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Abstract

Testing is a crucial as well as labour-intensive task in software development. Au-
tomation can be applied to all phases of testing in order to improve its efficiency, to
lower its costs, and hence to make it more viable. This work addresses the automation
of the test case generation phase.

Nowadays, many model-based test case generation tools exist. However, most of
them enumerate the specification’s state space and are thus limited by the state space
explosion problem. This work uses symbolic techniques in order to avoid this prob-
lem. It is based on Input Output Symbolic Transition Systems (IOSTS), which extend
Input Output Labelled Transition Systems (IOLTS) by the use of variables and param-
eters. System specifications as well as test purposes, which are used in conformance
testing to specify what aspects of the system have to be tested, are defined as IOSTS.
In this way, it is possible to generate test cases without enumerating the specifica-
tion’s state space. The resulting test cases are symbolic and can be made executable
by instantiation of their variables.

At first, an existing test case generation approach based on IOSTS is studied. It uses
reachability analyses and is implemented in the tool STG (Symbolic Test Generator).
However, this approach shows weaknesses for some kinds of systems. Thus, this
work presents an alternative way of generating test cases from IOSTS. Since only a
part of the existing STG tool set causes problems, the new approach does not start
from scratch, but reuses basic functionality concerning IOSTS from STG. Above all,
the new approach replaces STG’s problematic parts concerning the test case selec-
tion, which is based on reachability analyses. Instead, it employs symbolic execution
of IOSTS, which requires SAT solving. Furthermore, an algorithm to select test cases
from the resulting symbolic execution trees is presented. Finally, a prototype imple-
mentation of the new approach is discussed and evaluated in three case studies.

Keywords: Model-Based Testing, Conformance Testing, Automated Test Case
Generation, Input Output Symbolic Transition Systems, Symbolic Execution, SMT
Solving
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Kurzfassung

Testen ist eine entscheidende sowie arbeitsintensive Aufgabe in der Softwareentwick-
lung. Um die Effizienz zu erhöhen, die Kosten zu senken, und Testen damit praktika-
bler zu machen, wird eine weitgehende Automatisierung angestrebt. Generell können
alle Phasen des Testens zumindest teilweise automatisiert werden. Diese Arbeit be-
fasst sich mit der Automatisierung der Testfallgenerierungsphase.

Heutzutage gibt es bereits einige Tools zur Automatisierung der modellbasierten
Testfallgenerierung. Da die meisten von ihnen den Zustandsraum der Spezifikation
explizit berechnen, gelangen sie sehr schnell an die Grenzen der Speicherkapazität
(State Space Explosion Problem). Diese Arbeit wendet symbolische Verfahren an
um dieses Problem zu vermeiden. Dabei werden symbolische Transitionssysteme mit
Input/Output (engl. Input Output Symbolic Transition Systems, IOSTS) verwendet.
Sie stellen eine Erweiterung von IOLTS (Input Output Labelled Transition Systems)
mittels Variablen und Parametern dar. Sowohl System-Spezifikationen als auch Test
Purposes, die beim Konformitätstesten angeben welche Teile des Systems getestet
werden, werden als IOSTS modelliert. Auf diese Weise können Testfälle generiert
werden, ohne den Zustandsraum der Spezifikation zu enumerieren. Die resultieren-
den Testfälle sind symbolisch und können in ausführbare Testfälle umgewandelt wer-
den, indem ihre Variablen instantiiert werden.

Zunächst wird ein bereits bestehender Ansatz zur Testfallgenerierung basierend auf
IOSTS untersucht. Dieser Ansatz verwendet Erreichbarkeitsanalysen und ist in dem
Tool STG (Symbolic Test Generator) implementiert. Allerdings zeigt dieser Ansatz
Schwächen bei einigen Arten von Systemen. Deshalb stellt diese Arbeit eine alterna-
tive Möglichkeit zur Testfallgenerierung basierend auf IOSTS vor. Da nur bestimm-
te Teile von STG Probleme aufweisen, werden im neuen Ansatz Grundfunktionen
bezüglich IOSTS wiederverwendet, die bereits in STG implementiert sind. Nur die
problematischen Teile, die vor allem die Testfallauswahl mittels Erreichbarkeitsana-
lysen betreffen, werden ersetzt. Stattdessen wird ein Verfahren zur symbolischen
Ausführung von IOSTS eingesetzt, das SAT-Solving erfordert. Somit wird ein Baum
(engl. Symbolic Execution Tree) berechnet, aus dem ein Testfall ausgewählt wird.
Der Algorithmus zur Testfallauswahl wird in dieser Arbeit ebenso präsentiert wie ein
Prototyp, der den neuen Testfallgenerierungsansatz implementiert. Zum Abschluss
wird der neue Ansatz mittels dreier Fallstudien evaluiert.

