
Protecting Security-Aware Devices

Against Implementation Attacks

by

Marcel Medwed

A PhD Thesis
Presented to the Faculty of Computer Science in Partial Fulfillment of the

Requirements for the PhD Degree

Assessors

Prof. Dr. Karl Christian Posch (TU Graz, Austria)
Pr. Dr. François-Xavier Standaert (UCL, Belgium)

August, 2010

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science

Graz University of Technology, Austria

Abstract

Modern security-aware devices provide cryptographic services at high standards.
The used algorithms are standardized and mathematically secure. Attempts to
attack those algorithms are usually fruitless. Nevertheless, it is possible to attack
the implementation of the algorithms. For instance, the device which evaluates
a certain cryptographic algorithm consumes power. Unfortunately, the power-
consumption profile provides enough information to break the cryptographic
algorithm. Furthermore, manipulations of the clock signal or the device’s power
supply have also led to successful attacks. Such attacks are called implementa-
tion attacks.

Modern smart cards, especially those for high-security applications (e.g. pay-
TV cards), have to undergo a certification process. During this process, their
security is also evaluated against implementation attacks. For a chip-card manu-
facturer it is important to get such a certification in order to be competitive.
Therefore, the chip card has to implement countermeasures. On the other hand,
if the costs of the countermeasures increase the product’s price too much, it is
not competitive either. Thus, strong and at the same time relatively inexpensive
countermeasures are desirable.

In this thesis we present various new countermeasures for different applica-
tions and scenarios. The countermeasures can be divided into three categories:
circuit level countermeasures, algorithmic countermeasures, and protocol-level
countermeasures. Circuit level countermeasures are discussed in the first part of
the thesis. In particular, we develop and implement a fault-detecting processor
which can withstand a strong adversary. This processor can detect a large family
of errors with certainty and all other errors with high probability. The costs of
this approach are less than twice the costs of an unprotected processor.

The second part of the thesis discusses algorithmic countermeasures. In par-
ticular, we show how to achieve a high error detection for RSA, ECC and AES.
What is special about our approach is that it not only provides data integrity
but also protects against a wider family of attacks, for instance program-flow
manipulations.

In the third part we present a protocol-level countermeasure. The counter-
measure is tailored to a specific scenario, namely applications where one com-
munication party is a low-cost device. This is typically the case for RFID appli-
cations.

iii

Acknowledgements

First of all I would like to thank Elisabeth Oswald and Manfred Aigner for
having opened up the possibility to do my Ph.D. at the IAIK in first place. It is
a nice environment to work in and I am grateful for having had such nice fellow
colleagues there.

Furthermore, special thanks go to the people whom I collaborated with dur-
ing my project: Jörn-Marc Schmidt, Christoph Herbst, Michael Hutter, Alexan-
der Szekely, Stefan Mangard, Johann Großschädl, Mario Kirschbaum, Elisabeth
Oswald, Thomas Plos, Francesco Regazzoni, François-Xavier Standaert, and Jo-
hannes Wolkerstorfer.

I would also like to thank Karl Christian Posch for serving as advisor and
assessor for my thesis. Thanks also to François-Xavier Standaert for making the
trip to Graz and serving as external assessor and examiner.

Finally, doing a Ph.D. can be a pain sometimes and it definitely needs way
more than just academic support to finish it. Therefore, special thanks to my
family and friends.

Marcel Medwed
Graz, August 2010

v

Table of Contents

Abstract iii

Acknowledgements v

List of Publications xi

List of Tables xiii

List of Figures xv

List of Algorithms xvii

1 Introduction 1

1.1 Kerckhoffs’ Principle . 1

1.2 Black-Box Analysis . 2

1.3 Implementation Attacks . 2

1.4 Countermeasures . 5

1.4.1 Countermeasures against Passive Attacks 5

1.4.2 Countermeasures against Active Attacks 6

1.5 Our Contribution . 7

1.6 Organization of This Thesis . 7

2 Motivation 9

2.1 Fault Model . 9

2.2 Fault Injection . 11

2.3 Using the Error . 12

2.3.1 A Generic Fault Attack 12

2.4 Differential Fault Attacks against AES 12

2.4.1 AES . 12

2.5 Fault Attacks against RSA . 15

2.5.1 Bellcore Attack . 15

2.5.2 Attack on the Montgomery Ladder 16

2.6 Fault Attacks against EC Systems 17

2.7 Conclusions . 18

vii

viii Table of Contents

I Hardware Countermeasures 19

3 Coding Schemes for Arithmetic and Logic Operations 21
3.1 Block Codes . 21
3.2 Channel Coding and Secure Datapaths 22
3.3 Coding Schemes . 23

3.3.1 Time Redundancy . 24
3.3.2 Space Redundancy . 25
3.3.3 Berger Codes . 25
3.3.4 Linear Codes . 27
3.3.5 AN -Codes . 30
3.3.6 Idempotent AN -Codes . 31
3.3.7 Residue Codes . 32
3.3.8 Multi-Residue Codes . 34

3.4 Comparison . 35
3.5 Conclusion and Open Problems 36

4 Arithmetic Logic Units with High Error-Detection Rates 39
4.1 Requirements and Goals . 39
4.2 General Hardware Architecture 40

4.2.1 Finding an Appropriate Linear Code 42
4.2.2 Finding an Appropriate Multi-residue Code and Encoder

Implementation . 42
4.2.3 Area Results for the Encoders 46
4.2.4 Design of the parity ALU 46
4.2.5 Design of the Residue ALU 47

4.3 Optimization for Multi-Residue Codes 49
4.3.1 Instruction Frequency Analysis 49
4.3.2 Optimized Architecture with Only One

Encoder/Checker . 50
4.4 Results . 51

4.4.1 Area of the Combinatorial Part 51
4.4.2 Total area . 52
4.4.3 Timing behavior . 52

4.5 Intermediate Discussion . 53
4.6 Adding a multiplier . 53

4.6.1 Area and Timing . 55
4.7 Conclusion . 55

II Algorithmic Countermeasures 57

5 A Generic Fault Countermeasure 59
5.1 Approaches Based on Ring-Extension 59

5.1.1 Optimizations . 60
5.1.2 Infective Computation . 60

Table of Contents ix

5.1.3 Program-Flow Security of Ring Extensions 61
5.2 Coding-Based Approaches . 61
5.3 Extending AN +B Codes . 62
5.4 Error-Detection Probabilities . 63
5.5 Implementation and Performance 64
5.6 Application . 66
5.7 Comparison with Vigilant’s Approach 67
5.8 Conclusion . 68

6 Embeddings for Elliptic Curves 69
6.1 ECC Basics . 69
6.2 ECC and Implementation Attacks 71
6.3 Previous Work . 72
6.4 Proposed Countermeasure . 74
6.5 Security Analysis . 75
6.6 Performance Evaluations . 77
6.7 Conclusion . 80

7 Embedding AES 81
7.1 AES and Fault Countermeasures 81

7.1.1 Related Work . 82
7.1.2 Our contribution . 82

7.2 Fault Model . 82
7.3 Extended AN +B-Codes Suitable for AES 83
7.4 Redundant Table Lookups . 84
7.5 Implementation and Security . 86

7.5.1 Implementation . 86
7.5.2 Data Manipulation . 86
7.5.3 Program-Flow Manipulation 87
7.5.4 Overall Security . 87

7.6 Performance . 88
7.7 Conclusion . 89

III Protocol-Level Countermeasures 91

8 Fresh Re-Keying 93
8.1 Related work . 94
8.2 Background . 96

8.2.1 SPA and DPA . 96
8.2.2 Divide-and-conquer strategies 97
8.2.3 Challenge-response protocol 97

8.3 Choice of the function g . 98
8.3.1 Desired properties . 98
8.3.2 Candidate . 98

8.4 Implementation of the function g 99

x Table of Contents

8.4.1 Unprotected implementation 99
8.4.2 Improving g’s SPA/DPA resistance with shuffling 99
8.4.3 Improving g’s SPA/DPA resistance with blinding 100
8.4.4 Improving g’s SPA/DPA resistance with protected logic

styles . 101
8.5 Global architecture . 101

8.5.1 Block diagram and design space for the function g 101
8.5.2 Implementation results and performance evaluation 102

8.6 Security analysis . 104
8.6.1 The choice of k . 104
8.6.2 Resistance against fault attacks 104
8.6.3 Resistance against standard side-channel attacks 105
8.6.4 Resistance against algebraic side-channel attacks 107

8.7 Conclusions . 108

9 Conclusions 109

Bibliography 113

Index 125

List of Publications

1. Johann Großschädl, Stefan Tillich, Christian Rechberger, Michael Hof-
mann, and Marcel Medwed. Energy Evaluation of Software Implementa-
tions of Block Ciphers under Memory Constraints. In Rudy Lauwereins
and Jan Madsen, editors, 2007 Design, Automation and Test in Europe
Conference and Exposition (DATE 2007), April 16-20, 2007, Nice, France,
pages 1110–1115. ACM Press, April 2007. ISBN 978-3-9810801-2-4.

2. Christoph Herbst and Marcel Medwed. Using Templates to Attack Masked
Montgomery Ladder Implementations of Modular Exponentiation. In
Kyo-Il Chung, Moti Yung, and Kiwook Sohn, editors, 9th International
Workshop on Information Security Applications (WISA 2008), Jeju Is-
land, Korea, September 23-25, 2008, Proceedings, volume 5379 of Lecture
Notes in Computer Science, pages 1–13. Springer, Februar 2008.

3. Michael Hutter, Marcel Medwed, Daniel Hein, and Johannes Wolkerstor-
fer. Attacking ECDSA-Enabled RFID Devices. In Michel Abdalla, David
Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, Applied
Cryptography and Network Security - ACNS 2009, 7th International Con-
ference, Paris-Rocquencourt, France, June 2-5, 2009, Proceedings, volume
5536, pages 519–534. Springer, May 2009.

4. Marcel Medwed and Jörn-Marc Schmidt. A Continuous Fault Counter-
measure for AES Providing a Constant Error Detection Rate. In Luca
Breveglieri, Marc Joye, Israel Koren, David Naccache, and Ingrid Ver-
bauwhede, editors, Proceedings of the Seventh International Workshop,
FDTC 2010, Santa Barbara, California, 21 August 2010, volume 7. IEEE
Computer Society, August 2010.

5. Marcel Medwed and Christoph Herbst. Randomizing the Montgomery
Multiplication to Repel Template Attacks on Multiplicative Masking. In
Werner Schindler and Sorin A. Huss, editors, COSADE - First Interna-
tional Workshop on Constructive Side-Channel Analysis and Secure De-
sign, 2010.

6. Marcel Medwed and Elisabeth Oswald. Template Attacks on ECDSA.
In Kyo-Il Chung, Moti Yung, and Kiwook Sohn, editors, 9th International
Workshop on Information Security Applications (WISA 2008), Jeju Island,
Korea, September 23-25, 2008, Pre-Proceedings, 2008.

xi

xii Table of Contents

7. Marcel Medwed and Jörn-Marc Schmidt. A Generic Fault Countermeasure
Providing Data and Program Flow Integrity. In Luca Breveglieri, Shay
Gueron, Israel Koren, David Naccache, and Jean-Pierre Seifert, editors,
Fault Diagnosis and Tolerance in Cryptography, Fifth International Work-
shop, FDTC 2008, Washington DC, USA, August 10, 2008, Proceedings,
pages 68–73. IEEE Computer Society, August 2008.

8. Marcel Medwed and Jörn-Marc Schmidt. Coding Schemes for Arithmetic
and Logic Operations - How Robust Are They? In Heung Youl Youm and
Moti Yung, editors, 10th International Workshop on Information Secu-
rity Applications (WISA 2009), Busan, Korea, August 25-27, 2009, Pre-
Proceedings, 2009.

9. Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Fran-
cesco Regazzoni. Fresh Re-keying: Security against Side-Channel and
Fault Attacks for Low-Cost Devices. In Daniel J. Bernstein and Tanja
Lange, editors, Progress in Cryptology - AFRICACRYPT 2010, Third In-
ternational Conference on Cryptology in Africa, Stellenbosch, South Africa,
May 3-6, 2010. Proceedings, volume 6055 of Lecture Notes in Computer
Science, pages 279–296. Springer, 2010.

10. Jörn-Marc Schmidt and Marcel Medwed. A Fault Attack on ECDSA. In
David Naccache and Elisabeth Oswald, editors, Fault Diagnosis and Tol-
erance in Cryptography, Sixth International Workshop, FDTC 2009, Lau-
sanne, Switzerland ?September 6, 2009, Procceedings, pages 93–99. IEEE-
CS Press, September 2009.

11. Jörn-Marc Schmidt, Thomas Plos, Mario Kirschbaum, Michael Hutter,
Marcel Medwed, and Christoph Herbst. Side-Channel Leakage Across
Borders. In Dieter Gollmann and Jean-Louis Lanet, editors, Smart Card
Research and Advanced Applications 9th IFIP WG 8.8/11.2 International
Conference, CARDIS 2010, April 13-16, 2010, Passau, Germany, Pro-
ceedings, Lecture Notes in Computer Science, pages xxx–xxx. Springer,
April 2010.

List of Tables

1.1 Categorization of passive and active implementation attacks . . . 3

3.1 Detection probabilities for partitioned Berger codes 27
3.2 Properties and weaknesses of the analyzed coding schemes 37

4.1 Number of suitable check bases for multi-residue codes 44
4.2 Area results of the encoder designs. 46
4.3 Area results of the ALU designs. 47
4.4 Instruction frequencies. 49
4.5 Area requirements in GE. 51
4.6 Area savings compared to the DMR ALU 52
4.7 Necessary operations to multiply the residues by 232 and its inverse. 54

6.1 Comparison of different countermeasures. 77
6.2 Additional operations needed for our countermeasure. 78
6.3 Overhead with a security parameter of 30 bits 79
6.4 Overhead with a security parameter of 60 bits 79

7.1 Fault-detection probabilities . 87
7.2 Cycle counts for the various AES operations 88

8.1 Post synthesis results for an ASIC implementation 103
8.2 Cycle count for re-keying with different parameters 104

xiii

List of Figures

1.1 Black-box analysis scenario. 2
1.2 Implementation-attack scenario 3

3.1 Classical channel-coding model. 22
3.2 Secure datapath model. 23

4.1 General architecture . 41
4.2 Residue encoder for moduli of the form 2k − 1. 44
4.3 Residue encoder for moduli of the form 2k + 1. 45
4.4 Parity ALU for linear codes over GF(2). 47
4.5 Parity ALU for multi-residue codes. 48
4.6 Optimized multi-residue code ALU. 50

5.1 Performance of extended AN +B-codes 66

8.1 Fresh re-keying: basic principle. 94
8.2 Block diagram of the random-transformation circuit 102
8.3 Complexity of a DPA against fresh re-keying 107

xv

List of Algorithms

1 Montgomery ladder [JY03] . 16
2 Check if A represents a suitable base for a multi-residue code . . 43
3 Securing an algorithm with extended AN +B codes. 63
4 Double and add . 71
5 Montgomery ladder . 71
6 Point doubling . 75
7 Point addition . 76
8 Modified Montgomery point ladder based scalar multiplication . 77
9 Redundant S-box lookup . 85
10 Product-scan algorithm for multiplication 100
11 Blinded session key generation 101

xvii

1
Introduction

Already thousands of years ago, cryptographic methods where used to hide sen-
sitive information such as military orders or intelligence from enemies. In our
modern, digital society, the use of cryptography and also its role has widened.
It is not only used to hide information, but also to digitally sign documents or
to authenticate persons or devices. In fact, one could go as far as to say that our
society completely depends on cryptographic services and could not function
anymore without them. Most people use them on a daily basis without even
noticing, either in the form of software on a laptop, a credit card or a mobile
phone.

1.1 Kerckhoffs’ Principle

As cryptography plays such an important role it must be guaranteed that cryp-
tographic services provide what we expect them to. For instance, an encryption
scheme must guarantee confidentiality. That is, nobody except the involved
communication parties must be able to decrypt the encrypted message. On the
other hand, a digital signature scheme must guarantee data integrity, authenti-
cation and non-repudiation. Data integrity ensures that the document was not
altered after it had been signed. The latter two ensure that the identity of the
signer can be proven and that the signer cannot deny what she has committed
to by signing the document.

So how is it now possible to guarantee such properties? Cryptographic pro-
tocols can be proven secure in certain models. However, protocols are based
on cryptographic primitives. Throughout this chapter, the running example for
such a primitive will be a block cipher which encrypts a message m to a cipher-

1

2 Chapter 1. Introduction

c = Ek(m)m c

Figure 1.1: Black-box analysis scenario.

text c using a secret key k, written as c = Ek(m). The security of such a primitive
is usually based on the non-existence of efficient attacks. As this non-existence
can usually not be proven, primitives have to be analyzed thoroughly.

One of the means to push forward a thorough analysis and also an almost
necessary measure to achieve security is the application of Kerckhoffs’ principle.
It basically states that a cryptographic system must stay secure even if every-
thing except the key is known about the system. Following this principle, the
security of today’s standardized algorithms has been checked by a relatively large
international community. This does not eliminate the risk of potential security
flaws in an algorithm but it reduces it.

1.2 Black-Box Analysis

The model in which attacks against primitives are constructed is the so-called
black-box model. This model is motivated by the existence of a strong adversary.
For block ciphers, the adversary is assumed to have plaintext/ciphertext pairs.
In other words, he is given a black box, that takes m and yields c = Ek(m). This
is depicted in Figure 1.1. Together with Kerckhoffs’ principle this means that for
a known algorithm, the adversary knows or even chooses the input and receives
the output. However, he does not see the data values which are processed inside
this black-box.

Today, the community has a good understanding of how to design a block-
cipher which withstands attacks in such a scenario. As a consequence, the time
complexity of recovering cryptographic key-material by means of standard crypt-
analysis became prohibitive.

1.3 Implementation Attacks

In the second half of the 1990s, cryptographers, most prominently Paul Kocher,
began to think of other possible ways to break cryptographic schemes. If the
black-box analysis shows no flaws, then potential attacks need additional infor-
mation, thus need to be mounted in another model. Many security-aware devices
actually offer such additional information. Pay-TV set-top boxes, payment cards
or digital-signature cards are realized as embedded systems and follow the laws
of physics. Thus, the black box is actually a piece of silicon which requires time

1.3. Implementation Attacks 3

c = Ek(m)m c

active channel

passive channel

Figure 1.2: Implementation-attack scenario with unintended active and passive chan-
nel.

Table 1.1: Categorization of passive and active implementation attacks.

Cost Passive Active

Non-invasive Low
Timing attacks Clock glitches
Power analysis Power spikes

Semi-invasive Low – medium EM analysis
EM pulses
Laser beam

Invasive Medium – high Probing
Laser cutter
Focused ion beam

to carry out computations and consumes energy to power the transistors which
form the computing circuit. As it turned out, the time [Koc96] and the power
consumption [KJJ99] of the device contain information about the internally pro-
cessed data. Hence, looking at a real-world implementation of a cryptographic
primitive, the cryptanalyst is provided with additional information. Such infor-
mation is referred to as side-channel information, as it comes from an unintended
channel. In Figure 1.2, the side-channel is denoted as passive channel. The at-
tacks which make use of this passive channel are called side-channel attacks and
the method is called side-channel analysis (SCA).

However, implementation attacks can go even further than to just make use of
physical observations. They cover not only side-channel attacks, but also attacks
during which the environment is changed in order to maliciously influence the
device. Such attacks are called active attacks or fault attacks. For instance, one
can imagine that a device might not work properly if exposed to extreme heat,
extreme cold or strong electro-magnetic radiation. Under certain conditions
such malfunctions can be used for cryptanalytic purposes. In Figure 1.2, fault
attacks are indicated by the active channel via which the computation can be
maliciously influenced.

Active and passive attacks can be further divided into invasive, semi-invasive
and non-invasive attacks. This categorization is depicted in Table 1.1. Non-

4 Chapter 1. Introduction

invasive attacks are usually the least expensive ones. Their costs can range from
hundred to a few thousand Euros. Non-invasive attacks use only directly ac-
cessible interfaces. Passive attacks involve, for instance, measuring the power
consumption or the timing behavior of a device. In the case of active attacks,
tampering with the power line or the clock signal as well as varying the tem-
perature fall into this category. Measuring the power consumption is the most
expensive non-invasive technique since it requires a digital oscilloscope. All other
attacks can be carried out cheaper with home-brewed circuits. In order to go
one step further, that is, semi-invasive attacks, one has to remove the package
of a chip, but the passivation stays intact. Such a measure facilitates measur-
ing the electro-magnetic (EM) radiation emanated by a device. Furthermore it
allows to disturb the device by means of laser beams or EM pulses. Suitable
lasers and microscopes can be acquired for some ten thousand Euros. Finally,
the most expensive attacks are invasive ones. Here, the attacker establishes elec-
trical contact to the device or alters the circuit of the device. On the passive
side this allows probing attacks where an attacker can directly read the infor-
mation traveling over bus lines. In the case of active attacks, he can now cut
wires with a laser cutter or even establish new connections with the help of a
focused ion beam (FIB). In this category, the costs are basically open, but also
the capabilities are almost unlimited.

Attack equipment, available in university labs, is usually limited to some
10 000 Euros. Our implementation-attack lab is, for instance, equipped with
a digital oscilloscope together with differential and EM probes for non-invasive
passive attacks. For basic active attacks, our equipment consists of glitch and
EM-pulse generation circuits. Glitches can, for instance, be generated by simple
FPGA-based circuits. However, a better result can be achieved if dual-output
signal generators are used, which allow to define a phase shift between the two
output signals. By using an FPGA to switch between the signals, glitches which
only last several picoseconds can be achieved. Clock glitches render the clock
cycle shorter than the critical path of the device. Power glitches on the other
hand tend to clear buses. The effect of this heavily depends on the device but is
somehow predictable and usually reproducible. We usually use glitches to skip
instructions. For EM pulses we use home brewed high-voltage generators which
discharge via a coil. Such attacks are inexpensive but hard to time and to control,
that is, the result is random. For semi-invasive and invasive attacks, the package
needs to be removed. For smart cards and RFID tags this can be done using
acetone and other tools, all of which are usually available at a drug store. Also
for opening microcontrollers from the rear side, no special equipment is needed.
For opening them from the front on the other hand, it is common practice to use
fuming nitric acid to remove the package. In this case a full equipped chemistry
lab is required. Access to such facilities is often given due to inter-department
cooperations (e.g. with the chemistry department). Once the package is removed
a microscope is needed. The one we use features a three-axes motor table and
magnification up to 1 000 times. Furthermore, it has a camera port, which can
be used for mounting a laser, here, the magnification is only 100. The costs for

1.4. Countermeasures 5

such an equipment are in the same range as for passive attacks. However, this is
only the microscope equipment, what is still missing is the laser equipment. We
use inexpensive laser diodes in connection with collimator optics. This allows for
a laser spot with a diameter smaller than 0.2 millimeters. With this setup it is
possible to, for instance, attack single memory cell in 1.3µm CMOS technology.
However, for newer technologies more sophisticated equipment is necessary. Such
equipment is usually too expensive for university labs, but can be found in
in-house attack labs of chip manufacturers or certification labs [Tri10]. Their
equipment usually consists of powerful diode lasers or YAG lasers whose energy
can be adjusted either electrically or via a shutter. Such lasers allow much better
focusing of the spot and thus the energy. Furthermore, different wavelengths are
used for front and rear-side attacks. Finally, the newest trend lies in attacks
with two lasers which can be operated simultaneously.

1.4 Countermeasures

One can imagine that it is not very meaningful to have a strong cryptographic
scheme if its implementation can be broken with little effort. Thus, the advances
in the field of implementation attacks have also triggered research in the field of
countermeasures.

In general, countermeasures can be deployed on several levels. Each level
bears its advantages and disadvantages. For instance, circuit-level countermea-
sures are the most transparent to the software developer because he is not obliged
to think about the problem. On the other hand they might not be as effective
as countermeasures at other levels. Countermeasures at algorithm level might
be able to make use of algebraic structures or properties of the algorithm and
thus be highly effective and reliable. However, an adversary may as a conse-
quence target different components of the algorithm which are not protected
by the countermeasure. Moreover, in the case of algorithmic countermeasures,
the software developer has to take care of it and a lot can go wrong during
the countermeasure implementation. Finally, there are protocol-level counter-
measures. They can be efficient and generic, but demand a lot of changes in a
system: Usually, not only the software of one device needs to be changed, but
also the protocol needs adaption and thus the changes have to be applied to
all involved parties. In the next two sections, we briefly highlight the different
countermeasure approaches for active and passive attacks.

1.4.1 Countermeasures against Passive Attacks

The basic idea behind countermeasures for passive attacks is simple: disguise the
physically observable, exploitable information. Basically, there are two strate-
gies to achieve this, namely hiding and masking. Hiding tries to break the link
between the processed information and the power consumption, for instance by
trying to randomize the power consumption by means of noise. However, hiding
can also mean to keep the power consumption constant. Masking on the other

6 Chapter 1. Introduction

hand tries to break the link between the processed data values and the data val-
ues which are actually computed. Or in other words, one randomly generates a
redundant representation of the data values and operates on the redundant rep-
resentation. As simple as those countermeasures sound, their realization is not.
Especially when it comes to circuit-level countermeasures and countermeasures
for block ciphers, there are still quite some open problems.

1.4.2 Countermeasures against Active Attacks

For countermeasures against active attacks there exist also two strategies which
can be pursued, namely error detection and infective computation. If one follows
the first one, the aim is to incorporate enough redundancy in a system in order
to detect any inconsistencies with a high probability. However, this approach has
an inherent problem which, depending on the application, might pose a threat:
If the adversary manages to bypass the correctness check, the faulty output
leaks information about the key. In general though, error detection is easier
to realize than infective computation. The latter one does not act on detected
errors, but follows a design in which each error leads to a random output which
is uncorrelated to the secret key1. Such countermeasures are usually tailored to
specific algorithms.

This thesis mostly focuses on error-detection. However, for the countermea-
sure in Chapter 5, we propose a modification which realizes infective computa-
tion as well. The countermeasure presented in Chapter 8 can be put in neither
of the categories. Furthermore, we tackle the problem on three levels: On the
circuit level, on the algorithmic level, and on the protocol level. Countermea-
sures at circuit level play an important role for active attacks for two reasons:
Transparency and thorough protection. The first one has the same reasons as
for passive attacks. However, the second one is caused by the fact that an
adversary can go many ways to recover secrets from a device. Assume that
the block cipher is perfectly protected. Then it might still be possible to get
the operating system to dump the key instead of some other memory region.
However, circuit-level countermeasures also have drawbacks, namely that the
error-detection capabilities are not necessarily prohibitive and that the program
flow needs extra protection.

Algorithmic countermeasures are usually more efficient, especially for public-
key algorithms where all operations take place in the same algebra. Plus, these
algebras are usually large, that is, larger than 2160 elements. Thus, adding some
redundancy does not decrease the performance too much. Furthermore, such
countermeasures can even protect the program flow in some cases.

Finally, the protection of symmetric primitives is not very efficient in either
of the above approaches. Instead, protocol-level countermeasures can be used
to stop the attacker from using its usual approach. That is for instance, if an

1Note, that the sole knowledge about whether an error occurred might already reveal one
bit about the key. However, attacks based on such observations (e.g. safe-error attacks) are
rather inefficient.

1.5. Our Contribution 7

attacker needs to do at least two encryptions with the same key and the same
plaintext, we can change the key for every invocation of the algorithm.

1.5 Our Contribution

As part of my work in the Austrian government funded ARTEUS project I
looked for efficient circuit-level countermeasures. The idea was that the processor
operates on redundant data and thus is able to detect inconsistencies. Together
with Jörn-Marc Schmidt, I started by looking at different coding schemes which
could be appropriate data representations within a processor. This work is
summarized in [MS09]. Some parts of it were only delivered internally [Med09].
The most promising coding schemes were then used to implement a redundant
arithmetic logic unit. The results were discussed together with Stefan Mangard.
The results of this work are currently in review.

Going one level higher, that is algorithmic countermeasures, we looked at
the most prominent symmetric and asymmetric primitives. Most of this work
was done together with Jörn-Marc Schmidt. The first algorithm we looked at
was RSA in [MS08]. Later we also looked at a countermeasure for the elliptic-
curve scalar multiplication [SM09] and for the advanced encryption standard
(AES) [MS10].

Finally, during the ECRYPT II research retreats, I worked together with
Johann Großschädl, Francesco Regazzoni and François-Xavier Standaert on a
new re-keying approach tuned to the needs of low-cost devices [MSGR10]. This
approach overcomes problems inherent to traditional re-keying schemes and pro-
vides a unified countermeasure, that is, it prevents power analysis attacks and
differential fault attacks.

1.6 Organization of This Thesis

After a motivational chapter which illustrates the threat imposed by fault at-
tacks, this thesis is organized in three parts. Those three parts correspond to
the three levels at which implementation attacks can be counteracted. Counter-
measures on circuit level are discussed in Chapter 3 and 4. Afterwards we focus
on algorithmic countermeasures in Chapter 5, 6 and 7. Finally, a protocol level
countermeasure which prevents most active and passive attacks is presented in
Chapter 8. Conclusions are drawn in Chapter 9. It the following, each chapter
is outlined briefly:

Chapter 2 introduces the basic concepts which are used in fault attacks. We
sketch a general attack, but also explain known fault attacks against AES and
RSA. Further, we briefly discuss attacks on elliptic-curve based schemes. This
gives an idea of fault induction and how the resulting errors are used for breaking
schemes. It also should give an understanding of where the countermeasures in
the consecutive chapters hook in.

8 Chapter 1. Introduction

Chapter 3 investigates several coding schemes from various points of view.
First it discusses their usual coding theoretic metrics like the code distance
and the error-detection rate. However, since we want to operate on the coding
schemes, we are also interested how these metrics behave in the case of faulty
operands during an operation. The chapter ends with a comparison of the the-
oretical advantages and disadvantages of the various schemes.

Chapter 4 uses the most promising coding schemes from Chapter 3. For
these coding schemes we choose efficient, practice-relevant parameters and design
hardware architectures for arithmetic logic units (ALU). The two ALUs are then
implemented in VHDL and their post-synthesis results are compared.

Chapter 5 goes one level up and looks at a generic fault countermeasure
which can be used for various algorithms. This countermeasure does not only
guarantee data integrity but also protects the program flow. Exemplary, we
apply the countermeasure to the RSA public-key algorithm.

Chapter 6 extends the approach of Chapter 5 and shows how to apply this
countermeasure to elliptic-curve based systems. In particular, we show that
although a straight-forward application is not possible, an incorporation with
existing countermeasures is. It turns out that a sound combination of counter-
measures is more efficient for many standardized prime-field curves.

Chapter 7 applies the same codes to an symmetric algorithm, namely the
advanced encryption standard (AES). Again, a straight-forward application is
not possible. However, the additional use of redundant table lookups allows to
construct a strong countermeasure.

Chapter 8 finally presents a countermeasure at the topmost level, the protocol
level. We discuss a generic and unified countermeasure against implementation
attacks. In particular, we design what we call a fresh re-keying scheme. This re-
keying scheme has the advantage of overcoming problems of traditional re-keying
schemes and in addition of being tailored especially to low-cost devices like RFID
tags. We show how it can be used and that a hardware implementation of AES
with fresh re-keying is smaller than the so-far best protected implementation.

Finally, the conclusions of this thesis are drawn in Chapter 9.

