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Application of NEWEUL in Robot Dynamics
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We consider the simulation of the dynamics of a complex robot system modeled as multibody
system with rigid links and flexible drives. The symbolic equations, linearized with respect to
a nominal motion, are generated by the program system NEWEUL. From these equations the
dynamic behaviour of the system can be determined, using numeric standard procedures.

The features of the program system as well as some problems occuring with the use of a
symbolic formalism for the determination of equations of motion are discussed. The applica-
tion of NEWEUL during the simulation of a robot system with complex dynamics leads to
efficient program codes in the simulation program and guarantees high accuracy and stability
during the numeric evaluation.

1. Introduction

Industrial robots are free programmable manipulation systems, with various degrees of
freedom. They are equipped with tools or grippers and are already available for many
applications in tool and object manipulation. Increasing demands on the accuracy and
speed have motivated progress in the analysis and simulation of complex robot systems,
including general force-laws and control-laws. Theoretical simulations provide a deep
insight into the dynamic behaviour at most various requirements. They are helpful for
studies during planning, development and application.

The large motions of a robot’s links are the reason for its highly nonlinear dynamic
characteristic, which in turn leads to complex system equations. Typically, one also has to
include at least the main characteristics of its actuating system. Therefore, simulation as
well as the design of control-laws is a difficult task.

However, for a wide class of robots, the links can be considered as more or less rigid,
whereas the elastic properties of the actuating drives need to be taken into account. Thus
multibody systems are well qualified to model the mechanics of a complex robot system.

This paper is concerned with the modeling of the mechanics and with the generation of
the symbolic-numeric equations of motion for robot types that consist of nearly rigid
links and flexible actuating drives. The paper looks at the case of a three axes robot with
six degrees of freedom of deflection from the nominal motion, whose position is defined
in generalized relative coordinates.

2. Computer-aided Generation of Equations of Motion for Multibody Systems
The equations of motion describe the interaction between the acting applied forces and
the motion of the mechanical system. Program systems for the automatic generation of
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the numeric equations of motion and their solution are available, including convenient
pre- and postprocessors, e.g. ADAMS (Chace, 1984), IMP (Shet & Uicker, 1972).
However, recently symbolic formalisms for the generation of the dynamic equations
have become increasingly important, e.g. NEWEUL (Kreuzer, 1979), MESA VERDE
(Wittenburg & Wolz, 1985).

Symbolic formalisms allow in particular:

compatibility with free programmable modules describing force-laws and control-laws;

parameterized presentation of dynamic relations;

generation of a computationally efficient simulation code and high accuracy of results
during the numerical evaluation;

possibility of error-detection in the equations of motion prior to the numerical
simulation phase.

In the following case, the program system NEWEUL was used for the generation of the
symbolic equations of motion.

The scientific foundations of the program NEWEUL itself are described in detail by
Kreuzer (1979). A technical description and examples of application can be found in
Kreuzer et al. (1986).

3. Model of a Three-axes Robot

Let us consider a six-degrees-of-freedom robot, consisting of three rigid links and three
actuating drives (Fig. 1). The links are kinematically connected by rotational joints,
actuated by applied torques exerted by servomotors. The motion of the hand itself is
neglected in this case. The nominal position of the system is defined by its internal joint
coordinates

q() = [TH,(1), THy(r), THA(0)]", (1

in particular by the base angle TH,(¢) around the vertical axis and by the angles TH,(1)
and TH,(¢) around the horizontal axes. There is no restriction to the geometric position
of the link axes with respect to the joint axes.

The robot is modeled as a multibody system consisting of three rigid bodies represent-
ing the links and three rigid bodies modeling the actuating rotors, which are intercon-
nected by flexible shafts. Arbitrary gear ratios can be taken into account. The position of
the system is uniquely determined by the six coordinates of the 6 x 1-position vector z(t).
In this case, six generalized coordinates of relative motion

(1) =[GA,, GA,, GA,, PH,, PH,, PH,]", (2)

with reference to the large nominal motion are used for the system’s kinematic descrip-
tion, applying the relations

y=z—1z, where z, =2z(qJ0). (3

Thus, the position vector y defines the deflection from the nominal position z,.

In order to design the control-laws for the actuating system, NEWEUL was used to
generate the equations of motion linearized with respect to the prescribed large nominal
motion of the robot’s links.

A detailed description of the problem can be found in Hirschberg (19853).
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Fig. 1. Robot with three links and flexible actuating drives.

4. Computer Aided Generation of Equations

The program system NEWEUL requires the input of physical and geometrical
model-parameters (masses, moments of inertia, positions of mass-centers and connection-
Joint locations) of the system’s bodies in fully symbolic form (Table 1). This work can be
supported by an interactive algebraic entry program. However, even when using this
entry program, there is some work left to be done by the user.