Schlagworte: Modellbasiertes Testen, Konformitätstesten, Automatisierte Testfall-
generierung, Symbolische Transitionssysteme mit Input/Output (engl. Input Output
Symbolic Transition Systems), Symbolische Ausführung, SMT-Solving
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Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angege-
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1 Introduction

1.1 Motivation

“Testing is the process of executing a program with the intent of finding errors.”

This definition comes from Glenford Myers [58], who also stated that complete testing is not possi-
ble, i.e., finding all errors of a program is infeasible. Hence, testing is a complex and challenging task.
Already in the 1970s, it was known that about 50 % of the elapsed time and more than 50 % of the total
costs of a software project are spent in testing [58]. It is also known that the later a software error is
detected, the higher are the costs for fixing it [43]. Testing is not only expensive - the costs for testing
are also often underestimated and poorly planned [18], although undetected software errors potentially
cause enormous costs or even endanger human lives.

In 1996, the Ariane 5 rocket got uncontrollable and had to be exploded just 40 seconds after initiation
of the flight sequence. The software system calibrated for the Ariane 4 rocket has been reused without
proper testing. This error caused costs in the amount of $ 370 million [32]. Until 2005, a therapy
planning software at the National Cancer Institute of Panama City caused at least 18 deaths. Although
incorrect data sequences have been input to the software, it did not alert the user and calculated improper
dosages of radiation for cancer patients [15].

Automation can be applied in order to improve the efficiency of testing, to lower its costs, and
hence to make it more viable. In general, all phases of testing, i.e., test design, test execution, and
test evaluation, can be supported or even fully automated by testing tools. This work focuses on the
automation of test case generation via model-based testing (see Section 1.2).

Furthermore, we generate symbolic test cases. In this way, the state space explosion problem, with
which many other test case generation tools are struggling, is prevented (see Section 1.3.2). Symbolic
test cases are also easier to understand for humans, since they are less complex than concrete tests.

The relatively low number of industrial case studies indicates that model-based testing is not very
popular in industrial software projects yet [1]. This thesis aims at showing that model-based testing can
be successfully applied to industrial-sized applications. In the future, the test case generation tool of this
work shall be combined with a software for translating UML State Charts into IOSTS, which serve as
models for our approach [72]. By allowing the user to define system specifications and test purposes via
UML State Charts, an additional support for modelling large systems is given. Furthermore, a tool for
executing the generated test cases is under development while this thesis is written. Hence, a framework
for covering the model-based testing process including model creation, test case generation, and test case
execution shall be provided.

1.2 Model-Based Testing

There are various definitions of model-based testing (MBT) in the literature. All of them involve the use
of a model for testing, whereas the modelled subject and the aim of MBT can differ. In the following, a
few perceptions of MBT will be presented. Of course, this list cannot be exhaustive.

Frantzen et al. [36] describe MBT as a black-box testing technique. The goal of MBT is to test
whether a system under test (SUT) conforms to a formal specification (model) of the SUT. The model can
be used for automatic test case generation and as an oracle, i.e., test result evaluation can be performed
automatically, which requires a formal conformance relation.

Utting and Legeard [77] relate MBT very closely to automation. They focus on MBT in terms of
generating test cases with oracles based on behavioural models. MBT covers the generation of (a) input

1
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values, (b) call sequences and (c) oracles for checking the test results, whereas the automating aspect is
emphasized. The authors define MBT as “the automation of the design of black-box tests”.

Similarly, Pretschner and Philipps [64] describe the main idea of model-based testing as the use of
models to express the intended behaviour of a system. These models are then used to derive test cases
including input and expected output, which can be run on the SUT. Unlike the two already introduced
approaches [36; 77], the authors do not identify automation as a characteristic of MBT. The manual
derivation of test cases from a model also belongs to MBT.