2
Motivation:

A Threat Called Fault Attack

As the remainder of this thesis deals with fault countermeasures, we dedicate
this chapter to fault attacks. In the following we discuss all stages of an attack,
from the fault injection itself over the fault model to the actual key recovery.
We start with fault models as they play a central role. They can be seen as the
link between a fault injection and a theoretic key-recovery attack. Even more
important for this thesis, fault models allow to quantify the effect of countermea-
sures. For the fault injection itself, a complete overview would be out of scope.
However, we outline some practical low-cost injection methods to give the reader
an idea of how some fault models can be realized. Next, the errors caused by
the fault will be discussed. Finally, we look at fault attacks against three im-
portant cryptographic primitives. The attack against AES follows the work by
Piret and Quisquater [PQ03]. The attacks against RSA cover the famous Bell-
core attack [BDL97] and an attack on a protected implementation which was
developed together with Jörn-Marc Schmidt. We end this chapter with some
notes on attacks against the elliptic-curve scalar multiplication.

2.1 Fault Model

A fault model describes the effect and the nature of a fault injection. Thus, a
fault model states the potential capabilities of an attacker. However, it does not
illustrate how the described fault is or can be injected. Hence, a fault model
allows to abstract the fault-injection process.

9

10 Chapter 2. Motivation

Theoretic attacks work with these abstractions rather than with fault-injection
details. The attack itself can assume any fault model, but if the model cannot
be realized by some fault-injection method, the attack might be meaningless. It
is important for theory to get an abstract description of possible fault injections.

Finally and most important for this thesis, fault models allow the designer
of countermeasures to estimate the strength of an adversary. As a result it be-
comes possible to quantify the security provided by a countermeasure regarding
a certain fault model.

A fault model consists of a set of parameters: The fault type, the precision,
the timing, the duration and the order. The different types are listed in the
following:

� Bit-set/-reset fault: A bit in memory or in a register can be forced to a
specific value. If this value is zero, the bit is said to be reset, otherwise it
is set. Note that the value after the fault injection is uncorrelated to the
value before.

� Bit-flip fault: A bit in memory or in a register can be inverted. Here, the
faulty value correlates with the original value.

� Random fault: Either a bit or even a larger memory section like a byte, a
word or a variable is changed to a random value. For this type of fault,
the number of affected bits is usually specified explicitly.

� Program-flow fault: Such a fault modifies the program flow. The modifi-
cation can cause the execution of random instructions or the skipping of
whole procedures, if for instance the procedure call is manipulated.

The precision of a fault determines the data width or the number of bits it
affects as well as the locality. For instance, it can be the case that only a few
bits are affected by a fault, but that the attacker has only loose control over the
position within a variable.

Usually easier to control is the timing of a fault. If the fault injection is
controlled by a digital circuit, cycle accurate fault injection is feasible. On the
other hand, if a manually-operated piezo igniter is used to generate a magnetic
field, things become far less precise, yet the timing might still be precise enough
for certain attacks.

The duration of a fault can be classified as either transient, permanent or
destructive. A transient fault affects only one computation, for instance if an
arithmetic operation is disturbed. The change of a variable in memory on the
other hand usually causes a permanent fault. This is because a fault occurs
every time the variable is accessed but the fault disappears if the device is reset.
A fault which affects non-volatile memory or even the circuit itself is called
destructive. Such a distinction might become important in the case of weak
countermeasures. If an algorithm is executed twice and the results are checked
against each other, a permanent fault is not detected.

Finally, a fault injection can be of a certain order, where the order basically
refers to the number of fault injections. In the case of fault attacks, the effort of

2.2. Fault Injection 11

injecting multiple faults is linear or even constant with the order. However, fault
injections are hardly successful with certainty. Thus, the need of an higher-order
fault-attack might decrease the probability of a successful injection dramatically.
The effect of the fault order on detection mechanisms depends on the scenario.
Usually, the probability of detecting one out of n faults is higher than the one of
detecting a single fault. On the other hand it can be the case that n− 1 faults
are detected with certainty and only n+ faults can circumvent security checks.

2.2 Fault Injection

Fault injection is the method to realize a fault model. In this (first) step of an
attack, the adversary wants to disturb the device under attack (DUA) by some
means. In the following we describe some non-invasive and semi-invasive fault
injections and the therewith caused fault model.

The probably cheapest attack, one could perform, is to disturb a device with a
piezo igniter from a gas lighter. The spark which is produced by the igniter causes
an electro-magnetic field. This field is strong enough to disturb a microcontroller
from 50 centimeters distance. The induced fault is completely unpredictable and
random. Sometimes, it even causes the device to hang completely. However, for
an unprotected implementation such a simple fault injection might suffice. The
fault model which is implemented by this attack could be described as random
fault with imprecise timing and no bit-width/position precision. Furthermore,
the fault is either transient or permanent, but as long as the spark does not
discharge into the DUA, it is not destructive.

Other low-cost attacks which we performed are for instance manipulations
of the clock signal or of the power supply. For this purpose we used an FPGA
board to provide the power supply and to generate the reset and clock signal
for the DUA. In this setup, the FPGA counted a specific number of cycles
after the DUA’s power-up and then either tampered with the power supply or
the clock. In the case of a clock glitch, the DUA was supplied with a much
higher frequency for one cycle. The expected effect is that the DUA cannot
finish the current instruction and thus maybe does not write back the result of
the instruction. On the other hand, a shortly disabled power supply (also for
approximately one cycle) is expected to clear buses, thus for instance causing
the skip of an instruction. The resulting fault model could be described as a
program-flow fault with precise timing. The duration of the effect depends on
the affected instruction.

Eventually, if a chip is depackaged, an adversary can penetrate the die sur-
face with light at various wavelengths. For instance, for old technologies it is
possible to manipulate the SRAM with the focused light of a laser diode, thus
forcing bits in memory to either one or zero. With UV-light on the other hand,
EEPROM content can be erased. Here, the resulting model can range from pre-
cise, permanent bit-set faults in the case of laser light to imprecise, destructive
bit-reset faults in the case of UV light.

12 Chapter 2. Motivation

2.3 Using the Error

Once a fault is injected, it manifests itself as error e within the DUA. The error
is the final mathematical expression which we use in theoretical attacks. It can
either be a logic error, an arithmetic error, or even an alteration of the algorithm.

� Logic error: The error, caused by a fault, is written as additive term in
GF(2). In other words, a faulty variable ã can be written as ã = a ⊕ e
(a XOR e) if it is affected by the error e. Such an error representation is
motivated by binary linear codes.

� Arithmetic error: For arithmetic codes, we are only interested in the arith-
metic value of an error, not in its binary representation. Thus, in such a
case, an error is usually written as additive term as in ã = a + e. Note,
that the term e is signed in this case. That is, it makes a difference if a
bit is flipped from one to zero or the other way around.

� Alteration of the algorithm: For such an error, the preferable description
depends on the algorithm. For instance, skipping a multiplication during
an exponentiation could also be seen as a modification of the exponent.

2.3.1 A Generic Fault Attack

The most trivial attack, in terms of error usage not in terms of fault injection,
is a key-scan attack. Here, we start from either side of the key, most or least
significant bit, and scan over all bits. For each bit we try to set it. If the output
of the device is erroneous, we know that the key bit was zero and that the bit
was one in the case of a correct output. However, an integrity check on the key
should be sufficient to repel such attacks.

2.4 Differential Fault Attacks against AES

More challenging but also harder to counteract is the following attack. We first
briefly describe the encryption algorithm and afterwards the attack.

2.4.1 AES

In 2001, a special version of the Rijndael algorithm was chosen to serve as the new
US standard for symmetric encryption. This Advanced Encryption Standard
(AES) is a block cipher which operates on a state of 128 bits and works with key
sizes of 128, 192 or 256 bits. The state is presented by a 4x4 byte matrix, where
each byte is an element of GF (28). Depending on the key size, the number
of rounds can be either 10, 12, or 14. We only look at the 128-bit version,
consisting of 10 rounds. At the beginning of the algorithm, the key is expanded
into 11 round keys, each of them consisting of 16 bytes. For details about the key
scheduling we refer to [Nat01]. The cipher itself consists of one AddRoundKey

2.4. Differential Fault Attacks against AES 13

operation at the beginning, followed by 9 AES rounds and a final round. Each of
the 9 rounds is composed of four transformations, namely SubBytes, ShiftRows,
MixColumns and AddRoundKey. The final round differs from the others by a
missing MixColumns operation. To describe the four AES transformations we
use the following notation:

� Si denotes the ith byte of the state for 0 ≤ i ≤ 15.

� Ki,k denotes the ith byte of the kth round key for 0 ≤ k ≤ 10.

� Cl denotes the polynomial modulo y4 + 1 which takes the four elements of
the lth column (in descending order) as coefficients, with 0 ≤ l ≤ 3, i.e.

Cl = S12+l · y3 + S8+l · y2 + S4+l · y + Sl.

� Rm denotes the polynomial modulo y4 + 1 which takes the four elements
of the mth row (in ascending order) as coefficients, with 0 ≤ m ≤ 3, i.e.

S4m · y3 + S4m+1 · y2 + S4m+2 · y + S4m+3.

� + denotes the exclusive-or operation since the used field has characteristic
2.

Using this notation the four round operations of round k can be described as
following:

AddRoundKey
Si = Si +Ki,k

SubBytes

Si = A ∗ (S−1
i (mod x8 + x4 + x3 + x+ 1)) + d

After the inversion each state byte is treated as a bit vector. A denotes a fixed
8 × 8 bit matrix and d a constant 8 × 1 bit vector. The matrix multiplication
and the vector addition are done over GF (2). If a state byte has the value 0,
the inversion is skipped.

ShiftRows
Rm = Rm ∗ ym (mod y4 + 1)

MixColumns

Cl = Cl ∗ (3y3 + y2 + y + 2) (mod y4 + 1)

The attack described in the following is a differential attack. This means
that we need at least one correct output and the corresponding faulty output,
that is, the same key and message were used for both encryptions.

14 Chapter 2. Motivation

As a fault model for this attack we assume a random byte-fault. The precision
of the fault is somewhat loose in terms of locality as we allow it to affect either of
the sixteen state bytes. Also the timing is not too critical. In fact the fault only
needs to occur between the last but one MixColumns and the last MixColumns
operation. As it affects one byte in the AES state it is permanent.

Such a fault manifests itself as a random byte which is added (over GF(2))
to a state byte. Below, an error in byte seven plus its effect on the result of the
last MixColumns operation is depicted:

S01 S02 S03 S04

S05 S06 S07 + e S08

S09 S10 S11 S12

S13 S14 S15 S16

 MixColumns

S01 S02 S03 + 3e S04

S05 S06 S07 + 2e S08

S09 S10 S11 + e S12

S13 S14 S15 + e S16

Looking at the error propagation, it can be seen that the byte error is trans-
formed into four byte errors due to the last MixColumns operation. However,
they are not completely random anymore because the MixColumns operation
gives a relation between the error bytes. We will denote these four errors as in-
put difference. The AddRoundKey operation after MixColumns does not affect
the error. What the adversary sees at the output, are these four erroneous bytes
after another SubBytes (denoted as SB below) and an AddRoundKey operation:

SB(S01) + k01 SB(S02) + k02 SB(S03 + 3e) + k03 SB(S04) + k04

SB(S06) + k06 SB(S07 + 2e) + k07 SB(S08) + k08 SB(S05) + k05

SB(S11 + e) + k11 SB(S12) + k12 SB(S09) + k09 SB(S10) + k10

SB(S16) + k16 SB(S13) + k13 SB(S14) + k14 SB(S15 + e) + k15

These four errors are denoted as output difference. Note that the four errors
are arranged in a special pattern which also gives an indication for a correctly
injected fault.

Equipped with this knowledge, the adversary can now search the key space.
First, she precomputes the 4×255 possibilities for the input difference and saves
them in a set. Next, she tests key hypotheses. This is done by adding the
key hypothesis to the correct and to the faulty output. Afterwards, the inverse
SubBytes operation is applied to both results. If the resulting difference lies in
the set of input differences, a possible key candidate has been found. For the
input difference, there are 4× 255 possibilities, whereas there are 2564 possible
sub-keys. Thus, with one fault, the key space for a four byte sub-key can be
reduced to a maximum of 4×255. After one or two more faults, the intersection of
all candidate sets yields a unique sub-key. By doing this for all four columns, the
whole last round-key can be recovered. Since the key schedule is bijective, it is
possible to compute the master key from this information. Further optimization
is possible if the fault injection occurs in the last but two MixColumns operation.
However, then the adversary faces sixteen erroneous bytes, thus has no pattern
anymore which indicates a correct fault injection.

2.5. Fault Attacks against RSA 15

2.5 Fault Attacks against RSA

RSA is the most widely spread public-key scheme. It can be used for encryption
and signature generation in almost the same way. The security of RSA is based
on the hardness of factoring the product of two large primes. Let p and q be
such primes, n = pq their product, and ϕ(·) denote Euler’s totient function.
All computations of RSA take place in the ring Zn. The public exponent e is
an element of Z∗ϕ(n), its corresponding secret exponent is d = e−1 mod ϕ(n).

Due to this construction, m = (me)d mod n holds for any m ∈ Zn. The owner
of the secret key can sign messages by computing s = md mod n or decrypt
ciphertexts by calculating m = cd mod n. By giving away the public key (n, e),
she enables everybody else to either verify signatures (m = se mod n) or to
encrypt messages (c = me mod n).

2.5.1 Bellcore Attack

The CRT-RSA algorithm is a sped-up version of the RSA algorithm. Here, the
exponentiations are done in the fields the ring is composed of. This has the
advantage that the operands as well as the exponents become half the original
length. Thus, an exponentiation is eight times faster. Since now two expo-
nentiations are needed, the speed-up is four. At the end of the algorithm, the
two exponentiation results are combined using the Chinese Remainder Theorem
(CRT).

The probably most famous fault attack is the Bellcore attack which targets
this CRT-RSA algorithm. The beauty of the attack comes from the fact that
the used fault model is just a random fault with loose timing and that one fault
injection is sufficient to extract the entire private key. In addition, not even a
correct output is needed as in the case of AES.

The key idea behind the attack is that factoring n breaks RSA. Furthermore,
if we get the device to output a value which contains p or q as a factor, we can
factor n by computing gcd(p · x, n), where gcd(·, ·) returns the greatest common
divisor of its arguments.

The desired output which contains only p is obtained as follows. First, we
write the message as

m = (mp,mq) = mp · q · (q−1 mod p) +mq · p · (p−1 mod q).

During one exponentiation of the signature generation we disturb the device. As
a result we do not get s = (sp, sq) = (md

p,m
d
q) = md but s̃ = (sp, s̃q). Using

the public key, we can obtain m̃ = (sep, s̃
e
q) = (mp, m̃q). Subtracting m from m̃

yields

m− m̃ = (mp −mp, m̃q −mq) = (m̃q −mq) · p · (p−1 mod q).

It can be seen that the last term contains p but does not contain q with high
probability. This in turn allows factoring n:

p = gcd(m− s̃eq, n).

16 Chapter 2. Motivation

2.5.2 Attack on the Montgomery Ladder

The Bellcore attack is very specific in the sense that it targets a special RSA
implementation. The following attack also applies to RSA but is somewhat more
general as it targets the Montgomery ladder exponentiation algorithm. Thus,
depending on the application, the attack might also be applicable to ElGamal
or ECC based schemes. The Montgomery ladder for RSA is depicted in Algo-
rithm 1.

Algorithm 1 Montgomery ladder [JY03]

Require: n, d = (dt−1, . . . , d0)2, m ∈ Zn

Ensure: md mod n
R0 = 1
R1 = m
for i = t− 1 downto 0 do
Rd̄i

= R0 ·R1 mod n
Rdi

= R2
di

mod n
end for
return R0

In each iteration of the ladder, one intermediate is assigned the product of
both, the other one is squared. If the current bit is one, R0 is set to R0 · R1

and R1 is squared, and vice versa if the bit is zero. Let d = (dt−1, . . . , d0)2 =
[dL, di, dT]. Here, di denotes the bit which is currently processed and dL the
already processed (Leading) bits. The remaining (Trailing) bits are denoted by
dT . The intermediates after processing the bit di are

(R0, R1) =

{
(m2·dL mod n, m2·dL+1 mod n) for di = 0
(m2·dL+1 mod n, m2·dL+2 mod n) for di = 1.

A basic property of the Montgomery ladder is that the quotient R1/R0 is con-
stant. This property is important for our attack. In a correct execution of the
RSA algorithm the quotient equals m. Furthermore, if d is t bits long, the com-
mon factor of R0 and R1 is g and the quotient is q, the result of the algorithm
is g2t · qd.

The basic idea of the attack is to change this relation from q = m to a
different, either known or efficiently guessable, value while the first exponent
bits are processed. This allows to recover the first exponent bits later on. Once
the first bits are known, the attack can be mounted on the next few bits until
the entire key is recovered.

A fault model that allows guessing the fault is modifying the program flow.
More precisely, if a skipped squaring is assumed, the result depends, besides the
input message, only on the position of the instruction that was left out during
the computation and on the exponent. For a fixed position of the fault, this
leaves only the exponent as unknown variable. Using the public exponent e
similar as for the previous attack allows to set up an equation depending on a

2.6. Fault Attacks against EC Systems 17

small chunk of exponent bits. The only unknowns of the resulting equation are
the most significant exponent bits before the fault. If this chunk is chosen in
a way that only a few bits are unknown, the whole exponent can be revealed
iteratively.

Let m be a message to be signed using the exponent d = [dL, di, dT] with
di the bit that is processed as the squaring is skipped. The resulting equation
depends on di, because if it is zero, a squaring of R0 is skipped, while for a one
the squaring of R1 is left out.

We assume di = 0. By skipping the squaring, R0 stays unchanged and
R1 contains the value m2·dL+1. This can be seen as skipping di and changing
the quotient: After the injection, the common factor is mdL and the quotient
becomes mdL+1. Together with d = 2i+1 · dL + dT this results in:

S̃ = m2i·dL+(dL+1)·dT

= m2i·dL+(dL+1)·(d−2i+1dL)

⇒ S̃e = m1+dL−e·2i·dL·(1+2·dL) (mod n).

For di = 1, R1 stays constant at mdL+1, R0 changes to m2·dL+1 and d = 2i+1 ·
dL + 2i + dT . We now use a common factor of m2·dL+1 but a quotient of m−dL

and get:

S̃ = m2i·(2dL+1)−dL·dT

= m2i·(2dL+1)−dL·(d−2i+1dL−2i)

⇒ S̃e = me·2i·(1+dL·(3+2·dL))−dL (mod n).

The same equations can be set up for a skipped multiplication.

S̃e =

{
m1−2i·dL·e−dL (mod n) for di = 0

m2+dL−2i+1·e·(1+2·dL(2+dL)) (mod n) for di = 1

Hence, in order to recover the exponent we (1) need to skip a squaring or a
multiplication, (2) take the erroneous output to the power of the public key and
(3) find the correct dL which leads to the obtained erroneous output. The whole
exponent is then retrieved by iteratively skipping either squarings or multiplica-
tions and calculating the expected values. If they do not match, the fault was
not injected in the intended way.

2.6 Fault Attacks against EC Systems

Systems based on elliptic curve cryptography (ECC) gain more and more im-
portance because at the moment they are the best-suited public-key schemes
for resource-restricted devices. We end this chapter by sketching the basic idea
behind fault attacks against ECC systems. An elliptic curve E over a field F is

18 Chapter 2. Motivation

defined by the Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

a1, . . . , a6 ∈ F.

The set of points (x, y) ∈ F2 fulfilling (2.1) together with the point at infinity
O form an additive Abelian group. It is denoted as E(F). The point O is
the neutral element of the group. The group operation is called addition for
two distinct points and doubling otherwise. An elliptic-curve group operation
consists of several field operations.

Multiplying a natural number k and an element P ∈ E(F) is called scalar
multiplication. It is defined by adding the point P k times, denoted as kP . In
order to calculate kP in an efficient way, the double-and-add algorithm or the
Montgomery ladder can be used. The inverse problem, calculating for two given
points Q,P ∈ E(F) a natural number k with Q = kP is named Elliptic Curve
Discrete Logarithm Problem (ECDLP). For a cryptographically strong elliptic
curve, the best-known algorithms require exponential time to solve this problem.

Apart from the Montgomery ladder attack which also works for elliptic curves
(in an adapted version), there are a couple of attacks which are specific to elliptic
curves. In particular, these attacks try to modify the curve parameters in a way
that the curve becomes cryptographically weak.

For instance, flipping the least significant bit of a prime modulus causes the
field to split into several smaller fields. Now the elliptic-curve discrete-logarithm
problem can be solved on a much smaller curve. Thus, using this trick plus a
couple of further steps allows to recover the secret scalar.

Another approach is to use the fact that the curve is not only defined by the
curve’s equation, but also by the base point. That is, usually a curve parameter
is implicitly defined via the point. Thus, by changing the curve point, the curve
could be transformed into a weak curve again.

2.7 Conclusions

In this chapter, we revisited fault attacks and how they can compromise cryp-
tographic schemes, thus lead to a key recovery. We started by introducing the
concept of fault models. After giving some examples of how to realize specific
fault models, we used those fault models to attack cryptographic primitives.

The attacks discussed in this chapter point out only a fraction of the pos-
sibilities an adversary, capable of mounting fault attacks, has. If we look at a
complex system like a smart card which also runs an operating system or other
application specific code, many more attacks might be possible. Thus, it is easy
to see that not only protection against fault attacks against specific algorithms
is necessary, but that these algorithmic countermeasures need to be combined
with more general countermeasures.

Part I

Hardware Countermeasures

19

3
Coding Schemes for Arithmetic and Logic

Operations

In this part of the thesis, we elaborate a fault-protected datapath for a mi-
crocontroller. First, we look at coding schemes and their suitability for this
purpose. The next chapter will then present the hardware architectures for the
most promising candidates. We start by discussing block codes, the traditional
channel-coding model and an adapted model which we refer to as secure datapath
model. Then, several coding schemes are revisited and analyzed regarding their
advantages and disadvantages in the secure datapath model. We conclude this
chapter by selecting two coding schemes which we consider the most suitable for
the protection of an arithmetic logic unit (ALU).

3.1 Block Codes

The field of coding theory can be divided into source coding and channel coding.
Whereas the first one compresses data by removing redundancy, the second one
adds redundancy to enable error correction or error detection. Channel codes
that use fixed-length input and fixed-length output are called block codes. Since
ALUs also operate on binary data of fixed-length, block codes are the most
interesting coding schemes for our purpose.

A binary block code represents datawords of length k by codewords of length
n with k < n. It consists of an encoder E : {0, 1}k → {0, 1}n and a decoder
D : {0, 1}n → ({0, 1}k, s), where s is the syndrome. The syndrome states the
error contained in the codeword. In case of no error, it is zero. Depending on
the code, the syndrome can be used to correct or to detect a present error. The

21

22 Chapter 3. Coding Schemes for Arithmetic and Logic Operations

Sender

Encoder

Channel

Decoder

Receiver

Noise

Dataword

Codeword
Received
Codeword

Error AND
Dataword

Figure 3.1: Classical channel-coding model.

number of redundant bits added by the code is denoted by r = n − k. A code
is called systematic if the dataword is embedded in the codeword. That is, the
dataword can be determined from the codeword without decoding. The code
rate of a code is defined by R = k/n. It states the relative redundancy and is a
metric for the efficiency of the code.

The portion r already gives some information about the error-detection rate
of a code. For a code with r bits of redundancy, only a fraction of 2−r of all
possible codewords are valid. Thus, the average error-detection rate is 1− 2−r.
However, for our purpose the detection probability of random errors is not the
only important metric to state the robustness of a code. It is favorable to
detect errors up to a certain multiplicity with certainty, for instance all errors
changing up to 4 bits. This is desirable because the precision of a fault usually
behaves reciprocal to its multiplicity. That is, it can be possible to induce a
precise bit fault, but hardly a precise eight-bit fault, unless the effort is increased
significantly.

3.2 Channel Coding and Secure Datapaths

As stated above, one of the aims of coding theory is error detection, thus to
enable data transmission via a noisy channel as shown in Figure 3.1. Datawords
are encoded to redundant codewords before they are sent over the channel. The
channel adds transmission noise to the signal which can cause errors in the
codewords. Hence, the receiver cannot be sure to get exactly the message the
sender has sent. The decoder uses the redundancy to check whether errors
occurred during the transmission. Depending on the used code, these errors can
be corrected or detected. In this model, the chances for an undetected error are
the same during the whole transmission.

For fault attacks against cryptographic devices, the situation is different for
two reasons. First, errors are induced intentionally by an adversary and not
accidentally by noise. Second, error-detection rates are often not equally high

3.3. Coding Schemes 23

Input

Encoder

Memory

ALU Checker

OutputAdversary

Dataword

Codeword
Encoded
Result

Error OR
DatawordFaults

Figure 3.2: Secure datapath model.

across the device. An adversary could inject a fault at an unexpected place
causing an unforeseen system corruption. Hence, a continuous protection of the
data is desirable.

The model depicted in Figure 3.2 provides such a continuous protection.
Every portion of data that enters the system is encoded and stays encoded until
its output. The CPU always operates on encoded data internally. Also all
internally generated and stored data is encoded. Within the device, no decoding
or transcoding is performed. An adversary can only manipulate encoded and
hence protected data. Finally, no data leaves the device without being checked.
Potentially erroneous output is suppressed. Note that with output we refer to
every I/O operation. The approach has two advantages. First, it makes it easier
to find security arguments for a device since the error-detection rate applies to
the entire datapath. Second, the protection mechanisms are transparent to the
user or software developer.

Note that the discussed schemes only secure the datapath of a device. An
adversary that manipulates the program flow remains undetected. However, var-
ious methods to ensure the correct execution of the program have been proposed,
e.g. by introducing program-code signatures [OSM02].

Another problem using codes is the required checking procedure before data
leaves the device. The check may be vulnerable to adversaries that manage to
inject a fault in it, causing the device to output erroneous results [KQ07]. A
possible solution is a multi-stage check [DGRS09].

3.3 Coding Schemes

In the remainder of this chapter, we evaluate different coding schemes according
to their fault resistance and their suitability for fault detection in the above
model. First, we investigate their error-detection rates. Next, we are interested
in the arithmetic and logic operations that are supported by a certain code.
Finally, it is necessary to discuss the robustness of every supported operation.

24 Chapter 3. Coding Schemes for Arithmetic and Logic Operations

For this purpose we define the operational distance:

Definition Let C be a channel code and f a binary operation f(a, b) = c with
a, b, c ∈ C. Furthermore, let e = (ea, eb) be an error which affects both operands,
such that (ã = a + ea, b̃ = b + eb). We define the Hamming weight of e as
WH(e) = WH(ea)+WH(eb). For an undetected error, we demand c 6= c̃ = f(ã, b̃)
but c̃ ∈ C. We define the operational distance of C regarding f as the
minimum Hamming weight WH(e) needed to produce an undetected error.

We first look at straight-forward techniques to introduce redundancy, namely
time- and space-redundant techniques. Next, we investigate coding schemes that
can be used to perform arithmetic and logic operations. Finally, we examine
arithmetic codes.

3.3.1 Time Redundancy

Time redundancy is a well known and straightforward strategy to deal with
faults in a system. It is based on executing some algorithm A several times
and checking whether every execution of A yields the same result. It requires
no or little additional hardware, but the performance drops by the number of
executions of A.

A major drawback of time redundancy is that it relies on a single piece of
hardware. Therefore, a permanent malfunction in the hardware causes the same
error on every execution and hence the error cannot be detected in general. An
adversary can enforce such a behavior by means of destructive faults. Another
way to circumvent the protection mechanism is to induce the same fault on every
execution. Since the timing parameter of an attack is typically well controllable,
the success of such an approach is likely.

In some cases though it is possible to improve the approach. If the algorithm
is invertible, one can check if A ◦ A−1 yields the original input. For ciphers
like AES, this has been proposed in [KWMK01]. In the article the authors
apply this principle to every round of the block cipher. This method was also
proposed for signature-generation algorithms [Len96]. The approach is especially
advantageous in the case of RSA signatures, because usually the computation of
A−1 is much faster than the one of A.

Another improvement which might be possible is to alter the algorithm to
A′. This new algorithm is identical to A in the way that their input-output
behavior is indistinguishable. However, the performed instructions and the bit
order of the intermediate operands vary. Therefore, the effect of a fault also
varies with a certain probability. However, altering an algorithm in such a way
is not always possible (or only to a very restricted extent).

From above, it becomes clear that time-redundant countermeasures are sim-
ple, generic and mostly hardware independent. Furthermore, they can be easily
included in tool chains. However, their design space and hence their reliability
depend on the algorithm. In order to improve this, one possibility is to intro-
duce the redundancy into the space or area parameter rather than into the time
parameter.

3.3. Coding Schemes 25

3.3.2 Space Redundancy

In contrast to time-redundant systems, space-redundant systems use duplicated
hardware. Hence, algorithm A is executed several times in parallel. As a result,
the approach does not affect the performance, but the hardware costs increase.

The security against destructive faults increases compared to time redun-
dancy. However, inducing the same fault twice in parallel is sufficient to corrupt
the system. In general, inducing two faults in parallel is more expensive than
inducing two faults one after the other, but the increase of costs is only linear.

Possible improvements are similar to those for time-redundant systems. The
functionality implemented by the original system can be implemented in a dif-
ferent way for the redundant part. This can be done statically or dynamically.
A static modification manifests itself in the layout for instance. An example for
a dynamic modification is bus scrambling. When using bus scrambling, the ad-
versary cannot predict the position of single bits anymore. However, if the bits
in a circuit depend on each other (e.g. an integer-arithmetic unit or a multiplier)
scrambling might become rather expensive in terms of hardware.

An advantage of space-redundant systems is that the countermeasure is trans-
parent to the programmer and to the software tool chain. Every algorithm that
can be executed by the original hardware can then be automatically executed as
A and A′ on the space-redundant hardware.

In general, both approaches, time and space redundancy, come with an over-
head of at least hundred percent, either in terms of performance or in terms of
hardware. They can be seen as coding schemes with a code rate of 0.5 and a
detection rate of 1 − 2k (since k = r). Both approaches are susceptible to an
adversary who induces multiple faults. In the most straight-forward case, these
are two precise faults which manipulate one bit each. In general, we can state
that a random fault stays undetected with a probability of

Pr[c̃ ∈ C] =

(

k
WH (e)/2

)
(

2k
WH (e)

) for WH(e) is even

0 otherwise.

For instance with k = 16 and WH(e) = 2, an adversary succeeds with a proba-
bility of 0.032. To reduce the overhead and to improve the error-detection rate,
coding-theoretic approaches can be used.

3.3.3 Berger Codes

Berger codes were introduced by J.M. Berger in 1961 [Ber61]. In 1989, Lo and
Rao showed how to implement an ALU which is protected by Berger codes [LTR89].
The check symbol for Berger codes is the number of zero bits in the dataword. As
an example, we look at an 8-bit word holding the decimal value 14. The number
of zeros is 5. Hence, the Berger-encoded word results in (00001110, 0101).

What is special about Berger codes is that they have a minimum asymmetric
distance of one. In other words, for each transition from one valid codeword to

26 Chapter 3. Coding Schemes for Arithmetic and Logic Operations

another valid codeword, bits change in both directions: From zero to one and
from one to zero. This means that only setting or only resetting bits cannot
produce a valid codeword. Hence, Berger codes detect all unidirectional errors.
Another advantage of Berger codes is that the parity can be calculated very
efficiently.

However, an error which affects two bits can already lead to a successful
attack. This is because flipping a zero to a one and a one to a zero at the
same time always produces a valid codeword. As a result a two-bit error stays
undetected with a probability of 0.5. The redundancy added by Berger codes is
limited to blog2(k) + 1c bits.

Although Berger codes do not prove to be very useful for dealing with precise
bidirectional errors, they can be a good choice if only unidirectional errors are
assumed to occur. Furthermore, if the error patterns are expected to be random,
Berger codes on partitioned data might turn out to be useful. In fact, there are
several reasons for partitioning the data and for encoding every single part on
its own:

1. Partitioning the data changes the error patterns. For instance, in the
case of Berger codes, the detection probability for 2-bit errors is rather
poor. By partitioning the data, also the error is partitioned. For 2-bit
errors the possible partitions are 2 and 1 + 1, that is two 1-bit errors in
two partitions. The latter partitioning is always detected and hence the
detection probability for 2-bit errors increases.

