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0. INTRODUCTTION

Transformation and interpolation are considered to be independent
mathematical tools, to be applied to different problems. This is only
true to a limited extent. Number of applications are feasible, in which
transformation and interpolation are closely related and can successfully
be combined. Furthermore, the methods applied for each of the two are

very similar.

; The applications under discussion concern the transformation and interpola=
tion of "inconsistent" cooordinates. The coordinates of two sets of points
are called "inconsistent", if they are of different origin. There may be

v differences due to measurements or due to the method of computation or

s due to a combination of both. Thus there is a stochastic component involved.

In the following, the relation between transformation and interpolation

is explained in some detail. Then, a number of mathematical concepts,
referring to interpolation mainly, are introduced. Finally a number of

commonly applicable methods for transformation and interpolation of in=

consistent coordinates is surveyed.

1. THE PROBLEM

Given are two sets of points by their coordinates in n-dimensional space,

respectively. Required is the
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in set B (see figure 1). Using Sef A set® .
this functional relationship, Fig.1 Two sets of points among which
a functional relationship should be
it is trivial then to create for defined

any additional point PA of set A {he

corresponding point in set B, denoted by PP' In mathematical terms, set

A is "mapped" onto set B. This is the basic idea of "{transformation".
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If the coordinates of set A and B are inconsistent in the sense of the
above definition, then the functional relationship:for the transformation
is not strict. Tt is reasonable to establish it by overdetermination, so
that there will residuals be left. Furthermore, the establishment of

the functional relation is subject to incertainities and consequently

to interpretation and arbitrary decisions.

In photogrammetry and surveying, the problem of transforming inconsistent
coordinates occurs, e.g. whenever one set of points is measured in
different ways, so that different coordinates result, such as from ground
survey and photogrammetry, or frém\én old geodetic triangulation and a
new one etc. There are then usually points PA’ which are known in one

of the sets only. The problem to be solved by transformation is then to

create the corresponding point PB in the other set.

The residuél discrepancies left after transformation of inconsistent
coordinates are to be compensated by an interpolation. In these cases,
transformation is very strongly related to interpolation. It even is
possible to define the transformation as an interpolation and vice-versa.

: 4
One may define "interpolation" as a procedure, by which a required unknown
value, belonging to a given point P, is estimated using the known values

*

at other given points 1, 2,

It is obvious now, that the difference between transformation and inter=

polation can be defined by consideration of their inputs: the thransformation

requires two sets of points to be given to map one into the other. An
interpolation requires one point set to be given, and for a certain number
of points in addition one or more quantities, which have to be estimated at

other points of the set.

)

The problem of interpolation sometimes is referred to as "approximation"
(see e. g. J.R. Rice: "The Approximation of Functions'", Addison-—
Wesley Publ. Co., Reading, Massachusetts, USA, 1964)
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From the above, the relation between transformation and interpolation is clear.
A transformation of set A into set B is carried out by overdetermination. Re=
siduals will be left after the transformation (see fig. 2). Interpolation can

now be applied to estimate the re-

siduals at those points which are \ T
: I

only measured in set A, e.g. point . '+;% AP3y

N ! L ) 0 53
P in figure 2. The interpolation O
makes use of the given residuals 12‘

~o 4,

and the transformed point Pp. Fig.2 Residuals in point set B after

transformation of set A into set B
e «...error vector

A complicated transformation, followed by a simple interpolation can be replaced
by a simple transformation and more complicated interpolation. In the extreme
case, no transformation is done anymore, but the residuals for the interpolation

are derived as simple differences of coordinates in set A and B.

