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a b s t r a c t

This paper provides an approach on how to generate representative experiments for the in-
vestigation of a model based system or process, depending on quantitative variables, when
the number of experiments N is limited (25 ≤ N ≤ 500). An exemplified overview of
known screening designs that are suitable for quadratic response surfaces possibly depend-
ing on k ≥ 50 factors is given. The relevance of these factors is measured by a sensitivity
index, which is based on corresponding sums of squares of the underlying linear, quadratic
as well as the linear two way interaction effects. Bearing in mind the sparsity-of-effects
principle, we expect the process or system to be dominated only by a minority of the fac-
tors (kr ≤ 10) assumed. Among other space filling designs we especially investigate the
very efficient Latin Hypercube Design in terms of its capability to represent a multidimen-
sional distribution with its experiments. We use the theory of median-oriented quantiles
and depth functions to assess this capability and to introduce our new space filling de-
sign approach, the Depth-Design. On the example of the multivariate normal distribution
we demonstrate that our Depth-Design represents a multidimensional distribution with
much less experiments in comparison to the Latin Hypercube design.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computers have become an indispensable tool in all technical fields where complex processes need to be investigated
and optimized. Although simulation models are becoming more and more accurate, the associated increase in complexity
of these models has hesitated much faster computation times and has caused confusing frameworks over the last twenty
years (cf. Currin et al., 1991; Siebertz et al., 2010).

Design of experiments (DOE) minimizes the required effort of simulations (or ‘‘simply’’ experiments) to be run for
an investigation of a response variable Y within given system boundaries that enclose the so called feature space. DOE
additionally generates the experiments necessary to optionally set up a fast predicting regression model of Y , where
complex system interactions can be easily tracked. These advantages make DOE a very attractive tool, which can be used to
overcome the difficulties coming along with present day computer simulation models (Montgomery, 2012). Nevertheless,
computer simulation results are frequently non-linearly determined by a large number (k ≥ 50) of factors X1, . . . , Xk so
that most usual DOE approaches, like fractional factorial designs or the central composite designs, would exhibit a too large
number of experiments, or suffer from ambiguous possibilities of interpretation. Given that the feature space is subject
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Fig. 1. Guideline to generate representative experiments.

to a multidimensional distribution, a representative experimental coverage is a challenge to be additionally mastered. For
these reasons, this paper provides a guideline on how to identify the most significant factors X1, . . . , Xkr for Y , and how to
represent the distribution of the remaining feature space with a limited number of experiments.

In Section 2 we compare 3-level screening designs and emphasize the power of the Definitive Screening Design of Jones
and Nachtsheim (2011) in the context of computer simulation models. We recall the total sensitivity index of Homma and
Saltelli (1996) in order to identify the most significant factors. Thereafter, in Section 3 we compare the capability of the
Latin Hypercube design to generate representative experiments for a multidimensional distribution with the aid of median-
oriented quantiles and depth functions, discussed in detail by Serfling (2010).With regard to the results obtainedwedevelop
our new space filling design approach, theDepth-Design,which is presented in Section 4. In the endwe conclude our findings
and present our recommendations.

2. Generation of representative experiments

In this paper we assume that the random vector X = (X1, . . . , Xk) ∼ F k represents all feasible combinations of input
factors of a computer simulation model, whereas X1, . . . , Xk are considered to be quantitative variables. The domain of the
multidimensional distribution F k is denoted as the feature space Xk

⊆ Rk, which contains all feasible experiments realized
by vectors x = (x1, . . . , xk) of X. Furthermore, we are interested in the simulation results of one response variable Y ,
obtained by experiments x ∈ Xk.

Given that only one response variable Y is of interest, and the number of experiments is constrained (i.e. 25 ≤ N ≤ 500),
we propose to generate representative experiments not only with regard to the feature space distribution F k, but also with
regard to the response Y . This is carried out as process (see Fig. 1) consisting of a screening and a space filling procedure. We
use the rule of thumb that most processes or systems are dominated by a few factors. A preliminary screening procedure,
using a portion NSc of the number feasible experiments N , can cheaply reduce all considered factors X1, . . . , Xk to the most
significant factors X1, . . . , Xkr (usually kr ≤ 10) for Y . As a consequence, it is possible to reduce the feature space Xk to a
subspace Xkr . The associated reduction in dimension of the feature space eases the experimental coverage of the resulting
multidimensional distribution F kr withNSf experiments during the subsequent space filling procedure. Once, representative
data is gathered, there exists the option to build a regression model. Still, it remains to be clarified, which type of screening
design and which type of space filling design are most appropriate for F kr , when the number of experiments N = NSc + NSf
is limited.

2.1. Screening designs

Screening designs enable the identification of themost relevant factorsX1, . . . , Xk in terms of the response Y with compa-
rable low simulation effort. Given a fixed number of factors k to investigate, screening designsmainly differ in the number of
experiments NSc and in the interpretability of the estimated effects. While 2-level screening designs, share the idea of com-
paring the results of two different levels ‘‘ − 1’’ and ‘‘+1’’ (extreme case scenarios), 3-level screening designs additionally
consider the factors at a center level ‘‘0’’ in order to detect possible curvature in the relationship between X1, . . . , Xk and Y .

For the screening procedure factors X1, . . . , Xk are assumed as independent random variables. This simplification may
be especially feasible for computer simulation models, and may only lead to a larger number of selected factors kr obtained
by the screening procedure due to neglected correlation structure. If the independent setting of two or more factors is
not possible, it is suggested to successively neglect such factors until an independent consideration becomes possible. It
is proposed to standardize the feasible ranges of X1, . . . , Xk, which need to be chosen after good engineering judgment, to
[−1, +1] so that eventuallyXk

= [−1, +1]k. Scientists and engineers do often feelmore comfortablewith 3-level screening
designs, because they tend to expect a substantial non-linear relationship between the factors X1, . . . , Xk and the response
Y . As a result, the straightforward application of 3-level full factorial designs (3k designs) is not possible, because the number
of experimentsNSc explodeswhen k ≥ 50. Therefore, we shortly discuss the following alternative 3-level screening designs.