2. For standard Berger codes, the number of parity bits cannot exceed r =
blog2(k) + 1c. Hence, the error detection capabilities are limited to 1 −
2−blog2(k)+1c. Partitioning the data allows to increase r.

3. Partitioning the data also decreases the number of bits that have to be
handled by a single encoder or parity-arithmetic unit.

4. Interleaving the bits in hardware enforces physically-adjacent erroneous
bits to spread over several partitions. Assuming that a single fault affects
several such adjacent bits and further assuming a code to be partitioned
into l parts, the attacker has to inject a fault which affects 2l bits at
minimum.

The effect that partitioning has on the detection rates regarding different error-
multiplicities can be seen in Table 3.1. The numbers have been obtained by
simulation with a million samples per experiment. More detailed results can
be found in [Med09]. Although their detection probability increases, Berger
codes on partitioned data are not very robust either, when it comes to errors
of small multiplicity. For this reason a statement about the error masking or
operational distance would not be meaningful and we omit the investigation of
arithmetic and logic operations. Nevertheless, Berger codes have some properties
which might turn out to be useful in some other scenarios. Other variants of
Berger codes, which have been proposed, are reduced Berger codes [KRFL93]
and Dong’s code [RM00]. They basically feature the same security properties.

3.3. Coding Schemes 27

Table 3.1: Probabilities for undetected faults for Berger codes and Berger codes on
partitioned data.

WH(e) k=32,r=6 8x(k=4,r=2)

1 0 0
2 0.3870 0,03800
3 0.0152 0,00231
4 0.2060 0,00425
5 0.0243 0,00089
6 0.1320 0,00083
7 0.0242 0,00035

3.3.4 Linear Codes

A coding-theoretic approach with much better error-detection properties are lin-
ear codes. Linear codes have been known for decades [Ham50] and hence are well
studied. Also the use of linear codes to design fault-tolerant systems has already
been described in the 80s [ES90]. However, no previous work investigated the
error-masking behavior of arithmetic or logic circuits that deploy linear codes.
Also, the faults assumed in previous articles are not suitable for fault-attack
scenarios. Whereas in [ES90, Nic03] only single-bit faults were assumed (due to
radiation for instance), we have to consider much more complex faults. Hence,
it is interesting to investigate the behavior of linear codes, if the faults are in-
duced by an adversary. In this section, we revisit linear codes and investigate
their error-masking probabilities when logic, arithmetic or shift operations are
applied.

As stated above, a binary block code maps datawords of k bits to codewords
of n bits with k < n. If the code forms a k-dimensional sub-vector space in Fn

2

then the code is called a linear code over GF (2). Due to linearity, the sum of
codewords always results in a codeword itself. A common convention to describe
a linear code is to write [n, k]-code or [n, k,D]-code, where D denotes the distance
of the code. The distance is the minimum pairwise Hamming distance of all
codewords. Therefore, the distance of a code indicates how many bits have to
be changed at least in order to transform one valid codeword into another valid
codeword. Hence, it also states the robustness of a code, since all errors with
a Hamming weight smaller D are detected with certainty. For instance, [48,32]
linear codes are known up to a distance of 6. The space-redundant approach
from Section 3.3.2 can be seen as a so-called repetition code. In fact, if the
hardware is duplicated, it represents a [2k, k, 2] linear code over GF(2).

A linear code is defined by its generator matrix G. In this section, we only
look at systematic linear codes over GF(2). Therefore, G is a k × n matrix of
the form [I|P] where I is the k × k identity matrix and P is the k × r parity
matrix. A dataword is encoded by left-multiplying it with G as in the following

28 Chapter 3. Coding Schemes for Arithmetic and Logic Operations

example:

(
1 0 1 0

)
1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0

 =
(

1 0 1 0 0 1 0
)
.

Decoding is done by right-multiplying a codeword with the parity check matrix.
The parity check matrix can be deduced from a systematic generator matrix and
has the form H =

[
PT |I

]
. The result of such a multiplication is the syndrome

s. Since, G and H are orthogonal, s is always zero if a codeword is error-free.
On the other hand, if we flip the first bit of the codeword from above, s becomes
unequal zero:

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1

0
0
1
0
0
1
0

=

 1
1
1

 .

From linearity it follows that an erroneous codeword ã = a+ ea is only valid
if the error ea itself is a codeword. However, this observation does not consider
any arithmetic or logic operations. In the following we look at the scenario when
one or two operands that are involved in an operation are erroneous. For the
implementation of the operations we use the same equations as in [ES90] and
extend them by equations for shift operations. We denote logic-and, logic-or,
exclusive-or and integer addition by ∧, ∨, ⊕ and +, respectively.

Logic Operations

In order to investigate logic operations on linear codes, it suffices to look at the
exclusive-or and at the logic-and operation. All other boolean functions can be
composed of them.

The linearity property states that the sum of two codewords again results in a
valid codeword. Since the sum in GF(2) is equal to the exclusive-or, linear codes
over GF(2) are closed under exclusive-or by definition. Therefore, the result of
ã⊕b = a⊕ea⊕b is only valid if ea is valid. Also, the result of ã⊕b̃ = a⊕ea⊕b⊕eb
is only valid if the sum ea ⊕ eb is valid. Thus, the exclusive-or operation has an
operational distance which is equal to the code distance.

For the logic-and operation, the situation is slightly more complicated. This
is because we need auxiliary values to determine the parity for the result of a
logic-and operation. Therefore, we denote da as the data part and pa as the
parity part of the codeword a. Using the equality

da ⊕ db = (da ∧ db)⊕ (da ∨ db),

3.3. Coding Schemes 29

we can now define the logic-and operation for linear codewords:

dc = da ∧ db
pc = pa ⊕ pb ⊕ (da ∨ db)P.

The auxiliary value needed for the logic-and operation is (da ∨ db)P. Note that
it is deduced from the potentially already erroneous datawords da and db. As we
will see later, such auxiliary values negatively influence the operational distance.

If only one operand is affected by an error, the code preserves its distance
for the logic-and operation:

pc = pa ⊕ pea ⊕ pb ⊕ ((da ⊕ dea) ∨ db)P
((da ⊕ dea) ∧ db)P = pa ⊕ pea ⊕ pb ⊕ (1⊕ ((1⊕ da ⊕ dea) ∧ (1⊕ db)))P

(dea ∧ db)P = pea ⊕ (dea ⊕ (dea ∧ db))P
0 = pea ⊕ (dea)P.

It can be seen that a single erroneous operand is detected, unless the error
ea = (dea |pea) is a codeword itself.

Arithmetic Operations

As a representative for the arithmetic operations, we take the integer addition.
The parity for an integer sum can be calculated using the observation:

da + db = da ⊕ db ⊕ γ,

where γ denotes the carry vector of da + db. That is, once the carry vector is
calculated, the integer sum can be determined by using independent bit opera-
tions. Note that γ does not contain the carry-out bit. The whole operation can
be defined as

dc = da + db

pc = pa ⊕ pb ⊕ γP.

We can see that also integer addition over linear codes needs an auxiliary value.
However, now this auxiliary value is potentially generated by the same circuit
which calculates the sum dc. Therefore, if an error occurs during the carry
generation, it automatically spreads over the data and the parity part. As a
result, it is impossible to detect such an error. For a single erroneous operand,
the error needs to be a codeword in order to stay undetected.

Shift Operations

The last family of functions we look at contains typical unary linear functions
like shifts and rotates. The idea here is to calculate the parity for the sum of

30 Chapter 3. Coding Schemes for Arithmetic and Logic Operations

the operand and the result. The unary linear function is denoted by u(·). The
result can be defined as

dc = u(da)

pc = pa ⊕ (da ⊕ u(da))P.

For one erroneous operand, the operation is distance preserving and since the
operation is unary, this is the only possible case. Note that these considerations
only hold for single-position shift and rotate operations where no second operand
is involved.

Until now, we only considered one erroneous operand, but mentioned that two
erroneous operands are a problem if auxiliary values are involved in a computa-
tion. For such a case we can give the following theorem:

Theorem 1. The operational distance for every binary linear code regarding
logic-and, logic-or and integer addition is two.

Proof. We can write the three operations as c̃ = f(ã, b̃) with the parity written
as p̃c = pa ⊕ pb ⊕ g(d̃a, d̃b)P. The encoded result of g already depends on the
erroneous operands, thus this part of the parity already depends on d̃c. The only
portions which still depend on the original datawords are pa and pb. Hence, an
error stays undetected, if it does not affect the sum pa ⊕ pb. This is the case for
errors (ea, eb) for which ea = eb. The smallest weight error has WH = 1, thus
WH(e) is at least two.

Example We take the logic-and operation and assume that the least-significant
bit of da as well as db is zero. Thus also the least-significant bit of dc would be
zero. By flipping both least-significant bits, also the result’s bit would flip,
however, the parity would still be correct.

The analysis above shows that a system using linear codes preserves its dis-
tance if only one operand is affected. As soon as two operands are affected,
the operational distance regarding logic-and, logic-or and integer addition drops
to two. Additionally, the carry-vector generation for arithmetic operations is
critical because an error in the carry vector cannot be detected.

3.3.5 AN-Codes

Berger codes have limited capabilities in general and linear codes show defi-
ciencies when it comes to arithmetic operations. Therefore, we next investigate
arithmetic codes as they are best suited for those operations. In this section
we revisit some basics of arithmetic codes and discuss the advantages and dis-
advantages of AN -codes and residue codes. We also show how to construct
multi-residue codes with a certain distance. Throughout the section, we use the
same notation as in the previous one. Additionally, integer multiplication will
be denoted by ∗.

3.3. Coding Schemes 31

Analogously to the Hamming distance for linear codes over GF(2), it is useful
to define the arithmetic distance for codes that are linear under integer addition.
The arithmetic weight is the Hamming weight of the minimum-weight represen-
tation

∑±2i of a binary integer
∑

2i. Such a minimum weight representation
is well defined for every integer [Mas64]. For instance, the number 15 has Ham-
ming weight 4 in binary representation. However, its minimum representation
using signed digits is (1, 0, 0, 0,−1) = 24 − 1. Thus, its arithmetic weight is
2. The arithmetic distance between two integers is the arithmetic weight of the
arithmetic difference. Furthermore, the minimum distance of an arithmetic code
equals the weight of the minimum-weight non-zero codeword of the code. This
follows from the fact that every difference of two codewords is a codeword itself.

An AN -code is defined by an integer A and an upper dataword bound N0.
The codewords are the product of the datawords < N0 times A. A codeword a is
error-free if A divides a. Therefore, an error stays undetected if it is a multiple
of A and if it is smaller than some A ∗N0.

For a minimum distance of three, there exist ways to determine N0 for a given
A. A minimum distance of three implies that single errors can be corrected and
double errors can be detected. Correcting single errors also demands a distinct
and non-zero syndrome for every single bit error e smaller A ∗N0. On the other
hand, this is given if for instance 2 is a generator of GF(A) and the order of
GF(A) is ≥ dlog2(A ∗ N0)e. However, for larger distances and high code rates,
the parameters can only be determined by exhaustive search. That is, checking
if every codeword < A ∗N0 has an arithmetic weight of at least D. In [Man67],
Mandelbaum presented AN -codes with a given minimum distance. However,
the redundancy is with r = 2k − k too large for the protection of a processor.

Since AN -codes have the property that A ∗ da + A ∗ db = A(da + db) with
(da + db) < N0, they support integer addition and furthermore do not mask
errors under addition. This is because for one erroneous operand A ∗ da + ea, ea
must be of the form ea = A ∗ e′a in order to stay undetected. For two erroneous
operands (A∗da + ea) + (A∗db + eb), the sum ea + eb must be either of the form
A(e′a + e′b) or A((ea + eb)/A). That is, either each error term is divisible by A or
the sum of the error terms is divisible by A. Hence, arithmetic codes preserve
their distance even with two erroneous operands.

AN -codes have the disadvantage that they are non-systematic and that they
only support integer addition. For multiplication, the result becomes incorrect
since A ∗ da ∗A ∗ db = A2 ∗ da ∗ db 6= A ∗ da ∗ db. However, this problem can be
solved by using idempotent AN -codes.

3.3.6 Idempotent AN-Codes

Idempotent AN -codes have been introduced by Proudler in [Pro89]. Gaubatz
et al. were the first to consider them in an adversary scenario [GS06]. Again,
A and N0 are chosen appropriately to achieve a certain arithmetic distance.
Addition and multiplication take place in the ring ZAN0 . The difference to
AN -codes lies in the encoding of datawords. Instead of generating the code
with A, an idempotent AN -code is generated by an idempotent element I ≡ I2

32 Chapter 3. Coding Schemes for Arithmetic and Logic Operations

mod (A ∗N0). Such an idempotent element exists if A and N0 are co-prime and
can be constructed with I = CRT(1 mod N0, 0 mod A), where CRT indicates
the application of the Chinese Remainder Theorem.

The masking probability for idempotent AN -codes under addition is the same
as for AN -codes under addition. That is, an error stays undetected if ea ≡ eb
(mod A). However, for multiplication, detecting only one erroneous operand is
impossible if the code is used like described above. This is because

I ∗ da ∗ (I ∗ db + eb) =

CRT(a mod N0, 0 mod A) ∗ CRT(b+ e′b mod N0, e
′′
b mod A) =

CRT(a ∗ b+ a ∗ e′b mod N0, 0 mod A)

with eb = CRT(e′b, e
′′
b). Therefore, the multiplication has to be modified. For

instance, it is possible to add CRT(0 mod N0, 1 mod A) to the operands before
multiplication and to subtract the same value from the product afterwards. If
this approach is pursued, a single erroneous operand stays undetected if ea ≡ 0
mod A. Two erroneous operands stay undetected if

1 ≡ (1 + e′′a)(1 + e′′b) mod A

e′′a ≡ −e′′b /(1 + e′′b) mod A

⇒ ea ≡ −eb/(1 + eb) mod A. (3.1)

For this modified multiplication, the code is distance preserving if only one
operand is erroneous. However, multiplication is not distance preserving if two
erroneous operands are involved. To show this, we look at the code with A = 89
and N0 = 22. If we for instance assume eb = 4 in (3.1), we get ea = 17. Since the
Hamming weight of four is one and the Hamming weight of 17 is two, only three
bits have to be manipulated. Thus, the robustness of an idempotent AN -code
under multiplication has to be investigated for every case separately.

Idempotent AN -codes are suitable for arithmetic operations, but not for logic
operations. This is because they are non-systematic. Furthermore, comparing
two operands needs decoding for non-systematic codes. Therefore, systematic,
arithmetic codes with similar properties as idempotent AN -codes would be of
interest.

3.3.7 Residue Codes

Residue codes are arithmetic codes that are systematic. They are composed of
a data part da smaller N0 and a parity part pa where pa = da mod A. For
residue codes, A is called the check basis.

3.3. Coding Schemes 33

Arithmetic Operations

An advantage of residue codes is that addition as well as multiplication can be
carried out without any modifications since

da + db mod A = pa + pb mod A,

da ∗ db mod A = pa ∗ pb mod A.

The complexity of a multiplication for residue codes is smaller than for AN -codes
since the operands themselves are smaller. Undetectable errors which only affect
the data part need to have the same weight as for AN -codes with the same A.
However, it is always possible to induce an error of the form (da = 1, pa = 1).
Hence the minimum distance is two, independent of A.

The operational distance for addition equals the code distance for residue
codes. When it comes to multiplication the case is more complex. This is because
it also depends on the encoded data if an error stays undetected or not. In order
to investigate this behavior, we look at two operands under multiplication.

(da + dea)(db + deb) = da ∗ db + da ∗ deb + db ∗ dea + dea ∗ deb .
First, we assume dea 6= 0 and deb = 0. In this case the error stays undetected
if either dea ≡ 0 mod A or db ≡ 0 mod A are satisfied. In the latter case, it
is impossible to detect any error. If both operands are erroneous then deb ≡
−dea ∗ (db + deb)/da mod A must hold.

The investigation of this case is more complex than for idempotent AN -
codes for two reasons: First, the error-detection probability is data dependent1.
Second, the above example only considers errors in the data part. In general,
we would need to look at

da ∗ deb + db ∗ dea + dea ∗ deb ≡ pa ∗ peb + pb ∗ pea + pea ∗ peb mod A.

From this equation we could not derive a minimum weight for undetected errors.

Logic Operations

Since residue codes are systematic, they can also support operations other than
arithmetic ones. For Boolean operations on residue codes, we use the following
relation:

dc = da + db = 2 ∗ (da ∧ db) + (da ⊕ db).
From that, the logic-and operation can be defined as

dc = da ∧ db
pc = (pa + pb − (da ⊕ db mod A))/2.

Analogously, for the logic-or we get

dc = da ∨ db
pc = (pa + pb + (da ⊕ db mod A))/2.

1This is actually a desirable property.

34 Chapter 3. Coding Schemes for Arithmetic and Logic Operations

Eventually, the formulas for exclusive-or are

dc = da ⊕ db
pc = pa + pb − (2 ∗ (da ∧ db) mod A).

Residue codes are attractive because they are systematic and support arith-
metic as well as logic operations. Unfortunately, their minimum distance of two
is low. Hence, it would be interesting to have a scheme with similar proper-
ties but a larger distance. Suitable candidates for such a coding scheme are
multi-residue codes.

3.3.8 Multi-Residue Codes

In [Rao70], Rao presents a bi-residue code capable of correcting single errors.
Rao and Garcia derive connections between AN -codes with composite A and
multi-residue codes which use the factors of A as their check bases [RG71]. The
authors investigate codes with a distance of three, that is, single-error correcting
codes. However, they do not look at higher distances. Thus, we give require-
ments for multi-residue codes with larger distance.

A multi-residue code is composed of a data part da and a parity vector
pa = p1

a, · · · , pla. Also the check basis is represented by a vector A = A1, . . . , Al.
Analogously to residue codes, we write pa = da mod A. Finally, also multi-
residue codes state their distance for datawords da smaller a certain Nmax. The
behavior in the presence of errors that affect only one operand is the same as for
standard residue codes with the exception that larger distances are possible due
to the multiple residues. In other words, a trivial error of the form (da = 1, p1

a =
1, · · · , pla = 1) has to have at least a weight of l + 1. However, the size of the
check basis alone is not sufficient to state a certain distance. In the following we
give sufficient conditions for a minimum distance D if all datawords are < Nmax.

Theorem 2. A multi-residue code with distance D can be constructed as follows:

1. Set M =
∏l

i=1A
i with l ≥ D − 1 with all Ai’s being distinct.

2. Then M can be split in two factors M1 and M2. For every possible M1

(including M itself) with k factors check if an AN -code with A = M1 and
N0 = bNmax/M1c has at least a minimum distance of D − (l − k).

Proof. We start with k = l and M1 = M . In this case we need an AN -code with
distance D. This is because we assume all residues to become zero. Therefore,
the error induced in the dataword needs to have at least weight D. For k = l−1
we assume all residues but one to become zero. Therefore, we need to check
that M1 generates a distance D − 1 AN -code. We know that the extra residue
holds a value of at least one. Otherwise M would only generate a D − 1 AN -
code which would contradict the result of the first step. In the last step we
reach k = 0 and M1 = 1. This case presents the trivial error of the form
(da = 1, p1

a = 1, · · · , pla = 1) which has at least a weight of D because we know
that l ≥ D − 1.

3.4. Comparison 35

It is important to note, that the conditions are sufficient but not optimal.
That is, not all possible bases are found. In fact, in the second step we could
allow a distance smaller D − 1 for some datawords because the values held by
the extra residue could have a weight greater than one for these datawords. As
for the performance, multi-residue codes can be found faster than AN -codes
because the N0’s are smaller.

If an error is induced in both operands before a multiplication, it is data
dependent if the result is valid. However, the more residues the error affects,
the unlikelier becomes an undetected error. On the other hand, an error which
affects only one residue needs to be of weight ≥ D−1 according to the conditions
above.

For logic operations, we can observe a distance drop for similar reasons as
for linear codes:

Theorem 3. The operational distance for every (multi-)residue code regarding
logic-and, logic-or and exclusive-or is three.

Proof. Generally, we can write the three operations as c̃ = f(ã, b̃) with the parity
written as p̃c = pa+pb+(g(d̃a, d̃b) mod A). The encoded result of g is derived
the erroneous operands, thus this part of the parity already depends on d̃c. The
only portions that still depend on the original datawords are pa and pb. Hence,
an error stays undetected, if it does not affect the sum pa + pb. This is given if
ã+ b̃ = a+ b. As a consequence, for an error e = (ea, eb), ea = −eb must hold.
The smallest such e is (1,−1), where the arithmetic error −1 can be realized
with 2 bits. Thus, WH(e) = 3.

Example We take the logic-and operation and assume that the least-significant
bit of da as well as db is zero. Additionally, we need the second-least significant
bit of db to be one. Thus, also the least-significant bit of dc would be zero. By
flipping the least-significant bit of da, we induce ea = 1. By flipping the last two
bits of db, we induce eb = −1. The errors cause the result’s lsb to flip, but the
parity is still correct.

Multi-residue codes support all operations and show the least complexity of
all investigated arithmetic codes. They can be constructed with a high code
distance and only need a little more redundancy compared to AN -codes. This
is because the entropy of a t-bit residue is usually less than t, which adds up for
a large check basis. However, since the parity calculation for logic operations
needs to encode intermediate values, the operational distance is three. This is
independent of the check basis.

3.4 Comparison

The analysis of Section 3.3 is summarized in Table 3.2. It shows that every coding
scheme has its advantages and disadvantages. Thus, the optimal choice heavily
depends on the assumed adversary. Time- and space-redundant systems provide

36 Chapter 3. Coding Schemes for Arithmetic and Logic Operations

reasonable security against an adversary with little control on the induced fault.
However, the overhead is large and more advanced adversaries can exploit the
weaknesses of the two approaches and succeed by manipulating only two bits.

In order to reduce the overhead, coding theoretic approaches have to be
pursued. The most-general coding schemes, meaning that they support most
operations, are Berger codes, linear codes and (multi-)residue codes. The disad-
vantage of Berger codes is their small distance of two. Linear codes provide a
higher code distance, but a low operational distance regarding logic-and and sim-
ilar operations. Furthermore, the carry generation during arithmetic operations
need additional protection. Finally, linear codes do not support multiplication.
For multi-residue codes on the other hand, the only weaknesses seem to be the
operational distance and the slightly lower code distance when compared to
linear codes with an equal redundancy.

3.5 Conclusion and Open Problems

In this chapter, we studied various coding techniques that can be used to design
a fault-tolerant environment. We also discussed the weaknesses of the coding
schemes. It turned out that no coding scheme possesses an operational distance
greater than three. Solutions for this will be given in the next chapter.

Additionally, we discussed parity formulas for unary linear operations on
linear codes and gave conditions for high-distance multi-residue codes. The
operational distance for idempotent AN -codes and multi-residue codes regarding
multiplication needs further investigation.

3.5. Conclusion and Open Problems 37

T
a
b
le

3
.2
:

P
ro

p
er

ti
es

a
n
d

w
ea

k
n
es

se
s

o
f

th
e

a
n
a
ly

ze
d

co
d
in

g
sc

h
em

es
.

T
h
e

su
p
p

o
rt

ed
o
p

er
a
ti

o
n
s

a
re

L
o
g
ic

,
A

d
d
it

io
n
,
S

h
if

t/
R

o
ta

te
,

M
u
lt

ip
li
ca

ti
o
n

a
n
d
C

o
m

p
a
ri

so
n
.
f

()
d
es

cr
ib

es
so

m
e

b
o
u
n
d

o
n

th
e

d
is

ta
n
ce

,
e.

g
.

th
e

H
a
m

m
in

g
b

o
u
n
d

fo
r

li
n
ea

r
co

d
es

.

C
o
d

e
O

ve
rh

ea
d

D
is

ta
n

ce
m

in
.

O
p

.
D

is
ta

n
ce

S
u

p
p

.
O

p
.

T
im

e
re

d
u

n
d

an
cy

1
2

2
L

,A
,M

,S
,C

S
u

sc
ep

ti
b

le
to

si
n

g
le

d
es

tr
u

ct
iv

e
er

ro
rs

.
In

d
u

ct
io

n
o
f

tw
o

eq
u

iv
a
le

n
t

fa
u

lt
s

st
ay

s
u

n
d

et
ec

te
d

.

S
p

ac
e

re
d

u
n

d
a
n

cy
1

2
2

L
,A

,M
,S

,C

In
d

u
ct

io
n

o
f

tw
o

eq
u

iv
a
le

n
t

fa
u

lt
s

in
p

a
ra

ll
el

st
ay

s
u

n
d

et
ec

te
d

.

L
in

ea
r

co
d

es
r k

f
(k
,r

)
2

L
,A

,S
,C

L
o
g
ic

-a
n

d
is

su
sc

ep
ti

b
le

to
tw

o
b

it
-m

a
n

ip
u

la
ti

o
n

s.
M

a
n

ip
u

la
ti

o
n

o
f

ca
rr

y
g
en

er
a
ti

o
n

st
ay

s
u

n
d
et

ec
te

d
.

B
er

ge
r

co
d

es
bl

o
g
2
(k

)c
+

1
k

2
2

L
,A

,M
,S

,C

C
a
n

b
e

im
p

ro
ve

d
w

it
h

d
a
ta

p
a
rt

it
io

n
in

g
.

A
N

-c
o
d

es
dl

o
g
2
(A

)e
dl

o
g
2
(N

0
)e

f
(A
,N

0
)

D
A

,C

Id
em

.
A
N

-c
o
d

es
dl

o
g
2
(A

)e
dl

o
g
2
(N

0
)e

f
(A
,N

0
)

in
d

iv
id

u
a
l

A
,M

M
u

lt
ip

li
ca

ti
o
n

is
su

sc
ep

ti
b

le
to

er
ro

rs
w

it
h

a
w

ei
g
h
t
≤
d
.

R
es

id
u

e
co

d
es

dl
o
g
2
(A

)e
dl

o
g
2
(N

m
a
x
)e

2
2

L
,A

,M
,S

,C

S
o
m

e
d

a
ta

va
lu

es
in

h
ib

it
er

ro
r

d
et

ec
ti

o
n

fo
r

m
u

lt
ip

li
ca

ti
o
n

.

M
u

lt
i-

re
si

d
u

e
co

d
es

∑ dl
o
g
2
(a

i
)e

dl
o
g
2
(N

m
a
x
)e

f
(A
,N

m
a
x
)

in
d

iv
id

u
a
l

L
,A

,M
,S

,C

S
o
m

e
d

a
ta

va
lu

es
in

h
ib

it
er

ro
r

d
et

ec
ti

o
n

fo
r

m
u

lt
ip

li
ca

ti
o
n

.

4
Arithmetic Logic Units with High

Error-Detection Rates

In this chapter we use the results of Chapter 3 in order to design and implement
a fault-detecting arithmetic logic unit (ALU) with high distance. In particular,
we will use linear codes and multi-residue codes to protect the ALU. First, we
define constraints and sketch a generic hardware architecture which preserves a
high distance. That is, all states of the implemented system will have a minimum
pairwise Hamming distance equal to the code distance. Afterwards, we select
code parameters which meet our constraints and design efficient encoders and
parity/residue ALUs. After a first comparison we will see that a multi-residue
ALU is not competitive without further optimizations. However, we will show
that due to the frequency with which certain instructions can be expected to
occur, we can efficiently trade area for time. A second comparison will show that
this measure renders multi-residue ALUs an interesting alternative to linear-code
based ALUs. Finally, we extend the multi-residue ALU by a 32-bit multiplier. It
turns out that for the chosen multiplier architecture, adding a residue-datapath
is inexpensive in terms of area and delay.

4.1 Requirements and Goals

Coding schemes for processors have been a research topic for decades [ES90,
TDNH95]. They have received much attention for protecting mainframe systems
or aerospace equipment against permanent or randomly occurring malfunctions.
In these applications, the interest lies in the deployment of error-correction mech-
anisms for low-weight errors, usually one-bit errors. As our source of errors is

39

40 Chapter 4. Arithmetic Logic Units with High Error-Detection Rates

a malicious attacker, our aims are quite different: First, we only want to de-
tect errors, not correct them. Furthermore, the spectrum of different faults
we want to detect ranges from precise low-weight errors to random errors with
large multiplicity. With this in mind we define the following requirements for
the code-protected ALU:

1. All errors of small multiplicity must be detected with certainty. We opted
for a minimum distance of four. This renders the minimum multiplicity of
certainly detected errors three times as high as for schemes based on dual
modular redundancy (DMR).

2. All other errors must be detected with a high probability. This high prob-
ability has to be in the magnitude of 1− 2−16.

3. The costs of the error-detecting ALU should be smaller than implementing
a DMR approach.

The first requirement is maybe the most interesting. Assume an ALU which
is naively protected by a distance-three code. Such an ALU can correct all one-
bit errors which affect the input. However, in contrast to what coding theory
suggests, it does not necessarily detect all two-bit errors. Thus, as elaborated
in the previous chapter, a high code distance is necessary but not sufficient to
detect certain errors with certainty. Therefore, we have to consider additional
hardware-architectural measures to raise the minimum weight of an undetected
error from the operational distance to the code distance.

The second requirement is the easiest to meet. That is, by using a large
enough redundancy we can reduce the percentage of valid codewords to the
required amount. This large redundancy also allows to deploy codes with a
large code distance.

The third requirement is hard to meet, simply because even efficient encoders
and parity/residue ALUs significantly increase the area of the circuit. In fact,
the only one of our architectures which meets this last requirement is the full
multi-residue ALU including the multiplier. All other implementations have
a larger overhead than DMR-based ALUs. However, by taking the additional
memory needs of DMR approaches into account, code based ALUs can still be
smaller.

4.2 General Hardware Architecture

In the following we use the same notation as in Chapter 3. Operands are denoted
as a, b, . . . and their corresponding data and parity/residue parts are denoted by
da, db, . . . and pa, pb, For multi-residue codes we use bold letters pa,pb, . . .
to indicate the vector of residues. Furthermore, an error which affects an operand
is denoted by ea, eb, . . . and e denotes the error which affects all operands in-
volved in an operation. An erroneous operand is indicated by a tilde (ã, b̃, . . .).
Finally, WH(·) denotes the Hamming weight and the code distance is denoted
by D.

4.2. General Hardware Architecture 41

Once operations are performed on codewords, the operational distance has to
be considered instead of the code distance. Thus, the number of undetected er-
rors increases. However, we can cope with these undetected errors at a hardware-
architectural level. In this section we design an ALU which deploys a certain
code with a given operational distance. We generically extend this architecture
by measures which increase the minimum weight for an undetected error to a
value equal to the code distance.

All codes from Chapter 3 preserve their code distance if only a or b is affected.
This even holds for operations which are not natively supported by the code,
that is, operations where the parity/residue calculation requires auxiliary values.
Problems only arise if ea 6= 0 and eb 6= 0. In this case, it is possible that an
operation produces a valid but incorrect result although WH(e) < D. However,
WH(e) < D demands WH(ea) < D and WH(eb) < D. As a consequence, ea as
well as eb is detectable with certainty if we check ã and b̃. Furthermore, since
such errors affect both operands, it is sufficient to check only one operand. It
follows that checking the result and in addition checking one of the two operands
allows the detection of all errors e with WH(e) < D.

For a hardware-architecture this means that although native operations only
need one encoder for checking the result, a non-native operation requires three
encoders: one for checking the result, one for checking one input operand and
one for generating the auxiliary value. This is depicted in Figure 4.1. The

32-bit Data Registers
16-bit Parity

Registers

Data ALU
Parity

ALU

32 3232 1616

Aux

Encoder

Contol

Unit

Encoder

&

Checker

Encoder

&

Checker

Instructions Valid Parity?

16

Figure 4.1: General architecture which enforces a distance equal to the code distance.

