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Abstract

Microarray data come from many steps of production and have been known
to contain noise. The pre-processing is implemented to reduce the noise, where
the background is corrected. Prior to further analysis, many Illumina BeadAr-
rays users had applied the convolution model, a model which had been adapted
from when it was first developed on the Affymetrix platform, to adjust the
intensity value: corrected background intensity value.

Several models based on different underlying distributions and or parame-
ters estimation methods have been proposed and applied. For instance : the
exponential-gamma, the normal-gamma and the exponential-normal convolu-
tions with a maximum likelihood estimation, non-parametric, Bayesian and mo-
ment methods of the parameters estimation, including two recent exponential-
lognormal and gamma-lognormal convolutions.

In this paper, we propose models and derive the background corrected true
intensity value based on the generalized betas and the generalized beta-normal

convolutions as a generalization of the existing models.
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ily, Illumina BeadArrays and convolution model.
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1 Introduction

It has become common knowledge that data from microarray experiments will con-
tain some non-biological noise. Therefore, the data needs to be adjusted. In this
case, implementing the pre-processing will adjust (Huber et al. [IH3]) or correct the

background intensity value.

There are several steps in pre-processing where one of the steps is the background
correction. In the background correction, the noise can be modelled as additive or
multiplicative (See, Huber et al. I}, 2], Bolstad et al. [4] and Irizarry et al. [5H7], Li
and Wong [8], Silver et al. [9] and Wu et al. [10]).

In the robust multi-array average (RMA), Irizarry et al. [5H7] have modeled the noise
as an additive, to adjust the intensity value. Although the RMA was developed for
the Affymetrix platform initially, it was also been used for the data from the Illumina

platform.

Currently, there are some models to correct the intensity value of the Illumina plat-
form available, for instance : the model-based background correction method (MBCB)
from Ding et al. [11] and Xie et al. [12], the exponential-gamma from Chen et al. [13],
the gamma-normal from Plancade et al. [I4] and the exponential(gamma)-lognormal

from Fajriyah [15].

Posekany’s et al. study [16] show us that by using the Affymetrix and Invitrogen
platforms the noise in microarray data is not Gaussian but far more heavy-tailed.
On the other hand, Chen et al. [I3] show that the noise distribution in the Illumina

platform is usually skewed in different degrees.

Therefore, while the intensity values are widely accepted as a skewed distribution,
the noise distribution could possibly be symmetrical or skewed. Note that in this
dissertation, noise and intensity mean the negative control probes and the observed

probes intensity values respectively.
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Figure 1.1: Distribution tree, [17]

McDonald and Xu [17] have introduced a distribution tree of generalized beta distri-
butions, which is used to model the income distribution. It is similar in nature to the
microarray data where the random variable is a non-negative value. This distribu-
tion tree helps us to understand the relationship among the available distributions.
Moreover, quite recently, Leemis and McQueston [I8]| have explained the relation-
ships among the univariate distributions in statistics. See the distribution tree from

McDonald and Xu [17] in Figure

This paper aims to present the true intensity value, the corrected background in-
tensity, where the noise is a symmetric and skewed distribution. If the noise is a
skewed distribution, the underlying distributions of the proposed convolution model
are the generalized beta distributions, a generalized model of the existing ones. If the
noise is a symmetrically distributed, the proposed model is a generalized beta-normal

convolution, which is a generalized model of the Plancade et al. model [14].

In general, the background correction is applied toward each array, where in each
array there are probes (perfect match and mismatch probes), probesets and genes

(terminology for the Affymetrix platform) or bead and bead-type level probes (ter-



minology for the Illumina platform).

The current publicly available benchmarking data set for the Illumina platform is the
raw data from the bead studio, which is the average of the bead-type level probes,
not background corrected and of unnormalized intensity. Therefore, the background
correction in this paper is applied to the gene (bead-type level probes) intensity in

each array.