1. 3k−p fractional factorial design (Montgomery, 2012)
2. Box–Behnken Design (Box and Behnken, 1960)
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3. Face-Centered Central Composite Design (Box and Wilson, 1951)
4. Definite Screening Design (Jones and Nachtsheim, 2011).

At closer inspection, the 3k−p fractional factorial design comes alongwith amajor disadvantage, as each effect has (3p
− 1) /2

different aliases. If the number of fractions p is increased in order to decrease the number of experiments, the computation
of 3k−p fractional factorial designs with clear main effects becomes very challenging. Xu (2005) proposes a method based on
coding theory to identify clear main effects of large 3k−p fractional factorial designs. However, his method is only applicable
for k ≤ 20 factors.

The very efficient Box–Behnken design, however, does not provide the vertices of the feature space. This property may
indeed be useful for applications, where extreme factor combinations are not feasible. Still, if the factors are allowed to
follow any distribution, this property is not desirable at all.

An often proposed alternative to a 3k design is the 3-level Face-Centered Central Composite design, which expands a
2-level full factorial design (2k design) by introducing 2 · k axial experiments and multiple experiments in the center of
the feature space to cope with non-linearity. Nevertheless, the simple application of a 2k design is too expensive when the
number of factors k is large. In order to becomenumerically efficient, it is possible to replace the 2k design by a 2k−p fractional
factorial design with resolution IV. However, face-centered central composite designs show a very poor precision in the
estimation of pure quadratic effects, which contradicts the original intended purpose of a 3-level screening design (Siebertz
et al., 2010).

Cheng and Wu (2001), Tsai et al. (2000) and Jones and Nachtsheim (2011) address their studies to non-regular 3-level
designs for screening experiments. The work of Jones and Nachtsheim and their Definitive Screening Design (DS-Design)
with NSc = 2 · k + 1 experiments should be emphasized at this point. Based on the strategy to minimize the correlation
structure among second order effects by the coordinate exchange algorithm and the target to achieve uncorrelated main
effects by the fold-over technique, they produced 3-level orthogonal designs with notable properties. Jones and Nachtsheim
itemize their characteristics in the following way:

1. The number of required experiments is only one more than twice the number of factors (NSc = 2 · k + 1).
2. Unlike resolution III designs, main effects are completely independent of two-factor interactions.
3. Unlike resolution IV designs, two-factor interactions are not completely confounded with other two-factor interactions,

although they may be correlated.
4. Unlike resolution III, IV and V designs with added center experiments, all quadratic effects are estimable in models

comprised of any number of linear and quadratic main-effects terms.
5. Quadratic effects are orthogonal to main effects and not completely confounded (though correlated) with interaction

effects.

However, Jones and Nachtsheim constructed their designs with a complicated algorithm, which was not able to find
orthogonal designs for k = 12. Furthermore, this algorithm suffered from slow convergence speed in cases where k was
large. In the paper of Xiao et al. (2012), the generation of the DS-Design was completed by a well applicable construction
method based on conference matrices. Although conference matrices do not exist for k factors, if k ≡ 2 mod 4 and
k−1 ≠ a2 +b2 for a and b integers (Van Lint and Seidel, 1966), it is always possible to increase k, construct a DS-Design and
finally delete the dispensable columns. As long as no design rows are deleted, orthogonality is not affected by this procedure.
Altogether, these designs provide the possibility to estimate puremain effects, quadratic effects and interaction effects with
one run-through. Hence, the DS-Design seems to be a very competitive screening tool for all kinds of processes, where the
number of factors k is large and where a non-linear relationship between input factors and response is expected.

2.2. Evaluation of the Definitive Screening Design

By construction, the non-regular DS-Design provides 2·k+1 degrees of freedom. In principle, this allows the estimation of
2·kdifferent effects. Still, the assessment of allmain effects, 2nd order interactions and quadratic effects requires 2·k+

k
2


+1

degrees of freedom. The full power of the DS-Design can only be examined if all of these effects are estimated. Pair-by-pair
comparisons using orthogonal contrasts can be a possible remedy to estimate all effects (Wu and Hamada, 2009). For two
arbitrary factors A := Xj and B := Xj′ (1 ≤ j < j′ ≤ k) the following linear (‘‘L’’) and quadratic (‘‘Q ’’) effects can be estimated.

AL, AQ , BL, BQ , ABL×L  
of interest

,

not considered  
ABL×Q , ABQ×L, ABQ×Q . (1)

Due to the linear dependencies of the DS-Design, estimates of ABL×Q , ABQ×L, ABQ×Q can be evaluated independently only
once per model. Furthermore, these interactions are hard to interpret and should be rather used in a fine tuning step than
during the screening procedure. The associated square sums of the contrasts are compared with the total variation of the
response outlined by the total square sum. To guarantee that all effects of interest can be estimated, the ANOVA procedure
is conducted sequentially for all

k
2


=

k ·(k+1)
2 factor pairs.
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The computer simulation results of the experiments run shall be denoted by yn, where n = 1, . . . ,NSc for NSc = 2 · k+ 1
under the DS-Design. Using the contrast weights of Hinkelman and Kempthorne (1994), the linear contrast CAL of factor A is
computed in the following way.

