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Abstract—In this work we present a sparse distributed recursive {dnlil e il

least-squares (dRLS) algorithm for adaptive sensor netwdss.
The algorithm allows to prune weights by exploiting sparse
Bayesian learning, while at the same time adding automatic
regularization to improve numerical stability. With this r eduction
of computational complexity, the amount of energy consumpon
and data to be transmitted between neighboring nodes will
decrease. This makes it suitable for the use in wireless sens
networks (WSNs), where energy and bandwidth constraints &
typically of a great concern. Furthermore, the proposed algrithm {da[d], z2[i]}
works totally decentralized with no need for a fusion center

{d[i], [}

Fig. 1. A collaboration path through the network with N nades
I. INTRODUCTION
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The standard RLS algorithm is well known in the field of
adaptive signal processing. However, without proper regu-
larization, it suffers from numerical instabilities in ea®f
poor excitation signals. To overcome this problem, a sparse
Bayesian method for automatic regularization adjustmedt a
weight pruning was developed in [1]. In this contribution,
following the approach of the relevance vector machine [2],
the authors start from a linear-in-parameters model andelefi 2 —r ekl
independent zero-mean Gaussian priors over all the weights ~

Solving for the precision parameters (inverse variancés) @g. 2. An M-th order FIR filter at the node k with the input,[i], the

the priors using the Bayesian evidence procedure leadsdegired signati ], and the node-errory [i].

a method to obtain these coefficients. In case of a sparse

weight vector, some precision parameters, also called rhype ) . )

parameters, tend to very large numbers, which means that I €rror at each node is defined as the difference between the
corresponding weights are unimportant since their distidins des[red signal and a_llnear combination of the weights with
are highly peaked at zero. By pruning these weights (and € input data (see Fig. 2). _ _

the consequence, the corresponding entries in the inpat adf OUr work, we present an algorithm that implements the
correlation matrix) sparse estimation is implemented c&inSParse Bayesian estimation method in a distributed fashion
WSNSs are typically characterized by limited communical/e Show how to add regularization by assuming a prior
tion capabilities and energy constraints, pruning of @vaht distribution over the. weights. We_also show how to incor-
weights would lead to a reduced communication load afprate the decentralized computation of the hyper paramete
lower energy requirements. !nt_o the s_pa'uo—tempora_l dRLS recursion. With this method
In [3], a distributed RLS scheme is presented, where ealtHs poss_|ble to prune_lrrelevant parameters and reduce the
node in a sensor network has an access to input measureng@ftPutational complexity for the whole network.

data and a desired signal. The proposed algorithm works 1. SIGNAL MODEL
decentrgllzgd with a coIIaporgnon path through the nekw.orWith the filter order M and the number of sensor nodes
shown in Figure 1. The aim is to estimate a global weig

. _ ; 9{7 we first define the global weight vectow[i] =
vector that is least-squares optimal over the errors ofales. [ [i],wg[i],...,wM[i]]T and the corresponding input data

. . . . T
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the National Research Network SISE. of the nodesk = 1,...,N. Furthermore, we introduce a
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linear-in-parameters model for the desired sighdf] at each
node with additive Gaussian perturbatiefi] according to
Figure 2,

di[i] = w[i]xx[i] + ex[i].

The whole network accesses the snapshot matrices

D; = [di[i], dafd], ... dnli]]" (N x1)

(1)

and

X; = [x1i], x2[i], ..., xni]]" (N x M)

at time i. To collect all the data up to time instant i we defingy

global matriced; and X; with
~ ~ ~ T
Di:[DlT,Dg,...,Dﬂ (i-Nx1)
and

~ ~ ~ T
XZ-:[X?{,XQT,...,XE} (i- N x M).

With omitted time index inw[:] for an uncluttered notation,

we obtain the likelihood function
p(Di|w) = (27
exp {—%(Dl — XiW)TAi(Di — XZW)}

i

_iN 1
)" |AG

where we define the regularized input auto-correlation imatr
estimate with }

®=X'AX; +A (5)
and its inverse a® = ®~!. Furthermore, the density of (3)
can be computed and reads

p(w|D;, A) = (2m) | B[
1 -

exp {—§(w —w)T®(w — W)} .