Binder [13] claims that testing should always be model-based. Testing can be seen as searching for
bugs. Exhaustive testing is infeasible. Hence, testing has to be systematic, focused, and automated.
According to Binder [13], MBT has all of these three attributes.

Three further approaches, which are sometimes interpreted as MBT, are mentioned by Utting and
Legeard [77]:

• The generation of test input data from a domain model.

• The generation of test cases from a model of the environment of the SUT.

• The generation of test scripts from abstract tests.

This work does not correspond to these three approaches, but deals with MBT as defined above: the
generation of test cases with oracles based on behavioural models.

1.2.1 The Model-Based Testing Process

According to Utting and Legeard [77], the process used in MBT consists of the following five steps:

1. Model creation of the SUT and/or its environment.

2. Generation of abstract test cases from the model.

3. Generation of concrete, executable test cases by concretion of the abstract test cases.

4. Execution of the concrete test cases on the SUT and assignment of verdicts.

5. Analysis of the test results.

Figure 1.1 was influenced by Figure 2.4 of Utting and Legeard [77] and Figure 10.1 of Pretschner and
Philipps [64]. It depicts the MBT process as defined above and completes it by inserting model vali-
dation, which should accompany the creation of the model. Additionally, a test case specification was
introduced, which serves as selection criterion [64].

Hence, the process of model-based testing is the following [77]:

1. Model Creation and Validation
Based on the requirements, the system and/or its environment has to be modelled. According to
Stachowiak [71], a model has the following three properties:

• A model is a mapping from a concrete (“original”) into a more abstract (“model”) world.
• A model serves a specific purpose.
• A model is a simplification. It does not reflect all attributes of the concrete world.

Hence, the formal model created in this step should be much simpler and smaller than the SUT. It
should be focused on the aspects of the SUT which shall be tested, and details should be abstracted.
Since the model will be used for verification of the SUT, it has to be validated. It is necessary to
check whether the model correctly represents the user requirements.
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Figure 1.1: The model-based testing process: Based on the requirements, a formal model is cre-
ated and validated. The model and a test case specification are used for the automatic
generation of abstract test cases. After concretion of the abstract test cases, the tests are
executed on the SUT and verdicts are assigned. Finally, the test results are analyzed.

2. Test Case Generation
The created model is now used to automatically generate test cases, which are sequences of opera-
tions of the model. To define which tests shall be generated from the model, a test case specification
is necessary. Without such a specification, usually an unlimited number of test cases could be gen-
erated. For automatic test case generation, different algorithms and heuristics are used. Since the
model is a simplification of the SUT, the resulting test cases are not detailed enough to be directly
executable. Hence, they are called abstract test cases.

3. Concretion
To make the abstract test cases executable, they have to be concretized. The goal of this step is
to close the gap between the abstract test cases and the concrete SUT. Figure 1.2 is based on a
figure by Pretschner and Philipps [64] and illustrates how concretion and abstraction are used to
connect the “model” world with the “original” world. The abstract input i, which is defined for the
“model” world, has to be transferred into the “original” world. In order to be a valid input for the
SUT, the abstract input i has to be concretized via the concretion function γ.
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Figure 1.2: Abstraction and concretion are needed in model-based testing to connect the “model”
world with the “original” world.

4. Test Case Execution and Assignment of Verdicts
By now, the concrete test cases can be executed. Again, Figure 1.2 will be used for illustration.
The SUT processes the concrete input γ(i) and produces some concrete output o′. When executing
a test case, the actual output of an SUT has to be compared to the expected output to assign verdicts
for each test. In model-based testing, the expected output o can be derived from the model, which
means that it is defined in the “model” world. Hence, the concrete output from the SUT has to be
abstracted via the abstraction function α in order to be compared to the abstract expected output o
to generate a verdict.

5. Analysis of the Test Results
Finally, the results of the test executions have to be analyzed. For each test reporting a failure, the
fault causing this failure has to be found. This fault is not necessarily located in the SUT. It could
lie within the implementation of the concretion function γ. It could also be in the test case, which
means that it would be in the model used for test case generation. Thus, the analysis of the test
results also helps validating the model [7; 77].

This work focuses on the generation of test cases (Step 2 of the MBT process). The models used as
input for Step 2 have been derived from already existing formal specifications defined in other modelling
languages than the one used in this thesis. The further steps, i.e., concretion, test case execution and the
assignment of verdicts, as well as the analysis of the test results, are out of our scope.

