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Abstract

In a two-phase material not only each constituent, the solid and the fluid, may be compressible on the microscopic

level but also the skeleton itself possesses a structural compressibility. If the compression modulus of a constituent is

much larger than the compression modulus of the bulk material this constituent is assumed to be materially incom-

pressible. A common example is soil. Governing equations for such materials are found in the framework of Biot’s

theory either for the unknowns solid displacement and pore pressure or for the unknowns solid displacement and fluid

displacement.

For both formulations fundamental solutions are derived using the method of H€ormander. Unlike the usi–p for-

mulation, where the incompressible model can be obtained applying a limiting procedure directly to the compressible

system of equations, a complete new derivation is necessary for the usi–u
f
i formulation. This yields a model of incom-

pressibility different from that of the usi–p formulation which seems to be not suitable for poroelastodynamic problems.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A historical review on the subject of multiphase continuum mechanics identifies two poroelastic theories

which have been developed and are used nowadays, namely Biot’s theory and the Theory of Porous Media.

For more details, the reader is directed to the work of de Boer and Ehlers (1988, 1990) or to the recently

published monograph (de Boer, 2000).

Based on the work of von Terzaghi, a theoretical description of porous materials saturated by a viscous

fluid was presented by Biot (1941). The dynamic extension was done in two papers, one for the low fre-

quency range (Biot, 1956a) and the other for the high frequency range (Biot, 1956b). Based on the work of
Fillunger, the Theory of Porous Media has been developed. This theory is based on the axioms of con-

tinuum theories of mixtures (Truesdell and Toupin, 1960; Bowen, 1976) extended by the concept of volume

fractions by Bowen (1980, 1982) and others (Ehlers, 1993a,b). Remarks on the equivalence of both theories
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are found in the work of Bowen (1982), Ehlers and Kubik (1994) and Schanz and Diebels (2003). In all

these publications, linear version of both theories are compared and, finally, the equivalence can only be

shown if Biot’s apparent mass density is set to zero. More important for the paper at hand, in Schanz and

Diebels (2003) it is shown that the differential operator for both theories is equivalent. Therefore, in the
following, it is sufficient to discuss the fundamental solutions only for one of both theories. The result is

simply transformed to the other theory by changing some material constants. As Biot’s theory is more

common this theory is used here.

Wave propagation phenomena are often observed in semi-infinite media, e.g., earthquake motion or

propagation of machine foundation excitations in the soil and their effect on neighboring buildings. The

efficiency of the Boundary Element Method (BEM) in dealing with such semi-infinite domain problems,

e.g., soil–structure interaction, have long been recognized by researchers and engineers. However, a

mandatory requirement for every boundary element formulation is the knowledge of fundamental solu-
tions. These solutions solve the underlying differential equation with the inhomogeneity of a Dirac dis-

tribution. Physically spoken, the response of a system due to a unit impulse is looked for. These solutions

exist for a lot of linear problems.

A poroelastic modeled continuum is described by a set of coupled differential equations where two

possible choices of unknowns are used. Either, the solid displacement and fluid displacement are chosen

which will, in the following, be denoted usi–u
f
i formulation or the solid displacement and the pore pressure

are chosen which will be denoted usi–p formulation. As in any time dependent problem the governing

equations may be formulated in frequency or Laplace domain or directly in time domain. The latter is the
more complicated case because then a hyperbolic system has to be solved contrary to the elliptic system in

the transformed domain.

In case of consolidation processes, a quasi-static theory is sufficient. For this special case, a survey of

fundamental solutions is given in Cheng and Detournay (1998). But, for treating wave propagation

problems a full dynamic model is required. In this case, first approaches to develop fundamental solutions

was made by Burridge and Vargas (1979) for the usi–u
f
i formulation. As inhomogeneity they chose only a

point force in the solid which is not sufficient for the usage of such a fundamental solution in a BE for-

mulation. Later, Norris (1985) derived time harmonic fundamental solutions for the same formulation
using a point force in the solid as well as a point force in the fluid as load. He also obtained explicit

asymptotic approximations for far-field displacements, as well as those for low and high frequency re-

sponses. For the same set of unknowns but in Laplace domain Manolis and Beskos (1989) published

fundamental solutions (see also the corrections in Manolis and Beskos (1990)). Additionally to the deri-

vation of these solutions they pointed out the analogy between poroelasticity and thermoelasticity. How-

ever, this analogy is only possible for the usi–p formulation. This was also shown by Bonnet (1987) when he

presented the fundamental solution for the usi–p formulation in frequency domain. Additionally, to the

three-dimensional (3-d) solutions which he converted from the thermoelastic solutions from Kupradze
(1965) he has given the two-dimensional (2-d) solutions. Further, he concluded that the usi–p formulation is

sufficient and the usi–u
f
i formulation is overdetermined. In the following, here, this statement is confirmed. It

should be mentioned, however, that in Bonnet’s paper (Bonnet, 1987) there is some confusing regarding the

sign of the time variation assumed for the harmonic variables which in the poroelastic equations is different

to that of the thermoelastic ones. This is corrected by Dom�ınguez (1991, 1992). Boutin et al. (1987) pub-

lished fundamental solutions for Biot’s theory but they neglect the inertia terms of the fluid. The respective

governing equations are motivated by a homogenization process (Auriault et al., 1985).

With one exception in all above cited papers fundamental solutions are given in transformed domains. A
time domain fundamental solution was presented by Norris (1985) and Wiebe and Antes (1991) for the usi–
ufi formulation. However, in these solutions the viscous coupling of the solid and fluid is neglected. Without

this restriction Chen presented in two papers, for a 2-d continuum (Chen, 1994a) and a 3-d continuum

(Chen, 1994b), fundamental solutions for the usi–p formulation. These solutions are achieved from the
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corrected Laplace domain solutions of Bonnet (1987) by inverse transformation resulting partly in an

integral which must be solved numerically.

The above cited fundamental solutions are mainly derived by two methods: First, there is the possibility

two split the operator by introducing three potentials or, second, to reduce the highly complicated dif-
ferential operator matrix to a simple scalar operator by the use of the method of H€ormander (1963). The

latter is also used here to derive fundamental solutions for both formulations, i.e., the usi–u
f
i formulation

and the usi–p formulation.

Beside the compressibility of the constituents also a structural compressibility exists and is modeled in

Biot’s theory. For some materials, e.g., soil, the compression modulus of each constituent itself is much

larger than the compression modulus of the structure. In these cases, it is sufficient to approximate both the

fluid and solid constituents as incompressible, i.e., only the structural compressibility remains. For this case,

up to now, no fundamental solutions are available in the literature.
In the following, first, Biot’s constitutive equations are recalled and the assumptions for incompress-

ibility are given. With these the governing equations for the usi–u
f
i formulation and the usi–p formulation are

derived for compressible as well as the special case of incompressible constituents. Subsequently, the

fundamental solutions in Laplace domain are derived for both formulations. The fundamental solutions for

the compressible case are recalled not only for completeness also to show how the physical approximation

of incompressibility is represented in the mathematics of the formulas. As these solutions are the basis of

BE formulations also their singular behavior is discussed. Finally, a visualization of the fundamental

solutions is presented.
Throughout this paper, the summation convention is applied over repeated indices and Latin indices

receive the values 1, 2, and 1, 2, 3 in two-dimensions (2-d) and three-dimensions (3-d), respectively.

Commas ðÞ;i denote spatial derivatives and dots ð�Þ denote the time derivative. As usual, the Kronecker

delta is denoted by dij.
2. Biot’s theory––governing equations

Following Biot’s approach to model the behavior of porous media, an elastic skeleton with a statistical

distribution of interconnected pores is considered (Biot, 1955). This porosity is denoted by
/ ¼ V f

V
; ð1Þ
where V f is the volume of the interconnected pores contained in a sample of bulk volume V . Contrary to

these pores the sealed pores will be considered as part of the solid. Full saturation is assumed leading to

V ¼ V f þ V s with V s the volume of the solid, i.e., a two-phase material is given.