TERMINOLOGY AND MATHEMATICAL CONCEPTS

The functional relationship between set A and B in figure 1 may theorétioally
be of any kind, thus consist of polynomial, trigonometric, exponential, fational
or other functions. In the case, however, where the transformation is improved
by a subsequent interpolation, it is advisable to use simple functions,
preferably polynomials of low order. The main purpose is to create the situation
of figure 2, namely residuals.
The input for interpolation may be directly measured (e.g. digital terrain moéeis)
or consist of the output of a transformation (e.g. model deformation after
absolute orientation). Points, in which the entity to be interpolated is known,
are called "reference—points'". The spéce of the reference points - for applic=
ation in mapping - can be:

one—dimensional : e.g. for lens distortion curves

two-dimensional : e.g. for film shrinkage

three—dimensional: e.g. for model deformation
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The entities to be interpolated ("residuals") can concern
one dimension ) e.g. height deformation in a model
two dimensions H e.g. planimetric deformations in a model

three dimensions ¢ e.g. planimetric and height deformation in a model

It is easy to see now the possible combinations to define interpolation tasks:
a n-dimensional "field" is %o be interpolated on a m-dimensional reference
space, where n are the dimensions of the residuals, and m the dimensions

of the reference points.

So, for example, height residuals in a spatial model are a one-dimensional field
to be interpolated in a three dimensional reference space. Or, for example,
ay—, sz— residuals in the map plane do represent a three dimensional

LX—,

field to be interpolated in the two dimensional reference space.

The easiest case to visually realize is the one-dimensional field on a two-

dimensional reference—plane: the residuals can be interpreted here as "heights"
in the reference points (see ,
b residuals
figure 3). The problem of inter-
polation exists in the definition

of a "surface" passing through the

‘reference points.

The residuals are the result of -
Fig. 3 : Visualization of a one-dimensional
random causes, such as e.g. mea- field on a two—dimensional reference space

(x y- plane)
suring errors, and therefore the

field is called "stochastic field". The mathematical theory of random functions,

an extension of classical statistics, considers stochastic fields in full detail.

Residuals in neighbouring points obviously must be correlated, if interpolation
should be useful. The correlation, or better the co-variance, can be estimated
from the given residuals. As a result, one oblains a covariance function. This

function gives the covariance cov among two residuals r1(i1 » Yq o ...21))
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r, (x2 1 Yo aees B2 ) in' function of their position:

cov (r1 y Ty ) = f (x,I P Tp 1 eee Za 3 X4 Yoo ..22)

There are cases, where the covariance does not depend on the position of the.
residuals, but only on the distance and direction between them or, in the
simplest case, only on the distance between the residuals in consideration.
In the last case, the covariance would be translation- and rotation-
invariant or, as in the terminology of mathematics, it would be "isotropic",
Thus the covariance for a field would be described by a function in two-

dimensional space ; as shown in figure 4.

A
r class 1 | classZ | class? | classs
| } 1 '
) | | t !
| l ' }
Lo ! a
I | [ I
; | | | |
e I
d | | R g
Fig. 4: Typical covariance func= Fig. 5: Sample values for covari=
tion. ance function.

The computation of the covariance function of an isotropic field is as follows:
A number m of classes of distances d among reference points is chosen.
Then, all distances among reference points are grouped in these.classes. Tor

each class then, the covariance is computed using:

(:.... 0)4)2.) )’L)
k’ .
Ly S |
cov ( d.l. ) = el k CPPL number Of 0//:51‘%”455 we
k class L ;
CJ' SR, .M:&Mb/‘ o. /&5[5&44/5 a,/'M
pomls o/ drstence g‘. '
For di = 0 , the variance 'bov(O) is obtained. For every class of distances,

a sample value of the covariance function is computed. Thus, the covariance
function is given as a number of discrete points (see figure 5). To  derive
a continuous function, one usually puts a two—parametric function through the

discrete points, e.g.



cov (d) = ¢(0) - e

cov (a)

co) J(1+ (%))

who's parameters C(0) and A are determined in a least squares algorithm.
To do this, the sample value cov(0), thus the variance, is not used.

| As a result, the function of figure 4 may result:

There will be a covariance function, which, at d = 0 , has two values,

f namely cov(0) and C(0). What is the significance of this?

One may assume, that the residuals r are composed of a correlated and an
uncorrelated component, ¢ and u, respectively. The covariance—function of
the correlated part, c , is

! cov, () = c¢(o) . e_;\"d

for example. The covariance function of the uncorrelated part, u , is:

1

cov, (a) cov (0) - ¢(0) if 4 =0

= 0 if 4d f 0

One usually is interpreting the uncorrelated part, w , as a measuring error,

if the "residuals" are directly observed. This measuring error, as a hypothesis,
is thus considered to be uncorrelated. Summarizing the above, one can formulate
i ' r = ¢ 4+ u

cov, (0) = cov, (a) + cov, (d)

3. TRANSFORMATIONS

Transformations can be classified according to:
linear or non-linear transformations
simple, piece-wise and pointwise transformations,

the dimension of the space to be transformed .