1.2.2 Benefits and Limitations of Model-Based Testing

According to Utting and Legeard [77], MBT achieves good results in fault detection in the SUT. In
several case studies, the model-based testing approach found the same number of errors in the SUT or
even more compared to manually designed tests. The authors also state that the quality of model-based
test cases is better than the quality of manually designed tests. Manual testing requires an experienced
tester, who is good at guessing sources of error. In addition, the manual test design process is often not
reproducible. Since MBT uses algorithms and heuristics to automatically generate test cases, the test
design is more systematic and reproducible. Due to automation, it is possible to produce a great number
of test cases, which can help to find more bugs.
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The requirements for the SUT are typically informal and formulated in natural language. Hence, they
are possibly ambiguous, incomplete, or contradictory. When building a model from the requirements to
describe the intended behaviour of the system, problems in the informal requirements can be revealed.
Since the model is formal, which means it has precise semantics, encountered problems in the require-
ments have to be resolved. The clarification of requirements issues is crucial, because each resolved
requirements problem means less errors during design and implementation. The earlier an error is found,
the cheaper it is to fix. Frequently changing requirements necessitate the adaption of tests. The update
of test suites written manually is time-consuming. With MBT, this task is easier. Only the model has to
be updated and the tests can be generated anew [77].

According to Utting and Legeard [77], traceability, which is “the ability to relate each test case to
the model, to the test selection criteria, and even to the informal system requirements”, is improved by
MBT. For example, this can help to optimize test execution. In the case of changes to the model, only
tests affected by changes need to be executed again.

Since models are a simplified version of the SUT, they are easier to understand, validate, and maintain
than the SUT [7]. Particularly, models make it easier to automatically generate test cases. According
to many scientists, e.g., Hierons et al. [44] or Tretmans [76], this is actually the main benefit of explicit
model building and model-based testing.

All of the above described advantages of MBT help to reduce testing costs and time. Nevertheless,
MBT has also drawbacks, which may outweigh the benefits and may prevent the cost and time balance
to be positive. MBT involves an extra effort compared to conventional software testing: model building,
validation, and maintenance. The analysis of the failed tests is also more complex, because there exist
several sources of error: the SUT, the model, and the implementation of the concretion function [64; 77].

Although good results have been achieved with MBT, it is not the silver bullet to find software bugs.
The abstraction and modelling skills of the tester as well as the selection of the test case specification
have a great impact on the success of MBT. This may cause additional training costs when MBT is
deployed the first time [77].

According to Utting and Legeard [77], the main field of application of MBT in software testing is
functional testing. Only little experience is available with MBT for other kinds of testing. MBT is not
only limited to functional testing, but also by the type of SUT. Not in every case, MBT is applicable.
Sometimes, the deployment of manual testing is easier and leads to better results. Experience is re-
quired to decide whether MBT or conventional testing is more beneficial for testing a certain SUT. In
order to apply MBT to generate appropriate test cases, the requirements and models have to be updated
continuously. Otherwise, wrong properties of the SUT will be tested.

This thesis will apply MBT to protocol implementations for which it is known to achieve good
results. Nevertheless, it will also expose that not all kinds of model-based testing tools are successfully
applicable to all classes of problems in protocol conformance testing.

1.3 Reactive Systems and Symbolic Testing

1.3.1 Reactive Systems

This work focuses on testing of reactive systems. Manna and Pnueli [57] define reactive systems as
systems, which are repeatedly prompted by the environment and respond continuously to external inputs.
Hence, they are maintaining an ongoing interaction with their environment instead of calculating some
final result. According to Dams et al. [30], reactive systems involve concurrency and non-determinism in
most cases. Examples of reactive systems are flight reservation systems, embedded systems, operating
systems, communication protocols, smart cards, etc. [30; 80].
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1.3.2 Symbolic Testing

According to Clarke et al. [25] and Rusu et al. [67], most existing tools for the automation of test gen-
eration (e.g., TGV [48]) do not explicitly consider program data. Hence, the enumeration of the speci-
fication’s state space (see Pezzè and Young [60]) is necessary. This leads to several problems: Since all
variables of the specification are instantiated with all of their possible values, the state space explosion
problem (see Pezzè and Young [60]) is likely to emerge. The effect is a limitation in the usability of
these tools [36]. Frantzen et al. [36] identify another disadvantage of the enumeration of the state space.
It causes a loss of structure information and knowledge about data definitions and constraints, although
this information could be used to successfully improve the test selection procedure. Furthermore, the
generated tests are difficult to understand for humans [25]. Rusu et al. [67] argue that test cases, where
all variables are instantiated do not conform to industrial practice, where test cases are programs with
parameters and variables.