2.1. Constitutive assumptions

If the constitutive equations are formulated for the elastic solid and the interstitial fluid, a partial stress

formulation is obtained (Biot, 1955)
rs
ij ¼ 2Gesij þ K

�
� 2

3
Gþ Q2

R

�
eskkdij þ Qefkkdij; ð2aÞ

rf ¼ �/p ¼ Qeskk þ Refkk; ð2bÞ
with ðÞs and ðÞf indicating either solid or fluid, respectively. The respective stress tensor is denoted by rs
ij and

rf and the corresponding strain tensor by esij and efkk. The elastic skeleton is assumed to be isotropic and
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homogeneous where the two elastic material constants compression modulus K and shear modulus G refer

to the bulk material. The coupling between the solid and the fluid is characterized by the two parameters Q
and R. In the above, the sign conventions for stress and strain follow that of elasticity, namely, tensile stress

and strain is denoted positive. Therefore, in Eq. (2b) the pore pressure, p, is the negative hydrostatic stress
in the fluid rf .

An alternative representation of the constitutive equations (2) are used in Biot’s earlier work (Biot,

1941). There, the total stress rij ¼ rs
ij þ rfdij is introduced and with Biot’s effective stress coefficient

a ¼ /ð1þ Q=RÞ the constitutive equation with the solid strain, esij, and the pore pressure, p
rij ¼ 2Gesij þ K
�

� 2

3
G
�
eskkdij � adijp; ð3aÞ
is obtained. Additional to the total stress rij, as a second constitutive equation, the variation of fluid volume

per unit reference volume f is introduced
f ¼ aeskk þ
/2

R
p: ð3bÞ
This variation of fluid f is defined by the mass balance over a reference volume, i.e., by the continuity
equation
_fþ qi;i ¼ a ð4Þ

with the specific flux qi ¼ / _ufI– _u

s
i

� �
and a source term aðtÞ. Eq. (4) identify f as a kind of strain describ-

ing the motion of the fluid relative to the solid which takes a source in the fluid into account. This source

term is not motivated by any physical reason but it is later needed for the derivation of the fundamental
solutions.

In a two-phase material not only each constituent, the solid and the fluid, may be compressible on a

microscopic level but also the skeleton itself possesses a structural compressibility. If the compression

modulus of one constituent is much larger on the microscale than the compression modulus of the bulk

material this constituent is assumed to be materially incompressible. A common example for a materially

incompressible solid constituent is soil. In this case, the individual grains are much stiffer than the skeleton

itself. The respective conditions for such incompressibilities are (Detournay and Cheng, 1993)
K
Ks

� 1 incompressible solid;
K
K f

� 1 incompressible fluid; ð5Þ
where Ks denotes the compression modulus of the solid grains and K f the compression modulus of the fluid.

With these conditions it is obvious that three cases exists: (i) Only the solid is incompressible. (ii) Only the

fluid is incompressible. (iii) Or the combination of both.
To find the respective constitutive equations for each of these cases the material parameters a, R, and Q

have to be rewritten in a different way. Considerations of constitutive relations at micromechanical level as

given in Detournay and Cheng (1993) lead to a more rational model for this purpose:
a ¼ 1� K
Ks

; ð6aÞ

R ¼ /2K fKs2

K fðKs � KÞ þ /KsðKs � K fÞ ; ð6bÞ

Q ¼ /ða� /ÞK fKs2

K fðKs � KÞ þ /KsðKs � K fÞ : ð6cÞ
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Inserting in Eqs. (6) the conditions of incompressibility (5) the three different cases are found:

• Incompressible solid K=Ks � 1
a � 1; R � K f/; Q � K fð1� /Þ: ð7Þ

These limiting values can be inserted in the constitutive assumptions (2) or (3), respectively.

• Incompressible fluid K=K f � 1
a unchanged; R � /2Ks

1� /� K
Ks

; Q � /ða� /ÞKs

1� /� K
Ks

: ð8Þ
Also in this case, these limiting values can be inserted in the constitutive assumptions (2) or (3),

respectively.

• Both constituents are assumed to be incompressible K=Ks � 1 and K=K f � 1
a � 1; R ! 1; Q ! 1; but
Q
R
¼ 1� /

/
: ð9Þ
The relation R;Q ! 1 expresses that the value of R, Q becomes large, however, due to physical reasons
it is in any case limited. But, the condition that R becomes large is used to neglect in (3b) the influence of

the pore pressure. This condition and a ¼ 1 result in the incompressible constitutive assumptions
rij ¼ 2Gesij þ K
�

� 2

3
G
�
eskkdij � dijp; ð10aÞ

f ¼ eskk ð10bÞ

for the total stress formulation. From (10), it is obvious that this special modeling of a porous continuum

relates the variation of fluid volume directly to the volumetric solid strain and the pore pressure is added

to the solid stress linearly without the weighting factor a.
For the partial stress formulations (2), a different point of view must be considered because inserting the

infinite values of Q and R in the constitutive laws (2) result in an infinite stress. Biot (1955) has given as

condition for incompressible constituents
ð1� /Þeskk þ /efkk ¼ 0; ð11Þ

i.e., it is assumed that the dilatation of the bulk material vanishes. Realizing the relation
Q
R
¼ 1� /

/
) Q

R
eskk þ efkk ¼ 0 ð12Þ
also in the partial stress formulation the case of incompressible constituents can be included resulting in
the constitutive assumptions
rs
ij ¼ 2Gesij þ K

�
� 2

3
G
�
eskkdij; ð13aÞ

rf ¼ �/p ¼ R
Q
R
eskk

�
þ efkk

�
¼! 0: ð13bÞ
To achieve the zero value in Eq. (13b), the condition that the value R becomes large but is limited must

be used.

Contrary to the incompressible model formulated for the total stress formulation (10), in the partial
stress formulation the assumption of incompressibility (11) results in an uncoupling of the solid and the

fluid in the constitutive assumptions. Therefore, the two incompressible models (10) and (13) are
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different whereas the underlying compressible models (3) and (2), respectively, are identical. This is not

really a contradiction. Keeping in mind that an incompressible model is always an approximation for the

more realistic compressible case, it is clear that different approximations can exist. However, the question

which approximation is better can only be answered by the respective application.

Aiming at the equation of motion to model wave propagation phenomena, it is sufficient to formulate a

linear kinematic equation. Hence, in the following, the relation of the solid/fluid strain to the solid/fluid

displacement is chosen linear, respectively:
esij ¼
1

2
usi;j
�

þ usj;i
�
; efkk ¼ ufk;k ð14Þ
assuming small deformation gradients.

2.2. Governing equations: compressible model

In the preceding section, the constitutive equations and the kinematic relations have been given. The next

step is to state the balances of momentum. In any two-phase material there are three possibilities to for-

mulate the balances of momentum: first, the balance of momentum in the solid; second, the balance of

momentum in the fluid; and third, the balance of momentum for the bulk material. But, it is sufficient to

choose two of them.

The first to balances are used by Biot (1956a) using the solid displacement and the fluid displacement as
unknowns
rs
ij;j þ ð1� /Þf s

i ¼ ð1� /Þqs€u
s
i þ qa €usi

�
� €ufi

�
þ /2

j
_usi
�

� _ufi
�
; ð15aÞ

rf
i þ /f f

i ¼ /qf€u
f
i � qa €usi

�
� €ufi

�
� /2

j
_usi
�

� _ufi
�
: ð15bÞ
The first balance equation (15a) is that for the solid skeleton and the second (15b) is that for the interstitial

fluid. In Eq. (15), the body forces in the solid skeleton f s
i and in the fluid f f

i are introduced. Further, the

respective densities are denoted by qs and qf . To describe the dynamic interaction between fluid and

skeleton an additional density the apparent mass density, qa, has been introduced by Biot (1956a). It can

be written as qa ¼ C/qf , where C is a factor depending on the geometry of the pores and the frequency
of excitation. At low frequency, Bonnet and Auriault (1985) measured C ¼ 0:66 for a sphere assembly of

glass beads. In higher frequency ranges, a certain functional dependence of C on frequency has been

proposed based on conceptual porosity structures, e.g., in Biot (1956b) and Bonnet and Auriault (1985).