Furthermore, transformations are called "aphyllactic'", if angles as well

el ——— e
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ag surfaces are deformed. They are called "equivalent", if surfaces remain
unchanged: They are "conformal', if angles are not deformed. For this last

feature, the transformation musf fulfil the conformity condition

Dxq Dvg

0 xgp 2 Y3 (4)
D Xn s

DYy ?Xp

TRANSFORMATION WITH SIMPLE FUNCTIONS

Linear Transformation

If the functional relationship between set A and B is linear in the variables,

then thé transformation is called "linear".

Linear conformal transformation:

This is the most important linear transformation. Denoting the coordinates in

set A by small, in set B by bold letters, its formula states:

X = a,.x+ an.y + a3 |

1
Y = —a5.X + ay.y + a4

or:

X=A(cos o .x + sine.y) + c'X

=
i

?\,(;—sinoo. X + cosp.y) + c‘y

The transformation consists of

two shifts (cX : c&), a rotation

® and a uniform scale change, A .
' Fig. 6 : Two orthogonal pairs of parallel

Figure 6 shows, how a network of equidistant lines after 11near, conformal
transformation

equidistant, parallel straight lines with x = const, y = const, is transformed

into the new set.
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In matrix notation, the transformation is:

X h'd c

AR +
Y ¥y : c

1

R is an orthogonal rotation matrix. The transformation has four unknowns,

which can be determined from two points.

The linear conformal transformation in three dimensions states:

{ X —x |-c 1
b'd
Y = ’ R . + (o]
Y y ¥
2 Z c
z

’

Here, R obviously is a 3 x 3 orthogonal matrix. The transformation has 6
unknowns, which again can be determined from two given identical peoints in

sets A and B.

Affine transformation

This is a general linear transformation, who's formula is for two dimensions:

X = a, x + asy + c

i b'd

¥ = b1 x + b2y + oy
The affine transformation consists
basically of 2 shifts (cx , cy), a
general rotation plus "shegr deform=

ation", i.e. angles are deformed,

and a general scale change ags well

as "differential scale change", i.e. Fig.7 : Two orthogonal pairs of
parallel, equidistant lines after
scale change is different in different affine transformation

directions. The extrema occur in the "affinity axes". Figure 7 illusitrates,

how lines of x = const and y = const. are transformed into the set (X,Y):
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the lines are not perpendicular anymore ("shear deformation"), and the
distances among lines of x = const.are different from distances among

lines of y = const. ("differential scale change"). There are 6 unknowns
in the transformation formula, They can be computed as long as 3 control

points are given.

Generalization to three dimensions gives:

X = a,x +ayy + a3z + c.
Y = b1x + b2y + bBZ + cy
Z = c X + coy + c3z + o

Non-Linear Transformation

Projective transformation

The transformation equation for this case consists of a ratio of two linear

polynomials
a,x + a,y + a
X = 1 2 3
C,x + ooy + 1
b1x + b2y + b3 A
Y = /
\ /
o1x + Co¥ + 1 \
/
\
\

The transformation has 8 un-—
knowns which can be found
from four control points.

Figure 8 shows the typical

I
I
|
|
I
|
[
I
[
I
|
I
I

projective deformation of the 4

network of parallel, equi= Fig.8& : Two orthogonal pairs of parallel,
equidistant straight lines after

distant lines of x = const., projective transformation

y = const, They do, after being

transformed, intersect in one point, the so-called "vanishing point".
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Non-linear conformal transformation

The transformation equation is: .

2 2
X = cx + a1x - Ay + a3(x +y )—2a I 0
y=c¢ + é vy + é X 4+ 2a, X.y + d (xz—y2)+..
y 2 3 4

Conformal transformations are feasible

of any order. The equation represents

a second order conformal transformation.