Suppose we have J arrays and for each array there are I regular genes and M negative
control genes. Throughout the paper, the convolution model is applied for each array

7 and represented as follows:

P, = S; + B; (1)

where P;, S;, and B; are the regular (observed) true/corrected background and noise
intensity values respectively of the i*" gene, i = 1,...,I. For a negative control gene
w at array j, w = 1,2,...,WW, the observed intensity, denoted by Fp, is assumed
to be Py, = Byw, Where By, is the noise intensity. P; and Py, are assumed to be

independent.

This paper is organized as follows: Section [2| reviews previous work related to the
background correction for the Illumina BeadArrays, Section [3] explains the results of

our investigation and Section ] provides discussion and remarks.

2 Previous work

2.1 Basic concepts

Definition 2.1. Suppose X is a random variable of generalized beta distribution. Mc-

Donald and Xu [17] define the probability function of the generalized beta distribution



as follows

v—1

aly™ (1= (1= ) (1)) &

Y ~ GB(y;a,c,d,u,v) = 0 <yt <,
d™B(u,v) (1 +c (%)a) — ¢

and zero otherwise, with B (u,v) is the beta function,0 < ¢ <1, a,d,u and v positive.

Definition 2.2. Let X and Y be two continuous random variables with density func-
tions fi(x) and fo(y) respectively. Assume that both fi(x) and fo(y) are defined for

all real numbers. Then the convolution fi * fo of fi and fs is the function given by
+oo
(e ) = [ 5z = 9h)dy

- / folz — o) fi(2)dz (3)

Theorem 2.1. Let X and Y be two independent random variables with density func-
tions fx(x) and fy(y) respectively defined for all x. Then the sum Z = X +Y is a
random variable with a density function of fz(z), where f is the convolution of fx

and fy.

2.2 Background correction by RMA

In the RMA model ([4], and [5H7]), it is assumed that the intensity values are affected
by the noise of the chip. The RMA model is as in the Equation , where P, = PM,;
is the observed probe level intensity of perfect match probes of the i** gene, S; is
the true intensity of the i gene, with S; ~ fi(s;;0;) = Exp(6;),0; > 0, and B;
is the background noise of the i gene with B; ~ fa(bs; 1,03) = N <uj, J?) NS
R, 02, b; > 0.

P



Assuming independence, the joint density of the two-dimensional random variables

(SZ,BZ) is
fsi,8. (80,0 11y, 07,0;) = 0;¢75% f (@;Mﬁ?) ;8> 0. (4)

Furthermore, the transformation formula for two-dimensional densities gives the joint

density of S; and P; is

fSi,Pi (Slapzv ,uj7 0-32‘7 9])

%3

0252
—(pi—ny 9j>
= ‘9]'6( ’ ( ) fg (Sl,pl — M — 0']2-9,0'32-> ,0 <5 < py (5)

From equation (5) we get the marginal density of P; and the conditional density of
S; given P; in equations @ and below, respectively:

qu_&j$<%?4 ®<%P>+®<_%&£)_l (6)

0j J

fQ(S; Hs,p, 0]2)

o <u> b <p75jsp> _ 1)

fSi‘Pz‘ (Si |pz) = <

where pi5.p = p; — p1; — 030;.

The corrected background intensity is computed by the conditional expectation

1

" o () o (e

The substitution s; = pugp + o;t;, yields the corrected background intensity in the

E(Si‘Pi:p

fo (siinsp.ol)ds ()
)/



Equation (8)) equal to

2.3 Exponential-normal MBCB

Xie et al. [I2] use the same underlying distributions as the RMA for the background
correction. The differences between the MBCB and the RMA ([4], and [5H7]) are

1. Xie et al. [12] take the infinite value for the upper bound of the integral to
compute the marginal density function and the conditional expectation of the
true intensity value. On the other hand, the RMA puts p as the upper bound
of the integral.