The factor /2=j in front of the damping term is usually denoted by b. Here, the simplification of a fre-

quency independent, respectively time independent, value is taken which is only valid in low frequency

range. Further, the above chosen factor /2=j is given only in case of circular pores when j denotes the

permeability. However, in the following, any other also frequency dependent factor b could easily be

implemented.
The third above mentioned balance of momentum for the mixture is formulated in Biot’s earlier work

(Biot, 1941) for quasi-statics and in Biot (1956a) for dynamics. This dynamic equilibrium is given by
rij;j þ Fi ¼ qsð1� /Þ€usi þ /qf€u
f
i ; ð16Þ
with the bulk body force per unit volume Fi ¼ ð1� /Þf s
i þ /f f

i . It is obvious that adding the two partial

balances (15a) and (15b) results in the balance of the mixture (16).
In most papers using the total stress formulation, now, the constitutive assumption for the fluid

transport in the interstitial space is given by Darcy’s law. Here, it is also used, however, with the balance of
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momentum in the fluid (15b) Darcy’s law is already given. Rearranging (15b) and taking the definition of

the flux qi ¼ / _ufi � _usi
� �

as well as rf ¼ �/p into account the dynamic version of Darcy’s law
qi ¼ �j p;i

�
þ qa

/
€ufi
�

� €usi
�
þ qf€u

f
i � f f

i

�
ð17Þ
is achieved.

Aiming at the equation of motion, the constitutive equations have to be combined with the corre-
sponding balances of momentum and the kinematic conditions. To do this, first, the degrees of freedom

must be determined. There are several possibilities (i) to use the solid displacement usi and the fluid dis-

placement ufi (six unknowns in 3-d) or (ii) a combination of the pore pressure p and the solid displacement

usi (four unknowns in 3-d). As shown in Bonnet (1987), it is sufficient to use the latter choice. Here, for

completeness, both choices will be presented where the first will be denoted by usi–u
f
i formulation and the

latter by usi–p formulation.

First, the equations of motion for a poroelastic body are presented for the unknowns solid displacement

usi and fluid displacement ufi . Inserting in (15) the constitutive equations (2) written for the partial stress
tensors and the linear strain displacement relations (14) yield a set of equations of motion in time domain
Gusi;jj þ K
�

þ 1

3
G
�
usj;ij þ Q

Q
R
usj;ji

�
þ ufj;ji

�
þ ð1� /Þf s

i

¼ ð1� /Þqs€u
s
i þ qa €usi

�
� €ufi

�
þ /2

j
_usi
�

� _ufi
�
; ð18aÞ

R
Q
R
usj;ji

�
þ ufj;ji

�
þ /f f

i ¼ /qf€u
f
i � qa €usi

�
� €ufi

�
� /2

j
_usi
�

� _ufi
�
: ð18bÞ
Second, the respective equations of motion are presented for the pore pressure p and the solid dis-

placement usi as unknowns. To achieve this formulation the fluid displacement ufi has to be eliminated from

Eqs. (3), (4), (16) and (17). In order to do this, Darcy’s law (17) is rearranged to obtain ufi–u
s
i . Since this

relative displacement is given as second order time derivative in (17) and the flux is related to its first order

time derivative by qi ¼ / _ufi– _u
s
i

� �
, this is only possible in Laplace domain. After transformation to Laplace

domain, the relative fluid to solid displacement is
ûfi � ûsi ¼ � jqf/
2s2

/2sþ s2jðqa þ /qfÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

1

s2/qf

p̂;i
�

þ s2qf û
s
i � f̂ f

i

�
: ð19Þ
In Eq. (19), the abbreviation b is defined for further usage and Lff ðtÞg ¼ f̂ ðsÞ denotes the Laplace

transform, with the complex variable s. Moreover, vanishing initial conditions for usi and ufi are assumed

here and in the following. Now, the final set of differential equations for the displacement ûsi and the pore
pressure p̂ is obtained by inserting the constitutive equations (3) into the Laplace transformed dynamic

equilibrium (16) and continuity equation (4) with ûfi–û
s
i from Eq. (19). This leads to the final set of dif-

ferential equations for the displacement ûsi and the pore pressure p̂
Gûsi;jj þ K
�

þ 1

3
G
�
ûsj;ij � ða� bÞp̂;i � s2ðq� bqfÞûsi ¼ bf̂ f

i � bFi; ð20aÞ

b
sqf

p̂;ii �
/2s
R

p̂ � ða� bÞsûsi;i ¼ �âþ b
sqf

f̂ f
i;i: ð20bÞ
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In the above Eqs. (20), the bulk density q ¼ qsð1� /Þ þ /qf is used. This set of equations describe the

behavior of a poroelastic continuum completely as well as the usi–u
f
i formulations (18). Contrary to the

formulations using the solid and fluid displacement (18) an analytical representation in time domain is only

possible for j ! 1. This case would represent a negligible friction between solid and interstitial fluid.

2.3. Governing equations: incompressible model

As mentioned above, often the approximation of incompressible constituents can be used. Regarding the

assumption of only one incompressible constituent (7) and (8) no special governing equations must be given

because only the material data are changed and not the structure of the constitutive law. So, in the fol-

lowing, the expression ‘incompressible’ will denote the case when both constituents are modeled incom-

pressible.

In this case of modeling both constituents as incompressible, a different set of governing equations is
obtained. Inserting in (18) the incompressibility condition (12), the governing equations are given by
Gusi;jj þ K
�

þ 1

3
G
�
usj;ij þ ð1� /Þf s

i ¼ ð1� /Þqs€u
s
i þ qa €usi

�
� €ufi

�
þ /2

j
_usi
�

� _ufi
�
; ð21aÞ

/f f
i ¼ /qf€u

f
i � qa €usi

�
� €ufi

�
� /2

j
_usi
�

� _ufi
�

ð21bÞ
using the solid displacement and fluid displacement as unknowns. In this incompressible version of the
equations of motion, the uncoupling of the fluid and solid in the constitutive assumptions is clearly ob-

served as commented in the last section. So, in Eqs. (21) only the coupling by the acceleration and damping

terms remains. Further, the second Eq. (21b) is no longer independent. It cannot be used to eliminate the

fluid displacement ufi in (21a). As an additional equation the incompressibility condition (11) has to be used.

Contrary, if the solid displacement and the pore pressure are used as unknowns a sufficient set of dif-

ferential equations is obtained. Inserting in (20) simply the conditions (9), i.e., setting a ¼ 1 and taking the

limit R ! 1, the equations of motion under the assumption of incompressible constituents are achieved

resulting in
Gûsi;jj þ K
�

þ 1

3
G
�
ûsj;ij � ð1� bÞp̂;i � s2ðq� bqfÞûsi ¼ bf̂ f

i � bFi; ð22aÞ

b
sqf

p̂;ii � ð1� bÞsûsi;i ¼ �âþ b
sqf

f̂ f
i;i: ð22bÞ
The equation for the pore pressure (22b) shows that this variable is no longer a degree of freedom. Inte-

grating of (22b) would yield the gradient of the pore pressure which could then be eliminated in (22a).
Physically interpreted the pore pressure is in this case only determined by the deformation of the solid

skeleton and no longer by any deformation of the fluid.
3. Fundamental solutions

Fundamental solutions for the above given systems of differential equations are known in closed form

only in Fourier domain or Laplace domain. But, even in the transformed domain only the general case of

compressible constituents is published. The fundamental solutions for the Laplace transformed system of
(18) is given in Manolis and Beskos (1989) and for the Laplace transformed system of (20) in Chen

(1994a,b).
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Here, the fundamental solutions for the incompressible case are presented. The fundamental solutions

for the compressible case are recalled to show how the physical approximation of incompressibility is

represented in the mathematical formulas. In order to deduce these solutions, an operator notation is

useful. So, for the usi–p formulation the governing equations of the compressible case (20) as well as the
incompressible case (22) are reformulated as
B4
ûsi
p̂

" #
þ bFi

â

� 	
¼ 0 ð23Þ
with the differential operators
B4comp ¼
ðGr2 � s2ðq� bqfÞÞdij þ K þ 1

