as follows:

P̆[i] = (λP
−1[i− 1] + κ[i]v[i]vT [i])−1

P0[i] ← P̆[i]

P1[i] = (P−1
0 [i] + γ1x1[i]x

T
1 [i])−1

P2[i] = (P−1
1 [i] + γ2x2[i]x

T
2 [i])−1

...

PN [i] = (P−1
N−1[i] + γNxN [i]xT

N [i])−1

P[i] ← PN [i] (14)

The first node in the serial network has to perform extra
computations according to the first line in (14). Using the
matrix inversion lemma for rank-one updates, finally gives







P̆[i] =
[

I− κ[i]P[i−1]v[i]vT [i]
λ+κ[i]vT [i]P[i−1]v[i]

]

λ−1
P[i− 1]

P0[i]← P̆[i]

for k = 1 : N

Pk[i] = Pk−1[i]−
Pk−1[i]xk[i]xT

k [i]Pk−1[i]

γ
−1

k
+xT

k
[i]Pk−1[i]xk[i]

end

P[i]← PN [i].

(15)

We now would like to investigate the update of the weights
on each node of the network and define global matrices up to
time i and nodek as

Di,k =
[
D

T
i−1, d1[i], d2[i], . . . , dk[i]

]T

and
Xi,k =

[
X

T
i−1,x1[i],x2[i], . . . , ,xk[i]

]T
.

Additionally, we also define the diagonal spatial weighting
matrix Γk = diag([γ1, γ2, . . . , γk]) up to nodek and the
corresponding spatio-temporal weighting matrix

Λi,k = diag
(
[λΛi−1, σ

−2
Γk]

)
, (16)

where one should note that (16) can be rewrittenΛi,k =
diag([Λi,k−1, σ

−2γk]) and from (2) we know thatΛi = Λi,N .
Starting with the MAP estimate (4), we define the regularized
least-squares solution over the weights at nodek by

ψk[i] = σ2
Pk[i]XT

i,kΛi,kDi,k

= σ2
Pk[i]

(

X
T
i,k−1Λi,k−1Di,k−1

+ σ−2γkxk[i]dk[i]
)

(17)

with ŵ[i] = ψN [i]. We can rewrite the local update of
the covariance matrix estimate defined in (15) asPk[i] =
(
I− ck[i]xT

k [i]
)
Pk−1[i] where we define a Kalman gain vec-

tor

ck[i] =
Pk−1[i]xk[i]

γ−1
k + xT

k [i]Pk−1[i]xk[i]
. (18)

Using (17), the local weight estimate recursion can be found
by

ψk[i] = σ2
Pk−1[i]X

T
i,k−1Λi,k−1Di,k−1

︸ ︷︷ ︸

ψk−1[i]

− ck[i]xT
k [i] σ2

Pk−1[i]X
T
i,k−1Λi,k−1Di,k−1

︸ ︷︷ ︸

ψk−1[i]

− ck[i]xT
k [i]Pk−1[i]γkxk[i]dk[i]

+ Pk−1[i]γkxk[i]dk[i], (19)

from which follows that

ψk[i] = ψk−1[i] + ck[i]ek[i], (20)

where we have plugged in a reordered version of (18) for the
last term of (19) and have introduced the local a-priori output
error ek[i] =

(
dk[i]− x

T
k [i]ψk−1[i]

)
.

To obtain the recursion for the weights between different time-
points i we note thatXT

i,0Λi,0Di,0 = λX
T
i−1Λi−1Di−1 and

make use of Equation (17) at the first nodek = 1. By defining
another Kalman gain vector as

c̆[i] =
κ[i]P[i− 1]v[i]

λ + κ[i]vT [i]P[i− 1]v[i]

and using the first line in (15) together with Equation (4) leads
to an update of the form (20)

ψ1[i] = (I− c̆[i]vT [i])ŵ[i− 1]
︸ ︷︷ ︸

ψ0[i]

+ c1[i]




d1[i]− x

T
1 [i] (I− c̆[i]vT [i])ŵ[i− 1]

︸ ︷︷ ︸

ψ0[i]




 .



Algorithm 1 Pseudo-code for the sparse distributed RLS algo-
rithm with hyperparameter-update using evidence procedure







if i mod MA = 0

αj [i] = 1
ŵj [i−1]2+σ2Pjj [i−1] , ∀ j

(ŵ,P,A, M) = prune(ŵ,P,A, B)

else

αj [i] = αj [i− 1], ∀ j = 1, . . . , M

end

q = 1 + i mod M

Generatev[i] with ’1’ at q

κ[i] = σ2(1 − λ)αq[i]M

c̆[i] = κ[i]P[i−1]v[i]
λ+κ[i]vT [i]P[i−1]v[i]

ψ0[i]←
(
I− c̆[i]vT [i]

)
ŵ[i− 1]

P0[i]←
(
I− c̆[i]vT [i]

)
λ−1

P[i− 1]

for k = 1 : N

ek[i] = dk[i]− x
T
k [i]ψk−1[i]

ck[i] =
Pk−1[i]xk[i]

γ
−1

k
+xT

k
[i]Pk−1[i]xk[i]

ψk[i] = ψk−1[i] + ck[i]ek[i]

Pk[i] = Pk−1[i]− ck[i]xT
k [i]Pk−1[i]

end

ŵ[i]← ψN [i] ; P[i]← PN [i].

Based on the previous result for̂w at time i − 1, we have
defined another extra computation to be performed by the first
node in the serial network, namely

ψ0[i] = (I− c̆[i]vT [i])ŵ[i− 1].

D. Pseudo-Code of the Algorithm

Algorithm 1 shows the pseudo-code for the proposed sparse
distributed RLS scheme with integrated weight pruning ac-
cording to [1]. The functionprune(.) reduces the number of
coefficients in the vector̂w if the correspondingαj (diagonal
elements ofA) exceed a given thresholdB. According to the
weights, also the appropriate elements inA andΦ have to be
pruned. Note that in the efficient recursive implementationwe
do not calculateΦ directly, but instead use its inverseP. To
further avoid the use of the computationally intensive matrix-
invertion, [1] described an efficient method that only accesses
the covariance matrix estimateP.
Because we incorporated a rank-1 instead of a full-rank update
in (13), we have to update the hyperparameters at multiples
of M cycles and therefore defineMA = mM with m ∈ N

+.

IV. CONCLUSION

We proposed an automatic regularization method for a
distributed RLS algorithm. By using Bayesian evidence
procedure, we presented a method to obtain the regularization
parameters which contain relevance information for the
corresponding weights. Furthermore, we showed a distributed
algorithm that prunes irrelevant weights from the network and
thus reduces the communication load between neighboring
nodes.
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