The corrected background intensity of this model is

J

@(“SJ’)
)

2. Under the convolution model , where the true intensity value is assumed

o

ps.p+0j (10)

exponentially distributed and the noise is normally distributed, we then need
to estimate the parameters 6}, i1, and o3. Xie et al. [12] offer three parameters
estimation methods: the non-parametric, maximum likelihood and Bayesian.

On the other hand, the RMA applies the ad-hoc method.

Ding et al. [II] use the exponential-normal convolution model to correct the back-

ground of the Illumina platform by using a Markov chain Monte Carlo simulation.



2.4 Gamma-normal convolution

Plancade et al. [14] introduced gamma-normal convolution to model the background
correction of the Illumina BeadArrays. The model is based on the RMA background
correction of Affymetrix GeneChips. Plancade et al. [14] assume that the true inten-

sity value is gamma distributed and the noise is normally distributed.

Under the model background correction in , fp, is the convolution product of fg,
and fp,. The true intensity S; is computed by the conditional expectation of S; given
P, = pi:

5 S si fffg](s) i (pi — s:) ds

E(SZ|R:pz): z(p) f gam

O(],

(11)

(s) [ (pi — si)ds

a; a;—1
05747 05T . .
where fgj_‘fgj (Q;i; aj, 9,-) = J}T, a;,0;,z; > 0 is the gamma density.
J

When S; is gamma distributed and B; is normally distributed, then the equation (|11))
does not have analytic expression as it does in Equations @ and . Therefore,
Plancade et al. [I4] implemented the Fast Fourier Transform to estimate the parame-
ters and to correct the background. For the background correction with Fast Fourier

Transform, Equation ((11)) is rewritten as

0 | Jaie, (30) g, (pi — 5:) dss
J 155, (s:) ﬁfﬁ? (pi—si)ds

Si(pi | ©) = (12)

where © = (p;, 05, a;,6;), and slfgam (8i) = ;0 fgjfw (s;) is valid for every s; > 0.

2.5 Exponential-gamma convolution

Chen et al. [13] proposed in favor of the distribution of the true intensity and its noise,
under the convolution model of Equation , the exponential and gamma distribu-
tions respectively. Therefore, S; ~ fi(s;;60;) = Exp (Qj), and B ~ f (bi;ozj,ﬁj) =
GAM (aj,ﬁj), where s;,b;,0;, o, 3; > 0.



The corrected background intensity for the proposed model ([13]) is :

7b?je_(‘;f_ej>bidbi
0

Di

(2

_ Foie (570 g,
0

2.6 Exponential-lognormal convolution, [15]

Under model , when the true intensity .5; is assumed to be exponentially distributed

Si ~ fi (s,-;Gj) = 0;e %% 0;,s; > 0, and the background noise B is assumed to be

2
(ln bif,u,j)

202
lognormally distributed, B; ~ fg(bi;uj,af-) = %,M € R, ajz,bz- > 0, the
10V 2T

corrected background intensity is

b Ch, (14)
where
Coj = ]i % Mt iod) g 1npi—(uj;(k+1)a§))’ nd
Cuy= 5 ettty (W)

2.7 Gamma-lognormal convolution, [15]

Under model , when the true intensity .S; is assumed to be gamma distributed

a;—1 _/B*’L_
Si ~ fi(si;ay,B85) = SBZ‘JF—E)]’ aj, Bj,s; > 0, and the background noise B; is assumed
i\
(lnbifuj)z
- 202
to be lognormally distributed, B; ~ fo(bs; p1,07) = W, 1 € R,0%,b; > 0, the

corrected background intensity is

(15)



where

o2
(k) [ 1j+(k+n) -
(_l)k(o;cj)e k+n (HJ+ k+n)—5 >¢<lnpi(p‘7+<k+n>03)>

00 73
[o.¢]
O47j - Z Zn:O kBnn| ) and
k=0 Pt
(k+n) | pt(ktn) - o 2
. ) o[2tugtend)
J
Cs = o0
37] kgo ZTL:O Pfﬁ?n'

The exponential-lognormal and gamma-lognormal models, [I5] implements three meth-
ods for the parameters estimation: Maximum likelihood estimation (MLE), method

of moments, and plug-in.