CAL = −1 ·

NSc
n=1

yn · 1{A=−1} + 0 ·

NSc
n=1

yn · 1{A=0} + 1 ·

NSc
n=1

yn · 1{A=+1} = −1 · y− + 0 · y0 + 1 · y+. (2)

The wrapped fold-over technique of the DS-Design enables the independent estimation of pure main effects. The
corresponding square sum of the linear effect is obtained by the fraction of the squared contrast and the number of
experiments in each group weighted by its squared contrast coefficient (cf. Montgomery (2012), p. 93),

SSAL =
C2
AL

NSc
n=1

1{A=−1} · (−1)2 +

NSc
n=1

1{A=+1} · (+1)2
=

C2
AL

|y−| · (−1)2 + |y+| · (+1)2
. (3)

Recording the pure quadratic effect of a factor requires experiments at the center level ‘‘0’’. As theDefinitive ScreeningDesign
only provides three center level experiments per factor, but (k − 1) experiments with levels ‘‘−1’’ and ‘‘+1’’, the design is
in general not balanced. By definition of a contrast, the scalar product between vector m, which contains the observations
per level

m = (|y−|, |y0|, |y+|) , (4)

and the contrast weight vector c = (c−1, c0, c+1)must be zero (cf. Montgomery (2012), p. 94). Hence, to complywithmT c !
=

0, it is necessary to standardize to the smallest coefficient ofm, which corresponds to |y0| = 3 for theDS-Design. The contrast
weight vector for the quadratic contrast c = (1, −2, 1) needs to be replaced by c =


1 ·

|y0|
|y−|

, −2 ·
|y0|
|y0|

, 1 ·
|y0|
|y+|


so that

mT c = (k − 1) ·
3

(k − 1)
− 2 · 3 + (k − 1) ·

3
(k − 1)

= 0 (5)

holds for the DS-Design. The quadratic contrast CAQ of factor A can be estimated by

[CAQ ] = c−1 ·
|y0|
|y−|

· y− + c0 ·
|y0|
|y0|

· y0 + c1 ·
|y0|
|y+|

· y+ = +1 ·
3

(k − 1)
· y− + (−2) · y0 + 1 ·

3
(k − 1)

· y+. (6)

Even though orthogonal contrasts are used, it has to be noted that the contrast CAQ is biased due to the correlation structure
of the DS-Design. Restriction of the design matrix to second order effects gives the correlation coefficients r(·, ·), which
describe the coherence between [CAQ ] and CAQ as follows

[CAQ ] = CAQ +


E≠A

r(AQ ,EQ ) · CEQ +


F≠E

r(AQ ,EF L×L)
· CEF L×L , (7)

where factors E and F differ from factors A and B. Jones and Nachtsheim (2011) showed that the absolute value of correla-
tion between pure quadratic effects converges towards 1

3 and between quadratic effects and 2nd order interaction effects
towards 1

6 for k → ∞.
For pure quadratic effects, the corresponding square sum is estimated by

[SSAQ ] =
([CAQ ])2

|y−1| ·


3

(k−1)


· (−1)2 + |y0| · (−2)2 + |y+1| ·


3

(k−1)


· (+1)2

. (8)

Finally, the contrasts of the two-factor interaction effects have to be computed. Here, the contrast weights origin a (3 × 3)-
matrix derived from the matrix multiplication of the contrast weights of the involved effects

cABL×L = c(AL)
T

× c(BL) = (−1, 0, 1)T × (−1, 0, 1) =


+1 0 −1
0 0 0

−1 0 +1


. (9)

As a result, the contrast CABL×L of the two-factor interaction is estimated by

[CABL×L ] = 1 · y−− + (−1) · y−+ + (−1) · y+− + 1 · y++ (10)
whereas

[CABL×L ] = CABL×L +


E

r(ABL×L,EQ ) · CEQ +


E≠F

EF≠AB

r(ABL×L,EF L×L) · CEF L×L . (11)

The desired square sum is

[SSABL×L ] =
([CABL×L ])

2

|y−−| · (+1)2 + |y−+| · (−1)2 + |y+−| · (−1)2 + |y++| · (+1)2
. (12)
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Fig. 2. Share of effect square sums in the total square sum.

2.3. Total sensitivity index

The total sum of squares SST =
NSc

n=1(yn − ȳ)2 reflects the artificially generated deviation of the response Y from the
average screening result ȳ. Whenever two factor pairs, A and B, A and C , are evaluated by the introduced contrast approach,
SST is partitioned into the following components

SST = SSAL + [SSAQ ]B + SSBL + [SSBQ ]A + [SSABL×L ] + SSRAB, (13)

SST = SSAL + [SSAQ ]C + SSCL + [SSCQ ]A + [SSACL×L ] + SSRAC , (14)

where the error sums of squares SSRAB, SSRAC reflect the portion of SST not explained by the effects considered. The combi-
nation of factor A with another factor E ≠ A entails k − 1 different square sums [SSAQ ]E . Hence, it is proposed to take their
mean value

[SSAQ ] =
1

k − 1
·


E≠A

[SSAQ ]E (15)

as the desired statistic. With the total sensitivity index (TSI), introduced by Homma and Saltelli (1996), the portion of the
total variance caused by factor A can be finally outlined as

STA =

SSAL + [SSAQ ] +

E≠A

[SSAEL×L ]

SST
. (16)

Originally, this index demands unbiased estimators of the applied square sums. In the worst case [SSAQ ] or [SSAEL×L ] are
affected by an overall noise, which may obscure relevant effects or erroneously increase the significance of unimportant
effects (cf. Fig. 2). A possible remedy is to consider a bias corrected sensitivity index, where the overall noise is removed
with respect to a relevance level 0 < α ≤ 0.1.

STAcorr(α)
=

SSAL + [SSAQ ]corr(α)
+

E≠A

[SSAEL×L ]corr(α)

SST
(17)

with

[SSAQ ]corr(α)
:=

δAQ α ≤
[SSAQ ]

SST
0 else,

(18)

where

δAQ =

[SSAQ ] − mean
E≠A

[SSEQ ] · I [SSEQ ]

SST <α



 . (19)
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Fig. 3. Share of corrected effect square sums in the total square sum.

Fig. 4. Pie plot—corrected TSIs.