Symbolic techniques can help to avoid these problems. The model of the SUT, the test purpose
(test case specification), and the resulting test are symbolic, i.e., they contain variables, which are not
instantiated. This makes them easier to understand for humans. An enumeration of the state space is
not necessary when applying symbolic techniques, which is a great benefit. Symbolic tests can be made
executable simply by instantiating its variables [25].

Several tools, e.g., TGV [48] or TorX [9], use the input output conformance relation (ioco). The
ioco relation is based on LTS (Labelled Transition Systems [51]) and hence not on a symbolic level.
Frantzen et al. [36] lift the ioco relation onto a symbolic level. The resulting conformance relation is
called sioco (symbolic input output conformance) and is based on STS (Symbolic Transition Systems).
STS explicitly integrate data and data-dependent control-flow, which means that they provide variables
and the ability to guard transitions. The goal of Frantzen et al. [36] is to construct a complete formal
framework for symbolic testing.

Despite of all of the above mentioned advantages, it has to be kept in mind that problems can also
occur with symbolic testing techniques. Although they use more compact representations, they may
suffer from problems in single cases as will be shown in the course of this work.

1.4 Problem Statement and Outline of its Solution

The fact that only a relatively low number of industrial case studies exist indicates that model-based
testing suffers from a lack of industrial acceptance [1]. In the case of the symbolic test generation tool
STG, this is not astonishing, since merely small examples are presented in connection with STG.

The very first goal of this master’s thesis was to specify the Session Initiation Protocol (SIP) Registrar
(see Section 6.2) with Input Output Symbolic Transition Systems (IOSTS) and to use STG in order to
generate test cases for it. Soon, we realized that STG was not capable of handling this particular large-
sized specification. We suppose that STG’s troubles with the SIP Registrar specification are caused by
the use of BDDs, which may lead to problems with specifications that comprise large Boolean formulae
(see Section 3.4).

In a next step, we thought about a solution to this problem and how to reuse the already prepared
specification of the SIP Registrar. Hence, those parts of STG’s approach which are working properly will
be involved in our new test case generation methodology. The problematic part, which comprises the test
case selection strategy of STG, will be substituted by an alternative technique. Symbolic execution of
IOSTS and an algorithm for selecting test cases from the resulting symbolic execution trees replace
STG’s test case selection, which employs symbolic reachability and coreachability analyses. Chapter 4
gives a detailed description of our test case generation approach.
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1.5 Structure of this Thesis

The rest of this master’s thesis is structured in the following way. Chapter 2 deals with conformance test-
ing. It will give a general overview of the topic as well as a deeper insight into conformance testing with
IOSTS, a model for the specification of reactive systems that will be defined in the course of the chapter.
Furthermore, the Triangle Type Checker example, which will serve as a running example throughout this
thesis, will be introduced.

Chapter 3 is dedicated to STG, a tool for symbolic test case generation. Its test case generation algo-
rithm as well as its test case execution process will be presented. Moreover, its usage will be explained
and problems encountered during experimentation with STG will be discussed.

Chapter 4 presents our alternative approach for test case generation. Its relation to STG will be
explained and its main aspects, which are the symbolic execution of IOSTS and an algorithm for test
case selection from symbolic execution trees, will be elaborated. Finally, the benefits and limitations of
our new approach will be discussed.

Chapter 5 addresses the implementation of our approach. The architecture of the developed prototype
will be presented and its usage will be explained.

Chapter 6 will report about the results of our approach applied to three examples: the Triangle Type
Checker, the Session Initiation Protocol (SIP) Registrar, and the Conference Protocol. The results of the
three case studies will be summarized and a conclusion will be given.

Chapter 7 discusses related work. A relation to publications in the field of transition systems as well
as symbolic execution will be established.

Chapter 8 will summarize and discuss the previous chapters. Finally, some proposals about future
work will be addressed.