3 Results

In the subsequent sections, we will explain the generalized beta convolution model

and its corrected background intensity value.

3.1 Generalized beta distribution convolution
3.1.1 The joint density function

Under the convolution model of Equation (|1)), where P; is the observed intensity of

regular probes of the i*" gene, S; is the true intensity of the i'" gene, with

Si ~ fi (5i§a1,jacl,j7d1,j>u1,j7Ul,j)

ayjuy,;j—1 S5 a1,
‘(11’]" Si 1 — (1 — Cl,j) E

- N Ut (16)
a1,;ul,j Si @1
dy""" B (ugg,v15) |1+ exy (m)

0<c; <1,a1;,dy;,u1,; and vy ; positive, s; > 0

vy,;—1




and B; is the background noise with

Bi ~ fo (bi; s, ¢25, doj, un g, 025)

g, 027 (1 - (1-cy) <d2_a)a2])

as jus by ) 429 AR
23 92,7 . . P
dy B (u,v2,5) | 1+ c2y <d2,j>

0< C2,5 < 1, ag j, dQ’j, U2, and V2, j positive, b; >0

vg j—1

The joint density function of S; and B; is :

N\ v1,5—1
|a | Salyjul,j—l <1 i (1 . ) <ﬁ)a1,]) J
1] S; 15 d1
fSi:Bi (Si7 bl) = u1,j+v1 X
al,;U1,j S; 41 , 7
i B (urg,vig) |1+ e (25

N V2,51
) o az,j
| 7,02,5u2,5—1 o o ) b;
‘az,J‘ b, <1 (1 Cz,]) (_d2,j) )

ag ju b a2,j U2, tv2,5
2,j%2,5 i ’
dy*™7 B (uz,j,v25) | 1+ ca <d2’j>

The joint density function of S; and P; is

a1,ju1,;—1 1 1 si )\
|ai] s; — (1 —cy) (2=
a1,jU1,j s 1 UL
dy B (u1,v1;) (141 di;
N\ v2,;—1
a ’
ag jug j—1 (pi—s;) ) 2
oas = s~ (1 (1) (2522

N
a2, U2, j Pi—Si ?
dQ 7741 B (u27j,1}27j) (1 + C2,j ( ZIij > >

(18)

v1,;—1

fSi,Pi (Si,Pi) =

(19)

10



3.1.2 The marginal density function

The marginal density function of P; is

pi
Ip, (pi) = [ fs,,p, (5i,p:) ds;
/

o0 00 00 oo (((_)ltmtntr (1 — Cl’j)l (1 — cz,j)m 1 jCh
= KZ Z Z Z { dal‘,j(l+n)da2’.j(m+r) J J X

=0 m=0n=0 r=0 1,5 2,7

Ul,j_l Ug,j—l ur+v1+n-—1 UQJ""UQJ‘"T—:[ y
[ m n r

Di
/5?1,‘j(u1,j+l+n)—1 (pi . Si)a2‘j(u2’j+m+7«)71 dsl-} (20)
0

Let % = z;, then the equation becomes

Kypt et oy (21)
where
Ky — | a1j |l as; |
dy 7" dy* 7" Buy g, v1,5) Bluz,j, v25)
and

X

o o s oo ((—L)FFmERAT (1 ch)l (1— o))" et sc5, <Ul,jl_ 1> <v2,in— 1>
C5,j = Z Z Z Z { dalzj(l+n)da2:j(m+T)

=0 m=0n=0r=0 1,5 2,7
<U1,j +vj+n— 1> <u2,j +vg T — 1) P (Hn)-+aa (mot)

X
n r ’

