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Abstract

The goal of the GOCE-mission (Gravity Field and Static State Ocean Circulation 
Explorer) is to determine the static gravity field of the Earth on a global scale, with high 
spatial resolution from satellite-to-satellite tracking (SST) and satellite gravity 
gradiometry (SGG) measurements. A strict gravity field analysis is a very demanding 
task, that has high requirements to computer resources. Hence a quick-look gravity field 
analysis was included in the WP6000 of the GOCE high-level-processing facility 
(HPF). Its purpose is to regularly derive gravity field solutions on partial data sets and 
with a latency of only a few days after the observation, in order to detect any deficiency 
of the instruments. The quick-look analysis is based on the semi-analytic approach, 
which allows for a very fast solution.

The semi-analytic approach

The gravity potential and its second derivations of the gravity potential in orbital 
coordinates can be written as 2D-Fourier series:
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where ψmk = ku – mΛ. Under the assumption of a circular orbit (r = const. and I = 
const.) the lumped coefficients (Akm, Bkm) are a linear combination of the potential 
coefficients (Clm, Slm) with the transfer coefficients Hlmk as coefficients. Hence, the 
potential coefficients can be estimated in a least-square adjustment. As only lumped 
coefficients and potential coefficients of the same order m are linearly dependent, the 
normal equation matrix becomes block-diagonal and the large adjustment resolves into 
many small adjustments, which can be solved very efficiently:

The design matrix Hlmk is composed of the corresponding transfer coefficients. The 
lumped coefficients can be obtained by two different spectral approaches: the 1D-FFT 
approach and the 2D-FFT approach, which is also known as torus—approach.

1D-FFT approach

This approach has the precondition, that the orbit is a repeat orbit, which means, that its 
ground-track repeats after β revolutions in α nodal days. The rates of the orbital 
coordinates u and Λ can then be related to α and β. If the measurements along the orbit 
are transformed to their spectrum an and bn by an FFT, the one-dimensional spectrum 
can be related to the 2D lumped coefficient spectrum by the following mapping:
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2D-FFT (torus-) approach

Under the assumption of a circular orbit, the gravity potential and its derivatives are only 
dependent on two variables u and Λ. While the Argument of Latitude u = ω + v is the 
angle between the ascending node and the satellite in the orbital plane, Λ = Ω + θg can 
be regarded as the right ascension of the ascending node in the Earth-fixed frame. They 
both range periodically from 0° to 360° forming a torus, which is the spatial domain of 
the 2D-Fourier Transform. The orbit can be transformed to the (u, Λ) domain via the 
Keplerian elements. It can be imagined to be wrapped around a torus and the 
measurement values can be interpolated to a regular grid on the torus surface:

Fig.1: Interpolation of observations from the orbit on the (u, Λ) torus

Iterative Solution Strategy

All deviations from the assumed perfect circular orbit will lead to a degraded solution. 
The deviations are in particular, variations in orbit height and inclination, misalignment 
of the gravity tensor, non-closure of the repeat orbit and data gaps. This degradation can 
be partially overcome by an iterative strategy. Residuals are computed in a synthesis 
step (without approximation) and entered in the whole computation until convergence is 
achieved. During each iteration the weight factors between the different components can 
be improved by variance component estimation (VCE). Filtering can be applied in the 
spectral domain and the noise model can as well be estimated improving the filtering 
iteratively.

Fig.2: Iterative Solution Strategy
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For the GOCE-solution different data sets will be combined: the SST observations, the 
tensor components (only Vxx, Vyy, Vzz and possibly Vxz will be used for GOCE) and the 
regularization matrix R. The components enter with an a priori weight, which can be 
improved in each iteration by a variance component estimation (VCE). The weight of 
the i-th component can be determined by: si = vT P v / (ni – trace(N-1 Ni)). The 
diagonal of the redundancy matrix Qi = N-1 Ni holds the contribution of that 
component to each unknown coefficient, which is shown in fig. 3.

Fig. 3: Contribution of the different components to the solution. Sum = 1.

Solution

Fig. 4 shows the iterative solution of a recent GOCE simulation with realistic 
instrument noise. Out of a simulation period of 60 days, a repeat-cycle of 25 days and 
403 revolutions was chosen. It shows that a converging solution can be found from 
such a short data set.

Fig. 4: Degree-median-error of an iterative solution.
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