Fig.9 : Two orthogonal pairs of
parallel, equidistant straight lin
after 2nd order, conformal trans=
formation

Conformity can be checked by the
condition (1). It may be easier for some
to find the higher order conformal polynomials from a formulation with complex
numbers:

X+ Y= (o +icy)+ (ay+iay)(x+iy) + (ag + 12a) (x4 p)? 4 ..

Figure 9 shows, how a second order conformal transformation works. Obvious
is the conformity : the lines intersect at angles of 900, such as before

transformation.

General non-linear transformation with polynomials:

Here ‘
n % ‘\/'3 3
X = 2 2 a.. X 4
14=0 §=0 ’d
Y = Z: Z:T bmﬂ X 4
4°0 J:O
or
X = + ai. x + + x2 + a Xy + - +-
= 850 T 84 4119 * 3y 01 W Boo¥ Z
Y = b + b X+ Db + Db x2 + b xy + b 2 +
= o0 10 119 " P o1 X Dpod e

There are, in the general case of a polynomial of order n, (n+1).(n+2)/2
unknowns. The number of coefficients becomes rather large for higher

order polynomials.



3.2

- 11 =

Therefore, one does often not use

the full polynomials, but just parts
of it, setting few of the coefficients
equal to zero, e.g.:

X = a + a

oo ¥ 20Xt &Yt 85y Xy

Y

boo + b1OX + b11y + b21 Xy

The use of higher order polynomials

certainly must be done with care, since Fig.10 : Two orthogonal pairs of
parallel, equidistant straight line

surprising results are possible. after transformation with 2nd orde:
polynomial

Figure 10, showing graphically the effect of a second order polynomial trans=
formation, makes clear that straight lines are transformed into curves of the
order of the polynomial in use.

Other types ‘of non-linear transformation

Complicate non-linear transformations are in use in the field of geodesy,
especially to image the earth's surface onto a plane. For these transform=
ations, various kinds of functions are used, such as trigonometric, exponential,
logarithmic and others. Since discussion of these transformations is not

relevant in the present context, reference is made to the geodetic literature

_on map-projections.

PIECE-WISE TRANSFORMATION

Up to here it was silently assumed that for each set A of points only one
function is used to transform it into set B. But it is possible to use various

functions for various subsets of A, so that actually separate transformations

are performed. See figure 11 for visualization of this concept.
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piece . piece. I

x

BeLAA set B

Fig. 11 : Concept of piecewise transformation, illustrated by 2 pieces

: The advantage of this concept is, that relatively simple functions are used

in each piece, but still a great flexibility is possible through subdivision

in many pieces.

A disadﬁantage can be, that sudden changes of the transformation occur along
the boundary lines of neighbouring pieces. These changes méstly are illogical.
Therefore one introduces, in applying the concept, joining conditions for
adjacent pieces: e.g. one can ask for the same value and even first and higher

order derivatives along boundary lines.

Piece—wise Affine Transformation

The network of given points in set A and B is used to build corresponding
triangles. Each triangle then defines exactly an affine transformation through
the three corner points. Each new point of set A is then transformed into B

by using the triangle he falls in (see fig. 12).

It can be easgily seen, that along boundary-lines, the ‘{ransformation formulae
do give the same values, so that for a point on the boundary line the trans=
formation will produce the identical result with either of the two triangles.

This is a very attractive feature of the method.
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set A i set B

figure 12 : Illustration of the principle of piecewise affine transformation

3.2.2 Other Piece—wise Transformations

In general, the network of points présent in set A and B can be separated to
larger than just triangular pieces, as was shown in.fig.11. In each piece, a
certain transformation can be defined. The main problem is to avoid dis=
continuities of the piece-wise transformation function along boundary-lines.
The most effective way of defining boundaries is as parallel lines, eventually
in the direction of coordinate axes. Then the number of conditions to avoid

discontinuities along boundaries is kept small.

3.3 POINT-WISE TRANSFORMATION

The method of point-wise transformation is very logical: every point is trans=

formed with another transformation function. Numerically this can be very simple.