Accordingly, the same formulas apply to [SSABL×L ]corr(α). The impact of this correction becomes visible when Figs. 2 and 3
are compared. Fig. 2 contains the fractions [SSAQ ]/SST and [SSABL×L ]/SST , determined by simulation results of a correspond-
ing DS-Design. The results origin a computer simulation model, which takes into account k = 69 factors. As visible, the
total sensitivity index of many factors are likely to be influenced by a multiplicity of interaction effects. On the basis of the
sparsity-of-effects principle, which is a well accepted rule of thumb in DOE (cf. Wu and Hamada, 2009; Mee, 2009; Mont-
gomery, 2012), we expect that only a few decisive main effects and second order effects dominate the simulated process.
As a consequence, we assume correlations of Eq. (11) to be the main reason that almost all investigated interactions pre-
tend relevance. Fig. 3 illustrates the corresponding fractions after having applied the corrections outlined in Eq. (18) with
α = 0.025. As visible, two quadratic effects and only a few interaction effects are relevant. After a consultation with the
model experts these effects have been confirmed.Moreover, no further effects than the identified effects have been expected
to be significant by the experts. The results of the concerning sensitivity indices, calculated after definition (17), are visible
in Figs. 4 and 5. We propose pie plots or bar diagrams to make clear which factors are significant and which factors can be
neglected respectively. As expected, only kr = 10 of the k = 69 considered factors dominate the investigated computer
model based process in terms of the response Y .

We made the experience that the DS-Design of Jones and Nachtsheim (2011) with only NSc = 2 · k + 1 experiments is
the perfect screening tool for computer simulation models where a non-linear relationship between factors and response is
expected. On this account, we propose the application of the DS-Design as the first step in generating representative data,
when the number of experiments is limited.

2.4. Space-filling-designs

In the last subsection we propose the DS-Design of Jones and Nachtsheim (2011) as the first step of the process, outlined
by Fig. 1, for the generation of representative experiments considering a multidimensional distribution. With the aid of the
DS-Design it is efficiently possible (NSc = 2 · k + 1) to identify the most significant factors X1, . . . , Xkr for a response Y . As
a result, a representative experimental coverage is facilitated, because the originally assumed feature space Xk reduces to a
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Fig. 5. Bar plot—corrected TSIs.

Table 1
Standard space filling designs.

Design type Background Non-uniform distributions possible Source

1. Sphere Packing maxminx,y∈Ck ∥x − y∥2 No Johnson et al. (1990)
2. Uniform minCk Discrepancy No Fang (1980)
3. Maximum entropy maxCk Shannon entropy Yes Shewry and Wynn (1987)
4. IMSE minCk MSE (residuals) Yes Sacks et al. (1989)
5. (Quasi) Monte Carlo Law of large numbers Yes Johnson (1987)
6. Latin Hypercube Permutation matrix Yes Mckay et al. (1979)

subspace Xkr . While the feature space distribution played a minor role during the screening procedure, for the space filling
procedure we want to apply the theory of space filling designs in order generate representative experiments with regard to
the corresponding distribution F kr .

The first space filling designs were constructed to uniformly distribute experiments over a feature space in an optimal
manner. Hence, the experiments of these designs represent amultidimensional uniformdistribution. AsMontgomery (2012)
points out, this is desirable, if the experimenter is not aware of the relationship between the input factors and the response,
and if interesting phenomena are likely to be found in different regions of the feature space. The most popular design
approaches, included in commercial software packages, are listed in Table 1.

For our purpose, a space filling design needs to provide experiments that represent the feature space distribution F kr ,
which generally differs from a multidimensional uniform distribution. The p.d.f. f kr of F kr is determined by

f kr

x1, . . . , xkr


=


∞

−∞

. . .


∞

−∞

f k(x) dx′

1 . . . dx′

k−kr+1, (20)

where x′

1, . . . , x
′

k−kr+1 correspond to the insignificant factors X ′

1, . . . , X
′

k−kr+1 eliminated by the screening procedure.
Independent of their capability to represent other than uniform distributions, due to their long computation times in
multidimensional spaces, we do not recommend space filling designs 1–4 of Table 1. Hence, they will not be considered
anymore.

Given that the factors X1, . . . , Xkr are independent (i.e. Xj
ind
∼ Fj for j = 1, . . . , kr ), Fishman (1996) motivates Monte Carlo

methods by directly merging pseudo random samples of the marginal distributions Fj to multidimensional vectors in order
to get representative experiments (pseudo MC-Design). If the assumption of independent factors is too restrictive, there
exists an easy transformation based on the Cholesky decomposition to generate representative experiments for a multivari-
ate normal distribution F kr (Dagpunar, 1988). Moreover, Johnson (1987) presents several techniques on how to generate
samples for other than multivariate normal distributions. If F kr is a multidimensional uniform distribution, a more efficient
experimental coverage can be achieved by quasi Monte Carlo sampling techniques (Siebertz et al., 2010). Because the theory
of non-uniform random numbers does not directly apply to the quasi Monte Carlo approach, however, we advise against
this technique for other than uniform feature space distributions. Probably because of their simple applicability, the pseudo
MC-Design has gained a considerable amount of recognition in engineering. Still, it has to be mentioned that the efficiency
of such designs is heavily influenced by the assumed distribution. Especially when computer simulation models are used,
regions of the feature space with small variation may lead to replicate experiments with similar simulation results.

The Latin Hypercube Design (LH-Design) of Mckay et al. (1979) is also a well applied design in industry. The general idea
behind the LH-Design is to avoid replicate experiments in order to increase simulation efficiency. Although the LH-Design is
the first proposed space filling design, and it was originally intended, like other pioneer space filling designs, to generate ex-
periments in an uniformmanner, Stein (1987) introduced an approach to generate LH-Designs for generalmultidimensional
distributions. If factors X1, . . . , Xkr are independent, the LH-Design is generated by partitioning the feature space Xkr into
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Fig. 6. LH-Design for independent factors.

Fig. 7. LH-Design for dependent factors.

hyper-rectangles with equal probability. Eventually, the experiments are distributed over the resulting lattice so that the
projection to any one dimension yields exactly one experiment per cell. For cases, where factors X1, . . . , Xkr are not indepen-
dent, Stein (1987) proposes a technique using inversemarginal cumulative distribution functions and permutationmatrices
to generate appropriate LH-Designs. Fig. 6 illustrates the lattice approach for two independent factors X1 ∼ N (0, 1/4) and
X2 ∼ N (0, 1/4) and Fig. 7 depicts the LH-Design, generated by approach of Stein (1987), for dependent factors (X1, X2)
following a bivariate normal distribution N2(µ, 6), where

µ = c (0, 0) and 6 =


1/4 1/5
1/5 1/4


. (21)

The LH-Design approach is a simple method to involve the feature space distribution and to avoid replicates at the same
time. Still, Stein (1987) requires large sample sizes in order to represent the multidimensional distribution in a satisfactory
manner. The question remains whether the Latin Hypercube experiments are descriptive enough or not to represent the
assumed distribution, when the number of possible experiments is limited. In the next sectionwemay answer this question
employing multidimensional quantiles.