3
G

� �
oioj �ða� bÞoi

�sða� bÞoj
b
sqf

r2 � /2s
R

24 35; ð24aÞ

B4incomp ¼
ðGr2 � s2ðq� bqfÞÞdij þ K þ 1

3
G

� �
oioj �ð1� bÞoi

�sð1� bÞoj
b
sqf

r2

24 35: ð24bÞ
In Eqs. (23) and (24), the operator is denoted by B4 independently whether it is in 2-d (i; j ¼ 1; 2, i.e., three
unknowns) or 3-d (i; j ¼ 1; 2; 3, i.e., four unknowns). The corresponding representation of a poroelastic
continuum using the usi–u

f
i formulation is
B6
ûsi
ûfi

" #
þ ð1� /Þf̂ s

i

/f̂ f
i

" #
¼ 0 ð25Þ
with the differential operators
B6comp ¼
Bcomp
ij Qoioj þ s2qa þ s

/2

j

� �
dij

Qoioj þ s2qa þ s
/2

j

� �
dij Roioj � s2ð/qf þ qaÞ � s

/2

j

� �
dij

26664
37775 ð26aÞ
with
Bcomp
ij ¼ Gr2

�
� s2ðð1� /Þqs þ qaÞ � s

/2

j

�
dij þ K

�
þ 1

3
Gþ Q2

R

�
oioj;

B6incomp ¼
Bincomp
ij s2qa þ s

/2

j

� �
dij

s2qa þ s
/2

j

� �
dij � s2ð/qf þ qaÞ � s

/2

j

� �
dij

26664
37775 ð26bÞ
with
Bincomp
ij ¼ Gr2

�
� s2ðð1� /Þqs þ qaÞ � s

/2

j

�
dij þ K

�
þ 1

3
G
�
oioj:
As before in (24), the operator name B6 is the same whether it is in 2-d (four unknowns) or 3-d (six
unknowns). In the following, the same material parameters in both representations (24) and (26) will be

used, so Q is replaced by Q ¼ Rða=/� 1Þ to have comparable representations.
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In Eqs. (24) and (26), the partial derivative ðÞ;i is denoted by oi and r2 ¼ oii is the Laplacian operator.

Note, all the operators (24) and (26) are elliptic but the operators B6 in (26) are self adjoint whereas the

operators B4 in (24) are not self adjoint. Therefore, in the latter case for the deduction of fundamental

solutions the adjoint operator to B4 has to be used which in the following will not be indicated separately.
A fundamental solution is mathematically spoken a solution of the equation BGþ Idðx� yÞ ¼ 0, where

the matrix of fundamental solutions is denoted by G, the identity matrix by I, and the Dirac distribution by

dðx� yÞ. Physically interpreted the solution at point x due to a single point force at point y is looked for.

Concerning the interpretation of the ‘single point force’ the difference in the fundamental solutions for both

representations of poroelastic governing equations (23) and (25) becomes obvious. In the system (25), the

right hand side consists of forces acting in the solid part ð1� /Þf̂ s
i and in the fluid part /f̂ f

i of the porous

media, respectively. Contrary, in the system (23), the right hand side consists of a bulk body forcebFi ¼ ð1� /Þf̂ s
i and a source term â, i.e., no forces in the fluid f̂ f

i are present. Due to this, it cannot be
expected that the fundamental solutions of both systems coincide. Only the displacement solution due to a

single force in the solid will be the same.

To find these solutions, the same method can be chosen for both representations. In all cases, for

compressible as well as incompressible constituents and for both representations, respectively, the method

of H€ormander (1963) is used. The idea of this method is to reduce the highly complicated operators (24)

and (26) to simple well-known operators. For this purpose the definition of the inverse matrix operator

B�1 ¼ Bco= detðBÞ with the matrix of cofactors Bco is used. The ansatz G ¼ Bcou for the matrix of fun-

damental solutions with an unknown scalar function u inserted in the operator equation
BGþ Idðx� yÞ ¼ 0 yields a more convenient representation of Eqs. (23) and (25)
BBcouþ Idðx� yÞ ¼ detðBÞIuþ Idðx� yÞ ¼ 0 , detðBÞuþ dðx� yÞ ¼ 0: ð27Þ
With this reformulation, the search for a fundamental solution is reduced to solve the simpler scalar

equation (27). An overview of this method is found in the original work (H€ormander, 1963) and more

exemplary in Schanz (2001) and Rashed (2002).

First, this method is applied to the compressible operators in (24).

Compressible model. Following H€ormander’s idea, first, the determinants of the operators B4comp and

B6comp are calculated, preferably, with the aid of computer algebra. This yields the results:
2-d :

detðB4compÞ ¼ Gb
sqf

K
�

þ 4

3
G
�

r2
�

� s2k23
�
r2
�

� s2k21
�
r2
�

� s2k22
�
; ð28Þ
detðB6compÞ ¼ �s2G/2qf

b
K
�

þ 4

3
G
�
R r2
�

� s2k23
�
r2
�

� s2k21
�
r2
�

� s2k22
�
; ð29Þ
3-d :

detðB4compÞ ¼ G2b
sqf

K
�

þ 4

3
G
�

r2
�

� s2k23
�2 r2
�

� s2k21
�
r2
�

� s2k22
�
; ð30Þ
detðB6compÞ ¼ s2G/2qf

b

� �2

K
�

þ 4

3
G
�
R r2
�

� s2k23
�2 r2
�

� s2k21
�
r2
�

� s2k22
�
; ð31Þ
with the roots ki, i ¼ 1, 2, 3
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k21;2 ¼
1

2

/2qf

bR

264 þ q� bqf

K þ 4
3
G
þ qfða� bÞ2

b K þ 4
3
G

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2qf

bR
þ q� bqf

K þ 4
3
G
þ qfða� bÞ2

b K þ 4
3
G

� � !2

� 4
/2qfðq� bqfÞ
bR K þ 4

3
G

� �
vuut 375; ð32aÞ

k23 ¼
q� bqf

G
: ð32bÞ
Expressing the determinant using these roots the scalar equation corresponding to (27) is given by
r2
�

� s2k23
�
r2
�

� s2k21
�
r2
�

� s2k22
�
wþ dðx� yÞ ¼ 0 ð33Þ
using an appropriate abbreviation w for every operator, i.e.,
2-d :

B4comp : w ¼ G
b
sqf

K
�

þ 4

3
G
�
u;

B6comp : w ¼ �G
s2/2qf

b
K
�

þ 4

3
G
�
Ru:

3-d :

B4comp : w ¼ G2 b
sqf

K
�

þ 4

3
G
�
ðr2 � s2k23Þu;

B6comp : w ¼ G2 s2/2qf

b

� �2

K
�

þ 4

3
G
�
R r2
�

� s2k23
�
u:

ð34Þ
The solution of the modified higher order Helmholtz equation (33) is
2-d : w ¼ 1

2ps4
K0ðk1srÞ

k21 � k22
� �

k21 � k23
� �"

þ K0ðk2srÞ
k22 � k23
� �

ðk22 � k21Þ
þ K0ðk3srÞ

k23 � k21
� �

k23 � k22
� � #; ð35Þ

3-d : w ¼ 1

4prs4
e�k1sr

k21 � k22
� �

k21 � k23
� �"

þ e�k2sr

k22 � k21
� �

k22 � k23
� �þ e�k3sr

k23 � k22
� �

k23 � k21
� � #; ð36Þ
with the zero order modified Bessel function of second kind K0ðzÞ. Further, the distance between the two
points x and y is denoted by r ¼ jx� yj.