3.3.1 Principle of Arithmetic Mean

The coordinates in set B of a transformed point are found from the formula:

X _ < N ’PA'X’\? PL'th""'+PVL‘XV1 . p4x4 + pt.xz+ ,,,,, *PV\,’XV‘-‘
Par Prd oty Pat P+ "t Pw
Y=y + P1 Y“ PVYU ot Yn _ Pae + Prqat - + Pac Y

it Put P Pre Put ot
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The weight factors Py 1 Ppy --eP, are found from set A :

K
z

p, = 1/(x=x)? 4 (v w)°)

k has to be chosen in a proper way.

It is sufficient to use only the points in the vicinity of the one to be
transformed for the computation of the weighted mean, since the weight of

points farther away is very small.

Moving Average

In this method the coordinates of each new point in set B are computed by a
function, whose coefficients are repeatedly determined for every new point.
For the example of the polynomial

X

I

2
ag +t ax + ayy + a3x + ..

2
X + L

3

Y b, + b.,x + b,y + b

0 1 2

the unknown coefficients a, , bo y ++» are found from the given points.
The advantdge of the method consists in the fact, that only the points in the
vicinity of the one to be transformed are used to find the coefficients of the

transformation formula.

In figure 13, the principle of the Moving Average is illustrated.

r 4 ©
© = 5
° o
L X
P
3, 5 °
o (4
(-]
o
x o
%
(4 o (-4 14
set A set B
Fig.13 : Moving average : for every other new point P, , another function

is found from the given points in close vicinity of point PA y €e8.
selected according to a critical radius R.
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The method is probably the most flexible of all discussed so far. The trans=
formation function can be very simple, e.g. a polynomial of low order. A dis=
advantage may only consist in the eventually large computing effort required

with this method.

INTERPOLATION

Once a ftransformation is carried out and residuals are obtained at the reference
points, or "residuals" are observed directly, an interpolation can be used toestimate
residuals at the new points and thus obtain a better estimate of the true

gsituation of the new point in sét B. '

INTERPOLATION WITH SIMPLE FUNCTIONS

The problem is to put one function through the residuals at the reference
points. These residuals are considered as "height" on the reference plane,

such as shown in fig. 3. The function represents a "surface".

Since it is usually a complicated "surface" of residuals, a higher order
polynomial or other complicated function would have to be used. Basically
the input consists of:

aX , ofy, ... 27 , which are the residuals to the coordinates in set B at
all reference points.

X 4 Yoy .. Zi , which are the coordinates of the reference points in set B

X 37 4 oeo Zp y which are the coordinates of the new point in set B.

So the problem is to find the coefficients of the functions

aX = X (xi S PR zi)
A.Y = Y (xi y Yoy ees zi)
AZ = Z'(Xl ! Y11 -0 Zl)
and, once the coefficients are known, to compute AXp, AYp, se s aZp from

the formula using Xp_, Y.y eos Zp as the independent variables.

p
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The choice of functions is as large as for transformations. It is advisable,
however, not to use linear functions. These, obviously, would represent a
plane surface through the residuals and this may mostly be a surface too

simple to approximate the behaviour of the residuals.

For the description of photogrammetric strip deformations, traditionally various

kinds of non-linear polynomials were used (see Adjustment of Aerial triangulatior

4.2 INTERPOLATION WITH PIECEWISE FUNCTIONS

This is the method most in use at the present time.

4.2.1 Meshwise Bi-linear Polynomial

This method is very effective and represents the equivalent to the piecewise
affine transformation. The reference points form triangles which exactly
define a plaﬁe. As a result the "surface" through the reference points is
composed of triangular plane pieces, as a polyeder. The interpolation formula
is

aX

]

ao + a.X + a.Y

The coefficients ay 1 8y 1 3, are found for each of the triangles from the
given corner points,
4.2.2 Piecewigse Non-linear Polynomials

In contrary to transformations, this concept can more easily be applied to
interpolation, since it is much easier to define boundary-lines for the poly-
nomial pieces. These boundaries can be chosen arbitrarily and do not have to
pass through reference points. In this way a minimum number of straight lines
is used for definition of each boundary. Along these few lines the number of
joining conditions to be fulfilled by neighbouring function pieces is not too

large (see figure 14).
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Y

Fig.'14 : Concept of piecewise inter=
polation, boundary line x = x const.