2 Conformance Testing with Symbolic Transition
Systems

This chapter is intended to give an overview of conformance testing in general and in the context of
symbolic transition systems. The conformance testing formalization introduced by Tretmans, which is
based on LTS (Labelled Transition Systems), will be presented. Furthermore, the IOSTS (Input Output
Symbolic Transition System) model, which will be used throughout this thesis, will be introduced and a
conformance testing theory for IOSTS will be presented.

2.1 Conformance Testing

When relying on the specification of some product, it has to be assured that the product behaves exactly
like defined in its specification. Consider the following examples:

• Communication protocols: When different implementations of the same communication protocol
interact, interoperability is only granted if all implementations conform to the protocol specifica-
tion.

• Compilers: Compilers have to correctly implement language standards. Otherwise the compiled
program could fail because of assumptions the software developer has made regarding program
compilation.

To find out whether a product is indeed the one that was defined in the specification, conformance testing
is employed. In conformance testing, the specification is the starting point for test case design. Hence, a
requirement for conformance testing is the existence of a complete, unambiguous, and consistent speci-
fication of the SUT [74].

Conformance testing checks whether the SUT conforms to its specification. Conformance can be
defined as a relation between the observable behaviour of the SUT and the behaviour of the corresponding
model, which serves as system specification. An SUT conforms to its specification if both, the SUT and
the specification, show the same behaviour [63].

Conformance testing belongs to the category of functional testing approaches. An SUT is solely
tested according to its specification. The internal structure of the SUT (the code) is not known. Hence, in
conformance testing, the SUT is a black-box. Only the observable behaviour of the SUT, the interactions
of the SUT with its environment, is testable. For testing the SUT, the tester has to play the role of the
environment and communicate with the SUT [48; 74].

To standardize conformance testing, the International Organization for Standardization (ISO)1 pub-
lished the international standard ISO/IEC 9646: Information technology - Open Systems Interconnec-
tion - Conformance testing methodology and framework [47]. Originally, the standard was intended for
testing communication protocols, but it turned out that it can also be applied for testing the conformance
of other reactive systems [80].

Tretmans [74] formalized the first version of the ISO/IEC 9646 standard [47]. In 1991, the standard
consisted of five parts:

• Part 1: General concepts - gives an introduction and specifies a general methodology for confor-
mance testing.

• Part 2: Abstract Test Suite specification - introduces the process of generating system-independent
conformance test suites.

1http://www.iso.org (last visit 2009-09-27)
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• Part 3: The Tree and Tabular Combined Notation (TTCN) - defines the test notation used in the
standard.

• Part 4: Test realization - covers test execution.

• Part 5: Requirements on test laboratories and clients for the conformance assessment process -
specifies requirements on the test laboratory and the client. Additionally, the conformance assess-
ment process is discussed.

According to the International Organization for Standardization, Part 1, 2, 4, and 5 have been revised in
1994. Part 3 has been revised in 1998. Furthermore, two more parts have been added to the standard:

• Part 6: Protocol profile test specification - has been published in 1994.

• Part 7: Implementation Conformance Statements - has been added in 1995.

2.1.1 The Conformance Testing Process

According to the first part of the ISO/IEC 9646 standard [47], the process of conformance testing consists
of three main phases: test generation, test implementation, and test execution. In the following, each
phase will be described in more detail according to Tretmans [74]. Figure 2.1 serves as illustration,
where the implementation process of the SUT is depicted as a parallel task flow to test generation and
test implementation.

1. Test Generation
Test generation covers the systematic design of an abstract test suite for the SUT. The resulting
test suite has the following properties: It is independent of any implementation and it has to be
expressed in a well-defined test notation language. The test should be suitable for standardization
and test all important details of the specification.

Static conformance requirements express restrictions on the selection of optional parts of the spec-
ification. Test generation is based on the dynamic conformance requirements of the specification,
which are requirements on the observable behaviour of the SUT. The test generation phase consists
of three steps:

(a) For each dynamic conformance requirement, one or more test purposes are defined. A test
purpose describes what will be tested. It is used to decide about the satisfaction of a confor-
mance requirement.

(b) For each test purpose, a generic test case is derived. A generic test case expresses the corre-
sponding test purpose in terms of operations on a high level.

(c) For each generic test case, an abstract test case is created. In this step, restrictions due
to the testing environment are considered and a test method is chosen. PCOs (Points of
Control and Observation) are interfaces for the tester to control and observe the SUT. A test
method specifies at which PCOs the tester can access the SUT. Four test methods have been
standardized in part 2 of ISO/IEC 9646 [47].