3. Multidimensional quantiles and depth functions

In one dimension the adaptation towards a dataset can usually be illustrated by a Quantile–Quantile (Q–Q) plot, which
scatters the empirical sample quantiles against the theoretical quantiles of the distribution. However, the concept of
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one-dimensional quantiles with their natural linear order is not directly transferable tomultidimensional distributions. Ser-
fling (2010) overcomes this issue by using median-oriented quantiles implying nested contours that enclose regions con-
taining amounts of inner probability around the kr -dimensional median of a distribution F kr . Median-oriented quantiles are
defined for F that is the class of distributions on the Borel sets of Rkr .

Definition 3.1 (Median-Oriented Quantile Function). For u ∈ Bkr−1(0) =

u ∈ Rkr : ∥u∥ ≤ 1


themedian-oriented quantile

functionQ (·, ·) : Bkr−1(0) × F → Rkr generates nested contours

x = Q (u, F kr ) : ∥u∥ = c, 0 ≤ c ≤ 1


inRkr that enclose

the kr -dimensional median, defined byMFkr = Q (0, F kr ).

The following example shows how to determine the median-oriented quantiles for a bivariate normal distribution with
independent components (trivial covariance matrix 6).

Example 3.1 (Median-Oriented Quantiles of a Bivariate Normal Distribution). Let us consider the bivariate normal distribution
N2 (µ, 6), well defined by the parameters

µ = (0, 0) and 6 =


σ 2
1 = σ 2 0

0 σ 2
2 = σ 2


for 0 < σ < ∞. (22)

Then, the circlesAl, definedby radii rl andby the center pointµ ∈ Rkr , are contours possessing inner probabilities 0 < pl < 1.
These are given by

P (X ∈ Al) = pl (23)

for l ∈ R, and we claim pl < pl′ , if l < l′ (or Al ⊂ Al′ ). For l ∈ R and x ∈ Al the transformation

R

x,N2 (µ, 6)


= pl ·

x
∥x∥

= u (24)

yields the mapping R : Rkr × F → Bkr−1
× F , which satisfies ∥u∥ = pl < 1. The probability pl can be determined for a

circle Al with radius rl as follows.

pl =


Al
f 2N2(0,6)

(x1, x2) d(x1, x2) =
1

2πσ 2
·


Al
exp


−

1
2σ 2

· (x21 + x22)


d(x1, x2).

Substitution of x1 = r · cosφ and x2 = r · sinφ by polar coordinates (r, φ) leads to

pl =
1

2πσ 2
·

 2π

φ=0

 rl

0
r · exp


−

1
2σ 2

· (r2 · cos2 φ + r2 · sin2 φ)


drdφ.

Noting that cos2 φ + sin2 φ = 1, we receive the Circular Gaussian probabilities

pl = 1 − exp


−
r2l
2σ 2


.

The inverse of transformation (24) yields themedian-oriented quantile function, with which themedian-oriented quantiles
are obtained for all inner probabilities 0 < pl < 1. They are given byx =

u ·

=rl
∥x∥
pl

:


u2
1 + u2

2 = pl

 (25)

for u ∈ Bkr−1(0) and pl ≠ 0. The kr -dimensional medianMFkr = Q (0, F kr ) corresponds to µ.

The solution approach shown above on how to determine the median-oriented quantiles of a distribution F kr is a
special application of theD–O–Q–Rparadigm (Depth–Outlyingness–Quantile–Rankparadigm), described in detail by Serfling
(2010). In a nutshell, it says that three functions, theDepth Function, theOutlyingness Function and the Centered Rank Function,
closely relate to themedian-oriented quantile function. Serfling (2010) uses this equivalence in order to show that it suffices
to find a depth function D(x, F kr ), which possesses nested contours enclosing a pointMFkr ∈ Rkr and bounding regions

Al =

x ∈ Rkr : D(x, F kr ) ≥ l


(l ∈ R) (26)

to induce a valid quantile function Q (u, F kr ) for a continuous distribution F kr . As already indicated in Example 3.1, where
we implicitly assumed the nested contours Al in (23), the median-oriented quantile function Q


u, F kr


, u ∈ Bkr−1, has

an inverse at each x ∈ Rkr , given by the centered rank function R(x, F kr ). The magnitude O

x, F kr


= |R(x, F kr )| of the
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centered rank function is called Outlyingness Function. The outlyingness function, in turn, is related with the depth function
by D(x, F kr ) = 1 − O(x, F kr ).

After Serfling (2010) a valid quantile function is induced by setting MFkr = Q (0, F kr ) and u = R(x, F kr ) = p · v ∈ Bkr−1,
where v the unit vector that points towards x fromMFkr , and pl is the probability of the region Al with x on its boundary (in
Example 3.1: transformation (24)). Hence,

P (X ∈ Al) = pl for X ∼ F kr . (27)

Furthermore, the probability pl, l ∈ R, equals the outlyingness of all x on the closure Al of Al, i.e. O(x, F kr ) = ∥u∥ = pl.
Consequently, Al corresponds to the median-oriented quantile possessing an inner probability pl. Zuo and Serfling (2000)
define the depth function in a more general way.

Definition 3.2 (Depth Function). Let the mapping

D(·, ·) : Rkr × F → R+ (28)

be bounded and non-negative satisfying the subsequent conditions.