the same function values for the two

line x = x are:

const

x + a. x
1 const 3 const

For the example of a second order
polynomial in two pieces, one can
give for every reference point the
equations: ,
+ +a x2+a : +a_ . Xy

sX = a ta,X t+ a,y 3 4 5°
if it is in piece 1, or

ax = b +b.x+ b_y+b x2+ b 2+b

T o 1 PRARE 49 TPg X
Jif it is in piece 2,

The joining conditions to ensure

polynomials along the boundary

2

= bo + b1 xconst N b3 xconst
= ‘b2 +'b5 Xcons‘b
= b

4

The concept can be generalized in a straight forward manner to other than

polynomial functions and more than 2-dimensional reference-space.,

Pointwise Interpolation

Arithmetic Mean

The formula for intefpolating residuals is:

p1-AX1+ /p2.AX2+...+ 1on. AX

n

'p,l+'p2+-ooo+tpu

P .Ay,l +p2-oy2'+ “ae +pn-ay

8y = —

Ppt Pyt weo ¥ D
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ax<--b
axe M 23= 0
of= .1 g ! [ \ \ \\ \ \\ *
¢ 7 I} \ N \\\\
’ / ! | \ \ N, -~
N / ; N ~
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- / A ~
— \ N S
\ \ =
‘ \‘\ y
/-f \ & \\
, \ Tea

Fig. 15 :+ Isolines through interpolation
with arithmetic mean o .....ref. pts.

The weight factors Py usually are chosen as:

1 A
(@) = iy @ = (x-x)? 4 (y-y)P
(v) P, = 1/(1+dk)

In the first case (a), the interpolation procedure would in theory give
the exact value X5 if it would be interpolated. In the second case,
however, the interpolated "surface" would not pass through the reference

points. A “smoothing" would be performed of the surface.

The weight function p (d) should approximate the eventually computed

covariance function.

Moving Average

In analogy to what was said about the method as applied to tranéformafion,
the aX y AL ..L; aZ are fgund in a new point by putting a function
(preferably simple polynomial) through the neighbouring reference points.
The method is used in various Digital Terrain Models, e.g. in France,

Finland and the CSSR. The name and concept has its origin in the mathematical
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theory of random functions,
To simplify the numerical procedure, one is reducing the coordinates of
the reference points onto the new point. In this way it is only necessary
to compute the polynomial coefficients a, and bO:

A XP a,

oY

i
o’

P o

gince .XP = YP = 0,

Least—Squares Interpolation

The method of "interpolation with least squares", whichhas actually the
name "linear prediction and filtering", comes from the theory of random
functions. Provided that some theoretical conditions do apply, the method

has very good performance,

The interpolation formula is:

Qs g ees )am) = a defined as:

o = 9, Q4 - 1.8 7o BRLE

A = L4 Qi * 9, Ryt : tgn Gna

an = Q1'Chn + 2L@zn’ : *Zn'an
or, in matrix notation:

a =g . Q

The vector q is:

g = (Cov (a) , Cov (dy) , wuer. Cov (an) )

The elements Cov(di) are the covariances between the n given points and

the new point.
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The matrix Q is the inverse of the following:

[ ov () cov () Cov (.-
Q_1 . Cov (&21) Cov (0) - Cov (d2n_)
Cov (dn1) Cov (dn2) Cov (0) J

The diagonal elements do contain the variance of the whole field, including

thus the eventually present uncorrelated component (measu;ing error, see fig.

-

ARk -.6,\

4). With this method, it is possible ' ;,,:4l ey ©
to obtain an interpolated value for
the reference points too (as, by the
way, also with the overdetermined
simple and piecewise functions, the
moving average and the arithmetic

mean with weight (b)). In this case,

if thus reference point j is inter— a9
ay=-5

podfed, Fhel yoetor g ¥ flieng Fig.16 : Tsolines as interpolated

with "linear prediction" . ..ref.pts.
q = ( Cov(d1) y Cov (d2)’ s Cov (djq1),C(O),Cov(dj+1)..Cov(dn))

Q remains unchanged.