B. Evidence Procedure

ignoring the normalizing integral of Bayes’ theorem, the
posterior overA given the desired signaB; is proportional
to the marginal likelihood times a prior ovex, i.e.

p(A|D;) < p(D;|A)p(A). (6)

Assumingp(A) to be flat over a logarithmic scale (cf. [2]), the
maximization of the posterior (6) is equivalent to maximii
the marginal-likelihood

p(Di]A) = / (D[ w)p(w|A)dw. @)

Equation (7) is the normalizing integral in the weight poiste
(3) and is often referred to as the marginal likelihood, sific
is obtained by marginalizing over the weights. It is complga

over the weights based on the time-exponentially and djyatisand given by

weighted model (1). The spatio-temporal diagonal weightin

matrix is defined as

A; =0 *diag (\"7'T,N7°T,... AT, T]), (2)

with forgetting factor0 < A < 1, a diagonal spatial weight-
;7). the spatial weighting 4 maximize the marginal likelihood (8), we define a cost-

ing matrix I' = diag (y1,72, - - -
factorsy;, > 0 ando? as the known noise variance.

To introduce regularization, we define a zero mean Gaussian

prior over the weights
y 1
p(wlA) = (27)" ¥|AJ} exp {—5wTAw} ,

with diagonal matrixA = diag([a1, as,...,ay]) that con-
tains precision (inverse variance) hyperparameterswith

N

D;|A PN~ 1
DA = e

1 1. ;-
exp {—iDiTAiDZ- + §qu>w} . (8)

function L.(A) = — Ilnp(D;|A), that is
1
Le(A) :§(iNln(27r) ~In|Ai| - In|A]
+1n|®| + DTA,D; — wTéw), 9)

which we would like to minimize. To do so (cf. [1]), we
make use of the identityZ In |B| = Tr(B~'2B) and the

j=1,...,M for each weightw;. optimization conditiona%e—z_m =0, i.e.
I1l. PARAMETER LEARNING 1 - ® 1 A 1
_ o —Tr(qua—)— —Tr(A—la—)Jr—wf =0,
A. Bayesian Estimation 2 Oa; 2 Oa; 2
By using Bayes' theorem we obtain the posterior over thehich for all j = 1,..., M gets an explicit equation
weights given the data and the hyperparameters 1
aj = —(——=—
D; A T w2 —1
p(wD,, A) = ADIWPWIA) ©) 0+ &,

~ Jp(Diw)p(w|A)dw

that could be iteratively reestimated at time instaby using

The maximum a posteriori estimate (MAP) af is obtained the following formulas during one estimation loop with inde

by minimizing the objective function

1 1
L(w) = §(Dz - X;w)"A;(D; — Xyw) + §WTAW,

which is equivalent to maximizing the numerator of (3) and

results in

w = (X'AX; + A)7'XTA,D, , 4)

until the objective-function (9) reaches a local minimum:
PO = (XTAX; + AD)!
wl) = POXTA,D;
} Vict.

QD 1

J (w§l))2 N pg_lj) ;M. (10)



C. Time and Space Recursion Additionally, we also define the diagonal spatial weighting

To distribute (10) over time and space in an efficient waiatrix Ty = diag([y1,72,---,7]) up to nodek and the
we start by definingp = o2& for the input auto-correlation cOresponding spatio-temporal weighting matrix
estimate update and reintroducing the time indei our Aij = diag([)\Ai,l,a*QFk]), (16)

notation. From (5) we obtain
. . P 9 where one should note that (16) can be rewritikp, =
Pl = A@[i — 1]+ X TX; +07A(1-2),  (11) diag([A; k1,0 2vx]) and from (2) we know thad; = A; y.
where the last term in (11) corresponds to a full-rank updagiarting with the MAP estimate (4), we define the regularized
that does not allow for a fast recursive computation of tHgast-squares solution over the weights at nbdgy

inverseP[i] = o2& 1i]. According to [4], it is enough to Wli] = P [i| X7, AixDi s
apply a rank-one update at time instaand so we define pivot v
vectorsvl[i] = [0,0,...,1,0,...,0]” with only one nonzero = 07 Pyi] (ng—lAi,qui,kq
entry at positiory = 1+i mod M. With x[i] = o?(1—\)a, M L o
we can rewrite (11) with two equations + o X [i]di M) (17)
®[i] = ®[i] + X'TX; (12) Wwith w[i] = nli]. We can rewrite the local update of
the covariance matrix estimate defined in (15)Rg[i] =
and y (I— cili]x}[i])Pr—1[i] where we define a Kalman gain vec-
®[i] = \®[i — 1] + s[i]v[i]vTi]. (13) tor
. . . : P [i]xxi]
Equation (12) still has no fast recursive structure for theme c[i] = (18)