(i) D(Ax+ b, F kr
AX+b) = D(x, F kr

X ) holds for any random vector X ∼ F kr , and nonsingular matrix A ∈ Rkr×kr , and any vector
b ∈ Rkr (affine invariance property);

(ii) D(θ, F kr ) = supx∈Rkr D(x, F kr ) holds for any F kr ∈ F having a ‘‘center’’ θ in Rkr (maximality at center);
(iii) For any F kr ∈ F having a ‘‘center’’ θ ∈ Rkr , D(x, F kr ) ≤ D


θ + δ (x − θ) , F kr


holds for all δ ∈ [0, 1] (monotonicity

relative to the deepest point);
(iv) D(x, F kr ) → 0 as ∥x∥ → ∞ for arbitrary F kr ∈ F (vanishing at infinity).

Then D(·, F kr ) is called statistical depth function.

A random vector x ∈ Rkr is usually denoted as centrally symmetric about a ‘‘center’’ θ , if x− θ
d
= θ −x, whereas ‘‘ d=’’ means

equal in distribution. Zuo and Serfling (2000) introduce a more general notion, which defines X to be halfspace symmetric
about θ, if P (X ∈ H) ≥ 1/2 for every closed halfspace H ⊂ Rkr that contains θ.

With condition (ii) of Definition 3.2, the D–O–Q–R paradigm implies that the center θ of F kr equals the multidimensional
median, i.e. θ ≡ MFkr . Thus, it follows that the kr -dimensional median possesses maximal depth.

With moderate effort it is possible to determine the probabilities pl in (27) of the kr -dimensional normal distribution
Nkr (µ, 6) with parameters

µ = (µ1, . . . , µkr ) and 6 =


σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
...

...
. . .

...

0 0 . . . σ 2
kr

 for |6| < ∞. (29)

As highlighted by Waugh (1961), the determination procedure requires the integration of the p.d.f. f kr over a centered
kr -dimensional ellipse, whose kr semiaxes correspond to the diagonal elements of 6. The analytical resolvability of the
median-oriented quantile task, as presented in Example 3.1, becomes challenging for F kr = N(µ, 6) (6 not trivial), because
the orientation of the kr -dimensional ellipse changes. Moreover, unless amultivariate normal distribution is considered, the
analytical resolvability of probability pl of region Al is no longer ensured.

We want to use the D–O–Q–R paradigm and the Depth Function approach to estimate median-oriented quantiles of a

general distribution F kr by realizations x1, . . . , xN ′ of Xn
iid
∼ F kr . Then the depth function D(xn, F kr ) yields a center-outward

ordering of x1, . . . , xN ′ . For the region Al, as defined in (26), the probability pl is estimated as follows.

P (X ∈ Al) = pl ≈
|Al|

N ′
for l ∈ R and X ∼ F kr . (30)

The median oriented quantiles, which correspond to probabilities pl, are estimated by the convex hulls of Al. In the papers
of Liu et al. (1999) and Zuo and Serfling (2000) various depth functions are presented, compared and discussed in terms of
the four desired properties affine invariance, maximality at center, monotonicity relative to the deepest point and vanishing at
infinity. Zuo and Serfling (2000) conclude by recommending the halfspace- and the projection depth, because they fulfill the
four desired properties of Definition 3.2. Although the D–O–Q–R paradigm can be applied for every valid depth function,
from our point of view, an appropriate choice would be the affine invariant version of the L2 depth. This recommendation
is threefold:

1. The affine invariant version of the L2 depth fulfills all properties of Definition 3.2.
2. The affine invariant version of the L2 depth can be approximated with controllable effort, as shown in (33).
3. The affine invariant version of the L2 depth can be determined for F kr ≡ N(µ, 6).
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Definition 3.3 (L2 Depth).When considering a distribution F kr , the L2 depth of every x ∈ Rkr is given by

L2D(x, F kr ) = (1 + EFkr ∥x − X∥2)
−1, (31)

where X ∼ F kr .

It can be easily shown that the nested contours possessed by (31), bound convex regions Al (Mosler, 2013). In addition to this
desirable characteristic, Zuo and Serfling (2000) show that the L2 depth provides all desired properties with the exception
of affine invariance. Nonetheless, by replacing the euclidean norm with ∥x∥M ≡

√
xTMx, where M ∈ Rkr×kr is a positive

definite matrix, an affine invariant version of Definition 3.3 can be obtained (Rao, 1988). That is

Definition 3.4 (Affine Invariant Version of the L2 Depth).

L̃2D(x, F kr ) = (1 + EFkr ∥x − X∥6−1)−1, (32)

where X ∼ F kr and 6−1 the covariance matrix of distribution F kr .

The expected norm in Definition 3.4 can be estimated by a moderate sized subset

x̃1, . . . , x̃NL2


of {x1, . . . , xN ′} in

N ′
· NL2 < N ′2 operations as follows.

L̃2D(xn, F kr ) ≈

1 +
1
NL2

·

NL2
n=1


x − x̃n

T
6−1


x − x̃n

−1

for n = 1, . . . ,N ′. (33)

If F kr ≡ Nkr (µ, 6), the expected value in (32) can be determined. For xn ∈ Rkr , the exact solution requires the consideration
of the positive random variable

Wxn = (xn − X)T 6−1 (xn − X) ∈ R+, where X ∼ Nkr (µ, 6). (34)

Given that the distribution FWxn of Wxn is known, we can apply the well known formula

E(W γ
xn) = γ ·


∞

0
tγ−1

· P

Wxn > t


dt (35)

for γ = 1/2. Now it holds that distribution FWxn corresponds to a noncentral chi-squared distribution with kr degrees of
freedom and non-centrality parameter λ2 (Anderson, 1984).

Wxn ∼ χ2
kr


λ2 where λ2

= (xn − µ)T 6−1 (xn − µ) . (36)

Still, it has to be pointed that the resolvability of the affine invariant version of the L2 depth must not be confused with the
resolvability of the median-oriented quantile task. The product of N ′ and the computational effort, necessary to evaluate
the integral in (35), dominates the operations required to estimate the median-oriented quantiles of F kr ≡ Nkr (µ, 6). For
F kr ≢ Nkr (µ, 6) the computation speed mainly depends on N ′ and the approximation quality NL2 in (33).