Having in mind that the Laplace transformation of the function describing a traveling wave front with

constant speed c is e�rs=c ¼ LfHðt � r=cÞg (in 3-d), it is obvious that the above solution (36) represents three

waves. However, as the roots ki are functions of s, here, the wave speeds are time dependent representing the

attenuation in a poroelastic continuum. This is in accordance with the well known three wave types of a

poroelastic continuum (Biot, 1956a). The roots k1, k2; and k3 correspond to the wave velocities of the slow

and fast compressional wave and to the shear wave, respectively. The same is true in 2-d where the damped

wave fronts are represented in Laplace domain by the modified Bessel functions K0ðzÞ. It should be remarked
that the root k3 representing the shear wave is in 3-d a double root whereas it is in 2-d only a single root,

which, as in elasticity, corresponds to the number of polarization planes (Royer and Dieulesaint, 2000).
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From a pure mathematical point of view, the determinant of the operator B6comp can have four roots in

2-d and six roots in 3-d. However, in (29) or (31) only three or four roots are found, respectively. As above

discussed, each root represents a different wave type whereas the shear wave corresponds to a double root in

3-d. Therefore, from a physical point of view B6comp can be expected to have the same roots as B4comp,
despite the larger matrix dimension. This is confirmed in (29) and (31). As a consequence, it can be con-

cluded that the representation of a poroelastic continuum with solid displacement and fluid displacement is

overdetermined, i.e., the representation with pore pressure and solid displacement is sufficient. This con-

firms the considerations of Bonnet (1987).

The next steps are to insert the solution w back in the definition G ¼ Bcou taking into account the proper

relations (34) between u and w. After calculating the respective matrix of cofactors Bco the fundamental

solutions are found for the usi–p formulation
G4comp ¼
bU s
ij

bU f
ibP s

j
bP f

" #
¼ sqf

GbðK þ 4
3
GÞ

ðFr2 þ ADÞdij � F oij �Aða� bÞsoi
�Aða� bÞoi A K þ 1

3
G

� �
r2 þ A

� �� 	
w; ð37Þ
with the abbreviations
A ¼ Gr2 � s2ðq� bqfÞ; D ¼ b=ðsqfÞr2 � /2s=R; F ¼ ðK þ 1=3GÞD� ða� bÞ2s;
and for the usi–u
f
i formulation
G6comp ¼
bU ss
ij

bU sf
ijbU fs

ij
bU ff
ij

" #

¼ �b

Gs2/2qf K þ 4
3
G

� � M3oij þ ðM5 �M3r2Þdij M1oij þ ðM4 �M1r2Þdij
M1oij þ ðM4 �M1r2Þdij M2oij þ ðM6 �M2r2Þdij

" #
w; ð38Þ
with the abbreviations
M1 ¼ CE
K þ 1

3
G

R

"
þ a

/

�
� 1

�2
#
� C2 a

/

�
� 1

�
þ Cr2 K

�
þ 1

3
G
�
þ B C

�
� E

a
/

�
� 1

�	
;

M2 ¼ 2BC
a
/

�
� 1

�
� B2 � Br2 K

�
þ 1

3
G
�
� C2

K þ 1
3
G

R

"
þ a

/

�
� 1

�2
#
;

M3 ¼ �Er2 K
�

þ 1

3
G
�
þ 2EC

a
/

�
� 1

�
� C2 � E2

K þ 1
3
G

R

"
þ a

/

�
� 1

�2
#
;

M4 ¼
s2qf/

2G
b

ðr2 � s2k23Þ r2 a
/

��
� 1

�
þ C

R

	
;

M5 ¼
s2qf/

2G
b

ðs2k23 �r2Þ r2

�
þ E

R

	
;

M6 ¼
s2qf/

2G
b

ðs2k23 �r2Þ r2
K þ 1

3
G

R

 "
þ a

/

�
� 1

�2
!

þ B
R

#
;
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B ¼ Gr2 � s2ð1� /Þqs � C; C ¼ s
/2

j
þ s2qa; E ¼ �s2/qf � C:
The difference of the 2-d solution and the 3-d solution lies only in the different functions w from (35) or (36),

respectively. The explicit expressions of all the above given fundamental solutions can be found in

Appendix A. Comparing the explicit expressions for bU s
ij and

bU ss
ij in Appendix A it is obvious that both

fundamental solutions are identical.

Incompressible model. In Section 2, the governing equations for the usi–p formulation were obtained by

applying a limit to R and setting a ¼ 1. Unfortunately, this limit can be applied to the fundamental

solutions of the compressible case only in 3-d. In 2-d, this limit is not finite. So, these solutions must be

calculated independently where the procedure is the same as before. First, the determinants with their
respective roots are calculated. However, here, both formulations, the usi–p formulation and the usi–u

f
i

formulation, have different roots indicating that two different incompressible models are considered as

discussed in Section 2.

First, the usi–p formulation is discussed. In this representation, the determinants are
2-d : detðB4incompÞ ¼ Gb
sqf

K
�

þ 4

3
G
�

r2
�

� s2k23
�
r2
�

� s2k21
�
r2; ð39Þ

3-d : detðB4incompÞ ¼ G2b
sqf

K
�

þ 4

3
G
�

r2
�

� s2k23
�2 r2
�

� s2k21
�
r2; ð40Þ
with the roots
k21 ¼
qþ qf

1
b � 2
� �

K þ 4
3
G

; k23 ¼
q� bqf

G
: ð41Þ
This yields an operator equation similar to (33),
r2
�

� s2k23
�
r2
�

� s2k21
�
r2wþ dðx� yÞ ¼ 0; ð42Þ
using the appropriate abbreviation for w corresponding to (34). Due to the Laplacian operator in (42) this is

no longer an iterated modified Helmholtz equation but can be solved in a similar way by splitting the

operator in Helmholtz and Laplace equations. The solution is
2-d : w ¼ 1

2ps4
K0ðk1srÞ
k21 � k23
� �

k21

"
� lnðrÞ

k21k
2
3

þ K0ðk3srÞ
k23 � k21
� �

k23

#
; ð43Þ

3-d : w ¼ 1

4prs4
e�k1sr

k21 � k22
� �

k21 � k23
� �"

þ 1

k21k
2
3

þ e�k3sr

k23 k23 � k21
� � #: ð44Þ
As remarked at the beginning of this subsection, in 3-d, the incompressible solutions (44) are the limit

values of the compressible results (36) for k2 ! 0. Contrary, in 2-d, the compressible solutions (35) tend to

infinity for k2 ! 0, i.e., to calculate the solution (43), Eq. (42) has to be solved.

For the usi–u
f
i formulation the determinants are found to be
2-d : detðB6incompÞ ¼ s4G/4q2
f

b2
K
�

þ 4

3
G
�

r2
�

� s2k23
�
r2
�

� s2k21
�
; ð45Þ
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3-d : detðB6incompÞ ¼ �s6G2/6q3
f

b3
K
�

þ 4

3
G
�

r2
�

� s2k23
�2 r2
�

� s2k21
�
; ð46Þ
with the roots
k21 ¼
q� bqf

K þ 4
3
G
; k23 ¼

q� bqf

G
: ð47Þ
These determinants yield a modified iterated Helmholtz operator as governing equation similar to (33),
r2
�

� s2k23
�
r2
�

� s2k21
�
wþ dðx� yÞ ¼ 0; ð48Þ
using the proper abbreviation
2-d : B6incomp : w ¼ G
s4/4q2

f

b2
K
�

þ 4

3
G
�
u;

3-d : B6incomp : w ¼ �G2 s
6/6q3

f

b3
K
�

þ 4

3
G
�

r2
�

� s2k23
�
u:

ð49Þ
The solution of the modified Helmholtz equation (48) is
2-d : w ¼ 1

2ps2
1

k23 � k21
K0ðk3srÞ½ � K0ðk1srÞ�; ð50Þ

3-d : w ¼ 1

4prs2
1

k23 � k21
e�k3sr
�

� e�k1sr
�
: ð51Þ
These solutions essentially differ from the corresponding ones in the usi–p formulation (43) and (44). The

terms lnðrÞ=ðk21k
2
3Þ or 1=ðk21k

2
3Þ produced by the limit k2 ! 0 in (43) and (44) are no longer present. So,

obviously this simplified incompressible model will produce different results compared to the incom-

pressible usi–p formulation.

Concerning the waves represented in both models the following observations are made. In both for-

mulations, the third root k3 corresponding to the shear wave velocity is not changed because incom-
pressibility can only affect volumetric changes. Contrary, the compressional waves have to change as

observed by the vanishing root k2 and the different root k1. Here, also the difference between both for-

mulations is obvious. In the usi–p formulation the smaller value k2, corresponding to the faster compression

wave, goes to zero. The larger value k1, corresponding to the slower compressional wave, survives.

