

Towards single atom sensitivity in the analytical TEM

W Grogger, C Gspan, S Fladischer, G Kothleitner and F Hofer

Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology & Center for Electron Microscopy, Graz, Austria

Quantitative EDXS

$\epsilon_{A} = \exp \left[-\frac{\mu}{\rho} \right]_{window}^{A} (\rho t)_{window} - \frac{\mu}{\rho} \int_{dead}^{A} (\rho t)_{dead} - \frac{\mu}{\rho} \int_{cont}^{A} (\rho t)_{cont} \right] \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont} \right\} \left\{ 1 - \exp \left[-\frac{\mu}{\rho} \right]_{cont}^{A} (\rho t)_{cont}^{A} (\rho t)_{cont$

EDXS signal per atom

Consider the situation, where only one atom generates the EDXS signal: Absorption and fluorescence are negligible; in addition the signal depends on the illuminated area (beam size). Some results about single atom detection have already been published [1, 2].

$$I_{A}^{*} = \frac{n_{A}}{A_{ill}} (Q\omega a)_{A} \frac{I_{p}}{e} \left(\frac{\Omega}{4\pi} \epsilon_{A}\right)$$

In order to get a high count rate $I_{A'}^*$ some parameters can be optimized:

- I_p and A_{II} : c_s probe corrected microscope + high brightness gun Ω and ϵ_{Δ} : big detector area, close distance to sample, windowless design

The ASTEM (Austrian Scanning Transmission Electron Microscope) is nicely suited for high efficiency counting of X-rays:

- Titan3 G2 60-300
- high brightness gun (X-FEG)
- c_s probe corrector
- high sensitivity Super-X EDX system
- ultrafast scanning (EDXS+EELS @ 1ksps)
- full remote control (?)

specs:	0.07 nm	spatial resolution &
	0.50 nA	beam current &
	0.18 eV	energy resolution

EDXS of Uranium

Uranyl acetate was applied onto a 2 nm C film supported by a holey polymer film. Most of the organic components evaporated during heat treatment. Finally, big (polycrystalline) and small (monocrystalline) U oxide crystals formed as well as single U atoms [3]. As the U atoms tend to speed around, windows of (1.5 nm)² were used to capture the EDX signals.

A glass standard (SRM611 from NIST) was measured (see Poster by Stefanie Fladischer). Here, the intensity of the U-M line was determined and combined with the number of U atoms in the illuminated volume (52.000) to yield an estimate for the count rate per U atom: 1.7 cps/atom.

Using the procedures described above a rate of 0.67 cps/U atom was calculated, which was then used to determine the number of U atoms in the extracted U map. Assuming UO₂ and a cylindrical shape of the particle a thickness of 4.5 nm could be estimated just by counting U atoms.

From the estimated/counted number of U atoms (~12, ~4, ~3, ~10) and the count rate determined from the spectra a count rate per U atom was linearly fitted: 0.17 cps/atom.

	SRM611	U acetate	
Ip	850	200	pA
beam diameter	336,8	1,7	nm
number of atoms	52000	1	
IA* (calc)	1,25	0,22	cps
IA* (exp)	1,7	0,17	cps

Contact

eMail: World Wide Web: werner.grogger@felmi-zfe.at www.felmi-zfe.at

References

[1] T.C. Lovejoy et al., Appl Phys Lett 100 154101 (2012) [2] K. Suenaga et al., Nat Photonics 6 (2012) 545 [3] Y. Zhu et al., Nat Materials 8 (2009) 808[4] P. Rez, X-Ray Spectrom 13 (1984) 55 [5] D. Bote et al., Atom Data Nucl Data 95 (2009) 871

Acknowledgements

Financial support by FFG ("COIN-Aufbau") is acknowledged.