42 Chapter 4. Arithmetic Logic Units with High Error-Detection Rates

simplified processor operates on 32-bit data words and 16-bit parities/residue
vectors. The Data ALU computes the result and provides the auxiliary values
for the Aux Encoder. The Parity ALU takes the auxiliary parity plus the two
parities of the input operands and derives the result’s parity. The result’s parity,
as well as the parity of the input operand, is checked against the parity derived
from the corresponding data value.

As the area increase for the simplified processor will be dominated by the
Parity ALU and the Encoders, the design of these components is crucial. Thus,
in the following we elaborate suitable parameters for the codes of interest and
efficient Encoders and Parity ALU s.

4.2.1 Finding an Appropriate Linear Code

Linear codes are well studied and there exist several online databases which
either provide a construction or even the generator matrix for a linear code
with defined dimension, redundancy and/or code distance. In order to find an
appropriate linear code over GF(2), we used the online demo of the MAGMA
Computational Algebra System. Issuing the command BKLC(GF(2), 48,32)
(Best Known Linear Code) yielded a generator matrix for a [48, 32, 6] linear
code over GF(2). As a linear-code encoder only consists of XOR gates, it does
not leave much room for improvement of the hardware designs. Thus, we simply
used a MATLAB script to generate the VHDL code from the generator matrix.

4.2.2 Finding an Appropriate Multi-residue Code and En-
coder Implementation

Finding appropriate arithmetic codes with a high distance is much less straight-
forward than finding linear codes over GF(2). Especially, finding multi-residue
codes is harder than finding AN -codes, because just separating an AN -code
usually does not yield a multi-residue code with the same distance. As a conse-
quence, one has to exhaustively search for a suitable AN -code which in addition
can be transformed into a suitable multi-residue code. For this purpose we
implemented a C++ program according to the rules from Chapter 3. A pseudo-
code of the program’s check routine is given in Algorithm 2. The algorithm
also includes the optimizations mentioned in Chapter 3 in order to find a larger
amount of bases. In particular, whenever a weight check fails, we try whether
the residues due to the M2 partition have a sufficiently large weight. Note that
when checking the arithmetic weight of a residue, we also have to check the neg-
ative equivalent and use the smallest weight. For example 3 has an arithmetic
weight of 2. However, modulo 7, we also have to consider 3− 7 = −4 which has
only a weight of 1. Thus the arithmetic weight of 3 modulo 7 is only 1.

In order to find check bases with a specific distance, we ran the program with
Nmax equal to 232− 1 and A ranging from 214− 1 to 218− 1. This was done for
minW equal to four, five and six. Table 4.1 summarizes the results.

At first glance it seems that many suitable codes with a distance of four
exist. However, encoding a dataword requires a modulo operation. In general,

4.2. General Hardware Architecture 43

Algorithm 2 Check if A represents a suitable base for a multi-residue code with
a certain distance.

Input: A the product of the bases, minW the minimum weight of the code, and
Nmax the maximum dataword to encode.

Output: Success or Fail.
(numFactors, factors) ← factorize(A)
if numFactors+1 < minW then

return Fail
end if
if factors has non-distinct entries then

return Fail
end if
for all (M1,M2) ∈ {(a,A/a) : a|A} do

(numFactorsM2,factorsM2) ← factorize(M2)
tmpN0 ← dNmax/M1e
tmpMinW ← minW - (numFactors - numFactorsM2)
for tmpAN=M1 to M1· tmpN0 step M1 do

tmpW ← getArithWeight(tmpAN)
if tmpW < tmpMinW then

tmpW ← tmpW + residueWeight(tmpAN, factorsM2)
if tmpW - numFactorsM2 < minW then

return Fail
end if

end if
end for

end for
return Success

this is an expensive operation, especially when it has to be performed within one
clock cycle, as it is the case for the encoders. Fortunately, there exist moduli
of a special form, namely 2k − 1 or 2k + 1, for which encoding becomes more
efficient. The most convenient form is the first one. For such moduli we can use
the congruence

2i·k ≡ 1 mod 2k − 1.

This allows to split the data value into chunks of k bits length and to just add
them up. Since also the thereby produced carry bits are congruent one, they
can just be used as carry-in bit for the next addition. Figure 4.2 depicts a block
diagram for such an encoder. The boxes x0 to x6 represent the k-bit chunks of
the input operand, where x0 holds the least significant k bits. The carry-save
adders (CSA) take three operands as input and output two k-bit words of which
one is the carry vector. The first CSA in the chain can process 3 chunks, every
further CSA processes one chunk. The most significant bit of the carry vector
has the value 2k and the least significant has the value 21. Thus, it can be
reduced by moving the most significant bit to position 20. In hardware, this is

44 Chapter 4. Arithmetic Logic Units with High Error-Detection Rates

Table 4.1: Number of suitable check bases for multi-residue codes.

minW found bases found bases with r ≤ 16

4 44130 2158
5 1686 0
6 0 0

x6

x5

x4

x3

x2

x1

x0

CSACSACSACSACSA

<<<<<<<<<<<<<<<

Adder

Adder

<>1

&

x mod 2
k
-1

k bit wide

Figure 4.2: Residue encoder for moduli of the form 2k − 1.

realized by left-rotating (≪) the wires and connecting them to the CSA inputs
valued 2k−1 to 20. The CSAs are used to shorten the critical path. However,
to finalize the result, we have to switch from a carry-save representation to a
unique binary representation again. For this we use ordinary adders. Whereas
the first adder can still produce a carry bit, the output of the second adder is
smaller 2k. However, it still can hold the value 2k − 1. In this case, the circuit
outputs 0.

For moduli of the form 2k + 1 the case is slightly more complicated. Nev-
ertheless, it is still more efficiently implementable than a reduction for general
moduli. The relation used is

2i·k ≡ (−1)i mod 2k + 1.

The main difference to the previous form is that the k-bit words have to be

4.2. General Hardware Architecture 45

x6

x5 x4

x3 x2

x1 x0

CSA

CSACSA

CSA

<0

+ Sub -

Add

2k+1

x mod 2
k
+1

k bit wide

x7
swap MSb

<<<<<<

swap MSb

<<<<<<

Adder Adder

>=2
k
+1

Sub 2
k
+1

>=2
k
+1

Sub 2
k
+1

Figure 4.3: Residue encoder for moduli of the form 2k + 1.

summed up with alternating signs. For the hardware implementation (see Figure
4.3) this means that we now have two parallel adder structures. The right one
deals with the positive terms (x0, x2, x4, x6) and the left one with the negative
terms (x1, x3, x5, x7). Another consequence is that the most significant carry-
out bit can still be reduced by a rotation, but now changes the sign. Therefore,
before rotating the carry vectors, we swap the most significant bits between the
two structures. At the end of both structures we make sure that the result is
smaller than the modulus. This is done by conditionally subtracting 2k +1 (Sub

46 Chapter 4. Arithmetic Logic Units with High Error-Detection Rates

2k + 1 and >= 2k + 1). Note that here, in contrast to moduli of the form 2k− 1,
checking the less than relation needs a full arithmetic comparator. Finally, the
difference of the two sums is built and the modulus is added if the result is
negative.

What remains to be done is to find a reasonable set of moduli within the
1145 candidates. Thus, we look for A-values which are smooth over a certain
factor base whose entries are of the form 2k ± 1. In particular, we define the
factor base as

B = {3, 5, 7, 17, 31, 127, 257}.

It turns out that there exists only one suitable candidate with r ≤ 16. Even
within the 44130 candidates there are only 13 which are B-smooth.

4.2.3 Area Results for the Encoders

The area results for the different encoders are presented in Table 4.2. The
results were generated with the Cadence RTL Compiler 8.1 and the library used
was the AMS C35b4, a 0.35µm CMOS standard-cell library. All numbers are
post-synthesis results from before the place-and-route stage. The linear encoder
requires roughly a third of the area which is occupied by a multi-residue encoder.
For the residue encoders, it can be seen that although the second design seems
to be more complicated and involves more comparisons and additions, they are
similar in terms of area, with the latter design being slightly larger.

Table 4.2: Area results of the encoder designs.

Encoder type Area in GE

mod 5 197
mod 7 185
mod 17 228
mod 31 181

multi-res 791
linear 283

4.2.4 Design of the parity ALU

According to Section 3.3.4, the parity of any operation’s result can be calculated
as a sum over GF(2) of at most three operands. In Figure 4.4 these three
operands are op1 i, the parity of the first operand, aux i, the auxiliary value from
the standard ALU, and the output of MUX1. The multiplexer MUX1 selects
the third operand depending on the instruction being executed. Its inputs are
op2 i, the parity of the second operand, zero c, the all zeros vector, and not c,
the encoded all ones vector. The generation of the aux i value produces very
little overhead as it is generated anyway within the ALU and only needs to be

4.2. General Hardware Architecture 47

op1_i

op2_i

aux_i

zero_c

not_c

 insLS insNOT insSUB others

 insRS

 STORE

result’s parity

MUX1

Figure 4.4: Parity ALU for linear codes over GF(2).

multiplexed and fed into the encoder. The parity ALU itself consists of three
XOR arrays and one multiplexer and is thus rather small.

4.2.5 Design of the Residue ALU

The design of the multi-residue ALU is depicted in Figure 4.5. Intermediate
values are shown in red. Green indicates values which are used for multiplication.
Thus, for now, green features can be ignored. Basically, the ALU only consists
of one modulo by-two-divider (upper path between T5 and T7), one adder, one
subtractor and one circuit to calculate the two’s complement (indicated by a
minus sign (“-”) in front of some aux i values). Most operations only need
the information about a possible carry bit in the main ALU in addition to the
residue-vector inputs. The only operations which need the auxiliary value are
the logic operations and the multiplication. The latter one will be described in
Section 4.6.

Table 4.3: Area results of the ALU designs.

ALU type Area in GE

mod 5 149
mod 7 142
mod 17 226
mod 31 365

multi-res 721
linear 110

48 Chapter 4. Arithmetic Logic Units with High Error-Detection Rates

ADD- SUB + T4

if odd add modulus

insAND

insOR

insRS

others

signed >>T6

ensure

0<=T7<modulus
T7

T5

T2

T1T3

results’ residue

aux_i

N P

hi(op1*op2)

- aux_i

insSUB insAND insMUL others insOR

insNOT insXOR

T9

op2_i

T3

&
op2_i

0

reduced carry hi(op1*op2)

insRS insSUB others insMUL

insLS

insNOT

STORE

P N

- aux_i
carry_i

T2

<<

others insLS insNot insMUL

op1_i reduced

-1

lo(op1*op2)

T1

insRS insADD others

insLS

&

carry_i

0

reduced carry

T9

Figure 4.5: Parity ALU for multi-residue codes.

4.3. Optimization for Multi-Residue Codes 49

Table 4.4: Instruction frequencies.

Instruction AES Boot Shell ECC

Arithmetic 17,62% 23,83% 13,23% 17,46%
Branch 0,33% 28,42% 25,62% 4,66%
Cmp 0,22% 11,72% 16,37% 2,22%
Load/Store 40,72% 23,60% 23,02% 54,73%
Logic 19,53% 3,57% 6,93% 0,70%
Misc 0,07% 1,20% 0,68% 1,46%
Mov 21,51% 7,42% 14,01% 15,48%
Mul 0,00% 0,24% 0,13% 3,30%

Already from the designs it can be seen that the residue ALU is much larger
than the parity ALU. Their area results are summarized in Table 4.3. It turns
out that the factor between a linear-code ALU and a multi-residue code ALU is
about ten.

4.3 Optimization for Multi-Residue Codes

The general design from Figure 4.1 requires three encoders. However, depending
on the code, parity generation is a complex task and two additional encoders
are expensive. This raises the interesting question of how often the non-native
operations, which require the two additional encoders, occur. Assuming that
they are rare, it would be possible to save area by spending two additional clock
cycles and re-using the encoder.

4.3.1 Instruction Frequency Analysis

In order to determine the need of additional encodings we analyzed the instruc-
tion stream of an ARM7TDMI-S microprocessor. For this purpose we modified
the ARM emulator Skyeye to obtain the instruction streams for various ap-
plications. The instruction stream was then parsed for instructions. From this
information an instruction profile for four different scenarios, of which we believe
that they are representative for security aware embedded devices, was created.

The first code we evaluated was an optimized 32-bit implementation of the
Advanced Encryption Standard (AES). The second code performed an elliptic
curve scalar multiplication on the standardized NIST curve P-192. Finally, we
used µC-Linux as a candidate for an operating system. In the last case we did
the profiling for the boot process as well as for basic shell activities.

The outcome of the instruction frequency analysis can be seen in Table 4.4.
For all four scenarios, data transfer operations (Load/Store, Mov) together with
arithmetic operations (Arith., Cmp) account for more than 50% of the instruc-
tions. A good deal of the arithmetic instructions is used for address arithmetic.

50 Chapter 4. Arithmetic Logic Units with High Error-Detection Rates

An AES encryption needs 20% of logic operations, but for the remaining sce-
narios they are rather rare. In fact, during normal operation, the share of logic
operations is slightly above 5%.

For linear codes, this has minor consequences. Their only native operation
is the exclusive-or and hence using three encoders is inevitable. However, for
multi-residue codes, the share of non-native operations is roughly 5%. Thus,
using only one encoder, but three cycles for every non-native operation would
cause a time overhead of about 10%. Of course, giving an accurate number for
the time overhead is application specific and thus difficult. Therefore, we use
10% as a reasonable guideline value. The resulting savings in area are discussed
in Section 4.4.1.

4.3.2 Optimized Architecture with Only One
Encoder/Checker

32-bit Data Registers
16-bit Residue

Registers

Data ALU
Residue

ALU

32 3232 1616

Contol

Unit

Instructions Valid Residue?

16

Encoder & Checker

Residue Register

Figure 4.6: Optimized multi-residue code ALU.

The optimized design of the multi-residue ALU uses only one encoder (see
Figure 4.6). During the first cycle of a non-native operation, the standard ALU
calculates the result and the auxiliary value. Additionally, the encoder calculates
the residue vector for this auxiliary value and stores the result in the parity
register within the encoder. In the second cycle, the residue ALU uses this value
to calculate its result and the encoder meanwhile calculates the result’s residue

4.4. Results 51

Table 4.5: Area requirements in GE.

DRM ALU Residue ALU Linear ALU

1. ALU 641 ALU 649 ALU 1080
2. ALU 641 Res ALU 721 Lin ALU 110
Controller 481 Encoder 791 1. Encoder 283

Checker + Reg. 301 2. Encoder 283
Controller 611 3. Encoder 283

Controller 447
1763 3073 2486

vector. Both values are checked against each other in the second cycle. At the
end of the second cycle, the result is written back to the register file. In the
third cycle, the input operand is encoded and checked against its residue vector.

4.4 Results

Taking the observations and experimental results from above into account, we
synthesized two code-protected ALUs and one DMR ALU. The first design in-
corporates linear codes according to Figure 4.1. The second one implements the
optimized multi-residue code-based datapath according to Figure 4.6. The DMR
ALU consists of two standard ALUs, two register files and one comparator.

4.4.1 Area of the Combinatorial Part

In Table 4.5, it can be seen that a DMR ALU occupies 1763 gate equivalents
(GE). The linear code ALU is 41% larger when incorporating three encoders.
The multi-residue-code ALU on the other hand is about 74% larger than the
DMR ALU. A multi-residue-code ALU with three encoders would be even 164%
larger. However, by adding 10% time redundancy and thus removing two en-
coders from the design, it was possible to reduce the area overhead by 90%. This
shows that code-protected ALUs with large redundancy introduce a significant
overhead in the combinatorial part of the circuit compared to a DMR ALU.

At first glance, it looks peculiar that the standard ALU for the linear-code
design is much larger. The reason for this is that we needed to access the internal
carry vector of the adder. Therefore, we had to implement this adder as an array
of full adders instead of using the optimized instance of the standard-cell library.
As a result, this ALU is 68% larger than the others. Considering that most
structures within the multi-residue encoders and the multi-residue ALU are also
unoptimized full-adder arrays, it might be possible to also decrease their area
significantly.

52 Chapter 4. Arithmetic Logic Units with High Error-Detection Rates

Table 4.6: Absolute and relative area savings compared to the DMR ALU including
the register file.

Registers Absolute Relative savings Relative savings
memory savings multi-res. codes linear codes

4 580 GE -18% -4%
8 1160 GE -2% 7%

16 2320 GE 9% 14%
32 4640 GE 16% 19%
64 9280 GE 20% 22%

4.4.2 Total area

By just looking at the combinatorial part of the circuit, implementing an ALU
using coding techniques does not seem to be very attractive. However, looking
at the whole processor, that is ALU plus register file, it has an important advan-
tage. Using coding techniques, the amount of redundancy can be adapted to the
application’s needs. For our design decisions, we assumed that a redundancy of
16 bits is sufficient to counteract random-fault attacks. Compared to DMR ap-
proaches, this means that the register file becomes 25% smaller. Since registers
occupy a significant part of the area, also these savings are significant. Looking
at an architecture which features 64 registers, the register file of the code-based
approach is 9280 GE smaller (see Table 4.6). In general, a code-based approach
pays off from 5 registers upwards for linear codes and from 9 registers upwards
for multi-residue codes. Furthermore, the savings of both approaches converge
towards the 25% percent limit.

4.4.3 Timing behavior

Besides the required area, another interesting property of a hardware implemen-
tation is the timing behavior. The comparison of the timing delay is difficult due
to the same optimization reasons as stated in Section 4.4.1. The DMR-based
ALU showed a delay of 19.6ns in the critical path. The linear-code-based ALU
had a critical path of 31.8ns. Within the critical path for the linear-code-based
design lies the adder and the encoder. This is because the encoder has to wait
for the carry vector during the addition. Out of these 31.8ns, the encoder and
the parity ALU account only for 3.8ns. Again it should be noted that the full
adder array introduces a higher delay than the adder instantiated by the syn-
thesizer. In fact, the delay difference is about 10ns. The critical path of the
multi-residue code design is 28.7ns long. Here, the adder and the encoder lie
within this path, but not the residue ALUs as they operate independently for
arithmetic operations. The encoder itself introduces a delay of 10ns.

4.5. Intermediate Discussion 53

4.5 Intermediate Discussion

To draw intermediate conclusions, we can state that both designs are distance
preserving and more robust than the DMR-based design. For the multi-residue-
code based design we showed that it is possible to reduce the overhead from
160% to 70% by adding 10% time overhead. For a linear-code-based ALU the
overhead is 41%. However, it might be as small as 17% if we assume the standard
ALU size to be the same as for the other architectures.

Furthermore, although the combinatorial part of the code-based designs is
larger than for a DMR-based one, the code-based approach pays off when in-
cluding the register file in the area costs. For 16 registers, the area savings lie
between 9% and 14%.

For the timing delay, the multi-residue ALU has a critical path which is 46%
longer than the one of a DMR-based ALU. The linear ALU is 62% slower in our
results. However, it should be noted that most of its critical path is caused by
the full-adder array.

Most important it should be noted that optimized structures might signifi-
cantly improve the figures for the multi-residue design. We base this speculation
on the fact that in our design flow, a full adder array is 68% larger than an adder
instantiated by the synthesizer.

We conclude that multi-residue codes are more suitable to protect an ALU.
This is because they do not have direct weaknesses for carry-based operations
and allow multiplication. The smaller distance is negligible, as arithmetic errors
are data-dependent and therefore harder to inject precisely.

4.6 Adding a multiplier

To enable a fair comparison, we have not looked at a multiplier architecture
until now. However, since multi-residue codes support them natively, adding
multiplication instructions seems to be very appealing. Furthermore, as the
complexity of multiplying the residues is much smaller than for the actual data
itself, we expect significant area savings.

Basically, we can use the fact that the product of the data part is congruent
to the product of the residues. However, this only holds for the full 64-bit result.
Within the microcontroller, we need to store the result as two 32-bit words and
thus we have to derive their residues before storing these values. In the following
we use the hi(·) function to get the upper 32 bits of the 64-bit value and lo(·) to
get the lower half of the product. We can observe that

lo(c) = c− hi(c) ∗ 232

hi(c) = (c− lo(c)) ∗ 2−32.

Analogously to that, we can calculate the residues with

plo(c) = pc − (hi(c) mod A) ∗ (232 mod A)

phi(c) = (pc − (lo(c) mod A)) ∗ (2−32 mod A).

54 Chapter 4. Arithmetic Logic Units with High Error-Detection Rates

Table 4.7: Necessary operations to multiply the residues by 232 and its inverse.

Modulus m (232 mod m) Operation (2−32 mod m) operation

5 1 - 1 -
7 4 ≪2 2 ≪1

17 1 - 1 -
31 4 ≪2 8 ≪3

The calculation of the auxiliary values (hi(c) mod A) and (lo(c) mod A) is
inevitable. Fortunately, we can spare the calculation of (232 mod A) and (2−32

mod A). For the moduli of the form 2k−1 any multiplication by a power of two
is just a left-rotate, as powers of two always stay such, even if reduced. Thus, also
their inverses are only rotations. For moduli of the form 2k + 1 this is in general
not the case and these operations can potentially require full multiplications.
However, we are lucky and the orders of the multiplicative groups modulo 5
and 17, that is 4 and 16, divide 32. Hence, we can spare the multiplication
completely in this case. Table 4.7 summarizes the necessary operations.

The multiplication itself needs two cycles as we have to write back each word
of the result separately. During each cycle we have to perform an encoding and
a subtraction in order to get the residue vector. Additionally, we need to check
the encoded result itself against the calculated residues. In order to perform
everything within two cycles and to keep the critical path as short as possible,
we follow the following strategy:

In the first cycle, the product c is computed and the upper 32 bits of the
result (hi(c)) are written back. For the residue calculation we need to encode the
lower 32 bits (lo(c)). These bits are ready before the upper ones. As a result, we
can interleave the encoding with the multiplication. Of course, the encoding and
the subtraction still take longer than the carry propagation inside the multiplier,
but we save the delay of a 32-bit carry propagation. By now we only encoded
the lower 32 bits, thus we can not check the upper bits before writing them
back. Instead, we store the values phi(c) and (lo(c) mod A) in separate check
registers. Furthermore, the upper 32 bits of the product are stored temporarily1.

In the second cycle we encode the upper bits of the product and subtract
the result times 232 from pc in order to get the residues for the lower bits. In
this case we can directly access the temporarily stored product without delay,
thus the second cycle does not lie in the critical path. In addition to writing
back the lower bits and their residue vector, we store the values plo(c) and (hi(c)
mod A) in separate check registers.

Until now, we only calculated the residues and wrote them back to the register
file but did not check the result. This is done via the four separate check reg-

1Technically, there is no reason for spending a register to temporarily store the upper bits
of the product. This was mainly done to tell the RTL compiler that the encoding of the upper
bits does not belong to the critical path during the next cycle. Alternatively, one could use a
multi-cycle-path construction.

4.7. Conclusion 55

isters. They are permanently connected to a comparator which checks whether
the two hi -registers and the two lo-registers hold the same value. The result
of this comparison is ANDed with the global ok s signal, except for the two
multiplication cycles where the comparison would fail.

4.6.1 Area and Timing

For the area and timing analysis we again compare our design to an DMR-
based approach. The DMR-based ALU without register file and with two 32-
bit multipliers occupies 13134 GE. The multi-residue ALU on the other hand
occupies only 9950 GE. This means that our code-based approach is 24.8%
smaller than the DMR-based approach.

The critical path of the DMR-based approach is 32.2ns long. The multi-
residue ALU takes 35.1ns to compute the result. The encoding and the sub-
traction itself take 15.2ns, but by interleaving the multiplication and the residue
calculation the critical path increases only by 2.9ns instead of 15.2ns. This
means that the critical path of the multi-residue approach is 9% longer than in
the DMR design.

4.7 Conclusion

In this chapter we discussed code-protected datapaths as a more robust alterna-
tive to dual modular redundant designs. In terms of security, the code-protected
designs are superior to the DMR-based approach because they detect errors of
small multiplicity with certainty. In the case of the linear ALU all errors up to
a multiplicity of five are detected. The multi-residue ALU on the other hand
detects all errors up to a multiplicity of 3 with certainty. However, it should
be noted that it is data-dependent if the desired error can even be injected in
the case of multi-residue codes. Within the code-protected designs, the multi-
residue approach is superior for two reasons. First, it has no direct weak points,
like the linear ALU has with the carry generation, where theoretically a single-
bit fault would succeed, unless further measures are taken. Second, it allows to
incorporate a multiplier.

In terms of area, both ALU designs are larger than a DMR approach. How-
ever, when also considering the area of the register file, both code protected
designs become smaller than the DMR design. Additionally, the synthesizer
showed to be very good at optimizing standard structures, but did not recog-
nize for instance carry-save adders or full-adder arrays as such. Therefore, there
should be potential to further optimize the multi-residue design as a great deal
of its area is occupied by such structures.

In terms of performance, both code-based designs are slower than the DMR
approach as the result of the standard ALU is always fed into an encoder and
sometimes further into the parity/residue ALU. For the linear ALU, this addi-
tional delay accounts for 11.5ns and 9.1ns for the multi-residue ALU. The DMR
ALU has a critical path of 19.6ns.

56 Chapter 4. Arithmetic Logic Units with High Error-Detection Rates

However, as soon as we introduce a 32-bit multiplier in the design, the sit-
uation changesin favor of the multi-residue ALU. That is, since the residue
multiplications are much less complex than the full 32-bit multiplication, the
multi-residue ALU now becomes 24.8% smaller than the DMR ALU. Further-
more, it is now possible to interleave the multiplication and the encoding and
thus decrease the timing overhead to 9%.

We conclude that the multi-residue ALU is superior in terms of robustness
and provides the best security/area tradeoff for the standard ALU. When more
complex operations like multiplications are implemented, it is definitely the best
choice.

Part II

Algorithmic
Countermeasures

57

5
A Generic Fault Countermeasure

Providing Data and Program Flow
Integrity

This and the next two chapters discuss algorithmic countermeasures. As the
name already suggests, they are specific to a certain algorithm. Their big ad-
vantage compared to circuit-level countermeasures is that they can make use of
special properties of the algorithm to achieve high efficiency. Furthermore, they
are often implementation independent, that is, they can be deployed either in
software or in hardware. On the other hand, they only protect the algorithm
itself and information might leak through other components of the system like
the operating system.

In particular, for public-key algorithms, where computations take place in a
large algebra, algorithmic countermeasures have shown to provide a high degree
of security at little costs. Many of these countermeasures are based on some
sort of embedding or ring-extension technique. In the following, we discuss both
approaches. Afterwards, we present a slightly different embedding approach
based on idempotent AN -codes. We will show that this approach can provide
the same level of security (regarding data integrity) as other countermeasures,
but in addition can also protect the program flow at lower costs.

5.1 Approaches Based on Ring-Extension

Many common public-key algorithms such as RSA or elliptic-curve based algo-
rithms rely on modular arithmetic. More precisely, they operate either on finite

59

60 Chapter 5. A Generic Fault Countermeasure

fields or finite rings. Thus in general, such algorithms can be formulated as

y = f(x) withx, y ∈ R

where R would, for instance, be the scalar product of two large prime fields in
the case of RSA. In a general extension approach, such as presented in [JPY01],
a much smaller prime field is appended to the ring. Thus, for RSA, we would
have R′ = (Fp × Fq × Fr) instead of R = (Fp × Fq). The primes p and q
usually have at least 512 bits, r on the other hand would be 32, 64 or 96 bits
long. The idea is that, if the algorithm is performed on elements x′, y′ ∈ R′,
the calculations are implicitly also performed on xr, yr ∈ Fr. Hence, instead of
performing all computations twice, the check calculation can be done only in Fr

and afterwards it is verified that

y′ ≡ yr (mod r). (5.1)

If this equation does not hold, an error has occurred. Since, the main algebra
becomes only slightly larger and Fr is small compared to R, the overhead is
usually small. The error detection probability can in general be stated with
1− 1/r.

5.1.1 Optimizations

For some algorithms, further optimizations of the approach described above are
possible. For instance, Shamir proposed the following countermeasure based on
ring extension for the CRT-RSA algorithm [Sha08]. We recall that CRT-RSA
performs the exponentiation s = md (mod n), where n = p · q, in three steps:

sp ← md mod p−1
p (mod p)

sq ← md mod q−1
q (mod q)

s ← CRT(sp, sq).

In Shamir’s approach, the first two operations are replaced by

spr ← md mod ϕ(p·r)
pr (mod p · r)

sqr ← md mod ϕ(q·r)
qr (mod q · r).

The signature s is output after the CRT if the equation spr ≡ sqr (mod r) holds.

5.1.2 Infective Computation

In general, correctness checks present a single point of failure. That is, bypassing
them circumvents the security of the whole system. Thus they should be avoided
if possible. Blömer et al. proposed an approach which is based on infective
computation [BOS03]. This means that the algorithm outputs a correct result
in case of no error, but produces a random result if an error is present. This
is often achieved by introducing a variable which holds either a one or a value

5.2. Coding-Based Approaches 61

other than one (as random as possible) depending on whether an error occurred.
Before output, s is then taken to the power of this variable. For RSA, such
variable could be constructed as

spr ← md mod ϕ(p·r)
pr (mod p · r)

vp ← m− sepr + 1 (mod r).

Here, vp is one during a normal computation but expected to be random in
case of an error. Although, infective computations should always be preferred
to checks, they have to be implemented and designed with great care. This is
because in case of flaws there is no check which prevents the information from
leaking out.

5.1.3 Program-Flow Security of Ring Extensions

Regarding the program flow, the general ring-extension approach provides the
same security as time-redundant schemes. That is, if the same operation can be
skipped in both calculations, the error is not detected.

Optimizations like Shamir’s trick severely aggravate general program-flow
attacks. This is because d needs to be modified by altering d modulo ϕ(p · r)
and ϕ(q · r). This is (theoretically) possible for bits in d which (1) represent
a value smaller min((p − 1), (q − 1)) and (2) are set to the same value in both
subgroups. For instance, the least significant bit in d, which is always one, is also
one modulo ϕ(p ·r) and modulo ϕ(q ·r). If both least significant bits are still one
after the reduction of d, both multiplications could be skipped which accounts
for decrementing the exponents by one. This has the same effect as decrementing
d itself which clearly cannot be detected by Shamir’s trick. However, the attack
is rather unpractical and can only recover half the bits of d.

In the case of the Bellcore attack, a fault injection as described above is not
sufficient. This is because the error changes both signatures sp and sq. As a
result, m− s̃e cannot be expected to contain p or q as a factor. Hence, Shamir’s
countermeasure prevents the Bellcore attack completely.

Blömer’s infective-computation approach prevents attacks based on skipping
operations with a probability of 1−1/r. This is because the implicit verification
relies on the inverse of d and changing d would need a non-trivial and unknown
change of e in order to stay undetected.

5.2 Coding-Based Approaches

In general, ring extensions need an extra run of the algorithm on the smaller alge-
bra. However, it would be desirable to avoid such extra computations. Coding-
based approaches do so by using the larger algebra to add redundancy.

The approaches discussed in this section are all based on idempotent AN -
codes as discussed in Section 3.3.6. In the following, we briefly recall them with
a slightly different notation. We assume the prime field Fp which we want to

62 Chapter 5. A Generic Fault Countermeasure

protect. Furthermore, Fr will be the prime field used for error detection. All
computations take place in the ring (Fp × Fr). However, in contrast to the
extension-based approaches we embed the elements of Fp in the larger ring.
This is done by using the CRT. The data values to encode will be denoted as
m and the check values will be denoted by k. Thus, the embedding is done by
CRT(m,k). Depending on what element k is chosen for the embedding, we get
different approaches. After running the algorithm, m is extracted by taking the
result modulo p and the check value is extracted by taking it modulo r.

In Section 3.3.5, we discussed the security of AN -codes by using the arith-
metic distance as a metric. However, this metric has to be determined with
exhaustive-search-based techniques. For algebras of an order such as used for
public-key schemes, this is not feasible. A more detailed analysis of the security
of embedding-based error-detection schemes, and in particular of ours, will be
given in Section 5.4.