The test notation proposed by ISO/IEC 9646 is the semi-formal language TTCN (Tree and Tabular
Combined Notation). In TTCN, input and output events occurring at the PCOs represent the
behaviour of test cases. Each sequence is closed by a verdict.

2. Test Implementation
Test implementation deals with the transformation of the abstract test suite of Phase 1 into an
executable test suite. The executable test suite is tailored to a specific testing environment and a
specific SUT. The test implementation phase consists of two steps:
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Figure 2.1: The conformance testing process consists of three main steps: test generation, test
implementation, and test execution. The implementation of the SUT can be seen as a
task executed in parallel to test generation and test implementation.



Chapter 2. Conformance Testing with Symbolic Transition Systems 11

(a) Before starting with the implementation of the tests, a selection has to be made. Since the
abstract test suite contains tests for the whole specification including optional parts, only tests
which affect actually implemented features must be filtered. The implemented options are
listed in the PICS (Protocol Implementation Conformance Statement) document provided by
the supplier of the SUT.

(b) For the implementation of the selected test cases, the PIXIT (Protocol Implementation eXtra
Information for Testing) document, which is like the PICS document provided by the supplier
of the SUT, is required. It contains information relevant for testing the SUT like parameter
and timer values.

3. Test Execution
Test execution means the execution of the executable test suite on some SUT to obtain a verdict
about the conformance of the SUT to its specification. Two tasks have to be considered:

(a) In a static conformance review, the PICS of the SUT is inspected for conformance with the
static conformance requirements defined in the specification.

(b) The executable test suite obtained in Phase 2 is executed on the SUT. The SUT’s behaviour
is observed and compared with the expected behaviour defined in each test case. This leads
to a verdict, which can be pass, fail, or inconclusive. Pass means that the test purpose was
satisfied and the SUT behaved correctly. Fail stands for non-conformance of the SUT for
that specific test purpose. Inconclusive indicates that the SUT behaved correctly, but the test
purpose could not be satisfied.

2.1.2 Conformance Testing Formalization

Tretmans [74] formalized the main concepts introduced in the ISO/IEC 9646 standard [47]. In the fol-
lowing, the most important aspects of his formalization will be presented.

In conformance testing, product specifications are the starting point for test case generation. Spec-
ifications can be either directly expressed as a set of requirements by means of logical languages or by
using behavioural languages, which describe the observable behaviour of a system. The latter approach
is more straightforward for humans and widely-used. Examples for logical languages are Z [70] or
Temporal Logic [61]. Examples for behavioural specification languages are SDL [8], LOTOS [14], or
Estelle [20].

In the following, LR denotes the formal language in which requirements are expressed. LFDT
denotes the used formal description technique (FDT), which is behavioural in most cases. Conformance
will be defined for both approaches, the logical and the behavioural approach.

Logical Approach When using the logical approach, a specification Spec can be seen as a set of
conformance requirements ri ∈ LR, which forms a logical theory:

Spec = {r1, r2, r3, ...}

The satisfaction of a requirement r by an implementation Imp is expressed by:

Imp sat r

The set of requirements satisfied by an implementation Imp is denoted by sats(Imp), which is a theory
just like Spec:

sats(Imp) =def {r ∈ LR | Imp sat r}

In order to be a conforming implementation, the specification Spec has to be a subtheory of sats(Imp):

Spec ⊆ sats(Imp)
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If an implementation Imp satisfies all requirements of the specification Spec, it is a conforming imple-
mentation:

Imp sat Spec =def ∀r ∈ Spec : Imp sat r

According to ISO/IEC 9646 [47], an implementation which conforms to its specification must satisfy
both static and dynamic conformance requirements. So, when the logical approach is used, the definition
of conformance is straightforward. Conformance is defined as the satisfaction of the requirements defined
by the specification.