Reflecting the physics behind these two compressional waves this behavior is explainable. In case of the fast

compressional wave, the solid and the fluid move in phase. If the solid material is assumed to be incom-

pressible it has no longer any volumetric deformation and, subsequently, the wave speed tends to infinity

respective the corresponding k2 to zero. In case of the slow compressional wave, the solid and fluid move in
opposite phase. This relative movement is still possible if the solid material is incompressible.

These physical considerations are well represented in the usi–p formulation. Contrary, in the usi–u
f
i for-

mulation, no root k2 exists, i.e., the determinants (45) or (46) are only of second or third order in r2 in 2-d

or 3-d, respectively. This reflects the fact that this incompressible model is not achieved by a limit as in the

usi–p formulation. Only from physics it can be concluded that the fast compressional wave vanishes,

however, the surviving wave has a different wave velocity compared to the other formulation.

Finally, the incompressible fundamental solutions are found for the usi–p formulation:
G4incomp ¼ sqf

Gb K þ 4
3
G

� � F �r2 þ AD�ð Þdij � F �oij �Að1� bÞsoi
�Að1� bÞoi A K þ 1

3
G

� �
r2 þ A

� �� 	
w ð52Þ
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with the function w taken from (43) in the 2-d case or from (44) in the 3-d case. Different from the com-

pressible case, here, the constants are D� ¼ b=ðsqfÞr2 and F � ¼ ðK þ 1=3GÞD� � ð1� bÞ2s. For the usi–u
f
i

formulation the matrix of fundamental solutions is
G6incomp ¼
bU ss
ij

bU sf
ijbU fs

ij
bU ff
ij

" #

¼
b2 K þ 1

3
G

� �
Gs4/4q2

f K þ 4
3
G

� � ðM0E þ E2r2Þdij � E2oij �CðM0 þ Er2Þdij þ CEoij
�CðM0 þ Er2Þdij þ CEoij BðM0 þr2EÞdij � C2oij

� 	
w ð53Þ
with the abbreviations B, C and E from the compressible case and
M0 ¼
s2qf/

2G
b K þ 1

3
G

� � s2k23
�

�r2
�
:

In Eq. (53), the function w has to be taken from (50) in the 2-d case or from (51) in the 3-d case. The final
result can be summarized in the following form:
G6incomp ¼
1

/� b
/

/� b
/

ð/� bÞ2

/2

2664
3775 bU ss

ij : ð54Þ
The explicit expression of bU ss
ij is given in Appendix A. The solution (54) makes it obvious that the

underlying model for incompressibility is not sufficient because this result can be interpreted as totally

dominant solid displacements, i.e., the fluid influences only the material data of the bulk material but not

the behavior. This seems to be a very crude approximation of the realistic behavior, especially under the

aspect of wave propagation.
In general, all the above derived incompressible solutions show that the assumption of incompressible

constituents yields an infinite wave speed of the fast compressional wave. Contrary, if only one constituent

is assumed to be incompressible all wave types still have finite wave speeds. It was also shown that in the

incompressible model of the usi–u
f
i formulation one compressional wave disappears. This makes in the

authors’ opinion no sense. However, the other model for incompressibility used in the usi–p formulation,

i.e., R ! 1 and a ¼ 1, which cannot be introduced to the constitutive equations of the partial stress

formulation, as discussed in Section 2, can be inserted into the final compressible fundamental solutions

(A.5) and (A.6) of the usi–u
f
i formulation. Due to the different model assumptions such incompressible

fundamental solutions for the usi–u
f
i formulation are different from (54).
4. Singular behavior

The singular behavior of the above given fundamental solutions can be found by a series expansion with

respect to the variable r. This variable is found in these solutions either in the exponential function in the 3-

d solutions or in the Bessel functions in case of 2-d. Else, only powers of r appear. So, it is sufficient to insert

in the fundamental solutions (A.1)–(A.6) the following series expansions:
e�kk sr ¼
X1
‘¼0

ð�kksrÞ‘

‘!
¼ 1� kksr þ k2ks

2r2 þ Oðr3Þ ð55Þ
for the exponential function, and
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K0ðkksrÞ ¼ �ðlnðkksrÞ � ln 2þ cÞ þ Oðr2Þ; ð56aÞ
K1ðkksrÞ ¼
1

kksr
þ kksr

2
lnðkksrÞ

�
� ln 2þ c� 1

2

�
þ Oðr3Þ;

c ¼ lim
n!1

Xn
m¼1

1

m

 
� ln n

!
¼ 0:577216 ðEuler-constantÞ

ð56bÞ
for the Bessel functions. Inserting these series in the fundamental solutions and a subsequent ordering with

respect to the power of r yields the singular behavior.
4.1. usi–p formulation

For the usi–p formulation the compressible as well as the incompressible solution behaves equal. In 3-d, it

is found
bP s
i ;
bU f
i ¼ Oðr0Þ; ð57aÞ
bU s
ij ¼

1

16pGð1� mÞ fr;ir;j þ ð3� 4mÞdijg
1

r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
elastostatic fundamental solution

þOðr0Þ; ð57bÞ
bP f ¼ qfs
4pb

1

r
þ Oðr0Þ; ð57cÞ
and in 2-d a similar result is achieved
bP s
i ;
bU f
i ¼ Oðr0Þ; ð58aÞ
bU s
ij ¼

1

8pGð1� mÞ fr;ir;j � ð3� 4mÞdij ln rg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
elastostatic fundamental solution

þOðr0Þ; ð58bÞ
bP f ¼ �qfs
2pb

ln r þ Oðr0Þ: ð58cÞ
So, the singular behavior is the same as in elastostatics or acoustics, i.e., the poroelastic fundamental

solutions are only weakly singular or even regular. Again, note that there is no different behavior between

the compressible or incompressible model.

4.2. usi–u
f
i formulation

For the usi–u
f
i formulation, the singular behavior is different from the above discussed formulation. This

is not surprising because looking at the differential operator B6 (26) it is observed that this operator has in

the lower part of the main diagonal no Laplacian operator contrary to the operator B4 (24). This is also
represented in the fact that the three members bU fs

ij ,
bU sf
ij , and

bU ff
ij of G6 are composed by the fundamental

solution bU ss
ij and some additional term. In detail, the following singularities are found for the 3-d case:
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bU ss
ij ¼ 1

16pGð1� mÞ r;ir;j þ ð3� 4mÞdij
 � 1

r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
elastostatic fundamental solution

þOðr0Þ; ð59aÞ

bU sf
ij ¼ bU fs

ij ¼ 1

16pGð1� mÞ
/� b
/

ðr;ir;j
�

þ ð3� 4mÞdijÞ þ
a� b
/

ðr;ir;j � dijÞð1� 2mÞ
�
1

r
þ Oðr0Þ; ð59bÞ

bU ff
ij ¼ b

4p/2s2qf

f3r;ir;j � dijg
1

r3
þ Oðr�1Þ ð59cÞ
and for the 2-d case
bU ss
ij ¼ 1

8pGð1� mÞ fr;ir;j � ð3� 4mÞdij ln rg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
elastostatic fundamental solution

þOðr0Þ; ð60aÞ

bU sf
ij ¼ bU fs

ij

¼ 1

8pGð1� mÞ
/� b
/

ðr;ir;j
�

� ð3� 4mÞdij ln rÞ þ
a� b
/

ðr;ir;j þ dij ln rÞð1� 2mÞ
�
þ Oðr0Þ; ð60bÞ

bU ff
ij ¼ b

2p/2s2qf

f2r;ir;j � dijg
1

r2
þ Oðln rÞ: ð60cÞ
In Eqs. (59c) and (60c), it becomes obvious that these solutions are hyper-singular, whereas all other

solutions are weakly singular. Also, in (59b) and (60b) the elastostatic singularity of (59a) and (60a),
respectively is identified with some additional poroelastic terms.