If k is chosen to be zero, the resulting code is called idempotent AN -code as
presented in [Pro89]. Such codes are compatible with addition and multiplica-
tion. However, since the operations are applied componentwise, a multiplication
with a correct codeword will always result in a correct codeword, no matter
whether the other operand was erroneous or not. Recall that CRT(m1, 0) ·
CRT(m2, e) = CRT(m1 ·m2, 0). Also, inversions are not possible for k = 0.

On the other hand, if k is chosen to be one, multiplication works and also
detects errors. However, addition does not work anymore. For this reason,
Proudler proposed to switch between the two suitable values for k. That is,
keeping it zero for additive operations and keeping it one for multiplicative op-
erations. The approach was named AN +B code. This is because adding a one
to k accounts for adding the second idempotent element of the ring, denoted as
B in their paper.

The overhead of this approach heavily depends on the algorithm. Switching
between the k-values costs a full addition. For elliptic curve based algorithms
which heavily interleave the two arithmetic operations, using Proudler’s ap-
proach might therefore be even more expensive than using a ring extension for
small values r.

From a security point of view, the approach can provide data integrity, but
provides no protection against program-flow or address manipulations. In the
latter scenario an attacker would try to tamper with the address of a variable in
order to load another, yet properly encoded, variable.

5.3 Extending AN +B Codes

Our countermeasure is also based on embedding. However, instead of keeping k
constant, we initialize it to a known value at the beginning of the algorithm and
only extract it afterwards. This has several advantages:

1. We can evaluate the original algorithm without taking care about which
value k holds at the moment. That is, addition or multiplication do not
need any modifications.

5.4. Error-Detection Probabilities 63

2. As every operation now manipulates not only m but also k, the value
k also states, whether all operations were performed as intended. Thus,
this approach protects the program flow. Additionally, although m and k
are independent (as they are orthogonally encoded), changing one without
changing the other is non-trivial.

3. By assigning different k-values to every involved variable, also interchang-
ing them is prohibited.

Algorithm 3 depicts the approach. At first glance it might seem that it has
the same disadvantage as ring extensions, namely the precomputation of some
check value. However, in our case, k is data independent and only depends
on the algorithm itself. That is, for a fixed sequence of operations, f(k) only
needs to be precomputed once, independent of the input data (or some key).
We argue that the approach is also applicable to other algorithms like RSA or
elliptic-curve-based algorithms in Section 5.6.

5.4 Error-Detection Probabilities

Regarding security, we are interested in the probability that an attacker can in-
duce an undetected fault. In this section we show that bit-flip and random word-
faults are prevented by the countermeasure. The success of random variable-
faults is bound by 1/r. Furthermore, detection probabilities for errors in both
operands of a multiplication and addition are stated. Finally, we consider the
case that an attacker can skip instructions.

Throughout this section, the following notation is used: The variables a, b ∈
(Fp×Fr) consist of t words with a word length of W bits. The words are denoted
as ai for 0 ≤ i < t. Furthermore, l denotes the first idempotent element (r(r−1

mod p) mod p · r) and j the second one, (p(p−1 mod r) mod p · r). Hence,
l · j ≡ 0 mod p · r. The function K(·) returns the currently expected value
modulo r. That is, a is only considered error-free if a−K(a) ≡ 0 (mod r). An
error which affects variable a is denoted by e(a).

Algorithm 3 Securing an algorithm with extended AN +B codes.

Input: An algorithm f(·), an input x ∈ Fp, an initial check value K0 ∈ Fr, and
a final check value Kn = f(K0) ∈ Fr.

Output: y = f(x) or error.
x′ ← CRT(x,K0)
y′ = f(x′)
if y′ ≡ Kn mod r then

return y = y′ mod p
else

return y = error
end if

64 Chapter 5. A Generic Fault Countermeasure

According to the above notation, a bit-flip fault is denoted as eb = ±2i with
0 ≤ i < Wt, a random-word fault as ew = u · 2Wi with u ∈ [−ai, 2W − ai) and
0 ≤ i < t, and a random-variable fault as ev ∈ [−a, 2Wt − a).

The most trivial case is the random variable-fault. Since the induced error
would have to be divisible by r, the probability that an induced random variable-
fault succeeds is Pr[suc.|ev] = 1/r. Further, bit-flip faults cannot succeed since
r does not divide 2i for any i, thus Pr[suc.|eb] = 0. For random-word faults we
would need to fulfill e(a) = e′(a) ·r = u ·2Wi (for e(a) 6= 0). If r is a prime larger
than 2W , the equation cannot hold. This is because u is smaller than 2W by
definition and thus cannot be a multiple of r, neither can 2Wi. As a consequence
we get Pr[suc.|ew] = 0.

The fault-detection probabilities for addition and multiplication with two
faulty operands are analogous to those in Section 3.3.6. For the addition a + b
we get the error term e(a) + e(b). Thus e(a) ≡ e(b) (mod r) must hold. Since
e(a) can take an arbitrary value, the probability that e(b) masks e(a) is then
1/r. We hereby correct the probability of 1/r2 stated in [GS06].

For the probability of an undetected error during a multiplication we get
the same probability as in [GS06]. The values K(·) change the equation for
undetected errors, but not the probability. The equation is given by

(apl +K(a)j + e(a))(bpl +K(b)j + e(b))

= apbpl +K(a)K(b)j +

l(ape(b) + bpe(a)) + j(K(b)e(a) +K(a)e(b)) + e(a)e(b)

= apbpl +K(a)K(b)j + E

⇒ E = K(b)e(a) +K(a)e(b) + e(a) · e(b) (mod r)

instead of e(a) + e(b) + e(a)e(b) ≡ 0 (mod r). Since e(b) ≡ −K(b)e(a)/(K(a) +
e(a)) (mod r) must hold, we get ϕ(r) possible values for e(a) and therefore a
probability of ϕ(r)/r2, which is smaller than 1/r.

Finally, we investigate the chance of an attacker capable of skipping an in-
struction and afterwards re-adjusting k by inducing an error. In such a case, a
variable would be of the form apl+(K(a)+eK)j+e(a). Therefore e(K)j ≡ e(a)
(mod r) must hold. Thus, the considerations are the same as for an addition
and the probability can be stated with 1/r.

We can conclude that it suffices to check the operands once at the end of the
whole algorithm. This single check guarantees that the variables have not been
tampered with and further that all operations have been applied to the variables
with a probability of 1/r.

5.5 Implementation and Performance

Besides the security, provided by a countermeasure, also its performance is im-
portant. Hence, we examine the overhead of our method in this section. It turns
out that there exists a reasonable trade-off between security and performance,
which makes our countermeasure adjustable to different needs.

5.5. Implementation and Performance 65

An ordinary operand (e.g. an element of a finite field) is assumed to have
n words. A protected operand on the other hand is assumed to have n + m
words, where m denotes the number of words of the prime r. We investigate
the storage overhead as well as the computational overhead. The latter one
is stated for addition, multiplication, and for the structure specific operations.
Namely, the transformation of an element from Fp into (Fp×Fr) and back, and
the validity check for an operand. At the end of this section we also propose
different values for r, meeting certain properties, and give some performance
figures.

For every protected operand we need m words of additional RAM. For the
k-values we need m additional words for every protected input operand (unless
k-values are reused) and another m words for the result. If the idempotent
elements are precomputed, this costs another 2 · (n+m) elements. The k-values
and the idempotent elements would be stored in the ROM rather than in the
RAM. Thus, we have a RAM overhead of (1 + m/n) and, depending on the
implementation, a ROM overhead of at least 2 ·m words.

The transformation into (Fp ×Fr) consists of a CRT computation. That is,
two multiplications by the idempotent elements and one addition. One multi-
plication, the embedding of the k-value, can be spared by spending another n
words of ROM. The back transformation is a reduction by p. Whether the costs
of the transformation pay off, is of course dependent on the number of operations
applied to the operand.

The validity check is a reduction by r. Since the parameter r can be chosen
completely freely, we propose the use of general Mersenne primes (GMP). These
primes have the property that they can be written as the sum of a few powers
of two. This further allows the use of the fast reduction algorithm (see for
instance [HMV04], p.45) and hence to improve the efficiency of the checks. The
complexity of such a check is then m ·n single-precision additions. However, only
one check has to be done for every result in question at the end of an algorithm.
This single check covers the data integrity and the program-flow integrity for
the secured variables.

For long-integer additions and multiplications we can state a comparison.
For this, we work out the ratio between our method and a standard unprotected
implementation. The aim should be to achieve a ratio below two, even for small
operands. We show that for operand lengths as used for the recommended NIST
curve P-192 [Nat00] our method already fulfills this requirement.

For an addition, this ratio is easy to compute. We just execute a plain long-
integer addition on an m+ n-word long operand. Therefore, the overhead of an
addition is 1 +n/m. Thus, for additions, the method pays off until almost 100%
of redundancy.

In the case of a multiplication, the situation is similar, but the complexity
is quadratic. As a consequence, the ratio between data and redundancy has to
be higher in order to make the method pay off. For the multiplication itself,
we investigate an operand scanning algorithm: It needs n2 multiplications, 4n2

additions, (2n + 1)n loads and n2 stores. For our method, we just have to

66 Chapter 5. A Generic Fault Countermeasure

substitute n by m+ n.
From above it can be seen that the most overhead is caused by a multiplica-

tion. Hence, we now investigate its overhead ratio in detail and give figures for a
real platform. We take an ARM 32-bit processor to see how our method behaves
for different operand lengths. The ARM7TDMI-S needs one cycle per addition,
seven cycles per multiplication, two per store, and three for each load. Taking
these parameters and putting together the observations from the last paragraph,
we can draw the graph in Figure 5.1. The primes we use are GMPs and namely
are 296− 232 + 1 (right curve) and 264− 232 + 1 (left curve). It can be seen that
for a 64 bits long r, we are already faster than double execution for five word
long operands.

Figure 5.1: Ratio between a field multiplication and a multiplication in the larger
ring. The left curve is for 64 and the right for 96 bits of redundancy. The
horizontal line at 2 represents the effort of doing a field multiplication
twice.

5.6 Application

We already highlighted the security and the performance of our approach above.
In this section we talk about the practical relevance of our countermeasure.

5.7. Comparison with Vigilant’s Approach 67

Further, it is shown that and how our method can be used for error diffusion.
Fault countermeasures often protect either variables [GS06, Wal00] or the

program flow [FV06]. However, none of these approaches suffices alone. In the
first case, variables are still valid if the correct instructions are skipped, hence
no error is detected. In the second case the counter of a loop is protected by
updating a state value each time the loop is cycled. Therefore, updating the
state value can be successful but the calculation itself might be skipped anyway.
Combining such approaches in order to get a sound countermeasure does not
work either. The only general way (without double execution) is to encode the
states within the protected variables.

Our approach is generic in the sense that it can be applied to many algo-
rithms. For RSA, the concern might arise that the scheme is not applicable
since the sequence of operations changes with the key. However, for the most
interesting application of the RSA algorithm, the decryption or signature gen-
eration within a smart card, this is not a problem. This is because the private
key usually stays constant within a device. And even if it does not, the values k
and f(k) could be transported with the private key. For other applications like
elliptic curve based systems, a similar concern might arise since such systems
often use ephemeral keys. Also for such applications we can show how to effi-
ciently use our scheme. The principle is to use already present redundancy to
protect the variables and to embed only a few operations for the program-flow
protection. Details are elaborated in Chapter 6. Finally, also for symmetric-
key algorithms with a limited algebraic structure, our countermeasure can be
used (see Chapter 7). The basic idea here is to use the embeddings as much as
possible but to use redundant table lookups whenever it is not.

So far we only discussed error detection. However, infective-computation
approaches have a big advantage compared to plain error-detection approaches.
Error detection needs a compare instruction and a successive conditional branch.
These instructions can be skipped or some comparison-result flag can be ma-
nipulated and hence the whole countermeasure would be broken [KQ07]. The
infective computation we propose is of the form

c = K(a)− a mod r

T = noncec − 1 mod p

a = a+ T mod p

where T is the diffusion term. If the k-value is correct, then T is zero, otherwise
it is random.

5.7 Comparison with Vigilant’s Approach

In [Vig08], Vigilant et al. proposed an approach which is very similar but more
elegant for exponentiations. Instead of extending the modulus by r, r2 is used.
Furthermore, K0 is set to (1 + r). Thus, a squaring updates the k-value to
1 + 2r + r2 = 1 + 2r. In general, a multiplication between 1 + h1r and 1 + h2r

68 Chapter 5. A Generic Fault Countermeasure

yields 1 + (h1 + h2)r. As a result, Kn holds d at the end of an error-free
computation.

The main advantage is that no precomputation is necessary. The counter-
measure was proposed for CRT-RSA. Whereas there exists a large variety of
countermeasures for CRT-RSA, there are little available for ElGamal-based sys-
tems. In such a system an exponentiation with an ephemeral key needs to be
protected. Therefore, the countermeasure might be more interesting for algo-
rithms of that family.

A disadvantage is that it only works for exponentiation. Another issue might
be that changing the exponent, as used in attacks against RSA, is not detected.

5.8 Conclusion

In this chapter we presented a generic fault countermeasure. It is based on
idempotentAN -codes and protects the data integrity as well as the program flow.
At the same time it omits evaluating an algorithm twice. The countermeasure
is generic in the sense that it can be applied to all algorithms with sufficient
algebraic structure. Although the operation sequence of the algorithm should
be static in general, it is also possible to apply the countermeasure in other cases.
More precisely, we showed that it is well suited to protect RSA.

6
Embeddings for Elliptic Curves

In this chapter we examine the possibilities to protect systems based on ellip-
tic curves (EC) against known implementation attacks. We compose counter-
measures from different primitives and compare their performance with already
known countermeasures. Based on the previous chapter, we propose a new way
to protect the program flow of an EC scalar multiplication. It turns out that for
small to medium sized curves, our approach shows the best performance amongst
the known countermeasures. Finally, we observe that it is more efficient to in-
corporate different collaborating countermeasures than to use one which deals
with all threats.

After an introduction to elliptic curve cryptography (ECC) in the following
section, we discuss existing attacks against ECC primitives and the resulting
properties a fault countermeasure has to feature. Next, we show how previ-
ous proposals fulfill these requirements. Finally, we present our approach and
compare it to the other proposals in terms of security and performance.

6.1 ECC Basics

An elliptic curve E over a field F is defined by the Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 a1, . . . , a6 ∈ F. (6.1)

The set of points (x, y) ∈ F2 fulfilling (6.1) together with the point at infinity
O form an additive Abelian group. The point O is the neutral element of the
group. This group is denoted as E(F). The group operation is called addition
for two distinct points and doubling otherwise. An elliptic curve group operation

69

70 Chapter 6. Embeddings for Elliptic Curves

consists of many field operations. For a field F with a characteristic other than
2 or 3, this equation can be simplified to

E : y2 = x3 + ax+ b a, b ∈ F.

The associated law for addition is

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1

and for doubling can be stated as

x3 =

(
3x2

1 + a

2y1

)2

− 2x1

y3 =

(
3x2

1 + a

2y1

)
(x1 − x3)− y1.

An equivalent representation of the group can be given in projective coordinates.
A common coordinate choice are the Jacobian coordinates. Using these coordi-
nates, the projective point (X,Y, Z) ∈ F3, Z 6= 0 corresponds to the affine point
(x, y) = (X/Z2, Y/Z3) ∈ F2. The point at infinity is represented by the point
(1, 1, 0). The curve’s equation for Jacobian coordinates becomes

Y 2 = X3 + aXZ4 + bZ6. (6.2)

The addition and doubling formulas can be transformed in a similar manner. By
substituting again and setting Z3 = 2Y1Z1 for doubling and Z3 = (X2Z

2
1−X1)Z1

for addition, the denominators can be cleared and we obtain Equation 6.4 for
doubling and 6.3 for addition. These formulas are of particular interest because
they allow avoiding the expensive field inversions.

X3 = (Y2Z
3
1 − Y1)2 − (X2Z

2
1 −X1)2(X1 +X2Z

2
1)

Y3 = (Y2Z
3
1 − Y1)(X1(X2Z

2
1 −X1)2 −X3)− Y1(X2Z

2
1 −X1)3 (6.3)

Z3 = (X2Z
2
1 −X1)Z1

X3 = (3X2
1 + aZ4

1)2 − 8X1Y
2
1

Y3 = (3X2
1 + aZ4

1)(4X1Y
2
1 −X3)− 8Y 4

1 (6.4)

Z3 = 2Y1Z1

Multiplying a natural number k and an element P ∈ E(F) is called a scalar
multiplication. It is defined by adding the point P k times, denoted as kP . In
order to calculate Q = kP in an efficient way, the double-and-add algorithm or
the Montgomery ladder can be used. They are depicted in Algorithm 4 and 5.

The inverse problem, that is calculating k given P and Q, is exponentially
hard. It is called the elliptic curve discrete logarithm problem (ECDLP) and
the security of most ECC schemes relies on this problem. Hence, an adversary
aims at determining k for a given P by observing and/or manipulating the
computation of kP .

6.2. ECC and Implementation Attacks 71

Algorithm 4 Double and add

Input: k = (kt, . . . , k0)2, P ∈ E(F)
Output: kP
Q = O
for i = t downto 0 do
Q = 2Q
if (ki == 1) then
Q = Q+ P

end if
end for
return Q

Algorithm 5 Montgomery ladder

Input: k = (kt, . . . , k0)2, P ∈ E(F)
Output: kP
R0 = O
R1 = P
for i = t downto 0 do
Rk̄i

= R0 +R1

Rki
= 2Rki

end for

return R0

6.2 ECC and Implementation Attacks

Biehl, Meyer and Müller were the first to apply fault attacks to elliptic curve
cryptosystems. In their paper they present two attacks [BMM00]. Both aim
at enabling the efficient recovery of the used scalar. The first attack relies on
altering the elliptic curve into a cryptographically weak one by changing the base
point. It uses the fact that the elliptic curve parameter a6 in (6.1) is implicitly
defined via the base point P . A faulty P̃ influences a6 which further can lead to
a weak curve. Such a weak curve allows to solve the ECDLP in sub-exponential
time or even in polynomial time. The second attack demands that the adversary
flips a bit in the intermediate curve point Qi =

∑i
j=0 kj2

jP . This results in a

faulty intermediate curve point Q̃i and in an erroneous result. After collecting a
Q and a corresponding Q̃ where the error was induced during the processing of
the last few bits, the aim is to guess and verify these last few bits and the error.
The adversary undoes the last few iterations of Algorithm 4 using the guessed
bits. Afterwards she can repair the induced error and redo those steps. If the
result equals the correct Q then also the guess of the scalar bits was correct.
With the knowledge of those last few bits, the attack can be mounted again to
determine another portion of the scalar. Thus, by repeating this process often
enough, the whole scalar can be recovered.

Ciet and Joye extend the first idea of Biehl et al. in [CJ05]. They assume
that a fault is induced in one of the curve or field parameters held in the non-
volatile memory. They show that not only a manipulation of a6 is exploitable,
but that also a manipulation of one of the other parameters can lead to a suc-
cessful attack. Furthermore, they show that a manipulation of the field-defining
modulus weakens the curve. In particular, the curve splinters into many curves
over smaller fields. Thus, solving the ECDLP in one of those smaller curves
reveals partial information about the scalar.

Blömer, Otto and Seifert introduced sign-change faults in [BOS06]. Given

a scalar-multiplication algorithm with Qi =
∑i

j=0 kj2
jP as depicted in Algo-

rithm 4, the adversary is assumed to be able to change the sign of Qi. With

72 Chapter 6. Embeddings for Elliptic Curves

that ability, a faulty output can be written as

Q̃ = −2t−iQi +

t∑
j=t−i

kj2
jP = −Q+ 2

t∑
j=t−i

kj2
jP.

Assuming that i is sufficiently small or a sufficiently large part of the scalar’s
bits until i has already been determined, the unknown bits can be guessed and
verified.

Considering all these threats, a protected elliptic curve cryptosystem has to
feature the following properties:

(P1) Input and output has to be checked for validity.

(P2) All domain parameters have to be checked for integrity.

(P3) The program flow has to be protected. That is, no operations must be
skipped or repeated.

(P4) Sign change faults must be prevented.

Note that attacks which change the domain parameters either use precise (known)
faults or need both the X- and Y -coordinate to recover the new curve. This is
often not possible, for instance ECDSA only outputs the X-coordinate. Fur-
thermore, checking the inputs and outputs for validity (i.e. if the result is still
on E(F)) is also among the natural countermeasures. Therefore, faults which
leave the point on the curve, that is high-level program-flow manipulations or
sign-change faults, are most difficult to detect.

As for SCA and DPA attacks, we just briefly motivate the need for such
countermeasures. The most trivial attack scenario is one where the attacker can
distinguish a double from an add operation and further no highly regular scalar
multiplication algorithm has been used. In such a case, visual investigation might
suffice to extract the used modulus. From a side-channel point of view, modular
exponentiation and scalar multiplication are very similar. Hence, depending
on the ECC implementation, some or all attacks described in [MDS99] can be
adapted to scalar multiplication algorithms. For instance, if the scalar is fixed
but the base point is variable, then a normal DPA attack can be mounted. Even
for implementations with a randomized scalar, like the elliptic-curve digital-
signature algorithm (ECDSA), there exist side-channel attacks [MO08].

6.3 Previous Work

In their paper on sign-change faults, Blömer, Otto and Seifert [BOS06] also
propose a countermeasure. Their approach is based on embedding. That is,
they construct a compound curve by extending the large field modulo p by a
smaller one modulo r. For this smaller modulus, they define a suitable curve
offline. During the scalar multiplication, they first compute the result on the
large curve over the integer ring Zpr resulting in Q on E(Zpr) = E(Fp)×E(Fr).

6.3. Previous Work 73

Then they calculate Q = kP on the small curve E(Fr). If no error occurs, the
two results are congruent modulo r. In that case the algorithm outputs Q mod
p. The latter one equals Q on E(Fp). Hence, the countermeasure protects the
scalar multiplication algorithm against sign-change faults and manipulations of
the program flow. The security of the countermeasure depends on the base point
chosen for the extension. Since this point can be chosen in advance, it is easy
to find one with a large order. Additionally, their proposal checks the result’s
integrity, that is, if the point is an element of the group defined by the curve
parameters. Note, that inducing a sign-change fault twice is sufficient again.

Their original algorithm was never intended to act as a unified countermea-
sure, i.e. providing protection against fault and side-channel attacks. Basically,
there would be two possibilities to extend the countermeasure in order to fulfill
this task. The first one is to randomize the point in the small curve. This ap-
proach is expensive since finding a randomized point involves solving a square
root, which further needs an exponentiation. The high order of the random
point would be guaranteed by choosing a curve of prime order as extension.

The second solution would be to use randomized projective coordinates [Cor99].
As a unified countermeasure has to protect against simple power analysis anyway,
the Montgomery point ladder is the most favorable algorithm for exponentia-
tion. This is because in contrast to the double-and-always-add algorithm no
dummy operations are needed. The point ladder itself demands pure projec-
tive coordinates (as opposed to mixed coordinates). Given these pure projective
coordinates, the randomization of the Z coordinate comes basically for free.

Baek and Vasyltsov intended to design a unified countermeasure right from
the beginning [BV07]. Their idea was to define the elliptic curve over an integer
ring as well, but not to use a compound curve. Instead they set the parameter
a3 to p.

Y 2Z + pY Z3 = X3 + aXZ4 + bZ6 (6.5)

As a result, the curve in (6.5) reduces to the simplified Weierstrass form
modulo p. However, modulo pr it does not necessarily hold anymore that −P =
(X,−Y, Z). This is in fact how their countermeasure repels sign-change faults.
It should be mentioned that program-flow altering attacks are in general not
covered by their algorithm. In order to prevent DPA attacks, they apply a
randomization on the extension modulus r. However, Joye stated in [Joy08] that
the countermeasure should be used with caution. This is because the addition
formula is not valid for the point at infinity. As a result for small factors ri
of r, the resulting point is likely to be (0 : 0 : 0) mod ri due to the addition
formula. This means that this factor ri does not contribute to the security. The
overall security is therefore reduced by the largest factor r̂ of r which fulfills
Q ≡ (0 : 0 : 0) mod r̂. Joye concludes by stating that the extension r has to be
larger than 40 bits in order to reduce an adversary’s chance to a negligible one.

74 Chapter 6. Embeddings for Elliptic Curves

6.4 Proposed Countermeasure

As already stated before, the Montgomery point ladder is a good choice as a
countermeasure for SPA attacks. Furthermore, its need for projective coordi-
nates already answers the question of how to introduce randomization. The
advantage of randomizing the Z coordinate over randomizing any other param-
eter is that it does not alter the group structure. Hence, the randomization does
not influence the cryptographic strength of the curve.

What can be seen from the countermeasures in Section 6.3 is that the main
focus lies on the protection against program-flow and/or sign-change faults. As
for the integrity check, it does not change the overall performance if the check is
done in a large field instead of in a small one, plus the used point representations
already contain a sufficiently large redundancy.

Since the design choices regarding the randomization and the integrity check
for an implementation-attack-secure elliptic-curve algorithm seem to be rather
fixed, we focus on the program flow. In particular, we introduce a program-
flow and sign-change fault-protection without the need of performing the group
operations over a larger ring. The main motivation for this was that in contrast
to RSA, which uses much larger operands, for ECC already small ring extensions
decrease the performance significantly.

The main idea of our approach is to not only store a projective point as
Q = (X : Y : Z) but as Q = (X : Y : Z; l), where l is the already applied
portion of the scalar. That is, the discrete logarithm is an integral part of the
point. Furthermore, every operation works on the portion l as well:

(X1 : Y1 : Z1; l1) + (X2 : Y2 : Z2; l2) = (X3 : Y3 : Z3; l1 + l2) (6.6)

2(X1 : Y1 : Z1; l1) = (X3 : Y3 : Z3; 2l1) (6.7)

−(X1 : Y1 : Z1; l1) = (X1 : −Y1 : Z1;−l1) (6.8)

The key is that after a scalar multiplication it can be verified whether k is
actually the scalar which has been applied to P .

In [BOS06] it is stated that there are two ways to induce sign-change faults.
One is to directly manipulate the Y -coordinate, the other one assumes functional
support to do so in hardware or software. The first approach is only realistic if
a signed representation is used, which is not advisable for hardware implemen-
tations and provides no advantages for software implementations either. In the
case that an unsigned representation is used, the chances are 2−|p| to induce an
undetected error, where |p| is the bit length of the field modulus. The second
approach, where some kind of functionality is used to invert the coordinate and
the curve point respectively, is more realistic. However, since this functional
support is needed, we can just redefine it to meet our claim to work on l as
well. As a result, a sign change fault also changes the sign of l and at the end
the comparison with k will fail. In the following we explain how to extend the
algorithms for the group operations in order to meet this.

6.5. Security Analysis 75

Algorithm 6 Point doubling

Input: P = (X1 : Y1 : Z1; l1) in Jacobian coordinates on E/F : y2 = x3−3x+ b
Output: 2P = (X3 : Y3 : Z3; l3) in Jacobian coordinates

1: if P = O then
2: return O
3: end if
4: T1 ← Z2

1 ; T2 ← X1 − T1; T1 ← X1 + T1; T2 ← T2 · T1; T2 ← 3T2

5: Y1 = CRT(Y1,l1); Y3 ← 2Y1; l3 ← Y3 mod u; Y3 ← Y3 mod p
6: Z3 ← Y3 · Z1; Y3 ← Y 2

3 ; T3 ← Y3 ·X1; Y3 ← Y 2
3 ; Y3 ← Y3/2; X3 ← T 2

2

7: T1 ← 2T3; X3 ← X3 − T1; T1 ← T3 −X3; T1 ← T1 · T2; Y3 ← T1 − Y3

8: return (X3 : Y3 : Z3; l3)

The proposed addition algorithms are standard algorithms for Jacobian co-
ordinates, except for line 5 in Algorithm 6 and lines 18-19 in Algorithm 7. Line 5
combines the discrete logarithm and Y1 using the Chinese remainder theorem.
The ring used for the CRT is Zpu. Then the resulting ring element is doubled
and both parts of the result are separated again. The purpose of this is to en-
sure that, if a point doubling is skipped, this is witnessed by the value l and
thus by the result. The same idea is pursued in the lines 18-19. If, for exam-
ple, the adversary manages to load a wrong point for addition, this affects the
result’s l as well. For the inversion of a point, the same method is used. Since
logP (−Q) = −logP (Q), we just have to negate both at the same time as an
atomic operation like above.

At the end of a scalar multiplication it is ensured that the resulting point
Q equals lP , where l is part of the point tuple. Thus, the used scalar and the
held value l can be compared. Of course, storing the discrete logarithm of a
point could pose a vulnerability to SCA. However, it is easy to see that storing
a random value with the base point is sufficient to mask l.

6.5 Security Analysis

This section analyzes the security of the proposed combination of countermea-
sures. The check demanded by (P1) is done on the original curve, thus the
success probability of an adversary is 2−|p|. The check enforcing property (P2)
guarantees that no domain parameter has been changed. This can be realized for
instance as proposed in [CJ05] by appending a cyclic redundancy code (CRC)
check symbol. However, one has to make sure that the CRC does not present
the weakest link.

The realization of (P3) is done by extending the point tuple (X : Y : Z) by
a portion l at the beginning of the multiplication algorithm. Every algorithm
which operates on such a point (X : Y : Z; l) takes care that either the relation
l = logP (X : Y : Z) · l0 holds or otherwise (X : Y : Z) /∈ E(F). Here, l0
is the initial value of l. The initialization of l and the check after the scalar

76 Chapter 6. Embeddings for Elliptic Curves

Algorithm 7 Point addition

Input: P = (X1 : Y1 : Z1; l1), Q = (X2 : Y2 : Z2; l2) in Jacobian coordinates on
E/F : y2 = x3 − 3x+ b

Output: P +Q = (X3 : Y3 : Z3; l3) in Jacobian coordinates
1: if Q = O then
2: return (X1 : Y1 : Z1; l1)
3: end if
4: if P = O then
5: return (X2 : Y2 : Z2; l2)
6: end if
7: T1 ← Z2

1 ; T ′1 ← Z2
2 ; T2 ← T1 · Z1; T ′2 ← T ′1 · Z2; T1 ← T1 ·X2; T2 ← T2 · Y2

8: T ′1 ← T ′1 ·X1; T ′2 ← T ′2 · Y1; T1 ← T1 − T ′1; T2 ← T2 − T ′2
9: if T1 = 0 then

10: if T2 = 0 then
11: return (X3 : Y3 : Z3; l3)← 2(X2 : Y2 : Z2; l2) using Algorithm 6
12: else
13: return O
14: end if
15: end if
16: Z3 ← Z1 · T1; Z3 ← Z3 · Z2; T3 ← T 2

1 ; T4 ← T3 · T1; T3 ← T3 ·X1

17: T1 ← 2T3; X3 ← T 2
2 ; X3 ← T 2

2

18: X3 = CRT(X3,l1); T1 = CRT(T1,−l2); X3 ← X3 − T1

19: l3 ← X3 mod u; X3 ← X3 mod p
20: X3 ← X3 − T4; T3 ← T3 −X3; T3 ← T3 · T2; T4 ← T4 · Y1; Y3 ← T3 − T4

21: return (X3 : Y3 : Z3)

multiplication are illustrated in Algorithm 8.

Two things should be considered for the choice of u, the modulus by which l
is reduced. First, as long as the scalar is never reduced by the order of the base
point, during the lifetime of l, u can be chosen freely. Second, due to the random
initialization of l, a prime number should be chosen for u. Otherwise it could
happen that l0 has no maximal additive order in u and further is not invertible in
line 10 of Algorithm 8. So instead of always checking that gcd(l0, u) = 1, choos-
ing u to be prime is more convenient and efficient. From the first consideration
it follows that u can be adapted to the security demanded by the application.
In our case, we chose it to be a prime of bit length 60 in order to provide the
same security as Blömer et al.’s countermeasure.