So for g , not Cov(0), but €(0) is taken. The uncorrelated component is
thus not used in the interpolation, it is "filtered out". The purpose of
this is obvious : first, interpolation of reference points will produce
bétter estimates of their true values, since the measuring error is elimi-=
" nated, and secondly the interpolation of new points is more accurate.

If, however, the uncorrelated component cannot be interpreted as measuring

error, then there is nopoint in filtering the reference points.

The method will only be successfully applicable, if a few conditions

concerning the covariance function and the mean of the field are fulfilled:
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— the mean must be zero

the mean must be about the same when computed separately for

various subsets of the field

— the covariance function must go to zero for d —+w

the covariance function must be the same when computed separately

for various subsets of the field

If these conditions are not fulfilled, then a preliminary interpolation
has to be made by means of a simple function. So the method usually should
only be applied after a reasonably flexible transformation or as refinement

after -an interpolation with a simple function.

A SPECTAL INTERPOLATION PROBLEM WITH PHOTOGRAMMETRIC MODEL DEFORMATIONS

Model deformations usually have to be interpolated from 4 reference-
points located in the corners of the model. An appropriate method to do
this would be the arithmetic mean and least squares interpolation.

A 'simple function, however, causes the problem, that there will be breaks

along the edges of adjacent models. Only the piecewise bi-linear inter=

polation, according to figure 18, could avoid cracks.

But the piecewise bi-linear method has the drawback of arbitrarily choosing
a diagonal to obtain two triangles.Which diagonal then? The problem can be

ovércome by using the following incomplete third order polynomial.

2 2 . .2
LAz = At aX tasy + ayx + 2,y + a5 Xy+agxy+ a7 Xy

There are, however, eight coefficients in this formula, but only four
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Fig. 17 : Piecewise bilinear method to interpolate model-deformations
from four reference points would pose the problem of selecting one

diagonal

“reference points with known residuals. Therefore, one has to create four

more values in the middle of the edges of the model by taking the arith=

metic mean of the residuals in the endpoints of the sides (1,2), (2,3),

(3,4), (4,1), respectively. These four values, together with the four given

ones, can just define the surface.

The main advantage of this method consists in the fact, that there will be

no cracks between the interpolating

polynomials along the edges of adja=
cent models.

The functions along the edge line do
only depend on the residuals in the

end —-points.

The interpolation method has been

developed in 1964 in Germany for the

3

Fig. 18 : Isolines after
special interpolation method

special requirement of describing model deformations. At the present time,

however, there are the methods of pointwise interpolation developed, so

that the one just described is outdated. Nevertheless it is interesting

.

to see, how a method was developed for a very peculiar application?



4.5

5.

GRAPHICAL INTERPOLATION AFTER STRINZ

The residuals in the reference points can be considered as heights and

contour lines be graphically inter= ggf”
/
polated. For every point P (xp,yp), / AL’#T///;
Y A
/ % N
the residual can easily be interpol= J f,ﬁff’TkﬁrﬂﬁTﬁ 4
ated from the contour plot (see i
figure 19). Usually the results ob= p
[t
7 y

tained with this method compare
quite favourable with all other ' \

methods. The only disadvantage may Ft
ay=-§

congist in the fact, that the pro=

Fig. 19 : Isolines after Strinz
cedure is rather laborious. On the
other hahdy it is completely independent from calculating tools. This may be
one of the main reasons, why the method has been so popular in photogrammetry,

where it is used for many years as e.g. graphical strip-adjustment after

Zarzizgky.

SUMMARY
A survey is given of transformation and interpolation methods relevant to
applications in photogrammetry. To begin with, a number of general mathematical

concepts was explained, such as "stochastic field" and "covariance function'".

The transformation and interpolétion —~ closely related and even interchange=
able — were classified as linear and non-linear, simple, piecewise and point=
JWwise methods. The various procedures were shortly explained, accompanied by
graphical representations of the deformations to be achieved with the various

methods.

Finally the description of the modern and rather powerful methods of inter=
polation with moving average and linear prediction do provide the reader

with the new developments in interpolation theory.
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