—1 T, : N
putation of its inverse, but since the te® T'X; represents Y 3 [P [i]xe ]
the spatially weighted inputs of the whole network at timg  Using (17), the local weight estimate recursion can be found
can be separated over the network, which leads to a rank-ée
update at each node. The covariance matrix estiRaf¢ at

nodek can be computed as follows: . .
P Pili] = 02Pk—1[Z]sz71Ai,k—lDi,k—l

Pli] = (AP~ '[i — 1] + [i]v[i]v"[i]) " i1 ]
Poli] — PJi] — cpli]x} [i] 0° P [i(]X7 1 Ai 1D k1
Pi[i] = (Py'[i] +yixa[i]x] [i]) ! 1 [i]
Pyli] = (P7'[i] + yaxali]x [i]) ! — cp[i]xf, [i|Pr—1 [i]vexn[d]dy[i]
+ P [i]yex [i]di[d], (19)
Pyli] = Py, li] + vvxn[ix%[i]) from which follows that
Pli] — Puli] (14) Wuli] = Y1 [i] + culilesli], (20)

The first node in the serial network has to perform extra

computations according to the first line in (14). Using thwhere we have plugged in a reordered version of (18) for the

matrix inversion lemma for rank-one updates, finally gives [2St térm of (19) and have introduced the local a-priori attp
error ey [i] = (di[i] — x{ [i]br—1]i]).

Pli| = |I— Ai[j[f]’g;ﬁ]];[[?j;[‘f]ﬁd AP — 1] Tolobtain the recursion for the weights between differaneti
Poi] — P[] pointsi we note th_aD({OALODi,O = )\X}F,lAi_lDi_l_a_nd
make use of Equation (17) at the first ndde- 1. By defining
fork=1: N another Kalman gain vector as
Puli] = Pr_1[i] — Pk:11 [ﬂm&]ﬁ[ﬂ?mﬂﬂ (15) Pl — 11vi
T +xZ[Z]Pk,1[z]xk[z] é[] _ H[Z] [7’ ]V[Z]
end A+ wlilvT [Pl — 1]v[i]
Pli] — Pyli]. and using the first line in (15) together with Equation (4)3ea

) . ] _to an update of the form (20)
We now would like to investigate the update of the weights

on each node of the network and define global matrices up to 1 [i] = (I — €[i]v” [i])w[i — 1]
time 4 and nodek as

Di,k = [DzT—lv dy [Z], dQ[i]a ceey dk[iHT

and

Xz’,k = [Xzﬂflaxl[i]’xﬂi]v sy ’Xk[iHT'



Algorithm 1 Pseudo-code for the sparse distributed RLS algo-
rithm with hyperparameter-update using evidence proeedu

if imodM4 =0

a;li] = mj[i71]2+<172pjj[i71]7 A
(w,P,A, M) = prune(w,P, A B)

else

IV. CONCLUSION

'We proposed an automatic regularization method for a
distributed RLS algorithm. By using Bayesian evidence
procedure, we presented a method to obtain the regulanizati
parameters which contain relevance information for the
corresponding weights. Furthermore, we showed a dis#ibut
algorithm that prunes irrelevant weights from the netwarld a
thus reduces the communication load between neighboring
nodes.

c[i]
Woli] — (- &[ivT[il) wli — 1)
Poli] — (I—¢[i]vl[i]) A"*Pli — 1]
fork=1:N

exli] = dli] — % [i]¢g-1 7]

Py 1 [i]xk[4]
vy, T [Py [d]x [4]

i i] = Pr—1[i] + cxli]ex[i]
Pyli] = Pp_1[i] — cx[i]x [i]|Pr—1 7]
end

wli] —pnlil;

= XFREVT[IPli—1]v[i]
[4]

Ck [2] =

P[i] — Pnli].

Based on the previous result fev at time: — 1, we have
defined another extra computation to be performed by the first
node in the serial network, namely

Poli] = (T —eli]v? [i))wli — 1.

D. Pseudo-Code of the Algorithm

Algorithm 1 shows the pseudo-code for the proposed sparse
distributed RLS scheme with integrated weight pruning ac-
cording to [1]. The functiorprune(.) reduces the number of
coefficients in the vectow if the correspondingy; (diagonal
elements ofA) exceed a given threshold. According to the
weights, also the appropriate elementdAirand® have to be
pruned. Note that in the efficient recursive implementatien

do not calculate® directly, but instead use its inverd& To
further avoid the use of the computationally intensive matr
invertion, [1] described an efficient method that only asess
the covariance matrix estimate.

Because we incorporated a rank-1 instead of a full-rank igpda
in (13), we have to update the hyperparameters at multiples
of M cycles and therefore definel 4 = mM with m € NT,

aj[z'] = aj[i— 1], Vi=1,....M
end
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