Fig. 8 illustrates the median-oriented quantiles of a bivariate normal distribution N2 (µ, 6) with parameters

µ = (1/2, 1/2) and 6 =


1/8 1/10
1/10 1/8


(37)

that have been estimated by N ′
= 10.000 pseudo MC samples for pl = 0.1, . . . , 0.9. Representatively for a distribution

F kr ≢ N (µ, 6), Fig. 9 shows the non-parametric estimation approach for the versatile Beta distribution. The estimation
was based on N ′

= 10.000 pseudo MC samples (x1, x2) ∈ R2, which were realizations of

X1

X1 + X2 + X3
and

X2

X1 + X2 + X3
, (38)

where

X1 ∼ γ (2, 5) and X2 ∼ γ (1/2, 5) and X3 ∼ γ (2, 5) . (39)

γ (κ, θ) denotes a gamma distribution with shape parameter κ > 0 and scale parameter θ > 0. The computation of the
convex hulls was performed with the algorithm of Barber et al. (1996).

In the next step, for us the question is: Which sample size N ′ is necessary to estimate the median-oriented quantiles
of a distribution F kr in an adequate manner? By means of the law of large numbers, one can count on stochastic sampling
strategies like the LH-Design (or pseudo MC sampling) to depict the true distribution provided that enough samples are
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Fig. 8. Median-oriented quantiles of N2 (µ, 6).

Fig. 9. Median-oriented quantiles of bivariate beta distribution.

generated. The estimated median-oriented quantiles can be easily validated with a test set

x1, . . . , xNtest


(Ntest > N ′),

because the estimated probabilities pl of all regions Al can be compared to the fractions ptestl of the test set Atest
l , given by

Atest
l =


x ∈


x1, . . . , xNtest


: D(x, F kr ) ≥ l


, and ptestl =

|Atest
l |

Ntest
. (40)

We assess the performance of the estimated median-oriented quantiles by the root mean squared error

RMSEp =


1
N ′

·


l


pl − ptestl

2
. (41)

RMSEp can also be seen as a measure of representativeness of the realizations x1, . . . , xN ′ for the distribution F kr . We apply
the Latin-Hypercube sampling approach of Stein (1987) to generate the concerning realizations so thatwe are able to directly
answer the outstanding question, stated at the end of Section 2.4. That is, is the LH-Design descriptive enough or not to
represent a distribution F kr , when the number of experiments is limited?

Example 3.2 (Validation of Estimated Median-Oriented Quantiles: LH-Design).Wewant to illustrate the validation procedure
for the example of themultivariate normal distribution F kr ≡ Nkr . This is because random distributions are easily generated
and the affine invariant version of the L2 depth can be analytically determined. Several experiments with different normal
distributions Nkr (µ, 6) showed that N ′

= 150.000 is a good choice for kr ≤ 100 dimensions. As an example, Fig. 10
illustrates the validation ofmedian-oriented quantiles ofN100 (µ, 6) estimated byN ′

= 150.000 experiments and validated
by Ntest = 250.000 experiments.
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Fig. 10. Validation of estimated median-oriented quantiles of N100 (µ, 6).

Fig. 11. Validation of estimated median-oriented quantiles of N10 (µ, 6).

Hence, a LH-DesignwithN ′
= 150.000 experiments representsN100 (µ, 6) in an adequatemanner. Even ifN ′

= 150.000
are far beyond the considered boundary of NSf = N − NSc experiments, x1, . . . , x150.000 can be definitely used to validate
median-oriented quantiles, estimated by less experiments. On this account, we set

N ′
∈

25, 50, 75, 100, 150, 200, 300, 400, 500  
possible values for NSf

, 1.000, 10.000, 50.000, 100.000  
for illustration purpose


and Ntest = 150.000. As outlined in Section 2, the dimension of the initial experimental space Xk will practically reduce
to kr ≤ 10 after the screening procedure. Fig. 11 highlights the performance of the median-oriented quantiles, when
estimated on the basis of a LH-Design consisting of N ′

∈ {25, 50, 100, 150, 500} experiments. It is clearly visible that the
larger the dimension the more fails the LH-Design to represent the assumed feature space distribution for a given N ′. This is
due to the construction method after Stein (1987), which ‘‘only’’ considers marginal inverse distribution functions. Fig. 12
illustrates that for the multivariate normal distribution, considered with different dimensions kr ∈ {2, 5, 10, 20, 50}. For
each dimension, the outlined RMSEp are based on an average of 20 different distributions. The LH-Design fails to accurately
estimate the median-oriented quantiles, when kr > 10 and the NSf ≤ 500.

Although the LH-Design of Stein (1987) is a very efficient design and includes the feature space distribution, it lags
in transmitting a high dimensional distribution to the generated experiments, when less than 500 experiments. As a
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Fig. 12. LH-design: validation of estimated median-oriented quantiles of Nkr (µ, 6).

consequence, we introduce a new space filling design approach, which expands the LH-Design approach of Stein (1987)
by considering median-oriented quantiles and depth functions by Serfling (2010).

4. The depth-design

In Section 3 we showed that for the LH-Design of Stein (1987) a high feature space dimension combined with a limited
number of experiments can significantly decrease the estimation performance of the median-oriented quantiles. In such
cases (NSf ≤ 500 and kr ≈ 10) we infer that the experiments generated by the LH-Design do rather not provide the
information necessary to represent the associated distribution F kr in an accurate manner. This disadvantage of the LH-
Design can be eliminated by our new Depth-Design, which expands the LH-Design of Stein (1987) by the median-oriented
quantile approach of Serfling (2010).