In case of the incompressible model, clearly, due to the connected form of (54) all four fundamental

solutions have the same order of singularity namely that of bU ss
ij . The limit of this solution (A.7) or (A.8)

yields as in the compressible case the elastostatic fundamental solution. However, no hyper-singular

behavior exists for the incompressible solutions.
5. Visualization of some fundamental solutions

Finally, some exemplary fundamental solutions are calculated to visualize the principal behavior and the

difference between the compressible and incompressible model. Despite the differences in both incom-

pressible models, i.e., in the usi–p formulation and in the usi–u
f
i formulation, the principal effects which can be

visualized are similar. Therefore, next, only the visualization for the usi–p formulation and for this for-

mulation only the displacement due to a point force bU s
ij and the pressure due to a source bP f in 3-d are

presented.

Exemplary for a material which can be modeled incompressible as well as compressible a soil is chosen.

The material data (see Table 1) are taken from literature (Kim and Kingsbury, 1979). The incompressibility
condition (5) yields for this material:
K
Ks

¼ 0:019;
K
K f

¼ 0:0636: ð61Þ
So, it can be expected that the fundamental solutions of the compressible and incompressible model show a

similar behavior.



Table 1

Material data of a soil (coarse sand)

K ðN=m2Þ G ðN=m2Þ q ðkg=m3Þ / Ks ðN=m2Þ qf ðkg=m3Þ K f ðN=m2Þ j ðm4=NsÞ
Soil 2.1 · 108 9.8 · 107 1884 0.48 1.1· 1010 1000 3.3 · 109 3.55· 10�9
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Fig. 1. Displacement fundamental solution abs bU s
11
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versus frequency, x and distance, r.
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First, in Fig. 1, the displacement fundamental solution abs bU s
11

� �
is depicted versus the distance r and the

frequency x. To introduce in the fundamental solutions from Appendix A the frequency instead of the

complex Laplace variable s, simply the real part of s is set to zero, i.e., s ¼ ix. Further, the absolute value of
the complex valued displacement solution, i.e., the amplitude, is given in Fig. 1 and the range of values is
restricted at the singularity. The singular behavior for small values of r is nearly independent of the fre-

quency. Away from the origin the solution shows a wave like form with smaller amplitudes for higher

frequencies.

In the following, to have a better insight into the behavior of the fundamental solutions, the distance r is
kept constant and the frequency is varied. Further, all results, i.e., the displacement and pressure results are

normalized to their singular behavior (57b) and (57c), respectively. Additionally to the frequency results

also the time-dependent fundamental solutions are calculated by an inverse Laplace transform. However,

not the impulse response functions are presented but the response due to a Heaviside (unit step function)
time history of the load. This is achieved by the convolution between the fundamental solution and the

Heaviside function. Both operations, the inverse transform and the convolution, are performed within one

calculation using the Convolution Quadrature Method proposed by Lubich (1988).
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In Fig. 2, the normalized displacement fundamental solution abs bU s
11

� �
is plotted versus frequency for

the compressible and the incompressible model. This study is given for two points at r ¼ 0:1 m and at

r ¼ 0:5 m distance from the origin. For moderate frequencies and small r both solutions, compressible and

incompressible, are very similar whereas for higher frequencies differences are observed. This is in accor-
dance with the model. The fast compressional wave which speed tends to infinity influences only the short

time behavior, i.e., the higher frequencies. Hence, if this wave vanishes only the high frequency range of the
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solution is affected. The singular behavior, i.e., the limit x ! 0, is identical for the compressible and

incompressible solution. However, for small but nonzero frequencies the solutions differ for the two models,
which is well visible for r ¼ 0:1 m. This difference may be explained with the change in the speed of the slow

compressional wave.

Except of the last effect all these differences of the compressible and the incompressible model are also

visible in time domain. Therefore, in Fig. 3 the time dependent displacement response due to a Heaviside

load in time is depicted versus time at a distance r ¼ 0:5 m. There are, as expected, not too much differences

visible in the long time behavior. The two jumps in the graph at t ¼ 0:0004 s and at t ¼ 0:0031 s correspond

to the fast compressional wave and to the shear wave, respectively. In the zoom, it becomes visible that in

the incompressible model (dashed line) the compressional wave speed tends to infinity, i.e., the arrival time
tends to zero. Else, this time dependent plot of the fundamental solution shows that for this material the

incompressible model can be chosen if not the early time response is under consideration. However, it must

be remarked that for other material data, especially if they violate the incompressibility condition (5), both

models show large differences over the complete observation period.

Next, in Fig. 4, the normalized pressure due to a source in the fluid is considered. For this solution the

largest differences are expected because the pore pressure is no longer a free variable in the incom-

pressible model. Further, in an incompressible fluid a change in pressure is immediate at every point r,
hence the pressure cannot show a strong time, respectively frequency, dependence. These effects are
observed in Fig. 4, where both results differ by several decades in the absolute values. The compressible

pressure is much smaller than the solution in the incompressible model and shows a more pronounced

frequency dependence. However, for very small frequency, i.e., for the long time behavior, both solutions

tend to the same value. It should be remarked that in Fig. 4 a logarithmic scale for the pressure is used

which on the one hand enables this representation at all but on the other hand distorts the frequency

dependence.

In the time domain these considerations are confirmed. In Fig. 5, the pressure due to a Heaviside time

history of the load is depicted versus time at a distance r ¼ 0:5 m. Note, in Fig. 5 a different time scale
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compared to Fig. 3 is used. The pressure is mostly zero with the exception of the arrival time of the

compressional wave at t ¼ 0:0004 s. There, in the compressible solution an impulse is visible. The same
impulse is also visible in the incompressible solution, however, at t ¼ 0 s. Further, the characteristics of this

shock wave is different for both models. In the more stiff incompressible model a more pronounced and

larger impulse has been calculated compared to the compressible model. Naturally, the amplitude and

sharpness of such a shock wave is dependent on the time discretization used and other parameters of the

inverse transformation. However, in the comparison above for both the same parameters have been ap-

plied, so the results are comparable.
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6. Conclusions

Based on Biot’s theory, in the present work, fundamental solutions for the special case of incompressible

constituents are deduced and compared to the fundamental solutions of the compressible case. This has

been done not only for the representation with the solid displacement and the pore pressure as unknowns,

but also for the solid displacement and fluid displacement formulation. For both representations different

models for incompressible constituents are given. The fundamental solutions are determined using the
method of H€ormander.

The derivation of the fundamental solutions has confirmed the known fact that the solid displacement

and the pore pressure are sufficient to describe the behavior of a poroelastic continuum. Further, it has been

shown that the incompressible model of the solid and fluid displacement formulation is not suitable to

describe the dynamic behavior of a poroelastic medium. In general, an incompressible model assumes an

infinite wave speed of the fast compressional wave, i.e., this wave form is neglected. Hence, the question

arise whether such an approximation makes sense in a wave propagation calculation. The presented fun-

damental solutions show differences for higher frequencies, i.e., short times, in comparison to the com-
pressible model. Therefore, it can be concluded that an incompressible model can only be used in wave

propagation problems if not the short time behavior is considered and also if the ratios of the compression

moduli are very small.
Appendix A. Explicit expressions for the fundamental solutions

The explicit expressions of the poroelastodynamic fundamental solutions for the unknowns solid dis-

placement, usi , and pore pressure, p, and for solid displacement and fluid displacement, usi and ufi , are
given in the following for a 2-d and a 3-d continuum, for compressible as well as incompressible consti-
tuents.
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A.1. Solid displacement, usi and pore pressure, p

A.1.1. Compressible model

3-d. The elements of the matrix G4comp (37) are the displacements caused by a Dirac force in the solid
bU s
ij ¼

1

4prðq� bqfÞs2
R1

k24 � k22
k21 � k22

e�k1sr

"
� R2

k24 � k21
k21 � k22

e�k2sr þ dijk
2
3s

2
�

� R3

�
e�k3sr

#
ðA:1aÞ
with Rk ¼ ð3r;ir;j � dijÞ=r2 þ kksð3r;ir;j � dijÞ=r þ k2ks
2r;ir;j and k24 ¼ ðq� bqfÞ=ðK þ 4=3GÞ. The pressure

caused by the same load is
bP s
j ¼

ða� bÞqfr;j
4pbs K þ 4

3
G

� �
rðk21 � k22Þ

k1s
��

þ 1

r

�
e�k1sr � k2s

�
þ 1

r

�
e�k2sr

	
: ðA:1bÞ
For a Dirac source in the fluid the respective displacement solution is
bU f
i ¼ sbP s

i ðA:1cÞ
and the pressure
bP f ¼ sqf

4prb k21 � k22
� � k21

��
� k24

�
e�k1sr � k22

�
� k24

�
e�k2sr

�
: ðA:1dÞ
In the above given solutions, the roots ki, i ¼ 1; 2; 3 from (32) are used.