B ((Il,j (uLj +14+ n) — 1, az,j (UQJ +m + r) — 1) }

11



3.1.3 The conditional density function

The conditional density function of .S; where it is known that P; = p; is

Fsar, (s | i) = fff;#(p)p)

N\ v1,5—1
e s — ai,j ’
ay,juy j—1 ) S5 ’ e \a2,u2,—1
s (1 — (1 —c1y) <—d1fj) ) (pi — s4)

a1,;u1,j+az jug j—1 S\ L
p T Gy (e (clsl_a)
a0 vg j—1
(pi—si) 27
(1 — (1= cay) ('pdz,j ) )
( ) as QLQJ'-"-’UQ,]' (22>
(1 +Coj ( p&;f > )
3.1.4 The corrected background intensity
The corrected background intensity under this generalized beta convolution is
06 j
Pis 23
Cs (23)

where

1 v1— 1\ fv9,; —1
o oo | COITE ) (1 ) e, () ()

Cﬁ,j = Z Z Z Z dalzj(l+n)da21j(m+r) m X

=0 m=0n=0r=0 17] 27-]

(ul,j +uv;+n— 1) <u2,j +vo;+1r— 1>pa1,j(l+n)+a2,j(m+r) »

n r ¢

B (alyj (ul,j +1+ n) , A2, (U27j +m + 7’) — 1)}

12



3.1.5 The likelihood function

The likelihood function (L) to estimate ayj, ¢ j,dy j, U1 4,014, Q2,4, C2.j, daj, U2 j and

V2,5 is

ay,jultag juz j—1
Cs,

_H |a1JHa21‘p J y

aljul ]dGQ ]U2JB (u17 U17j) B (U2,j7 UQJ)

ba2g’“2] 1_ 1_ A bow az j v j—1
i wag| (1= e2) (=)

3\ Y2 tv2,;

az
) janua bow )
v=dy ™ B (un, va) (1 T2 <d3j> >

(24)

The log-likelihood function [ is

1
= Z {111 <‘a17j‘) + In (| a2 5 |) + (al,jul,j + A2 U2 5 — 1) In (pz)
=1
10 (Cs;) = (aru) I (dog) = (a2 025) In (da5) = (B (ua,v15) )

w
—ln(B Ug j, V2, j >}+Z{ azj a2jU2,j—1)1n(bOw)

w=1

bow \
+ (vg; — 1) In (1 —(1—cay) <%) ) — (agjus5) In (da)
sJ

az j
bow \
—In <B (usj, UQ,j)) — (u2j +v2;) In L4 co - (25)
da.j

The likelihood equations are as follows

W — (1 — 027-) In (M (bo—w.>a2’j
% - Z ! + ug;In (bow) + (UQ,J' - 1) ] = di:
92 =1 |a2,]| (1 = (1-cay) (fblg_i ])

. bOw
C2,j In <_d2,j

1 -+ C2.j

—UQJ In (dQJ) — (UQJ + Ug,j) (26)

7 N [N
> Q|
(o=
[ S
N————
Q
S
<.
]
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(Zg_w>2 — | =0 (27)

4 —(1— 02,‘) bai;j (—az,j) d2,j _ GgjUg;
ol _Z (1}2] B 1) ( i) %o T 0
> R AT
) — a2,j+1)
o500y (—as) dz,g( —0 (28)
- (“Zj + U2J) b\ 42
(1 + Co.j (d(;_u;>
BB(uz,j,w,j)

| Oumy

’ :Z az51n (bow) + az;In (dz) — B (uz,, v2,5)
(9uQ,j "

bOw ’ =0 (29)
—In|1+cy; Ay
)]

bOw " =0 (30)
—In{1+cy; Ay
»J
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80573'