In the first step of constructing the Depth-Design, realizations x1, . . . , xN ′ ofX ∼ F kr need to be generated by a stochastic
sampling procedure (i.e. pseudo MC sampling, LH-Design, etc.) in order to estimate the median-oriented quantiles of the
underlying distribution. In doing so, we propose to choose N ′ in correspondence with Fig. 12 so that RMSEp is kept at
a minimum level. This means, if kr = 50, we suggest to set the number of experiments at least to N ′

= 50.000. If
NSf experiments are feasible we are particularly interested in the median-oriented quantiles Al that correspond to the
probabilities

pl =
Al

N ′
∈


0

NSf − 1
,

1
NSf − 1

, . . . ,
NSf − 1
NSf − 1


. (42)

The regions Al are received by sorting x1, . . . , xN ′ in an ascending order by their depth value. Then, the estimated median-
oriented quantiles Al can be approximated by

Al ≈

x ∈ {x1, . . . , xN ′} : D(x, F kr ) − ϵ ≤ l ≤ D(x, F kr ) + ϵ


(ϵ > 0) . (43)

Now the idea is to adjust a LH-Design with NSf experiments by the estimated median-oriented quantiles, obtained by
condition (42) for x1, . . . , xN ′ . By construction each LH experiment x̃1, . . . , x̃NSf is linked to a specific Al. Starting with
the smallest probability pl and successively proceeding to the largest probability, the experiments of the Depth-Design are
generated as follows.

DD (xn) = argmin
x∈Al

∥x − x̃n∥2 for n = 1, . . . ,NSf. (44)

The computational effort of the Depth-Design is dominated by the estimation procedure of the median-oriented quantiles,
as described in Section 3.

Example 4.1 (Generation of the Depth-Design for Dimension kr = 2). As an example, we make once more use of the affine
invariant version of the L2 depth to estimate themedian-oriented quantiles. The readermay reconsider the bivariate normal
distribution in (37) and respectively the bivariate beta distribution in (38), where the L2 depths were estimated from
N ′

= 10.000pseudoMC samples. For visualization purposeswe setNSf = 10 and generate the according LH-Designs. Figs. 13
and 14 show the Depth-Design approach by arrows, where LH experiments are adjusted by (44). When Fig. 11 is compared
with Fig. 15, the improvement achieved by the Depth-Design becomes instantly visible. According to the RMSEp obtained,
already 25 Depth Design experiments contain more information about the considered distribution (kr = 10) as 500 Latin
Hypercube experiments. Again, the median-oriented quantiles have been validated with a test set of size Ntest = 150.000.
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Fig. 13. Depth-Design for bivariate normal distribution N2 (µ, 6).

Fig. 14. Depth-Design for bivariate beta distribution.

Fig. 15. Depth-Design for bivariate normal distribution N2 (µ, 6).



M. Piffl, E. Stadlober / Journal of Statistical Planning and Inference 164 (2015) 10–26 25

Fig. 16. LH-Design: validation of estimated median-oriented quantiles of Nkr (µ, 6).

In line with Fig. 12, we want to analyze the performance of the Depth-Design, when the dimension kr is increased
and the number of experiments is varied. Fig. 16 clearly shows the power of the Depth-Design in terms of representing
a multidimensional distribution with a limited number of experiments for the multivariate normal distribution. Individual
tests showed that the performance for non-normal distribution is comparable to the results obtained in Fig. 16. Additionally,
due to the fact that the Depth-Design is based on the LH approach, it nearly shares all advantages of the LH-Design, like good
projection properties or the efficient distribution of the experiments within the feature space. Even if the effort to generate
a Depth-Design is more expensive than as for the LH-Design, the experiments to be conducted often take much longer so
that it is worth allocating a bit of time for the DOE.

5. Conclusion

In this paper, we provided a guideline on how to generate representative experiments for computer simulation models,
when the number of feasible experiments is limited (N ≤ 500). We assume the simulation models to have a large number
(k ≥ 50) of controllable quantitative inputs, which are subject to a multidimensional distribution F k.

As the first step of generating representative experiments we suggest to spend a portion NSc of N for a screening
procedure, to identify themost decisive regions of the feature spaceXk in terms of a response Y . For the screening procedure
we propose the very efficient Definitive Screening Design of Jones and Nachtsheim (2011), which provides information on
pure linear and 2nd order effects of k factors with only NSc = 2 · k + 1 experiments. Due to the undersized and unbalanced
Definitive Screening Design we established a bias corrected pair-by-pair comparison strategy, which finally enabled us to
estimate the total sensitivity index of Homma and Saltelli (1996) giving a relative significancemeasure for each input factor.
We share the generally accepted heuristics that most systems are only dominated by a few significant factors so that the
feature space Xk reduces to Xkr (usually kr ≤ 10).

In the second step, a space filling design with x1, . . . , xNSf experiments (NSf = N − NSc) shall be applied, capable of
representing distribution F kr of Xkr . As a measure of representativeness (concerning F kr ) we introduce the mean squared
error between the inner probabilities of the estimated median-oriented quantiles on basis of x1, . . . , xNSf and the inner
probabilities of estimatedmedian-oriented quantiles on basis of pseudoMC samples x1, . . . , xN ′ (N ′

= 150.000 for kr ≤ 50).
For themultivariate normal distribution and the affine invariant version of the L2 depthwe showed that the Latin Hypercube
Design of Stein (1987) lags in transmitting high dimensional distributions to the generated experiments when less than 500
experiments are considered. Thereupon, we introduced our new space filling design approach, the ‘‘Depth-Design’’, that
expands the Latin Hypercube Design by the concept of multidimensional quantiles and depth functions. The general idea of
the Depth-Design is to adjust the Latin Hypercube experiments in a way that the median-oriented quantiles are accurately
estimated. We showed that already NSf = 25 Depth-Design experiments may deliver more information about a feature
space distribution than 500 experiments, generated by the LH-Design. Just as well as for the LH-Design, we analyzed its
performance for different dimensions kr and for various number of experiments NSf exemplarily by the multivariate normal
distribution and the affine invariant version of the L2 depth. The corresponding results are obvious as only a few Depth-
Design experiments are already carrying almost all information about the median-oriented quantiles of the underlying
distribution.

For these reasons, we propose the application of the Depth-Design to produce representative experiments in the
space filling procedure. If the screening procedure is omitted, we showed that the Depth-Design remains robust for high
dimensional spaces (k > 10).
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