2-d. In 2-d, the expressions for displacements induced by a force in the solid are
bU s
ij ¼

1

2ps2ðq� bqfÞ
k24 � k22
k21 � k22

R2d
1

"
� k24 � k21
k21 � k22

R2d
2 � R2d

3 þ dijs2k
2
3K0ðk3srÞ

#
ðA:2aÞ
and the pressure for the same load is
bP s
j ¼

qfða� bÞr;i
2pb

K1ðk1srÞk1 � K1ðk2srÞk2
k21 � k22
� �

K þ 4
3
G

� � : ðA:2bÞ
The roots ki, i ¼ 1; 2; 3 are the same as in the 3-d case (32). The displacement fundamental solution for a

source in the fluid is
bU f
i ¼ sbP s

j ðA:2cÞ
and the pressure solution is
bP f ¼ sqf

2pb

k21 � k24
� �

K0ðk1srÞ � k22 � k24
� �

K0ðk2srÞ
k21 � k22

: ðA:2dÞ
The abbreviation
R2d
k ¼ 2r;ir;j � dij

r
kksK1ðkksrÞ þ r;ir;js2k

2
kK0ðkksrÞ
is used in Eqs. (A.2). Further, K0 and K1 denote the modified Bessel functions of second kind.
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A.1.2. Incompressible model

3-d. For the case of incompressible constituents, the displacements caused by a Dirac force in the solid

are
bU s
ij ¼

1

4prðq� bqfÞs2
R1

k24
k21

e�k1sr

"
� R2

k24 � k21
k21

þ dijk
2
3s

2
�

� R3

�
e�k3sr

#
ðA:3aÞ
with same abbreviations (R1;R2; k4) as in the compressible case and k1;3 from (41). The pressure caused by

the same load is
bP s
j ¼

ða� bÞqfr;j
4pb K þ 4

3
G

� �
rsk21

k1s
��

þ 1

r

�
e�k1sr � 1

r

	
: ðA:3bÞ
For a Dirac source in the fluid the respective displacement solution is
bU f
i ¼ sbP s

i ðA:3cÞ
and the pressure solution
bP f ¼ sqf

4prbk21
k21
��

� k24
�
e�k1sr þ k24

�
: ðA:3dÞ
2-d. The above presented 3-d solution for the incompressible model can be simply achieved by the limit

k2 ! 0, contrary to the 2-d solutions as shown in Section 3. Computing them following the formulas in

Section 3 yields for the displacement fundamental solutions
bU s
ij ¼

1

2ps2ðq� bqfÞ
k24
k21

R2d
1

"
� k24 � k21

k21

2r;ir;j � dij
r2

� R2d
3 þ dijs2k

2
3K0ðk3srÞ

#
ðA:4aÞ
with the roots k1 and k3 from Eq. (41) and the other abbreviations from the compressible solution. Eq.

(A.4a) is the result due to a single force in the solid. The respective pressure solution for such a load is
bP s
j ¼

r;iqf

2psb
ð1� bÞ k1srK1ðk1srÞ � 1ð Þ

k21r K þ 4
3
G

� � : ðA:4bÞ
The result due to a source in the fluid is given by
bU f
i ¼ sbP s

j ðA:4cÞ
and the pressure by
bP f ¼ sqf

2pb

k21 � k24
� �

K0ðk1srÞ � k24 lnðrÞ
k21

: ðA:4dÞ
A.2. Solid displacement, usi and fluid displacement, ufi

A.2.1. Compressible model

3-d. The explicit expressions of the poroelastodynamic fundamental solutions are given in the following.

The four elements of the matrix G6comp (38) are the displacements caused by a Dirac force in the solid
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bU ss
ij ¼ 1

4prðq� bqfÞs2
R1

k24 � k22
k21 � k22

e�k1sr

"
� R2

k24 � k21
k21 � k22

e�k2sr þ dijk
2
3s

2
�

� R3

�
e�k3sr

#
ðA:5aÞ
with the roots ki, i ¼ 1; 2; 3 from (32), k24 ¼ ðq� bqfÞ=ðK þ 4=3GÞ, and the Rk from the usi–p formulation.

Comparing the above fundamental solution (A.5a) with the corresponding solution in the usi–p formulation
(A.1a) it is seen that they are identical. The relative fluid displacements caused by the same load and the

solid displacements caused by a force in the fluid are
bU sf
ij ¼ bU fs

ij ¼ /� b
/

bU ss
ij �

1

4prs2 K þ 4
3
G

� � a� b

/ k21 � k22
� � R1e

�k1sr


� R2e
�k2sr

�
: ðA:5bÞ
For a Dirac force in the fluid the respective fluid displacement solution is
bU ff
ij ¼ ð/� bÞ2

/2
bU ss
ij þ

1

4prs2ðK þ 4
3
GÞ

b

/2qfðk21 � k22Þ
R1e

�k1sr k21 K
���

þ 4

3
G
�
� ðq� bqfÞ

� 2qfð/� bÞ a� b
b

�
� R2e

�k2sr k22 K
��

þ 4

3
G
�
� ðq� bqfÞ � 2qfð/� bÞ a� b

b

��
: ðA:5cÞ
2-d. The 2-d fundamental solutions for the usi–u
f
i formulation have a similar structure as the above given

3-d solutions. The four elements of the matrix G6comp (38) are the displacements caused by a Dirac force in

the solid
bU ss
ij ¼ 1

2ps2ðq� bqfÞ
k24 � k22
k21 � k22

R2d
1

"
� k24 � k21
k21 � k22

R2d
2 � R2d

3 þ dijs2k
2
3K0ðk3srÞ

#
; ðA:6aÞ
with the roots ki, i ¼ 1; 2; 3 from (32), k24 ¼ ðq� bqfÞ=ðK þ 4=3GÞ, and the R2d
k from the usi–p formulation.

As before in the 3-d case, the fundamental solution (A.6a) is identical to the corresponding one (A.2a) of

the usi–p formulation. The relative fluid displacements caused by the same load are identical to the solid

displacements caused by a force in the fluid
bU sf
ij ¼ bU fs

ij ¼ /� b
/

bU ss
ij �

1

2ps2 K þ 4
3
G

� � a� b

/ k21 � k22
� � R2d

1


� R2d

2

�
: ðA:6bÞ
For a Dirac force in the fluid the respective relative fluid displacement solution is
bU ff
ij ¼ ð/� bÞ2

/2
bU ss
ij þ

b

2ps2 K þ 4
3
G

� �
/2qf

1

k21 � k22
� � R2d

1 k21 K
���

þ 4

3
G
�
� ðq� bqfÞ

� 2qfð/� bÞ a� b
b

�
� R2d

2 k22 K
��

þ 4

3
G
�
� ðq� bqfÞ � 2qfð/� bÞ a� b

b

��
: ðA:6cÞ
A.2.2. Incompressible model

In this case the matrix of fundamental solutions is given in (54), but the explicit expression of the dis-

placement fundamental solution due to a single force in the solid must be given. It is in 3-d:
bU ss
ij ¼ 1

2
R1e

�k1sr
�

þ dijk
2
3s

2
�

� R3

�
e�k3sr

�
ðA:7Þ
4prðq� bqfÞs
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and in 2-d:
bU ss
ij ¼ 1

2ps2ðq� bqfÞ
R2d
1

�
� R2d

3 þ dijs2k
2
3K0ðk3srÞ

�
ðA:8Þ
with the roots ki, i ¼ 1; 3 from (47) and the Rk and R2d
k from the usi–p formulation.
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