ol 1 ar.;
lej = Z <— + UL]' In (pl) + E — UL]' In (dl,])> =0

I 0Cs ;
ol :Z ady _ a1,5U1, 5 -0
6d17j 05,]' dlyj

=1

al I % 8B(u17j,v17j)
_ n (p;) + 299 gy In (dy ) — ——2M
8U17]‘ ; aly] n(p) CB,j ala] n( 17]) B (U’Lj7vl,j)
. 0B(u1,j,01,5
PR el i
81)17] 1 057j B (ul,jJ Ul,j)
where
F ug j—1 ) F ug j+vz j—1
; -y + e -7+
0B (uQ,j,vg,j) F( ) (uz’» ! P (u2]> !
B N e Vo s
Ous, % I (ug; + va,5)
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Ugﬁj—l . u2,j+v27j—1 L
Do) | =7+ X 7] —T (wy) | 7+ X 1
0B ('UQJ, UQJ') T (u2 ) k=1 k=1
- »J

81)27]'

'Ugy]'—l

=B (u27j7v27]‘) ( Z % - Z %) (37)

k=1 k=1

o o0 (0.9} oo
and suppose Cs ; is written as > >~ > > Csyppr then
=0 m=0n=01r=0

Yy Yy

=0 m=0 n=0 r=0

CE)lmnr ( (l -+ n) In (;Z > + (Ul,j -+ [ + n) X
1,5

ai,; (u1,j+l+n)71 1 alyj(ul’j+l+n)fa27j(vg,j+m+r)72 1
> X )| ow
k=1 k=1

Csimnr (W)] (40)

o0 00 00 00 uy, j+v1 +n—1 uy i4v1,,—1
aC5j 1, 5J 1 »J 5J 1
= Cmnr T -
00 _5° a ((z LY

=0 m=0 n=0 r=0 k=1 k=1
ai g (ul,]-+l+n)—1 1 al,j(ul’j—&—l—i-n)—s—agyj (v27j+m+r)—2 1
T S > i) e
k=1 k=1
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0O 00 00 00 v1,;—1 vy i—1—1
3C5J ' 1 . 1
v = Z OSlmn’r E - E +
Li =0 m=0 n=0 r=0 k=1 k=1
uq,j+v1,j+n—1 uy,j+v1,—1 1
- (42)
k=1 k=1

3u17j g (Ul’j> r (ULj + Ul,j)
Ul ]71 1 U17j+1)1’j71
=B (u1,5,015) T > z (43)
k=1 k=1

v1,; -1 uy, j+vy,;—1
r Dl =y + 11_7 )| =~ + 1
8B (UL]', Ul,j) B F (u1 ) (UL]) ( Y kzzjl k) (vl,]> ( Y /.32:31 k>
- 7]

8U1J

v1,;—1

1 1
=B (uu,vl,j) Z E - Z E (44)
k=1

and v is the Euler-Mascheroni constant.

3.2 Generalized beta-normal convolution

Although Figure [I.1] covers normal distribution, we can not derive the formula of
the true intensity value when the noise is normal, from Equation ([1). The normal
distribution in Figure [1.1|is the normal distribution with one parameter. Therefore,
in this section, we derive the formula to compute the corrected background intensity

when the noise is symmetrically distributed, a normal distribution.

17



3.2.1 The joint density function

Under the convolution model in Equation , where P; is the observed intensity of

the regular i'" gene, S; is the true intensity of the i*" gene, with

Si ~f1 (si; a5, ¢5, dj, uj, ;)

|| s (1 - (1-¢) <§7>%)

vj—1

- a ’u]'+’L)j ) (45)
desiB (u;, v;) (1 +¢ <§7> )
0< c; < 1;aj,dj,uj,vj,si >0
and B is the background noise with
7%%(171*#]')2
. 2y _ ¢ 2
B; ~ fa (binujao-j) —\/z——mjj,MjERJj > 0,0, >0 (46)
The joint density function of .S; and B; is
ajujfl S; i Ujil 1 b, )2
‘aj| S; 1-— (1 — Cj) <I> e‘@( z—NJ)
fSZ,B,L (S’U bZ) - as uj+Uj \/%O' (47>
di"B (u,0;) (1 e (i) ) J
The joint density function of .S; and P; is
vj—1 2
ajuj—1 si a ’ (Pz 5§ “J)
ol (1-0-e) (2)7) 5
Is..p, <5i7pi) = (48)
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3.2.2 The marginal density function