To prevent sign-change faults, as demanded by (P4), it is sufficient to make
sure that the point-inverting functionality preserves the relation l = logP (X :
Y : Z) · l0 as well.

We summarize the security features of the three countermeasures in Table 6.1.
To ensure a fair performance comparison, we tune the parameters of the differ-
ent countermeasures to provide the same security. As a guidance level we take
60 bits, situated at the lower bound of the 60 to 80 bits proposed in [BOS06].

6.6. Performance Evaluations 77

Algorithm 8 Modified Montgomery point ladder based scalar multiplication

Input: k = (kt, . . . , k0)2, P ∈ E(F), u the modulus for l
Output: kP
l0 εR F∗u
R0 = (O, 0)
Randomize Z of P
R1 = (P, l0)
for i = t downto 0 do
Rk̄i

= R0 +R1 using Algorithm 7
Rki

= 2Rki
using Algorithm 6

end for
Check if P ∈ E, otherwise output O
Check if l/l0 ≡ k mod u, otherwise output O
return R0

The portion |r̂| is described in [CJ05] and is stated with about ten. It describes
the security reduction due to the random choice of the extension. As a conse-
quence, we have to increase the bit length of r by ten for this countermeasure.
Furthermore, it should be noted that Baek’s countermeasure does not secure the
program flow.

Table 6.1: Comparison of different countermeasures.

Countermeasure (P1) (P3) (P4) Values

Ours 2−|p| 2−|u| 2−|p| |u| = 60
Blömer, Otto, Seifert 2−(|p|+|r|) 2−|r| 2−|r| |r| = 60
Baek, Vasyltsov 2−(|r|−|r̂|) - 2−(|r|−|r̂|) |r| = 60 + 10

6.6 Performance Evaluations

For the performance analysis, we looked at the countermeasures from Section 5.4
and compared them to a bare Montgomery point ladder implementation using
Jacobian coordinates. The runtime figures are derived from the number of single-
precision multiplications performed during the algorithm. In the basic algorithm,
the point addition needs 16 modular multiplications and the doubling needs 8.
For our countermeasure we also considered the reductions (Algorithm 6 line 5
and Algorithm 7 line 19) separately. First, we state the performance key data
for every countermeasure.

Blömer et al.: In order to make it side-channel secure, we realized their coun-
termeasure using a Montgomery point ladder with randomized Z-coordinate.
Thus, the 16 + 8 multiplications apply straightforwardly.

78 Chapter 6. Embeddings for Elliptic Curves

Table 6.2: Additional operations needed for our countermeasure.

Step Double Add

Combine x and l 1M’+1A’ 2M’ + 2A’
Subtract or ×2 1A’ 1A’
Extract x 2A’ 2A’
Combine x and 0 1M’ 1M’
Get CRT(0,l) 1A’ 1A’

Sum 2M’ + 5A’ 3M’ + 6A’

Baek et al.: Their countermeasure also uses Jacobian coordinates and a Mont-
gomery point ladder. However, due to their different curve equation, the algo-
rithms for the group operations differ as well. As a result, 19 multiplications
are needed for an addition and 13 for a doubling. Following the advice given
in [Joy08], we also enlarged the added redundancy by 10 bits for this approach.

Our countermeasure: For our approach we chose the same scalar multiplica-
tion method and the same coordinates as for the others. However, the analysis
was a bit less straightforward. This is because we do not change the size of
the field/ring as the other approaches do, but add calculations within the group
operations. In particular, we trade enlarging the used algebra for additional
multiplications and reductions. This has the effect that our countermeasure in
general scales worse than the others. However, due to the operand lengths used
in ECC, this does not affect the performance. Finally, it should be mentioned
that enlarging the algebra usually prohibits using the fast reduction algorithm
since the reductions do not take place modulo the general Mersenne primes
anymore. This is not the case for our countermeasure.

In the following we analyze the overhead due to the extra operations within our
algorithms. For performance reasons we do not save l, but CRT(0,l). Therefore,
a CRT computation takes one multiplication less, that is one multiplication and
one addition. After any computation which results in CRT(x,l), x is extracted.
Extracting x is very efficient, since the fast reduction is applied to an operand
which is only a couple of words too long. Thus, for instance on a 32-bit processor
this would account for one or two multi-precision additions (depending on u).
Afterwards, CRT(x,0) is subtracted from the result. This costs a multiplication
and a subtraction, but saves a reduction since we do not extract l. Table 6.2
summarizes the additional operations. In the table, M’ denotes a multiplication
between a |p|-bit and a (|p| + |u|)-bit operand, whereas A’ denotes an addition
with two (|p| + |u|)-bit operands. Furthermore, the M’ multiplications have to
use the Barret reduction algorithm since Montgomery transformations do not
pay off here. Since the overall ratio between additions and multiplications in the
algorithms is only minimally affected by our additional operations, we neglect
the additions introduced by our countermeasure in the performance evaluation.

6.6. Performance Evaluations 79

As mentioned above, we compared these three approaches for a security
factor of 60 bits. The results are depicted in Table 6.4. It can be seen that
our countermeasure has an overhead between 24% and 27% for the NIST curve
P-192 and 23% for the P-521 curve. This small decrease of the overhead is
due to the fact that we increased the number of multiplications but not the
algebra size. The lower bound for the overhead (with |p| � |u|) is 20%. The
overhead of Blömer et al.’s countermeasure basically converges against zero since
the number of multiplications stays the same. However, for the standardized
curves, the overhead lies between 26% and 82%. Finally, we look at Baek et al.’s
countermeasure which has a constant overhead due to the increase of the number
of multiplications and a variable one due to the larger algebra. This leads to
a runtime increase between 148% and 72%. The constant overhead compared
to the bare Montgomery ladder implementation is 33%. We also evaluated all
algorithms for 30 bits (see Table 6.3).

Table 6.3: Overhead compared to a bare Montgomery ladder algorithm using Jaco-
bian coordinates with a security parameter of 30 bits.

Bits Ours Blömer rand. et al. Baek et al.

192 24% 36% 95%
224 24% 30% 85%
256 23% 26% 78%
384 22% 17% 63%
521 22% 12% 55%

To summarize, it can be said that our countermeasure is rather independent
of the size of the security factor. Therefore, it performs well for curves com-
monly used in embedded devices and smart cards where the added bits are not
negligible. It turns out that Blömer et al.’s countermeasure has a high poten-
tial to be incorporated in a unified countermeasure as well, especially for large
curves and/or a small number of added bits. Finally, when using curves with
NIST primes allowing a fast reduction algorithm, the performance figures can
be expected to improve in favor of our countermeasure. This is because we do
not alter the modulus for most operations.

Table 6.4: Overhead compared to a bare Montgomery ladder algorithm using Jaco-
bian coordinates with a security parameter of 60 bits.

Bits Ours Blömer et al. rand. Baek et al.

192 27% 82% 148%
224 26% 68% 130%
256 26% 58% 116%
384 24% 36% 86%
521 23% 26% 72%

80 Chapter 6. Embeddings for Elliptic Curves

6.7 Conclusion

In this chapter, we presented a new approach to secure the program flow during
an elliptic-curve scalar multiplication. We showed that this and the curve point’s
own redundancy suffice to repel fault attacks on ECC. We cover threats posed
by side-channel attacks by using already well-studied countermeasures. To allow
a fair comparison between countermeasures, we tuned their parameters in order
to achieve similar security. Under such conditions, the performance evaluation
showed that our approach performs best for curves up to 256 bits when using
30 bits of redundancy. For 60 bits of redundancy it outperforms the other
countermeasures for all standardized NIST curves over prime fields. It also
turns out that for curves around 384 bits or more, Blömer et al.’s countermeasure
performs best when using a small r.

We conclude that in contrast to RSA, which uses much larger operands,
for ECC already small extensions decrease the performance significantly. Thus
approaches with a rather constant overhead, like ours, might be preferable. Fi-
nally, we observed that it is more efficient to incorporate different stand-alone
countermeasures than to use one countermeasure to cover all attack scenarios.

7
Embedding AES

We end the part about algorithmic countermeasures by looking at AES. In the
case of AES, most countermeasures deal with the non-linear and the linear part
separately, which either leaves vulnerable points at the interconnections or causes
different error detection rates across the algorithm. In this chapter, we present a
way to achieve a constant error detection rate throughout the whole algorithm.
The use of extended AN + B-codes together with redundant table lookups al-
lows to construct a countermeasure that provides complete protection against
adversaries who are able to inject faults of byte size or less. The same holds
for adversaries who skip an instruction. Other adversaries are detected with a
probability of more than 99%.

7.1 AES and Fault Countermeasures

As most symmetric ciphers, AES has little algebraic structure. Adding redun-
dancy is not as simple as in the previous chapters. As a result, fault countermea-
sures for AES are often either minimalistic to save hardware (e.g. they use only a
few parity bits) or a patch-work of local countermeasures which only protect spe-
cific operations. In the latter case, it is often not clear how and if these patches
overlap. At the same time, the fault models in which their error-detection ca-
pabilities are stated vary a lot. Often in favor of area and performance rather
than security.

However, the security of a countermeasure can only be evaluated with respect
to a specific fault model. If the model is changed, the security has to be evaluated
again. If, for example, each round of a secret key algorithm is checked separately,
like in [KKT04b], the interconnection between two rounds is the weakest link.

81

82 Chapter 7. Embedding AES

Thus, the high error-detection rate for the operations inside the rounds is not
guaranteed for the whole implementation in fault models that allow adversaries
to target the interconnections. This example points out that the choice of a
realistic fault model is crucial for a countermeasure to withstand attacks in a
hostile environment. In other words, a countermeasure has to be designed with
a strong adversary in mind.

7.1.1 Related Work

The most straight-forward technique to introduce error detection is dual modular
redundancy (DMR), for instance by encrypting a plaintext twice and comparing
the results. A good overview about DMR schemes and optimizations can be
found in [MSY06]. More sophisticated techniques based on coding theory and
properties of the algorithm itself have been used in [KKT04a] and [MKRM07].
The first one handles the linear and the non-linear part of AES separately. For
the non-linear part, the field inversion, it is checked whether the input times the
output results in the neutral multiplicative element of the field. To reduce the
costs of the countermeasure, only the last two bits of the product are computed.
However, for a strong adversary this means that attacking a single inversion
succeeds with a chance of 25%. In the second approach, the authors derive a
matrix formulation for the S-box. This allows to calculate only one bit of the
S-box output as parity and is independent of the way the S-box is implemented
(unlike the first one). Whereas the approach is as elegant as the first one, it also
suffers from the problem that a couple of parity bits are not sufficient against
a strong adversary. In [GGP09], the authors propose the use of different digest
values for the various AES operations. Their scheme is evaluated against a
strong adversary and nevertheless achieves a high detection rate. However, their
scheme does not protect against attacks on the program flow.

7.1.2 Our contribution

We present a fault countermeasure for AES which can withstand a strong adver-
sary. This is because it provides continuous data integrity, as well as program
flow protection for the key schedule, encryption, and decryption. This is achieved
by using a combination of extended AN+B-codes and redundant table lookups.

We start by describing the used fault model, followed by a construction of
AN + B-codes suitable for AES and 8-bit machines. Next, we apply them to
AES. This includes a description of the S-box realization via redundant table
lookups. Finally, we discuss our AES implementation, investigate its security
properties and do a performance analysis.

7.2 Fault Model

A fault model describes the capabilities of an adversary. It represents assump-
tions about the precision an adversary can inject a fault with. We assume a

7.3. Extended AN +B-Codes Suitable for AES 83

strong adversary that can control the timing of the fault. Furthermore, the
adversary can inject:

� Bit-set/bit-flip faults: The adversary can either set or flip a chosen bit
within the registers or the memory to a specific value.

� Random-byte faults: The adversary can xor a random value ε ∈ [1, 255]
to a chosen byte in the memory or to a register.

� Skip instructions: The adversary can manipulate the program counter
to skip single instructions.

In addition, each fault type can be induced

� Transient: The fault influences the computation only once.

� Permanent: The fault occurs each time the faulty variable is addressed.

� Destructive: The fault influences all computations after it is injected.

7.3 Extended AN +B-Codes Suitable for AES

In Chapter 5, we already described the principle of extended AN +B-codes and
how they are constructed. This section discusses how to choose the algebras for
AES. We refer to the data algebra as FD and to the check algebra as FC . The
resulting algebra is thus (FD × FC). The Chinese remainder theorem (CRT)
gives an isomorphic representation of this algebra:(

FD

FC

)
∼= CRT(FD,FC).

FD is already defined by the AES field, whose elements can be represented by
eight bits. As we target an 8-bit platform, it is most efficient to add multiples
of eight. Thus, also FC will be chosen as GF(28). The question is, which
representation is suitable.

A straightforward approach to add these 8 bits would be to take the fields
FD and FC as they are and construct a ring consisting of polynomials of degree
smaller than 16. However, such an approach would penalize the most costly
operation within our AES implementation, the polynomial multiplication. This
is because a fast way to implement this multiplication is by using logarithm
tables. This approach is well suited for GF(28) where the logarithm table needs
only 256 entries. For our ring, consisting of polynomials of degree smaller than
16, on the other hand, we would need 216 entries.

Therefore, we have to construct a different ring which allows a trade-off
between execution time and memory. For a ring U := GF(28)[y]/y2 + c1y + c0
we can still use logarithm tables with 256 entries, although |U| = 216. Hence,
we are looking for a bijective mapping of the following form:

φ :

(
FD

FC

)
→ GF(28)[y]/y2 + c1y + c0,

84 Chapter 7. Embedding AES

where the coefficients c1 and c0 are elements of GF(28). To construct the ring
U, we use the two fields FU1 := GF(28)[y]/y + a1 and FU2 := GF(28)[y]/y + a2

with a1 6= a2. By multiplying the moduli of FU1 and FU2 it is now possible to
construct the desired two-term ring U with c1 = (a1 + a2) and c0 = a1a2. Next,
we need to calculate the two idempotent elements for the CRT, i1 and i2, as
follows: With p1 = y + a1 and p2 = y + a2 we get

i1 = p2(p−1
2 (mod p1)) (mod p1p2)

i2 = p1(p−1
1 (mod p2)) (mod p1p2).

Finally the mapping φ and its inverse can be defined as:

φ : (FD × FC)→ U

xD · i1 + xC · i2
φ−1 : U→ (FD × FC)(

u (mod p1)
u (mod p2)

)
.

Using φ(xD, xC), the bytes of the plaintext and those of the check state can be
transformed pairwise into elements of U. After the AES calculation they are
transformed back using φ−1(u), where u is an element of U.

7.4 Redundant Table Lookups

Until now, we are enabled to perform the linear operations within the algorithm.
A question that remains is how to implement the SubBytes operation used by
AES. Since inversions are costly in software, this transformation is normally
realized by using a 256-byte lookup table. However, a lookup table with 216

entries is not practical for our case. Extracting xD and using a standard lookup
table (S-box) is no option either, since this would present a vulnerability. Hence,
it would be convenient to reduce the problem to an efficient, yet redundant, table
lookup.

By setting the xC values to known ones before a lookup, we can reduce
the information held by the 16-bit value to eight bits. These eight bits can be
deduced from each of the polynomial’s coefficients. In particular, if we have the
coefficients of the idempotent element i1 to be i11 and i12 and i2 = i21 · y + i22,
then every ring element u ∈ U can be written as

u = (xDi11 + xCi21) · y + (xDi12 + xCi22).

If xC is known, then xCi21 · y+ xCi22 can be subtracted from u. What remains
is the polynomial

xDi11 · y + xDi12

which contains xD in both coefficients. The actual mapping can be done offline,
since an S-box, already permuted according to this mapping, can be precom-
puted.

7.4. Redundant Table Lookups 85

Algorithm 9 Redundant S-box lookup

Input: An input value u = u1y + u0 = CRT(xD, xC), the transformed fixed
input-xC-value m = xCin

· i2, the idempotent i2, the redundant S-box table
SB , and the correction table CT .

Output: u = CRT(SubBytes(xD), xC + xCin + xCout)
1: t← u · i2
2: d← t+m
3: u′ ← u+ d
4: u← SB [u′1] + CT [u′0] + d
5: return u

Nevertheless, both coefficients have to be used, otherwise it is as insecure
as extracting xD. The idea to protect the S-box lookup is to take the first
coefficient of the input polynomial to locate a 16-bit S-box value. This first
result contains an error term depending on xD. The second coefficient is used
to look up the corresponding correction term. In other words, if either of the
indices (coefficients) has been altered, it refers to a different xD value and the
output of the S-box is corrected to a wrong xC .

The xC values before and after the lookup have to be different, otherwise
the operation would not affect xC and could be skipped. We denote the fixed
input xC value before the lookup as xCin

and the fixed output xC value after the
lookup as xCout

. Although xC has to be normalized before each S-box lookup, it
is crucial that the output value for xC correlates with its input value before the
normalization. Otherwise the protection would not be continuous. We propose
to store the difference between the actual and the normalized input value and
to add this difference again after the lookup. A complete S-box lookup can be
seen in Algorithm 9. In the following we give a detailed description: The input
of the algorithm is the polynomial

CRT(xD, xC) =

u = u1y + u0 =

(xDi11 + xCi21) · y + (xDi12 + xCi22).

In Line 1 of Algorithm 9, the signature xC is extracted:

t = u · i2 =

xDi1i2 + xCi2i2 (mod p1 · p2) =

xCi2.

Afterwards, the difference d = (xCin + xC) · i2 is calculated in Line 2. This
difference is then used to normalize the input signature of u to xCin in Line 3.
The normalized u is denoted as u′. The redundant S-box itself takes xDi11 +
xCin

i21 and outputs

(SubBytes(xD)i11 + xCouti21)· y +

86 Chapter 7. Embedding AES

SubBytes(xD)i12 + xCouti22 +

error(xD).

The correction table CT takes xDi12 + xCin
i22 and outputs error(xD). After

adding up the output of the redundant S-box SB , the output of the correction
table CT , and the difference d, the algorithm yields

(SubBytes(xD)i11 + (xCout
+ xCin

+ xC)i21)· y +

SubBytes(xD)i12 + (xCout
+ xCin

+ xC)i22 =

CRT(SubBytes(xD), xC + xCin
+ xCout

).

7.5 Implementation and Security

In this section, we first give a high-level picture of our implementation and
afterwards analyze its security in three parts: the security of the scheme against
(1) data manipulations, (2) program flow manipulations, and (3) its overall
security against differential fault attacks.

7.5.1 Implementation

As our countermeasure protects all AES operations including the key schedule,
all data values need to be stored in a redundant manner within the device. When
the key is initially written to the device, we fix the 16 check bytes which are com-
bined with the master-key bytes. Next, the key schedule is performed. In our
implementation we pre-computed the round keys but of course our countermea-
sure does not interfere with an on-the-fly key schedule. Finally, a fixed set of
check bytes is combined with a dummy message and an encryption is performed
in order to get the check bytes after an encryption. These 2 × 16 bytes (the
ones of the message and those of the ciphertext) have to be stored together with
the redundant key. If the master key changes, we only need to extract the key
check-bytes from the old key and combine them with the new one.

7.5.2 Data Manipulation

Now, we take a look at the first two fault models from Section 7.2, namely
bit-set/bit-flip faults and random-byte faults. The important observations here
are that (1) an adversary needs to add a multiple of the idempotent in order
to succeed and that (2) the coefficients of those multiples are never zero. As
a consequence, bit-set/flip faults are detected with certainty. Also second- and
third-order faults of that type are detected with certainty since all multiples of
the idempotent element1 have a minimum Hamming weight of four. Byte faults
are detected with certainty as well. If an attacker wants to succeed in adding
a multiple of the idempotent element, she needs to induce at least two byte

1For appropriately chosen values a0 and a1.

7.5. Implementation and Security 87

Table 7.1: Fault-detection probabilities

Order 1st 2nd

Bit-fault 100% 100%
Byte-fault 100% 99.6%

Skip instruction 100% 99.6%

faults, thus mount a second-order fault attack. Doing so, he can succeed with a
probability of 1/256. First, one byte is altered with probability 1. Afterwards,
there is only one possibility left for the second byte in order to preserve the
xC value. A similar argument holds for the redundant S-box lookup due to the
correction term.

Since an xC value is added to each byte of the key and the message at the
beginning, also attacks on the key schedule become visible at the output. Thus,
1 − 1/256 provides a lower bound for the data integrity throughout the whole
computation.

7.5.3 Program-Flow Manipulation

Program-flow manipulations are interesting and appealing because they usually
do not compromise the integrity of redundant data. In particular, we look at
the case where the adversary skips an instruction.

A basic observation is that none of the operations must be negligible for the
computation of the final xC values. Otherwise, skipping such an instruction
does not change the final signature. However, this alone does not suffice. Every
operation has to affect the signature in a way that even two or more skipped
operations are discovered at the end. That is, no instruction presents a trivial
inverse of another one. Of course, since the xC values are considered random
throughout the algorithm, such events can occur. An example would be the
following: AddRoundKey alters the signature from x′C to x′C + kC . If kC =
xCout

+ xCin
, the attacker would succeed in skipping the AddRoundKey and

the SubBytes operation. However, such an event occurs with probability 1/256.
Furthermore, if such operations are not adjacent, it becomes more difficult, since
the error spreads all over the state.

Finally, this also holds for the redundant S-box lookup, as described in Al-
gorithm 9. Taking a look at the algorithm, we see that every line or instruction
within the line directly or indirectly changes the signature. Furthermore, no two
lines present a trivial (data independent) inverse of each other.

7.5.4 Overall Security

Until now, we showed that our countermeasure provides protection against all
fault models from Section 7.2. The only part which is not covered by the analysis
are the correctness checks which compare the xC values before output. However,
this problem has been already studied in [DGRS09]. Table 7.1 summarizes the

88 Chapter 7. Embedding AES

Table 7.2: Cycle counts for the various AES operations. The last two are pre-
computed and stored in EEPROM.

Operation # cycles

AddRoundKey 305
SubBytes 4 235
ShiftRows+MixColumns 5 717

Encryption 98 322
Plaintext transformation (φ) 9 852
Ciphertext inverse trans. (φ−1) 7 933

Redundant key schedule (precomp.) 120 657
Redundant S-box generation (precomp.) 345 648

security analysis. It shows that an adversary cannot succeed with 1st-order fault
attacks at all. In the case of 2nd-order fault attacks, a lower bound for the success
probability of an adversary can be stated with 1/256. This lower bound holds
for the entire algorithm.

7.6 Performance

In this section, we look at the implementation overhead of our countermeasure.
Simple operations like AddRoundKey need twice the execution time. SubBytes
on the other hand needs three single byte lookups plus eight additions and a
ring multiplication. Furthermore, the ring multiplication in our algebra needs
three additions and six multiplications in GF (28), which are performed using
logarithm tables. Rijndael was not designed towards the use of such an algebra
and therefore the implementation becomes costly.

Table 7.2 summarizes the cycle counts of the various operations for a C
implementation, only the ring multiplication was implemented in assembly. On
our ATMega128 microcontroller, one encryption together with φ and φ−1 takes
116 107 cycles. Since the 320 ring multiplications (160 for SubBytes and 160
for MixColumns) alone need 55,680 of the cycles (528 640 cycles if implemented
in plain C), a hardware acceleration for this operation might help. Another
possibility to speed up the implementation would be to use T-tables [DR02]. The
use of redundant lookups would allow such a performance increasing technique,
however in resource-restricted environments the use of T-tables might not be
possible.

The redundant key schedule and the redundant S-box generation are the
most costly operations. This is because they make heavy use of the function φ
which in turn needs four ring multiplications. In our implementation, the round
keys and the S-box are precomputed and stored in the EEPROM. As for the
ROM size, the implementation needs 3 392 bytes for the code, 512 bytes for the
log tables, 768 bytes for the redundant S-box and 320 bytes for the redundant
keys.

7.7. Conclusion 89

We are aware of the fact that the overhead of our implementation is large
in terms of execution time and ROM size. On the other hand, the approach is
a pure software countermeasure and creates no extra hardware costs. The only
other software countermeasure (other than DMR approaches) we are aware of
is by Genelle et al. [GGP09]. Their implementation takes 1 082 250 cycles. It
protects against any one-byte fault with certainty and against two-byte faults
with a probability of 14/2562. However, it does not protect the program flow. It
is also interesting that their implementation can be extended to detect all n-byte
faults. Note, that also our countermeasure can be extended to such scenarios by
increasing the degree of the polynomial. However, their approach is expected to
scale better as our runtime heavily depends on ring multiplications.

7.7 Conclusion

We presented a fault countermeasure for AES. The countermeasure is based on
a combination of extended AN + B-codes and redundant table lookups. The
overhead is not negligible but we think that the approach is interesting because
of the security it provides. In particular, it provides a continuous protection
throughout the whole algorithm. Furthermore, an adversary who injects first-
order bit-faults, first-order byte-faults or skips an instruction is detected with
certainty. Finally, for all other adversaries we can state a lower bound for the
detection rate with 1− 1/256.

Part III

Protocol-Level
Countermeasures

91

8
Fresh Re-Keying: Security against

Side-Channel and Fault Attacks for
Low-Cost Devices

This chapter shows how we can deal with the problem of implementation attacks
on protocol level. The protocol-level countermeasures presented here is not only
very effective but also low in costs compared to the previously discussed methods.
Additionally, it even provides a unified protection against DPA and fault attacks.
The main disadvantages are that (1) changes in the protocol are needed which is
often difficult in widely established systems and (2) that only one party within
a two-party communication can be protected. The latter is because only the
encryption is probabilistic and an adversary could always attack the decryption.
However, the fact that only one party can be protected is often not a concern
in low-cost applications. If only one party has to be low-cost (this could be an
RFID tag or a smart card), the other party (e.g. an RFID or smart-card reader)
can be protected by different, more expensive, means.

We describe a fresh re-keying scheme that is expected to be secure against
differential fault attacks and a large category of side-channel attacks (namely
the standard SPA and DPA attacks that will be described in Section 8.2). This
scheme, pictured in Figure 8.1, can be used in a challenge-response protocol
for RFID or more generally for physically secure encryption. It contains an
encryption function f (typically, a block cipher; the AES Rijndael will be our
running example) to encrypt every message block m with a fresh session key k∗.
This session key k∗ is obtained thanks to a function g from a master key k and
a public nonce r that is chosen by the tag. That is, one computes the session
key k∗ = gk(r) first and then the ciphertext c = fk∗(m). On first sight, it may

93

94 Chapter 8. Fresh Re-Keying

seem that such a scheme just shifts the problem of protecting the block cipher f
against physical attacks to the problem of protecting the function g against the
same attacks. We argue that it can have significant advantages both in terms of
security and performance. First, and quite simply, it makes the application of
differential fault analysis impractical, because the same key is never used twice
to encrypt with the block cipher. Second, it allows separating the requirements
for the two functions. On the one hand, g has to be low-cost and easy to protect
against side-channel attacks, but does not have to be cryptographically strong.
On the other hand, f only needs to be secure against side-channel attacks with
a data complexity bounded to one single query (i.e. SPA, essentially).

k

k∗

r

gk(r)

fk∗(m) cm

Figure 8.1: Fresh re-keying: basic principle.

Concretely, we provide a list of desired properties for the function g and pro-
pose an instance that we analyze in detail. We then investigate a large design
space, trading performance for different side-channel countermeasures. Rely-
ing on previous results of evaluations for protected devices, our implementation
figures show that a significant level of physical security can be obtained at a
reasonable cost. In particular, we quantify the computational difficulty of per-
forming attacks based on the traditional “divide-and-conquer” strategy in which
different parts of the master key k are recovered separately. This complexity is
shown to be prohibitive for the targeted applications. Regarding fault analysis,
we discuss the protection against differential fault attacks. Simple fault attacks
which reduce the number of rounds of a block cipher or output the key instead
of the ciphertext are not in the scope of this work. They present a more general,
scheme-independent threat and are usually prevented by other means like loop
invariants or code signatures. Finally, we briefly discuss the resistance of our
scheme against the recently introduced algebraic side-channel attacks [RSVC09].
While the exact evaluation of such advanced techniques is left as a scope for fur-
ther research, we also propose solutions to prevent them.

8.1 Related work

A large number of countermeasures has been proposed in the literature to pre-
vent side-channel attacks. In this section, we list a number of them with their

8.1. Related work 95

advantages and limitations. We then argue how our proposal can be seen as a
new tradeoff between security and performance issues.

First, masking (e.g. [GP99, SP06]) is a very frequently considered solution
to protect a device against side-channel attacks. It has the advantage of being
quite well understood. Its main drawback is that the performance overheads
can be important because of the need to compute a correction term on-the-fly,
during the encryption process. Masking can be defeated by higher-order attacks
[Mes00] or because of technological issues such as glitches [MPG05]. Overall,
it is usually considered as one useful part of the solution for protecting cryp-
tographic hardware. The permutation tables that are analyzed in [Cor08] have
quite similar properties, both in terms of performance overheads and security
[PM09].

Next to masking, hiding is another frequently considered countermeasure.
Numerous hiding schemes have been proposed in the literature, e.g. different
time randomization tools and side-channel resistant logic styles of which the
goal is to have the leakage as close to constant as possible. Such logic styles
can be based on standard CMOS cell libraries (e.g. WDDL [TV04]), or require
full-custom design (e.g. SABL [TAV02]). Again, there is a security vs. perfor-
mance tradeoff since designing full-custom hardware is more expensive (at least
in development time) than using standard libraries, but the security of the latter
ones is generally lower, mainly because they offer less fine tuning possibilities
[MSQ07].

Closer to our present proposal, different protocol-level solutions have also
been investigated. For example, the idea of regular key updates, first described
in [Koc03], has recently attracted a significant attention, as witnessed, e.g. by
[PSP+08, Pie09a]. Such re-keying schemes have the advantage of being quite
formally analyzed which leads to a good evaluation of the security level they
provide. On the other hand, they still rely on certain physical assumptions that
must be achieved by the hardware and they can be quite inefficient when a chip
has to be re-initialized regularly (which is typically the case of challenge-response
authentication protocols). More precisely, and as detailed in [SPY+09], a secure
initialization process for such constructions using block ciphers would require
to implement a tree-based structure with up to n applications of, e.g. the AES
Rijndael, where n is the bit-size of the initialization vector. This hardly fits to
the RFID scenario.

Eventually, the use of “all-or-nothing” transforms to prevent certain classes
of side-channel attacks is discussed in [MTW+09]. Here the idea is to transform
the plaintexts and ciphertexts with a low-cost mapping that is easy to protect
against physical adversaries and makes the guessing strategy, exploited in most
standard DPA, hardly applicable. As this proposal is quite recent, its careful
security analysis is still an open problem. Interestingly, it also shifts the prob-
lem of protecting a complete cipher to the one of protecting a simpler transform.
But as for re-keying schemes, the initialization and synchronization of an encryp-
tion protected with such all-or-nothing transforms can be expensive. Another
drawback is the need of an additional secret shared between the two parties.

96 Chapter 8. Fresh Re-Keying

Our fresh re-keying is in fact in close connection with the idea of all-or-
nothing transforms and standard re-keying schemes. Its main advantage is to
propose a low-cost solution to the initialization problem (since a fresh session key
is used to encrypt every block of plaintext). Also, since we apply a transform on
the key, we avoid the need to share an additional secret as in the all-or-nothing
transforms’ case. Finally, the proposed solution is low-cost, because we only
need one transform to protect the key rather than two transforms to protect
the plaintext and ciphertext in the all-or-nothing case. For the rest, we share
the advantages of these protocol level countermeasures. In particular, we do not
need to compute correction terms during the encryption process. Also, and as
will be detailed in the following sections, we can take advantage of masking and
hiding to protect our re-keying transform. And because of its relatively small
gate count, we can even consider using a full-custom circuit for this purpose.