Once the completed input data is read into the computer, NEWEUL is ready to
generate the equations of motion. The symbolic equations are produced as FORTRAN-
code in batch mode. A typical problem which occurs occasionally when using NEWEUL
for complicated multibody systems is the large size of the generated symbolic equations
caused by appearence of trigonometric functions. This shortcoming can be dealt with by:

The substitution of selected parameters by numerical values, thus creating symbolic—
numeric equations (see item @ in Table 1);
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Table 1. NEWEUL—inputfile (abstract)

ROBF6.INP 6 DOF-MODEL: RIGID 3-AXES ROBOT
i TASK
6 NUMRBER OF COORDINATE SYSTEMS
6 NUMBER OF BODIES | BODY 1, LINK 1
0 NUMBER OF LUMPED MASSES (R S e
0 NUMBER OF NODES (s MASS
6 NUMBER OF POSITION DOS'S MAI = RM1
6 NUMBER OF POSITION DOE'S
13 NUMBER OF AUXILIARY VARIABLES
2 NUMBER OF LINEARIZABLE VARIABLES
18 NUMBER OF NUMERICAL CONSTANTS 1 BODY 2, LINK 2
35 NUMBER OF SIMPLIFICATIONS C ———
0 NUMBER OF SUBSTITUTION VARIABLES c MASS
MA2 = RM2
e GENERALIZED POSITION COORDINATES 2 NUMBER OF COORDINATE SYSTEM REF
Y(1)=GAl 5 POSITION VECTOR
Y(2) = GA2 R2(1) = SU28
Y(3) = GA3 R2(2) = SU29
Y(4) = PHIL R2(3) = SU30
¥(5) = PHI2 c APPLIED FORCES
Y(6) = PH13 FE2(1) = RM2«GH+SIN(TH2)
o GENERALIZED VELOCITY COORDINATES FE2(2)= 0
Z(1) =GAll FE2(3) = — RM2+G+COS(TH2)
Z(2) = GA21 2 NUMBER OF COORDINATE SYSTEM REF
i NUMBER OF PARTIAL ROTATIONS
& ROTATION MATRIX
. SI12(1. 1) =SU19
(@ LINEARIZABLE VARIABLES $12(1,2) = 8U20
LINI = GAl @ S$12(1,3) =8U21
LIN2 = GA2 $12(2, 1) =SU22
$12(2,2) = SU23
$12(2,3) = SU24
» S12(3, 1) = SU25
C NUMERICAL CONSTANTS $12(3,2) = SU26
RMI =150 ® §12(3,3) = SU27
RM2= 82 i TRANSFORMATION CONTROL PARAMETER
(o) INERTIA TENSOR
12(1, 1) = T2X
: 12(1,2) =0
c SIMPLIFICATIONS 12(1,3) =0
VE(I, 1) = SIN(TH2)»COS( TH3) + COS(TH2)sSIN(TH3) 2(2:1) =0
VF(1.2) = SIN(BD) @ 12(2,2) =T2Y
VF(2, 1) = COS(TH2)xCOS(TH3) — SIN(TH2)*SIN(TH3) 12(2,3) =0
VF(2,2) = COS(BD) 12(3.2) =0
: 12(3.3) = T2Z
C APPLIED MOMENTS
& SUBSTITUTION VARIABLES LE2(1) =0

SUT=U02«COS(THI) — VO2+8IN(THI)
SU2 = UO2+SIN(THI) + VO2sCOS(THI)

LE2(2) = SU57 + SU64 — SU69 + SUT0 — RMO3
LE2(3) =0

5U3 =Ww02

L& END

Expanding the equations of motion about a prescribed motion of the system and
retaining only the first-order terms, thus creating linearized equations of motion (see item
Q@ in Table 1)

The introduction of user-defined algebraic simplification rules, which make use of the
specific properties of the particular system. This is especially necessary in the case of large
non-linear kinematic relations (see item @ in Table 1).
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Table 2. Symbolic equations of motion (abstract) derived by NEWEUL

MASSMATRIX [M]; UPPER TRIANGULAR FORM

RM(1, 1) =0.05 + 2.sRM3+«W3«SBD*CT2 + 2.sRM3+U3+CBD=CT2 + 0.0064xST2Q +
i 3.62+CT2Q + RM3+CT2Q + 2.xRM3xW3xU3xCBD«SBD + _
5 RMS#W3#%2xSBDQ + RM3%V3#%2xSBDQ + T3X+«SBDQ + RM3*V3##2xCBDQ +
F RM3#U3#+2xCBDQ + T3Z«CBDQ