The marginal density function of P; is

‘a | (—1)tm (1 B cj)l e (vj l— 1)
N J
Ir, (pz) daJuJB (u U \/%O'J Z Z { dai (IHm) %

=0 m=0

1 b B (si=pi—nj)?
Uy v /sc-bj(uﬁHm)_le 25 ds; (49)
m 1
0

Let ((U—M)) = z;, and the equation becomes

J

X

1
|CL]‘ f: f: i { (—1)l+m (1 — Cj)l an <U.7 l )
dagu;B (u37 v; \/% et dajj(l-i-m) (pZ . uj)n

n=0 j

(Uj + Uj +m — 1) (aj <Uj —+ ln+ m) - 1) (pl . Mj)aj(u]-+l+m)—1 O';-lX

J z_2
/ zfe?zdzi} (50)

2
Let % = x;, the equation becomes

KyCr (51)

19



where

aju;—1

_ |aj‘1’i
K2 _Qﬁd?]ujB (Uj, Uj)

Cr4 —i i i { e Cj)l " (Uj l_ 1) (uj + vjﬂj: me 1)

a7 (= )"

2
aj (uj+1+m) =1\ o em) pon n+1 (p
(O o (5 1 (5

,and

7 (s,+) is the lower incomplete gamma function

3.2.3 The conditional density function

The conditional density function of .S; where it is known that P; = p; is

fSi|Pi (Si | pi)
(i)’

aju;—1 i 4 R 202
et (e )

52
C?,jUj 2\ Y it < )
1+ Cj <2—;>
3.2.4 The corrected background intensity
The corrected background intensity under this generalized beta convolution is
Cg j
DiA— 53
cr (53)
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where

m U (V5 — 1\ (uj +v;+m—1
oo 00 0O (_].)l+ (1—Cj) Cj <jl )(] Jm >
C&j = Z Z Z daj (I4+m) n X

1=0 m=0 n=0 j (pi - Mj)
2
<aj (ujJ;ler)) (pi_/JJ])a](l—&—m) on2% (Py n;tl’ <5_j> B
w1 ((pi—m)\
Y 5 ,< Zajuj> ) , and

7 (s, ) is the lower incomplete gamma function

3.2.5 The likelihood function

The likelihood function (L) to estimate a;, ¢;, d;, uj, vj, p; and O'JQ- is

aju;— 07] (bOw H‘])Q

g T
2\/_da] "B (uj, v;) \/ﬁaj

(54)

The log-likelihood function [ is
= Z {ln ({ajD + (aju; — 1) In(p;) + In(Cr ;) — In(2) — %ln(w) — aju;ln (d;) —
In < (O >} + Z bow ) % (In(2) + In(7)) — In(o;) (55)

The likelihood equations are as follows

O o= (bow—115)\
BEEA)
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o o0 (0.9}
and suppose Cr; is written as > >~ > Crypy, then
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k=1 k=1

4 Discussion and remarks

We have studied the additive models of background correction for BeadArrays and
proposed the generalized model where the true intensity and the noise are assumed
to be skewed distribution and where the true intensity is a skewed but the noise
is symmetrics distribution. In this paper, we have shown the corrected background

intensity value of the proposed models.

This proposed model is a generalization of the available convolution models as in
papers [4], [5H7], [13], [15], [5H7], [14] and [12]. The generalization comes from the
property of the tree-generalized beta distributions [17] and is explained in [19] and
[I7]. The parameters of the generalized beta distribution are a,d,c,u and v. The
gamma, exponential and lognormal distributions are special cases of the generalized

beta distribution.