Note that, because we consider the RFID scenario, we put a strong focus on
implementation efficiency, as will be detailed in Sections 8.4 and 8.5. In partic-
ular, we show that for a similar gate count, our solution allows implementing
more masking and shuffling than if one directly attempts to protect a block
cipher implementation with similar countermeasures. We believe that this is
an important first step in order to motivate further research on fresh re-keying
schemes. In particular, our security analysis is based on an important class of
practical attacks. But generalizing it towards more abstract and general models
of computation and leakage (e.g. the ones surveyed in [Pie09b]) and evaluating
the performance penalties that this would imply is an interesting open question.

8.2 Background

As detailed in the beginning, our countermeasure splits the problem of physical
security in different subproblems.

Some parts of our design are only required to be protected against SPA,
other parts also require DPA resistance. Since these are all standard notions
in the field of cryptographic hardware, this section only summarizes them and
points towards different references for more formal definitions. Additionally, we
describe the particular type of DPA attacks exploiting a standard divide-and-
conquer strategy that we consider in our security analysis. Finally, we discuss
how our re-keying scheme can be used in an authentication protocol.

8.2.1 SPA and DPA

In terms of side-channel resistance, the main requirement for our following pro-
tocol to be secure can be summarized as follows:

1. The function f needs to be secure against SPA.

2. The function g needs to be secure against both SPA and DPA.

8.2. Background 97

SPA stands for simple power analysis and corresponds to attacks in which
an adversary directly recovers key material from the inspection of a single mea-
surement trace (i.e. power consumption or electromagnetic radiation, typically).
DPA stands for differential power analysis and corresponds to more sophisticated
attacks in which the leakage corresponding to different measurement traces (i.e.
different plaintexts encrypted under the same key) is combined. As a matter of
fact, in the absence of an efficient solution to guess the session key k∗ from the
master key k, such attacks can only be applied to the function g in the scheme
of Figure 8.1. Indeed, for the block cipher f , every plaintext will be encrypted
with a different k∗. For more details about such attacks, we refer to [MOP07].

8.2.2 Divide-and-conquer strategies

Divide-and-conquer attacks such as the standard DPA detailed in [MOS09], are
attacks in which the adversary recovers small parts of a master key (also called
subkeys) one by one. Most side-channel attacks published in the open literature
fall under this category. In such a setting, an important feature of the adversary
is the need to predict some (key-dependent) intermediate computations during
the encryption process (e.g. the first round S-boxes’ outputs in a block cipher).
As will be detailed in Section 8.6.3, this is typically what is made difficult by
our fresh re-keying scheme. If g has good enough diffusion, it should be hard to
guess the intermediate computations of f in function of the master key k. As a
result, only SPA attacks can be performed against the session key k∗.

8.2.3 Challenge-response protocol

In a challenge-response authentication, one party sends a challenge and the
other party responds with the encrypted challenge together with some additional
information. Then, the response gets verified. Depending on the cases, this
process can be repeated with swapped roles. Since our re-keying scheme is
designed for physically secure encryption, it can be straightforwardly used in
any symmetric-key challenge-response authentication. The tag simply has to
implement the fresh-rekeying exactly as in Figure 8.1. The reader implements
the same scheme, except that the portion r is provided from outside by the tag.

As for the communication overhead, the distribution of the r values does
not necessarily imply that the number of passes in the protocol increases. In a
three-pass mutual authentication protocol (as for instance described in ISO/IEC
9798-2 [Int99]), the r’s can be included in data transported during the passes.
Thus, the number of passes increases at most by one, depending on who starts
the protocol. Note that an important property of the fresh re-keying is that the
adversary should not gain an advantage when resetting the device. That is, after
each reset, the tag should compute a fresh new nonce and session key, e.g. in a
passive RFID scenario, the tag is reset any time it is taken out of the reader field.

98 Chapter 8. Fresh Re-Keying

8.3 Choice of the function g

In order to investigate the security of the fresh re-keying scheme of Figure 8.1,
one first needs to determine the functions f and g. As previously mentioned, a
convenient choice for the function f is a block cipher, e.g. the AES Rijndael.
Hence, it remains the choice of the function g that is in fact the most critical
both for security and performance. In this section, we list the required properties
for g and select an appropriate candidate according to those properties.

8.3.1 Desired properties

The following properties for g are motivated by a combination of side-channel
security aspects and hardware implementation aspects.
P1: Diffusion. One bit of the session key k∗ should depend on many bits of
the master key k. In other words, guessing one bit of the session key must be
computationally difficult. This property ensures that the divide-and-conquer
approach, usually applied in DPA, cannot be easily carried out.
P2: No need for synchronization. The function g should not have a variable
inner state which needs to be kept synchronous among the parties. The only
inner state should be the static portion k (contrary to [PSP+08, Pie09a]).
P3: No additional key material. The symmetric key material which needs to be
preliminary distributed among the parties and stored within the devices should
not be larger than that of classical block encryption. That is, the master key k
should suffice to evaluate both functions f and g (contrary to [MTW+09]).
P4: Little hardware overhead. Deriving the session key in hardware must be
cheaper than protecting the original circuit (i.e. the function f) by means of
secure logic-styles and other countermeasures.
P5: Easy to protect against SCA. g should have a suitable algebraic structure
that makes its protection against SCA easier than, e.g. block ciphers. Com-
bined with the previous property, it means that deriving the session key with a
protected g should also be lower in cost than protecting f .
P6: Regularity. If possible, the function g should have a high regularity in order
to facilitate its implementation in a full-custom design. This is motivated by the
good security properties that the fine-tuning of such designs allows.

8.3.2 Candidate

From a cryptographic point of view, the most obvious choice for g would be
either a hash function or an encryption function. However, they would not be
useful in the present context since they are just as complex to implement and
protect as the original block cipher f . By contrast, from an engineering point
of view, a bitwise XOR function would be best. In fact, an XOR fulfills many
of the above properties, but the diffusion remains extremely weak. Combining
these two extremes led us to select g as the following modular multiplication:

g :
(
GF(28)[y]/p(y)

)2 → GF(28)[y]/p(y) : (k, r)→ k ∗ r.

8.4. Implementation of the function g 99

In the remainder of the chapter, the polynomial p(y) will be defined as yd +1
with d ∈ {4, 8, 16}. The actual choice of d will be used as a parameter to improve
the diffusion (i.e. P1), as will be discussed in Section 8.6.3. As for the other
properties, P2 is fulfilled because the function only depends on the public but
random nonce r and the secret key k; P3 is fulfilled because only one master key
k is needed for g’s evaluation; finally P4-P6 are discussed in the next section.

Note that the diffusion property of this modular multiplication significantly
depends on the choice of r. Since it is randomly generated on-chip by the tag,
it allows arguing about the physical security of the tag by showing that the
diffusion is high enough on average. By contrast, on the reader side, the nonce
can be generated by an adversary. Hence, re-keying will not ensure diffusion
(and physical security) on that side. Consequently, the (more expensive) reader
is expected to be protected against implementation attacks by other means.

8.4 Implementation of the function g

In this section we discuss the implementation of g. We start from a general
description of the multiplication algorithm, extend it to a blinded version and
finally discuss the use of secure logic for a hardware implementation.

8.4.1 Unprotected implementation

The unprotected implementation of the multiplication follows Algorithm 10, in
which the complexity mainly depends on p(y). Thus, the degree of this polyno-
mial can be used to trade performance for diffusion.

For example, if d = 16 (resp. d = 8), every bit of the session key k∗ will
depend on 64 (resp. 32) bits of the master key on average (details are given in
Section 8.6.3). Note that if d < 16, the multiplication is simpler but has to be
applied several times to cover all the key bytes (e.g. 2 times if d = 8, 4 times
if d = 4).

We opted for a product-scan algorithm [HMV04], in which the result is cal-
culated digit-wise. That is, in each iteration of the outer loop (lines 3-14), all
partial products which add to the same digit of the final product are computed
and accumulated. Usually, a disadvantage of this algorithm is the out-of-order
processing of the operands. However, the special choice of p(y) allows to over-
come this problem. This choice will be justified in Section 8.4.4.

8.4.2 Improving g’s SPA/DPA resistance with shuffling

Due to the structure of the ring we are operating on, the digits of the product are
independent (i.e. carry-free). This implies that the order in which the multipli-
cation algorithm operates on the product digits can be randomized. Therefore,
shuffling can be applied as an SCA countermeasure [MOP07]. Shuffling has the
effect that an adversary who observes a side-channel trace cannot directly infer
the operations carried out in different samples (i.e. in our case: which part of the

100 Chapter 8. Fresh Re-Keying

Algorithm 10 Product-scan algorithm for multiplication

Input: a, b ∈ GF (28)[y]/yd + 1
Output: c = a ∗ b ∈ GF (28)[y]/yd + 1

1: ρ← rand()
2: i← 0, j ← ρ, k ← ρ, l← 0
3: while k 6= ρ− 1 (mod d) do
4: ACCU ← 0
5: for l = 0 to d− 1 do
6: ACCU ← ACCU + ai · bj
7: if l < d then
8: i← i− 1 (mod d)
9: end if

10: j ← j + 1 (mod d)
11: end for
12: ck ← ACCU
13: k ← k + 1 (mod d)
14: end while
15: return c

product is processed at what time). This makes the application of SPA difficult.
Shuffling also increases the data complexity of a DPA by d2 [HOM06]. Finally,
the countermeasure comes for free in our case, because only the starting index
of the outer loop has to be initialized with a random value (Algorithm 10, line
1).

8.4.3 Improving g’s SPA/DPA resistance with blinding

Usually, DPA attacks against a multiplication algorithm target the partial prod-
ucts. This is because a partial product depends only on one digit of each operand,
thus allowing the application of a divide-and-conquer strategy. A common coun-
termeasure to SCA that is also applicable in our context is to use a redundant
representation for the variables. Sharing a variable over (m + 1) variables is
referred to as mth-order blinding (also called masking in the symmetric setting
[SP06]). Blinding is a powerful countermeasure, but it is only efficient if the
computational overhead due to operating on the redundant representation is
small. Since addition and multiplication are distributive in our algebra, this
condition is nicely respected. Algorithm 11 implements an mth-order blinded
version of the function g. In line 3, m random blinds bi are added to k before
the multiplication is carried out in line 5. Afterwards, each product bi ∗ r has
to be removed again from the result in line 7. It can be easily verified that this
does not change the result. However, it ensures that any adversary who wants to
mount a DPA on g needs to exploit the joint information of m partial products,
thus perform an mth-order DPA. The number m presents the second parameter
in our design space for g. The time and space complexity of g increases linearly

8.5. Global architecture 101

with m, whereas the complexity of a DPA of g increases exponentially with m
[CJRR99].

Algorithm 11 Blinded session key generation

Input: k, r, bi with i = 1 to m the masking order
Output: k∗ = k ∗ r

1: bk ← k
2: for i = 1 to m do
3: bk ← bk + bi
4: end for
5: k∗ ← bk ∗ r
6: for i = 1 to m do
7: k∗ ← k∗ + bi ∗ r
8: end for
9: return k∗

8.4.4 Improving g’s SPA/DPA resistance with protected
logic styles

Finally, the main reason why we opted for the product-scan algorithm is that it
enables the use of secure logic styles. This is because the part of the memory
which holds sensitive data is small in this case. Indeed, whereas a DPA can be
applied to the partial products when performing the multiplication algorithm, it
is difficult to attack a byte of the final result directly, as they depend on many
bytes of both operands. Since our product-scan algorithm works only on one
product byte at a time, only this byte and the corresponding GF(28) multipli-
cation have to be protected. In general, secure logic is expensive compared to
standard CMOS and efficient implementations require to use it sparingly. This is
typically what our proposed re-keying scheme allows. Hence, a third parameter
in our design space will be the use of such protected hardware.

8.5 Global architecture

Following the algorithmic description in the previous section, we now look at
concrete hardware cost and performance issues. First, we illustrate the design
space of g with a block diagram. Then, we present the area and cycle-count
results for the different hardware design choices that we implemented.

8.5.1 Block diagram and design space for the function g

Figure 8.2 depicts a hardware architecture for g. The diagram contains all
components necessary to generate k∗, except for a random-number generator
that we can reasonably assume to be available on the tag. The three main

102 Chapter 8. Fresh Re-Keying

components of the circuit are the controller, the memory and the multiply-
accumulate (MAC) unit. Determined by the use of the AES for the function f ,
the memory consists of 128-bit registers. Note that the register for k∗ would be
shared with f , thus does not contribute to the size of g’s circuit. The actual size
of the memory is directly related to the second design parameter: the blinding
order. If the blinding order is zero, only two registers are needed. If mth-order
blinding is implemented, (m+ 1) additional registers are required.

The control unit is essentially invariant throughout the design space. Chang-
ing the degree of the polynomial only changes loop constants within the controller
and affects the cycles needed to carry out an operation. Also, the successive exe-
cutions of an operation (as needed for d ∈ {4, 8}) is managed by the software. A
similar statement holds when changing the blinding order. The core of the archi-
tecture is the MAC unit. It features a GF(28) multiplier, a GF(28) adder and an
8-bit register. Since the MAC unit is the target for secure-logic implementations,
its size is crucial, as will be evaluated in the next section.

k∗ (shared)

k

r

b1

bk

bi

bn

...

read port 2 / operand 2 [0:7]

operand 1 [0:7]

sum [0:7]
read addr 1 [0:4]

read addr 2 [0:4]

write addr [0:4]

write port [0:7]

read port 1 [0:7]

write enable

Multiply

Accumulate

Unit

(Secure Logic)

acc enable

load accu

output enable

accu output [0:7]

Control

Unit

Adder

re
se

t

in
st

r
[0

:1
4
]

in
 [

0
:7

]

o
u
t

[0
:7

]

re
ad

y

Figure 8.2: Block diagram of the random-transformation circuit

8.5.2 Implementation results and performance evaluation

We evaluated the post-synthesis area occupation for an ASIC implementation of
g. The synthesis tool was Design Compiler 2008.09 from Synopsys, and the li-
brary was the Free Standard Cell library from Faraday Technology Corporation,
using the UMC L180 CMOS technology. We used typical corner values and rea-
sonable assumptions for the constraints. Additionally, we varied the frequency
between 1 and 20 MHz, since these are reasonably boundaries for the target ap-
plication (typical frequencies are in fact 6 MHz for HF tags and 1 MHz for UHF

8.5. Global architecture 103

Table 8.1: Post synthesis results for an ASIC implementation of g, g-pMAC and the
full re-keying scheme. The protected MAC unit is estimated with the
iMDPL secure logic.

Implementation w/o blinding 1st-order 2nd-order 3rd-order

function g 4.5kG 7.3kG 8.7kG 10.2kG
g-pMAC 11.7kG 14.6kG 16.0kG 17.5kG
g + AES1 7.9kG 10.7kG 12.1kG 13.6kG

g-pMAC + AES1 15.1kG 18.0kG 19.4kG 20.9kG
1AES implementation taken from [FWR05].

tags). After performing several runs with different constraints and optimization
options, we selected the results with the smallest area.

Our results are reported in Table 8.1 in which we find:

1. The gate equivalent estimation for g using different blinding orders.

2. The cost of a MAC unit in a SCA-resistant logic style (g-pMAC). We
leveraged on iMDPL [PKZM07] and used a scaling factor of 18 for our
estimations [KP09].

3. The total area (g + AES) needed to protect the AES core by Feldhofer et
al. [FWR05] using our fresh re-keying scheme, with the same parameters.

We compared our design to the protected circuit presented by Feldhofer et
al. in [FP08]. Their implementation requires approximately 19.5kG and, to the
best of our knowledge, is the smallest protected implementation of the AES that
targets RFID applications. These results show that our fresh re-keying scheme
has smaller area requirements than a direct protection of its underlying block
cipher, i.e. that properties P4, P5 and P6 in Section 8.3.1 are indeed fulfilled.
More precisely, the implementation in [FP08] has a level of security comparable
to the one of g featuring either 1st-order blinding or a protected MAC. This is
because their implementation protects parts with masking and other parts with
secure logic. In the first case, our implementation requires approximately 8.8kG
less than theirs and in the second case the difference is approximately 4.4kG.
A combination of the two countermeasures would still be around 1.5kG smaller.
We could also implement a blinding order of up to 5 at the same cost. Table 8.2
finally reports the number of clock cycles needed for the generation of a fresh ses-
sion key k∗. Contrary to the area requirements, this number is strongly affected
by the polynomial selected for the diffusion. For example, when this polynomial
equals y16 + 1, the time required to complete the computation is almost three
times larger than when using y4 + 1. The corresponding security levels will be
discussed in the next section. As a consequence, the designer can easily tune
the desired diffusion level towards the requirements of the application, even if
for RFID the throughput is generally not a strict constraint. As a comparison,
the performance overhead of the implementation by Feldhofer et al. [FP08] is

104 Chapter 8. Fresh Re-Keying

Table 8.2: Cycle count for re-keying with different diffusion levels and blinding orders.

Blinding order y16 + 1 y8 + 1 y4 + 1

w/o blinding 290 162 98
1st-order 562 360 178
2nd-order 834 504 258
3rd-order 1160 648 338

ranging between 32 and 1005 clock cycles, depending on the number of dummy
instructions inserted.

8.6 Security analysis

In this section, we provide the security analysis of our re-keying scheme in differ-
ent parts. We start with a note on the choice of k. Next, we discuss the security
of the complete scheme against differential fault analysis. Then, we investigate
its resistance against side-channel attacks in three parts. First, we argue about
the security of the function g against SPA and DPA. Second, we discuss the
security of the function f against SPA only. Finally and most importantly,
we analyze the difficulty of mounting divide-and-conquer attacks against the
complete re-keying scheme. We conclude the section with some open questions
related to advanced attack techniques exploiting algebraic cryptanalysis.

8.6.1 The choice of k

Due to the structure of the used ring, there exist zero divisors. If k takes the
value of a zero divisor, there exist several r which lead to the same k∗. To avoid
such collisions, we have to reduce the key space K to elements k which are co-
prime to yd+1. The resulting loss of entropy can be stated as ∆H = 128−H(K).
For d = 16, we get ∆H = 128− log2(255 ∗ 25615) ≈ 0.0056 bits. For d = 8, ∆H
doubles and for d = 4 it becomes four times as large, respectively. In any of the
three cases, the reduction of K can be neglected.

8.6.2 Resistance against fault attacks

Even in its most powerful variants, differential fault analysis requires at least
one pair of correct and erroneous outputs to attack cryptographic algorithms
[PQ03]. From such a pair, information about the secret key can be recovered.
This means that an adversary requires to encrypt the same plaintext (at least)
twice with the same secret key, which is prevented by our scheme. In other
words, the combination of re-keying with an initialization process using fresh
r’s for every plaintext block provides a solid protection against differential fault
attacks.

8.6. Security analysis 105

8.6.3 Resistance against standard side-channel attacks

As mentioned in Section 8.2.1, the security of our fresh re-keying scheme requires
two main properties: (1) the function f needs to be secure against SPA; (2)
the function g needs to be secure against both SPA and DPA. In this section,
we discuss how our architectural choices allow fulfilling these requirements in
function of different security parameters. Then, we analyze in detail the security
of the complete scheme against divide-and-conquer attacks. That is, we show
that if the two previous conditions are respected, then it is computationally hard
to mount such DPA attacks against the functions f and g taken as a whole.

Security of g against SPA and DPA.

The design space of the proposed architecture allows to deploy three well-studied
countermeasures against DPA attacks: shuffling, blinding, and protection by
secure logic. For an extensive discussion of those countermeasures see for in-
stance [MOP07], or [RPD09] for a more theoretical approach. We note that
in addition to the large design space, our architecture has specific advantages
compared to the straightforward protection of a block cipher. For example, how
to design a masking scheme for a software implementation of a block cipher that
has an order higher than 3 is an open problem, as pointed out in [RPD09]. In
our case, thanks to the algebraic structure of the function g, such a generaliza-
tion to high orders is as easy as for asymmetric encryption. Furthermore and
as detailed in the previous section, the low-cost nature of g makes it possible
to combine several types of countermeasures against side-channel attacks at a
lower cost than if they had to be applied to the original AES.

Security of the AES against SPA.

Although not as difficult to obtain as DPA resistance, security against SPA is
an important issue for the AES. In particular and since our re-keying scheme
implies to run the key scheduling algorithms for every new encryption, it is
important to avoid attacks such as [Man03]. In order to limit cost overheads,
our strategy is to apply the same shuffling that is described in Section 8.4.2 to
the 16 state bytes of our AES implementation as well as to the key expansion.
As detailed in [FP08], this can be done with negligible overhead. We do not
even need additional memory since we do not make use of dummy cycles.

Security of the complete scheme against divide-and-conquer attacks.

The previous paragraphs described solutions for achieving SPA/DPA resistance
for g and SPA-only resistance for f . They show that the level of security against
these attacks can be easily tuned at the cost of some performance overheads that
are at least lower than those of protecting a stand-alone AES. It now remains
to argue about the security against the combined functions. That is: can an
adversary directly perform a DPA on the function f by guessing the master key k.

106 Chapter 8. Fresh Re-Keying

In order to show that such attacks are computationally hard, we argue as
follows. Following [MOS09], a DPA attack against the AES requires to guess
some intermediate computation during the encryption process. In the simplest
case, one bit can be guessed (e.g. one bit after the first key addition layer). In
this context, the number of master key bits on which each bit of the session key
k∗ depends, only depends on the Hamming weight (HW) of r. This is because
every bit of k∗ is a sum of all bits of k weighted by the bits of r. Since all n bits
of r are uniformly distributed, the probability that HW(r) ≤ X is given by:

P = Pr[HW(r) ≤ X] =

X∑
i=0

(
n
i

)
2n

.

This probability can be directly related to the data complexity of an attack.
That is, a small multiple of 1/P traces have to be collected to observe an r
with the desired properties. Figure 8.3(a) illustrates this relationship between
the Hamming weight of r and the number of traces that have to be collected to
observe such an r. It can be seen that even for a Hamming weight as large as
30 the data complexity is significant with one million traces.

Then, in a typical DPA, there are two effects that will improve the diffusion.
First, the adversary will usually not predict the key addition’s output but the
first S-box layer’s (or even MixColumns’) output, in order to better discriminate
the different key candidates. This requires to guess eight bits of the session key
(32 for MixColumns). This number of bits of the session key to guess is denoted
as ng. Second, several traces corresponding to several plaintexts will generally
be combined in a DPA, each one giving rise to a new random r. We denote as nt
this number of traces. Overall, the percentage of bits on which an attack depends
can be described in function of the maximum tolerated Hamming weight X as:

1−
(
n−X
n

)nt·ng

.

Figures 8.3(b)-8.3(d) show the number of bits of k to guess as a function
of the hypothesis’ size ng. The different curves show the complexity for nt = 1
(lowest curve), 5, 10, 20, and 50 (topmost curve). Since between 10 and 50 traces
are usually required to recover an AES key byte with reasonable confidence in
unprotected devices [SGV08], it directly implies that the diffusion and hence
time complexity will generally be sufficient to protect RFID tags.

We end this section with two specific examples to give an idea about how
our countermeasure influences the data and time complexities of a divide-and-
conquer attack. First we consider an AES implementation for which the attacker
needs to predict ng = 8 bits of the session key (a usual context). Furthermore,
we assume that he needs nt = 10 traces to mount a successful DPA. Even if the
attacker waits for r values with a Hamming weight of 5 (as in Figure 8.3(b)),
he needs to guess close to 128 bits of the master key to predict 10 times those
8 bits of the session key. Thus, the time complexity of such an attack would be
close to 2128. To get the data complexity we additionally look at the probability

8.6. Security analysis 107

of observing such r values. From Figure 8.3(a) it can be seen that they occur
every 270 traces on average. For the second example we assume that guessing
ng = 1 bit for nt = 5 traces is enough. Even in this (unlikely) case, the data and
time complexities are still prohibitive. In order to meet a more reasonable data
complexity, we wait for r values with Hamming weight 15. That means that we
have to observe (and acquire the power traces for) 5×244 encryptions on average.
And the attack time complexity in this case would be 260. Note that high data
complexities may be hard to reach in practical side-channel attacks since even a
fast measurement setup is limited to approximately 20 traces per second.

5 10 15 20 25 30

20

40

60

80

100

120

140

lo
g

2
(#

tr
a
c
e
s
)

Max. tolerated HW(r)

(a) Data complexity

2 4 6 8

20

40

60

80

100

120

140

#
b
it
s
 o

f
k
 t
o
 g

u
e

s
s

#bits of the DPA hypotheses: n
g

(b) Time complexity, Max. HW(r)=5

2 4 6 8

20

40

60

80

100

120

140

#
b
it
s
 o

f
k
 t
o
 g

u
e
s
s

#bits of the DPA hypotheses: n
g

(c) Time complexity, Max. HW(r)=15

2 4 6 8

20

40

60

80

100

120

140

#
b
it
s
 o

f
k
 t
o
 g

u
e
s
s

#bits of the DPA hypotheses: n
g

(d) Time complexity, Max. HW(r)=30

Figure 8.3: Data vs. time complexity of a DPA against the combined f and g.

8.6.4 Resistance against algebraic side-channel attacks

By clearly separating the properties of the functions f and g, our re-keying
scheme has pushed the security against side-channel attacks towards one ex-
treme direction. On the one hand, standard side-channel attacks are prevented.
On the other hand, the function g that is protected against such attacks is not
strong from a cryptographic point of view. As a consequence, it appears as an in-
teresting target for the recently introduced algebraic side-channel attacks. Such
attacks are not based on a divide-and-conquer strategy. They rather write the

108 Chapter 8. Fresh Re-Keying

encryption of a plaintext into a ciphertext as a big system of low-degree boolean
equations in which the key bits are unknown variables. Then, the information
leakage corresponding to this encryption is added to the system, also in the form
of some low-degree equations. As demonstrated in [RSVC09], information leak-
ages such as Hamming weights can be sufficient to solve the system in practical
time limits (minutes, typically). Quite naturally, the complexity of solving such
a system of equations strongly depends on the algebraic structure of the target
algorithm. For example, the AES Rijndael is more robust than the low-cost ci-
pher PRESENT in this context [RS09]. Looking at our proposal for g, things are
even worse since this function is linear. Taking an analogy with stream ciphers,
one could see the side-channel leakage as a filtering function at the output of
a linear number generator g. However, thanks to our flexible architecture, we
also have positive arguments to prevent such attacks. Mainly, algebraic attacks
can hardly deal with erroneous information. Hence, the shuffling that we can
perform for free, both on the implementation of f and g, will most likely make
their application much harder. Because of their recent nature, we leave the exact
quantification of these attacks as a scope for further research.

8.7 Conclusions

In this chapter we discussed a new approach to re-keying. We explored its use
as a countermeasure against physical attacks. The proposed scheme is tailored
towards the security and resource needs of RFID applications.

We have evaluated the scheme’s architecture and security, discussing its ro-
bustness against DFA, SPA, and DPA. The flexible configurability of the pro-
posed circuits allows reaching a high level of security for an implementation cost
that is close to the most efficient solutions available in the literature.

Open problems are in two main directions. First, it would be useful to extend
the present proposal in order to protect the reader side (that is needed to be
protected against physical attacks by other means than the fresh re-keying in the
present proposal). Second, our analysis relies on a simple candidate of g function.
Investigating alternative ones, possibly trading some performance overheads for
security is an interesting scope for further research. In this respect, it is worth
noting that there exist simple ways to improve the diffusion properties of our
scheme. As an illustration, one can generate two random nonces r1 and r2 and
then compress the resulting k ∗ r1 and k ∗ r2 (e.g. by XORing their two halves
together, producing n/2 bits twice) and then use the concatenation of these two
compressed strings as k∗. Pushing such a diffusion vs. performance tradeoff
further, one could also consider randomness extractors as function g (that are
of independent interest in leakage-resilient cryptography [DP08, Sta10]).

Summarizing, we hope that our new countermeasure and instantiation for g
makes an interesting case compared to traditional approaches to prevent physical
attacks and raise interesting (theoretical and practical) research questions.

9
Conclusions

In this thesis we presented countermeasures for implementation attacks. In the
first part we discussed circuit-level countermeasures based on coding theory.
We examined various codes regarding their suitability for arithmetic and logic
operations. Afterwards, we designed arithmetic logic units (ALUs) which incor-
porate such codes, thus providing a solid base for a secure microcontroller. Such
countermeasures are transparent to the software engineer and minimize the risk
of vulnerable implementations (of countermeasures). Circuit-level countermea-
sures might not be the most efficient solution for every scenario, but they can
guarantee a universal protection, even for parts of the system that might not
be considered for fault attacks. The ability to state the security for the entire
system is of high interest for instance during a product certification.

Our main goal was to design arithmetic-logic circuits which can withstand
adversaries able to precisely set up to three bits and to provide a high-detection
probability for all other adversaries. It turned out that most used coding schemes
break down in such a scenario, if no further measures are incorporated. The re-
sult of this first part was a sequential arithmetic-logic circuit where all possible
states show a pairwise Hamming distance of four. Due to the proposed opti-
mizations and trade-offs, it was possible reduce the costs for such an approach
below the costs of doubling the original circuit.

The second part of the thesis dealt with algorithm-level countermeasures.
In particular, we looked at cryptographic primitives for public- and secret-key
cryptography. The approaches in this part are based on different applications
of extended AN +B codes. We show how they can be applied to algorithms in
general, but also to special algorithms like RSA, AES and elliptic-curve based
algorithms.

Our main motivation for the work presented in this part was to provide a

109

110 Chapter 9. Conclusions

more comprehensive protection for algorithms. Previously proposed algorithm-
level countermeasures often provided only data integrity against weak adver-
saries. Especially for the AES we assumed a much stronger adversary than in
previous works. At the same time, we ensured that our countermeasures pro-
tect all components of an algorithm, including the program flow, equally strong.
The program flow was of particular importance in our work because it is often
neglected in countermeasures. This can be dangerous as program-flow attacks
do not harm the integrity of encoded data. Even if it is claimed that it is easy
to prevent clock glitches and power spikes used to realize such program-flow ma-
nipulations, not all devices incorporate such mechanisms. Furthermore, there
might be various other ways to realize such a fault model.

Finally, we presented a protocol-level countermeasures in part three. Such
countermeasures turn out to be extremely powerful as they can provide a unified
protection against various implementation attacks (we discussed a wide range
of side-channel attacks and differential fault attacks) and can sometimes even
repel such attacks with certainty. In particular, we presented a re-keying scheme
based on what we call fresh re-keying. Fresh re-keying separates the problems
of cryptographic strength and implementation-attack security, thus allows to
deal with them separately. Other advantages of the approach are the removal
of initialization and re-synchronization issues. We also presented a hardware
implementation of such a fresh re-keying scheme. Evaluation against state-of-
the-art attacks showed that the scheme is cheaper and at the same time provides
more security than previous ones.

Summing up this thesis, we proposed fault countermeasures at three different
levels, always with a strong adversary in mind. At circuit level, our fault pro-
tected ALU was the first ALU implementation to provide such a high degree of
security. For all other countermeasures, our approaches are more cost effective
than proposals that provide equal security.

The recurrent theme throughout all the chapters is definitely the high pri-
ority, security was given and the attempt to anticipate as many adversaries as
possible. Especially, for the cases of the ALU and the AES this was novel. More-
over, in the case of AES, performance issues needed to be neglected in order to
achieve high security. This seems to be quite natural, as a security application
fails its prior goal when becoming vulnerable to attacks. Performance and costs
are out of question in such a case, however, not for fault analysis. The very rea-
son is that there are no clear guidelines for security in fault analysis. In power
analysis, for instance, the community more or less agrees on the capabilities of
an adversary. In fault analysis on the other hand, the adversary can range from
one who transforms the complete circuit to one who just induces completely ran-
dom faults. The truth lies somewhere in between and in reality the adversary
model seems to be quite often adapted to the strength of the countermeasure.
Even if this is exaggerated, the lack of adversary models is definitely a prob-
lem for fault-countermeasure design. It would definitely help for the future to
come up with a standard portfolio of adversaries, for instance, parametrized by
technology and budget. Such an approach is quite similar to the one pursued

111

in certification processes but is unfortunately missing in the scientific commu-
nity. An utopistic, but interesting idea, to improve the situation could be a
fault injection contest. Since two years there exists the DPA contest and in its
third round there will also be an acquisition contest for the first time. In a fault
injection contest, everybody could apply for a device to attack and the goal is to
recover the secret with as little (monetary) effort as possible. In addition, and
this is fortunately also realistic, it would be advantageous to focus more work
on theoretical foundations of fault analysis in the future.