RM(L, 2) = RM3*V3xSBD+CT3 — RM3xV3+CBD%ST3

RM(1, 3) = RM3%V3+U3«SBD — RM3+«W3xV3«CBD

RM(2, 2) =3.62 + TMA3#R3*%2 + RM3x8T3Q + RM3xCT3Q

RM(2, 3) = RMS*W3%ST3 + RM3»U3xCT3

RM(2, 6) = TMA3%R3

RM(3, 3} = RM3+W3%#2 + RM3xU3%%2 + T3Y

RM(4. 4) = TMAI

RM(5, 5) =TMA2

RM(6, 6) = iIMA3

MATRIX [P] OF VELOCITY DEPENDENT FORCES

P(L, 1) = —7.2272¢CT2+ST2+PY — 2. #RM3xCT2+ST2+PY —
- 2xRM3xW3«SBD*ST2#PY — 2. *xRM3xU3xSBD*CT2+QY —
— 2.*RM3%U3%CBD#*ST2+PY + 2.«RM3+W3+CBD*CT2xQY —
- 2.xRM3xU3##2%CBD*SBD*QY + 2. +RMS*W3#+2x«CBD*SBD+QY +
+ 24+T3X+«CBD*SBD*QY — 2.xT3Z+CBD*SBD*QY —
— 2.#RM3xW3xU3 + SBDQ + QY + 2.xRM3«W3xU3«CBDQ+QY + DAl + DL1
P(1,2) = —2.%RM3 + V3 4+ CT2«T30T + 2+RM3xV3+CT2+xQY —
- 7.2272xCT2xST2+07Z — 2.xRM3+CT2+ST2xOZ —
2 xRM3xW3xSBD*ST2x0Z — 2. «RM3xU3xCBD=*ST2+x0Z
P(1, 3) = 2.xRMS+W3xV3«SBD*QY — 2. +RM3«U3+SBD+CT2+0Z +
2.xRM3%V3xU3xCBDxQY + 2.*RM3x2E+CBD*CT2+0Z —
24xRM3xU3#x2+CBD«SBD*0Z + 2. *RM3sW3%+2+«CBD*SBD*0Z +
2.4T3X+xCBD+OZ — 2. +T3Z+CBD+SBD*0QZ —
2+RM3xW3xU3xSBDQ*OZ + 2 xRM3+W3xU3xCBDQ*OZ
P(1,4) = —DA1xRRI
P(2, 1) = 7.2272«CT2+0Z + Z *RM3xCT2xST2x0Z +
+P 2.#RM3+W3xSBD#*ST2x0Z + 2.+RM3=U3xCBD*ST2x0Z
P(2,2) = DA2+ DL2 + DL3 +DA3
P(2,3) = — 2.#RM3%U3%ST3xQY + 2.#RM3xW3xCT3+QY — DL3 — DA3

| =0 #

Using the generation formalism documented in Schielen (1986) the set of nonlinear
equations of motion written in matrix notation take the following form

M(z, )z + k(z, z, 1) = q(z, Z, 1), (4)
where M is the 6 x 6-symmetric mass matrix, k is the 6 x l-vector of generalized
centrifugal and gyroscopic forces and q is the 6 x 1-vector of generalized applied forces.

Taking notice of equation (3), the equations of motion linearized with respect to the
nominal motion can be rewritten as

M(0)y + P()y + Q(r)y = h(1), (3)
where M is the 6 x 6-symmetric matrix of generalized masses and P and Q are the
time-dependent 6 x 6-matrices of velocity- and position-depending forces, respectively.
The generalized excitation forces and the actuating torques are collected in the 6 x 1-
vector h(7).

The six equations generated by NEWEUL are coded in FORTRAN and are therefore
ready for further processing in an extensive simulation program, as well as for the
calculation of the system’s eigenvalues and eigenmodes in the case of linearized equations
under steady-state conditions.
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To give an impression of what the equations of the robot produced by NEWEUL look
like, some elements of the matrices M and P are shown in Table 2. The calculation of the
symbolic equations of motion took approximately 30s of CPU-time on a VAX 8600
computer and 110 s of CPU-time on a MICRO-VAX II. the complete set of symbolic
equations is documented in Hirschberg (1987) and serves for simulation in robot
dynamics.

By introducing the state-vector

x=[¥"¥T, (6)

the differential equations (5) can be transformed to the equivalent notation as dynamic
state equation of first order

x(1) = A()x(1) + b(1). (7

The transformation was performed numerically. This equation is the foundation of the
majority of modern methods for the design of control-laws in dynamics. In particular, it
is ready for direct numeric integration.

Finally, it should be mentioned, that in this case the created equations of motion
appeared to be numerically stiff. Therefore, special numerical integration methods had to
be used for an efficient and stable solution. Typically, for robot control, equation stiffness
results from the actuator’s stiff connections to the nominal motion.
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