The gamma distribution is the generalized beta distribution when ¢ = 1,v — 0o, d =
Bv% and a = 1; the exponential distribution is the generalized beta distribution when
c=1,v — oco,d = 62}% and ¢ = 1,p = 1; and the lognormal distribution is the
generalized beta distribution when ¢ = 1,v — oo,d = fve and 8 = (62a2)7,u =

%andaéo.

There are some aspects to be considered while implementing these models:
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1. parameters estimation
In parameters estimation, there are some methods have been suggested by some
researchers. Mc Donald and Xu [I7] used and suggested: the method of max-
imum likelihood (also was used by Fajriyah [20H22]), the method of moments

and the maximum product spacing estimation.

When ¢ = 1, the generalized beta distribution is a generalized beta of the
second kind. Graf and Nedyalkova [23] and Graf et al. [24] have observed that
the pseudo maximum likelihood (Huber [25], Freedman [26] and Pfeffermann et
al. [27]), the nonlinear least squares on the quantile function (Dagum [28§]) and
the nonlinear fit for indicator can be implemented to estimate the parameters
of the generalized beta of the second kind. The available VGAM package in R

helps to estimate the parameters of this distribution.
The existing convolution models use various methods:
(a) the ad-hoc method which is implemented by the RMA method, more de-
tails can be found in [5H7], [29] and [12]
(b) Markov chain Monte Carlo simulations, more details can be found in [I1]

(¢) Maximum likelihood, nonparametrics and method of moments, more de-

tails can be found in [I3], [15] and [12]
(d) Plug-in method, more details can be found in [15]

(e) Fast Fourier transform, more details can be found in [I4]

In general, we first need to provide the initial parameters to optimize the log-
likelihood function in Equations and (36). The initial parameters of the
noise are easily provided since the benchmarking data set of the negative control
probes is available publicly. The initial parameters of the true intensity can be
estimated from the observed intensity data substracted by the mean (or median)

of the negative control intensity.

Secondly, once the initial parameters are available, then they will be used to op-

timize the likelihood function by implementing the optimization method. There
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are some packages in R which can be used to compute the parameters of the
model, for example the optim or optimx package. These parameters are then
used to compute the corrected background intensity based on the formula of
the choosen model. Remember that the background correction is implemented

for each array.

2. the corrected background intensity computation
The corrected background intensity computation includes computations of the
infinite summations: Cj ;, Cs j, C7; and Cs ;. In the author’s experience (in [15])
these infinite summations are close to being constant after certain terms. As a
consequence, the ratios of % and g%j are able to be computed. Therefore the
difficulty in computing the summations used to compute the corrected back-

ground intensity can be eliminated. A sophisticated program written in R, C,

Python and its paralellisation, could help to speed up the computation.

3. the benchmarking data set
During the implementation of this generalized estimator, the Illumina users
need to be aware of the availability of the Illumina Spike-in data set. Once the
model is fitted into this data set, the model can then be used to adjust the

intensity value.

Apart from the benchmarking criteria for the Affymetrix GeneChips, in the au-
thor’s knowledge, the benchmarking criteria for the Illumina BeadArrays have
not been formalized yet. Some researchers, i.e. [I3], [I4], [30] and [12] have
developed the criteria to assess which background correction methods perform
better than the others for the Illumina BeadArrays. These criteria together
with the criteria in the Affycomp package (|31] and [32]) can be used as the
benchmarking criteria for the Illumina BeadArrays. These have been imple-
mented by Fajriyah [I5]. The method which has been used by Shi et al. [33]
also can be used to assess the best performance of the background correction

methods.

4. the negative control data set
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It is possible that the negative control probes set data is unavailable. In this
case, we can adapt the proposed model to the convolution model for background

correction without the negative control probes intensities, as in the RMA model.

The application of this generalized model towards other platforms, such as the Affymetrix,

is possible by considering the points above.
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