On the bright side there are protocol level countermeasures. Not only that
they are very interesting as an approach in itself, they are also very powerful
and partly can solve the above problematic. For fresh re-keying, for instance,
differential fault analysis is not an issue anymore, independent of the adversary.
This does not mean that it covers all fault attacks, but the benefit is definitely
significant. For this reason, and also for the side-channel security the counter-
measure provides, a more thorough investigation and further developments are
of high interest in the future. For instance it is necessary to better understand
the used primitives in terms of leakage. Furthermore, other potential alterna-
tives for the used primitives need to be investigated, e.g. randomness extractors.
But also the protocol itself could be extended towards two parties, for instance
by using one key for either side.

Apart from protocol level countermeasures, another research track for the
future will be the application of advanced solver techniques in the field of fault
attacks. The security evaluation of a cryptographic primitive against fault at-
tacks is mostly done by hand. It would be good to have automated processes to
better understand the susceptibility of various building blocks in, for instance,
SPN structures. At the moment, for the best fault attack on AES a single fault
injection suffices. As an attacker’s success probability decreases exponentially
with the number of needed faults, it is crucial to keep this number reasonably
high. Such an understanding could then be incorporated in the design of new
primitives, thus making countermeasures much more cost effective.

Finally, also on the attack side, these advanced techniques could be applied.
For instance, to attack stream ciphers where the number of necessary fault can
still be significantly decreased.

Bibliography

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the
Importance of Checking Cryptographic Protocols for Faults (Ex-
tended Abstract). In Walter Fumy, editor, Advances in Cryptol-
ogy - EUROCRYPT ’97, International Conference on the Theory
and Application of Cryptographic Techniques, Konstanz, Germany,
May 11-15, 1997, Proceedings, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer, 1997.

[Ber61] J. M. Berger. A Note on Error Detection Codes for Asymmetric
Channels. In Information and Control 4, volume 4, pages 68–73,
1961.

[BMM00] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential Fault
Attacks on Elliptic Curve Cryptosystems. In Mihir Bellare, edi-
tor, Advances in Cryptology - CRYPTO 2000, 20th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA,
August 20-24, 2000, Proceedings, volume 1880 of Lecture Notes in
Computer Science, pages 131–146. Springer, 2000.

[BOS03] Johannes Blömer, Martin Otto, and Jean-Pierre Seifert. A New
CRT-RSA Algorithm Secure Against Bellcore Attacks. In Sushil
Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, Proceed-
ings of the 10th ACM Conference on Computer and Communica-
tions Security, CCS 2003, Washington, DC, USA, October 27-30,
2003, pages 311–320. ACM, October 2003.

[BOS06] Johannes Blömer, Martin Otto, and Jean-Pierre Seifert. Sign
Change Fault Attacks on Elliptic Curve Cryptosystems. In Luca
Breveglieri, Israel Koren, David Naccache, and Jean-Pierre Seifert,
editors, Fault Diagnosis and Tolerance in Cryptography, Third In-
ternational Workshop, FDTC 2006, Yokohama, Japan, October 10,
2006, Proceedings, volume 4236 of Lecture Notes in Computer Sci-
ence, pages 36–52. Springer, October 2006.

[BV07] Yoo-Jin Baek and Ihor Vasyltsov. How to Prevent DPA and Fault
Attack in a Unified Way for ECC Scalar Multiplication - Ring Ex-
tension Method. In Ed Dawson and Duncan S. Wong, editors,
Information Security Practice and Experience, Third International

113

114 Bibliography

Conference, ISPEC 2007, Hong Kong, China, May 7-9, 2007, Pro-
ceedings, volume 4464 of Lecture Notes in Computer Science, pages
225–237. Springer, May 2007.

[CJ05] Mathieu Ciet and Marc Joye. Elliptic Curve Cryptosystems in the
Presence of Permanent and Transient Faults. Des. Codes Cryptog-
raphy, 36(1):33–43, 2005. Available online at http://eprint.iacr.

org/2003/028.pdf.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Ro-
hatgi. Towards Sound Approaches to Counteract Power-Analysis
Attacks. In Michael J. Wiener, editor, Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

[Cor99] Jean-Sébastien Coron. Resistance against Differential Power Anal-
ysis for Elliptic Curve Cryptosystems. In Çetin Kaya Koç and
Christof Paar, editors, Cryptographic Hardware and Embedded Sys-
tems – CHES’99, First International Workshop, Worcester, MA,
USA, August 12-13, 1999, Proceedings, volume 1717 of Lecture
Notes in Computer Science, pages 292–302. Springer, 1999.

[Cor08] Jean-Sébastien Coron. A New DPA Countermeasure Based on Per-
mutation Tables. In Rafail Ostrovsky, Roberto De Prisco, and Ivan
Visconti, editors, Security and Cryptography for Networks, 6th In-
ternational Conference, SCN 2008, Amalfi, Italy, September 10-12,
2008. Proceedings, volume 5229 of Lecture Notes in Computer Sci-
ence, pages 278–292. Springer, 2008.

[DGRS09] Emmanuelle Dottax, Christophe Giraud, Matthieu Rivain, and
Yannick Sierra. On Second-Order Fault Analysis Resistance for
CRT-RSA Implementations. In Olivier Markowitch, Angelos Bi-
las, Jaap-Henk Hoepman, Chris J. Mitchell, and Jean-Jacques
Quisquater, editors, Information Security Theory and Practice.
Smart Devices, Pervasive Systems, and Ubiquitous Networks, Third
IFIP WG 11.2 International Workshop, WISTP 2009, Brussels,
Belgium, September 1-4, 2009, Proceedings, volume 5746 of Lecture
Notes in Computer Science, pages 68–83. Springer, 2009.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-Resilient
Cryptography. In 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia,
PA, USA, pages 293–302. IEEE Computer Society, 2008.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael. In-
formation Security and Cryptography. Springer, 2002. ISBN 3-540-
42580-2.

http://eprint.iacr.org/2003/028.pdf
http://eprint.iacr.org/2003/028.pdf

Bibliography 115

[ES90] I.D. Elliott and I.L. Sayers. Implementation of 32-bit RISC pro-
cessor incorporating hardware concurrent error detection and cor-
rection. In Computers and Digital Techniques, IEE Proceedings E,
volume 137, pages 88–102, Jan 1990.

[FP08] Martin Feldhofer and Thomas Popp. Power Analysis Resistant AES
Implementation for Passive RFID Tags. In Christiopher Lackner,
Timm Ostermann, Michael Sams, and Ronal Spilka, editors, Pro-
ceedings of Austrochip 2008, October 8, 2008, Linz, Austria, pages
1–6, October 2008. ISBN 978-3-200-01330-8.

[FV06] Guillaume Fumaroli and David Vigilant. Blinded Fault Resistant
Exponentiation. In Luca Breveglieri, Israel Koren, David Naccache,
and Jean-Pierre Seifert, editors, Fault Diagnosis and Tolerance in
Cryptography, Third International Workshop, FDTC 2006, Yoko-
hama, Japan, October 10, 2006, Proceedings, volume 4236 of Lec-
ture Notes in Computer Science, pages 62–70. Springer, October
2006.

[FWR05] Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijmen.
AES Implementation on a Grain of Sand. IEE Proceedings on In-
formation Security, 152(1):13–20, October 2005.

[GGP09] Laurie Genelle, Christophe Giraud, and Emmanuel Prouff. Securing
AES Implementation against Fault Attacks. In David Naccache and
Elisabeth Oswald, editors, Fault Diagnosis and Tolerance in Cryp-
tography, Sixth International Workshop, FDTC 2009, Lausanne,
Switzerland September 6, 2009, Procceedings, pages 51–62. IEEE-
CS Press, September 2009.

[GP99] Louis Goubin and Jacques Patarin. DES and Differential Power
Analysis – The Duplication Method. In Çetin Kaya Koç and
Christof Paar, editors, Cryptographic Hardware and Embedded Sys-
tems – CHES’99, First International Workshop, Worcester, MA,
USA, August 12-13, 1999, Proceedings, volume 1717 of Lecture
Notes in Computer Science, pages 158–172. Springer, 1999.

[GS06] Gunnar Gaubatz and Berk Sunar. Robust Finite Field Arithmetic
for Fault-Tolerant Public-Key Cryptography. In Luca Breveglieri,
Israel Koren, David Naccache, and Jean-Pierre Seifert, editors,
Fault Diagnosis and Tolerance in Cryptography, Third International
Workshop, FDTC 2006, Yokohama, Japan, October 10, 2006, Pro-
ceedings, volume 4236 of Lecture Notes in Computer Science, pages
196–210. Springer, October 2006.

[Ham50] Richard W. Hamming. Error Detecting and Error Correcting Codes.
Bell System Technical Journal, 29(2):147–160, April 1950.

116 Bibliography

[HMV04] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide
to Elliptic Curve Cryptography. Springer, Berlin, Germany / Hei-
delberg, Germany / London, UK / etc., 2004.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES
Smart Card Implementation Resistant to Power Analysis Attacks.
In Jianying Zhou, Moti Yung, and Feng Bao, editors, Applied Cryp-
tography and Network Security, Second International Conference,
ACNS 2006, volume 3989 of Lecture Notes in Computer Science,
pages 239–252. Springer, 2006.

[Int99] International Organisation for Standardization (ISO). ISO/IEC
9798-2: Information technology – Security techniques – Entity
authentication – Mechanisms using symmetric encipherment algo-
rithms, 1999.

[Joy08] Marc Joye. On the Security of a Unified Countermeasure. In Luca
Breveglieri, Shay Gueron, Israel Koren, David Naccache, and Jean-
Pierre Seifert, editors, Fault Diagnosis and Tolerance in Cryptogra-
phy, Fifth International Workshop, FDTC 2008, Washington DC,
USA, August 10, 2008, Proceedings, pages 87–91. IEEE Computer
Society, August 2008.

[JPY01] Marc Joye, Pascal Paillier, and Sung-Ming Yen. Secure evaluation
of modular functions. In R.J. Hwang and C.K. Wu, editor, 2001
International Workshop on Cryptology and Network Security, pages
227–229, September 2001.

[JY03] Marc Joye and Sung-Ming Yen. The Montgomery Powering Lad-
der. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2002, 4th In-
ternational Workshop, Redwood Shores, CA, USA, August 13-15,
2002, Revised Papers, volume 2523 of Lecture Notes in Computer
Science, pages 291–302. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In Michael Wiener, editor, Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

[KKT04a] Mark G. Karpovsky, Konrad J. Kulikowski, and Alexander Taubin.
Differential Fault Analysis Attack Resistant Architectures for the
Advanced Encryption Standard. In Jean-Jacques Quisquater,
Pierre Paradinas, Yves Deswarte, and Anas Abou El Kadam,
editors, Sixth International Conference on Smart Card Research
and Advanced Applications (CARDIS ’04), 23-26 August 2004,

Bibliography 117

Toulouse, France, pages 177–192. Kluwer Academic Publishers, Au-
gust 2004.

[KKT04b] Mark G. Karpovsky, Konrad J. Kulikowski, and Alexander Taubin.
Robust Protection against Fault-Injection Attacks on Smart Cards
Implementing the Advanced Encryption Standard. In 2004 Inter-
national Conference on Dependable Systems and Networks (DSN
2004), 28 June - 1 July 2004, Florence, Italy, Proceedings, DSN,
pages 93–101. IEEE Computer Society, 2004.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In Neal Koblitz, editor,
Advances in Cryptology - CRYPTO ’96, 16th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
18-22, 1996, Proceedings, number 1109 in Lecture Notes in Com-
puter Science, pages 104–113. Springer, 1996.

[Koc03] Paul C. Kocher. Leak-Resistant Cryptographic Indexed Key Up-
date. US Patent 6,539,092 B1, March 2003. Filed: Jul. 2, 1999,
Available online at http://www.cryptography.com/technology/dpa/

Patent6539092.pdf.

[KP09] Mario Kirschbaum and Thomas Popp. Evaluation of a DPA-
Resistant Prototype Chip. In 25th Annual Computer Security Ap-
plications Conference (ACSAC 2009), 7-11 December 2009, Hon-
olulu, Hawaii, USA, 2009.

[KQ07] Chong Hee Kim and Jean-Jacques Quisquater. Fault Attacks for
CRT Based RSA: New Attacks, New Results, and New Counter-
measures. In Damien Sauveron, Constantinos Markantonakis, An-
gelos Bilas, and Jean-Jacques Quisquater, editors, Information Se-
curity Theory and Practices. Smart Cards, Mobile and Ubiquitous
Computing Systems, First IFIP TC6 / WG 8.8 / WG 11.2 Inter-
national Workshop, WISTP 2007, Heraklion, Crete, Greece, May
9-11, 2007, Proceedings., volume 4462 of Lecture Notes in Computer
Science, pages 215–228. Springer, 2007.

[KRFL93] J.H. Kim, T.R.N. Rao, G.L. Feng, and J.-C. Lo. The efficient design
of a strongly fault-secure ALU using a reduced Berger code for WSI
processor arrays. In Wafer Scale Integration, 1993. Proceedings.,
Fifth Annual IEEE International Conference on, pages 163–172,
1993.

[KWMK01] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim. Con-
current Error Detection of Fault-Based Side-Channel Cryptanaly-
sis of 128-Bit Symmetric Block Ciphers. In Proceedings of the 38th
Design Automation Conference, DAC 2001, Las Vegas, NV, USA,
June 18-22, 2001, pages 579–585. ACM, June 2001.

http://www.cryptography.com/technology/dpa/Patent6539092.pdf
http://www.cryptography.com/technology/dpa/Patent6539092.pdf

118 Bibliography

[Len96] Arjen K. Lenstra. Memo on RSA Signature Generation in the
Presence of Faults, September 1996. Available online at http:

//cm.bell-labs.com/who/akl/.

[LTR89] Jien-Chung Lo, Suchai Thanawastien, and T. R. N. Rao. Concur-
rent error detection in arithmetic and logical operationsusing Berger
codes. In Proceedings of 9th Symposium on Computer Arithmetic,
1989.

[Man67] David Mandelbaum. Arithmetic codes with large distance. Infor-
mation Theory, IEEE Transactions on, 13:237–242, Apr 1967.

[Man03] Stefan Mangard. A Simple Power-Analysis (SPA) Attack on Im-
plementations of the AES Key Expansion. In Pil Joong Lee and
Chae Hoon Lim, editors, Information Security and Cryptology -
ICISC 2002, 5th International Conference Seoul, Korea, Novem-
ber 28-29, 2002, Revised Papers, volume 2587 of Lecture Notes in
Computer Science, pages 343–358. Springer, 2003.

[Mas64] J. L. Massey. Survey of residue coding for arithmetic errors. ICC
Bulletin, 3:195–209, Oct. 1964.

[MDS99] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan.
Power Analysis Attacks of Modular Exponentiation in Smartcards.
In Çetin Kaya Koç and Christof Paar, editors, Cryptographic Hard-
ware and Embedded Systems – CHES’99, First International Work-
shop, Worcester, MA, USA, August 12-13, 1999, Proceedings, vol-
ume 1717 of Lecture Notes in Computer Science, pages 144–157.
Springer, 1999.

[Med09] Marcel Medwed. Berger Codes on Partitioned Data. Exclusive
ARTEUS deliverable for Infineon., April 2009.

[Mes00] Thomas S. Messerges. Using Second-Order Power Analysis to At-
tack DPA Resistant Software. In Çetin Kaya Koç and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems – CHES
2000, Second International Workshop, Worcester, MA, USA, Au-
gust 17-18, 2000, Proceedings, volume 1965 of Lecture Notes in
Computer Science, pages 238–251. Springer, 2000.

[MKRM07] Mehran Mozaffari-Kermani and Arash Reyhani-Masoleh. A
Structure-independent Approach for Fault Detection Hardware Im-
plementations of the Advanced Encryption Standard. In Luca
Breveglieri, Shay Gueron, Israel Koren, David Naccache, and Jean-
Pierre Seifert, editors, Fourth International Workshop on Fault Di-
agnosis and Tolerance in Cryptography, 2007, FDTC 2007: Vienna,
Austria, 10 September 2007., pages 47–53. IEEE Computer Society,
September 2007.

http://cm.bell-labs.com/who/akl/
http://cm.bell-labs.com/who/akl/

Bibliography 119

[MO08] Marcel Medwed and Elisabeth Oswald. Template Attacks on
ECDSA. In Kyo-Il Chung, Moti Yung, and Kiwook Sohn, edi-
tors, 9th International Workshop on Information Security Appli-
cations (WISA 2008), Jeju Island, Korea, September 23-25, 2008,
Pre-Proceedings, 2008.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks – Revealing the Secrets of Smart Cards. Springer,
2007. ISBN 978-0-387-30857-9.

[MOS09] Stefan Mangard, Elisabeth Oswald, and Francois-Xavier Standaert.
One for All - All for One: Unifying Standard DPA Attacks. Cryp-
tology ePrint Archive, Report 2009/449, 2009.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-
Channel Leakage of Masked CMOS Gates. In Alfred Menezes, ed-
itor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’
Track at the RSA Conference 2005, San Francisco, CA, USA,
February 14-18, 2005, Proceedings, volume 3376 of Lecture Notes
in Computer Science, pages 351–365. Springer, February 2005.

[MS08] Marcel Medwed and Jörn-Marc Schmidt. A Generic Fault Coun-
termeasure Providing Data and Program Flow Integrity. In Luca
Breveglieri, Shay Gueron, Israel Koren, David Naccache, and Jean-
Pierre Seifert, editors, Fault Diagnosis and Tolerance in Cryptogra-
phy, Fifth International Workshop, FDTC 2008, Washington DC,
USA, August 10, 2008, Proceedings, pages 68–73. IEEE Computer
Society, August 2008.

[MS09] Marcel Medwed and Jörn-Marc Schmidt. Coding Schemes for Arith-
metic and Logic Operations - How Robust Are They? In He-
ung Youl Youm and Moti Yung, editors, 10th International Work-
shop on Information Security Applications (WISA 2009), Busan,
Korea, August 25-27, 2009, Pre-Proceedings, 2009.

[MS10] Marcel Medwed and Jörn-Marc Schmidt. A Continuous Fault Coun-
termeasure for AES Providing a Constant Error Detection Rate. In
Luca Breveglieri, Marc Joye, Israel Koren, David Naccache, and
Ingrid Verbauwhede, editors, Proceedings of the Seventh Interna-
tional Workshop, FDTC 2010, Santa Barbara, California, 21 Au-
gust 2010, volume 7. IEEE Computer Society, August 2010.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl,
and Francesco Regazzoni. Fresh Re-keying: Security against Side-
Channel and Fault Attacks for Low-Cost Devices. In Daniel J.
Bernstein and Tanja Lange, editors, Progress in Cryptology -

120 Bibliography

AFRICACRYPT 2010, Third International Conference on Cryp-
tology in Africa, Stellenbosch, South Africa, May 3-6, 2010. Pro-
ceedings, volume 6055 of Lecture Notes in Computer Science, pages
279–296. Springer, 2010.

[MSQ07] François Macé, François-Xavier Standaert, and Jean-Jacques
Quisquater. Information Theoretic Evaluation of Side-Channel Re-
sistant Logic Styles. In Pascal Paillier and Ingrid Verbauwhede,
editors, Cryptographic Hardware and Embedded Systems – CHES
2007, 9th International Workshop, Vienna, Austria, September 10-
13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer
Science, pages 427–442. Springer, 2007.

[MSY06] Tal Malkin, François-Xavier Standaert, and Moti Yung. A Compar-
ative Cost/Security Analysis of Fault Attack Countermeasures. In
Luca Breveglieri, Israel Koren, David Naccache, and Jean-Pierre
Seifert, editors, Fault Diagnosis and Tolerance in Cryptography,
Third International Workshop, FDTC 2006, Yokohama, Japan, Oc-
tober 10, 2006, Proceedings, volume 4236 of Lecture Notes in Com-
puter Science, pages 159–172. Springer, October 2006.

[MTW+09] Robert P. McEvoy, Michael Tunstall, Claire Whelan, Colin C. Mur-
phy, and William P. Marnane. All-or-Nothing Transforms as a
Countermeasure to Differential Side-Channel Analysis. Cryptology
ePrint Archive, Report 2009/185, 2009.

[Nat00] National Institute of Standards and Technology (NIST). FIPS-
186-2: Digital Signature Standard (DSS), January 2000. Available
online at http://www.itl.nist.gov/fipspubs/.

[Nat01] National Institute of Standards and Technology (NIST). FIPS-197:
Advanced Encryption Standard, November 2001. Available online
at http://www.itl.nist.gov/fipspubs/.

[Nic03] M. Nicolaidis. Carry checking/parity prediction adders and ALUs.
In Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, volume 11, pages 121–128, Feb 2003.

[OSM02] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey.
Control-flow checking by software signatures. Reliability, IEEE
Transactions on, 51(1):111–122, Mar 2002.

[Pie09a] Krzysztof Pietrzak. A Leakage-Resilient Mode of Operation. In An-
toine Joux, editor, Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Cologne, Germany, April 26-30,
2009. Proceedings, volume 5479 of Lecture Notes in Computer Sci-
ence, pages 462–482. Springer, 2009.

http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/

Bibliography 121

[Pie09b] Krzysztof Pietrzak. Provable Security for Physical Cryptography.
In the proceedings of WEWORC 2009, Graz, Austria, July 2009.
Invited talk.

[PKZM07] Thomas Popp, Mario Kirschbaum, Thomas Zefferer, and Stefan
Mangard. Evaluation of the Masked Logic Style MDPL on a Pro-
totype Chip. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems – CHES 2007, 9th
International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science,
pages 81–94. Springer, September 2007. ISBN 978-3-540-74734-5.

[PM09] Emmanuel Prouff and Robert P. McEvoy. First-Order Side-Channel
Attacks on the Permutation Tables Countermeasure. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lec-
ture Notes in Computer Science, pages 81–96. Springer, 2009.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A Differential Fault At-
tack Technique Against SPN Structures, with Application to the
AES and KHAZAD. In C. Paar C. Walter, C. K. Koc, editor, Fifth
International Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2003), pages 77–88. Springer-Verlag, 2003.

[Pro89] Ian K. Proudler. Idempotent AN codes. In IEEE Colloquium on
Signal Processing Applications of Finite Field Mathematics, pages
8/1–8/5, London, UK, June 1989. IEEE.

[PSP+08] Christophe Petit, François-Xavier Standaert, Olivier Pereira, Tal
Malkin, and Moti Yung. A block cipher based pseudo random num-
ber generator secure against side-channel key recovery. In Masayuki
Abe and Virgil D. Gligor, editors, Proceedings of the 2008 ACM
Symposium on Information, Computer and Communications Se-
curity, ASIACCS 2008, Tokyo, Japan, March 18-20, 2008, pages
56–65. ACM, 2008.

[Rao70] T.R.N. Rao. Biresidue Error-Correcting Codes for Computer Arith-
metic. Computers, IEEE Transactions on, C-19:398–402, May 1970.

[RG71] T. Rao and O. Garcia. Cyclic and multiresidue codes for arithmetic
operations. Information Theory, IEEE Transactions on, 17:85–91,
Jan 1971.

[RM00] G. Russell and A.H. Maamar. Check bit prediction scheme using
Dong’s code for concurrent error detection in VLSI processors. In
Computers and Digital Techniques, IEE Proceedings -, volume 147,
pages 467–471, Nov 2000.

122 Bibliography

[RPD09] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-
Order Masking and Shuffling for Software Implementations of Block
Ciphers. In Christophe Clavier and Kris Gaj, editors, Cryptographic
Hardware and Embedded Systems – CHES 2009, 11th International
Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceed-
ings, volume 5747 of Lecture Notes in Computer Science, pages
171–188. Springer, 2009. ISBN 978-3-642-04137-2.

[RS09] Mathieu Renauld and Francois-Xavier Standaert. Algebraic Side-
Channel Attacks. Cryptology ePrint Archive, Report 2009/279,
2009. http://eprint.iacr.org/.

[RSVC09] Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-
Charvillon. Algebraic Side-Channel Attacks on the AES: Why Time
also Matters in DPA. In Christophe Clavier and Kris Gaj, edi-
tors, Cryptographic Hardware and Embedded Systems – CHES 2009,
11th International Workshop, Lausanne, Switzerland, September 6-
9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer
Science, pages 97–111. Springer, 2009. ISBN 978-3-642-04137-2.

[SGV08] François-Xavier Standaert, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Partition vs. Comparison Side-Channel Distinguish-
ers: An Empirical Evaluation of Statistical Tests for Univariate
Side-Channel Attacks against Two Unprotected CMOS Devices. In
Pil Joong Lee and Jung Hee Cheon, editors, Information Security
and Cryptology - ICISC 2008, 11th International Conference, Seoul,
Korea, December 3-5, 2008, Revised Selected Papers, volume 5461
of Lecture Notes in Computer Science, pages 253–267. Springer,
2008.

[Sha08] Adi Shamir. Method and Apparatus for Protecting RFID Tags from
Power Analysis. Patent Number WO 2008/019246 A2, February
2008. Available online at http://www.freepatentsonline.com/.

[SM09] Jörn-Marc Schmidt and Marcel Medwed. A Fault Attack on
ECDSA. In David Naccache and Elisabeth Oswald, editors,
Fault Diagnosis and Tolerance in Cryptography, Sixth International
Workshop, FDTC 2009, Lausanne, Switzerland September 6, 2009,
Procceedings, pages 93–99. IEEE-CS Press, September 2009.

[SP06] Kai Schramm and Christof Paar. Higher Order Masking of the
AES. In David Pointcheval, editor, Topics in Cryptology - CT-RSA
2006, The Cryptographers’ Track at the RSA Conference 2006, San
Jose, CA, USA, February 13-17, 2006, Proceedings, volume 3860 of
Lecture Notes in Computer Science, pages 208–225. Springer, 2006.

[SPY+09] Francois-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques
Quisquater, Moti Yung, and Elisabeth Oswald. Leakage Resilient

http://eprint.iacr.org/
http://www.freepatentsonline.com/

Bibliography 123

Cryptography in Practice. Cryptology ePrint Archive, Report
2009/341, 2009. http://eprint.iacr.org/.

[Sta10] François-Xavier Standaert. How Leaky is an Extractor? In Michel
Abdalla and Paulo S. L. M. Barreto, editors, Latincrypt 2010,
LNCS, 2010. to appear.

[TAV02] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A Dynamic
and Differential CMOS Logic with Signal Independent Power Con-
sumption to Withstand Differential Power Analysis on Smart Cards.
In 28th European Solid-State Circuits Conference - ESSCIRC 2002,
Florence, Italy, September 24-26, 2002, Proceedings, pages 403–406.
IEEE, September 2002.

[TDNH95] Jamel M. Tahir, Satnam S. Dlay, Raouf N. G. Naguib, and Oliver R.
Hinton. Fault tolerant arithmetic unit using duplication and residue
codes. Integr. VLSI J., 18(2-3):187–200, 1995.

[Tri10] Elena Trichina. Multi-Fault Laser Attacks on Protected CRT RSA.
Invited Talk - FDTC 2010, 2010.

[TV04] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Method-
ology for a Secure DPA Resistant ASIC or FPGA Implementation.
In 2004 Design, Automation and Test in Europe Conference and
Exposition (DATE 2004), 16-20 February 2004, Paris, France, vol-
ume 1, pages 246–251. IEEE Computer Society, February 2004.
ISBN 0-7695-2085-5.

[Vig08] David Vigilant. RSA with CRT: A New Cost-Effective Solution to
Thwart Fault Attacks. In Elisabeth Oswald and Pankaj Rohatgi,
editors, Cryptographic Hardware and Embedded Systems – CHES
2008, 10th International Workshop, Washington DC, USA, August
10-13, 2008, Proceedings, volume 5154 of Lecture Notes in Com-
puter Science, pages 130–145. Springer, 2008.

[Wal00] Colin D. Walter. Data Integrity in Hardware for Modular Arith-
metic. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2000, Second Interna-
tional Workshop, Worcester, MA, USA, August 17-18, 2000, Pro-
ceedings, volume 1965 of Lecture Notes in Computer Science, pages
204–215. Springer, 2000.

http://eprint.iacr.org/

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Publications
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Kerckhoffs' Principle
	Black-Box Analysis
	Implementation Attacks
	Countermeasures
	Countermeasures against Passive Attacks
	Countermeasures against Active Attacks

	Our Contribution
	Organization of This Thesis

	Motivation
	Fault Model
	Fault Injection
	Using the Error
	A Generic Fault Attack

	Differential Fault Attacks against AES
	AES

	Fault Attacks against RSA
	Bellcore Attack
	Attack on the Montgomery Ladder

	Fault Attacks against EC Systems
	Conclusions

	I Hardware Countermeasures
	Coding Schemes for Arithmetic and Logic Operations
	Block Codes
	Channel Coding and Secure Datapaths
	Coding Schemes
	Time Redundancy
	Space Redundancy
	Berger Codes
	Linear Codes
	AN-Codes
	Idempotent AN-Codes
	Residue Codes
	Multi-Residue Codes

	Comparison
	Conclusion and Open Problems

	Arithmetic Logic Units with High Error-Detection Rates
	Requirements and Goals
	General Hardware Architecture
	Finding an Appropriate Linear Code
	Finding an Appropriate Multi-residue Code and Encoder Implementation
	Area Results for the Encoders
	Design of the parity ALU
	Design of the Residue ALU

	Optimization for Multi-Residue Codes
	Instruction Frequency Analysis
	Optimized Architecture with Only OneEncoder/Checker

	Results
	Area of the Combinatorial Part
	Total area
	Timing behavior

	Intermediate Discussion
	Adding a multiplier
	Area and Timing

	Conclusion

	II Algorithmic Countermeasures
	A Generic Fault Countermeasure
	Approaches Based on Ring-Extension
	Optimizations
	Infective Computation
	Program-Flow Security of Ring Extensions

	Coding-Based Approaches
	Extending AN+B Codes
	Error-Detection Probabilities
	Implementation and Performance
	Application
	Comparison with Vigilant's Approach
	Conclusion

	Embeddings for Elliptic Curves
	ECC Basics
	ECC and Implementation Attacks
	Previous Work
	Proposed Countermeasure
	Security Analysis
	Performance Evaluations
	Conclusion

	Embedding AES
	AES and Fault Countermeasures
	Related Work
	Our contribution

	Fault Model
	Extended AN+B-Codes Suitable for AES
	Redundant Table Lookups
	Implementation and Security
	Implementation
	Data Manipulation
	Program-Flow Manipulation
	Overall Security

	Performance
	Conclusion

	III Protocol-Level Countermeasures
	Fresh Re-Keying
	Related work
	Background
	SPA and DPA
	Divide-and-conquer strategies
	Challenge-response protocol

	Choice of the function g
	Desired properties
	Candidate

	Implementation of the function g
	Unprotected implementation
	Improving g's SPA/DPA resistance with shuffling
	Improving g's SPA/DPA resistance with blinding
	Improving g's SPA/DPA resistance with protected logic styles

	Global architecture
	Block diagram and design space for the function g
	Implementation results and performance evaluation

	Security analysis
	The choice of k
	Resistance against fault attacks
	Resistance against standard side-channel attacks
	Resistance against algebraic side-channel attacks

	Conclusions

	Conclusions
	Bibliography
	Index