Behavioural Approach A behavioural specification SpecB can be seen as a set of behavioural expres-
sions bi ∈ LFDT :

SpecB = {b1, b2, b3, ...}
In the course of using behavioural specifications, it is necessary to relate behaviour to requirements in
order to define conformance. For this purpose, the relation spec is introduced. The fact that a behavioural
expression b specifies a requirement r is denoted by:

b spec r

Analogously, the fact that a behavioural specification SpecB specifies a requirement r is written as:

SpecB spec r

Now, conformance can be defined for a behavioural specification SpecB:

Imp conforms-to SpecB =def ∀r ∈ LR : SpecB spec r → Imp sat r

According to this definition, conformance is a relation between implementations and behaviour specifi-
cations:

conforms-to ⊆ IMP× LFDT
IMP denotes the set of all possible implementations. If IMP and LFDT are fixed, the definition of
conformance is still variable since LR, spec and sat still have to be defined.

Test Hypothesis For test validation purposes, a formalism for modelling implementations LIMP is
introduced. It is assumed that each implementation Imp can be represented by a model ImpM ∈ LIMP .
This assumption is referred to as test hypothesis in literature [11]. It states that the implementation under
test is close enough to its specification, so that testing becomes reasonable. A natural choice for LIMP

is LFDT .

Implementation Relation When using the behavioural approach, conformance could also be char-
acterized solely on the basis of behavioural expressions, where requirements are not explicitly taken
into account any more. LR, spec and sat, which were necessary for defining the conformance rela-
tion, become unessential for studying conformance. When conformance is based on the comparison of
observable behaviours of the specification and the implementation, conformance is seen as a relation
≤R ⊆ LFDT × LFDT called implementation relation.

An implementation relation ≤R is compatible with a requirement language LR as well as the rela-
tions spec and sat if for all behavioural specifications SpecB and implementations Imp:

Imp ≤R SpecB ↔ Imp sat specs(SpecB),

whereas specs(SpecB) denotes the set of requirements specified by the behavioural specification SpecB .
Its definition is:

specs(SpecB) =def {r ∈ LR | SpecB spec r}
Note that inconclusive does not mean that an implementation has shown incorrect behaviour. It indicates
that the SUT behaved correctly, but the test purpose could not be satisfied.
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Conformance Tests and Test Suites The set of test cases is modelled by a test notation LT . The
application of a test case tc ∈ LT to an implementation Imp ∈ LFDT is expressed by the function:

apply : LT × LFDT → {pass, fail, inconclusive}

If an implementation Imp passes a test case tc, this is expressed by:

Imp passes tc =def apply(tc, Imp) 6= fail

For whole test suites TS ⊆ LT , the relation passes is defined in the following way:

Imp passes TS =def ∀tc ∈ TS : Imp passes tc

The relation fails is defined as the negation of passes:

Imp fails tc =def ¬(Imp passes tc)

Imp fails TS =def ¬(Imp passes TS)

Conformance test suites have the following properties:

• Soundness:
A test suite TS is sound if only incorrect implementations are identified as non-conforming:

∀Imp ∈ LFDT : Imp ≤R SpecB → Imp passes TS

• Exhaustiveness:
A test suite TS is exhaustive if it correctly identifies all non-conforming implementations:

∀Imp ∈ LFDT : ¬(Imp ≤R SpecB)→ Imp fails TS

• Completeness:
A test suite TS is complete if it rejects all and only non-conforming implementations, i.e., if it is
sound and exhaustive.

2.2 IOSTS - Behavioural Models

IOSTS (Input Output Symbolic Transition System) belong to the category of behavioural specification
techniques (see Section 2.1). According to Jeannet et al. [49], an IOSTS is a data structure allowing to
model infinite-state transition systems. It is used in STG for the representation of system specifications,
test purposes, and generated test cases. Furthermore, implementations can be modelled by IOSTS which
are unknown except for their interface (black-box testing) [67].

The IOSTS model is an extension of the IOLTS (Input Output Labelled Transition System) model.
IOLTS are rooted LTS (Labelled Transition Systems [51]) with distinguished inputs and outputs [49].
IOLTS were handled in several publications by different authors, e.g., by Aichernig et al. [2], Rusu et
al. [68], and Tretmans [76]. The main difference between IOSTS and IOLTS is the fact that IOSTS
are a representation on a symbolic level, whereas IOLTS deal with concrete data values. This symbolic
representation is enabled by enriching IOSTS with variables and parameters and has the advantage of
not having the state space explosion problem [67] (see also Section 1.3.2).

There are several sources in literature defining the IOSTS model, e.g., Jeannet et al. [49; 50] or Rusu
et al. [67]. This section is supposed to give an overview of the most important aspects of IOSTS. In the
following, a definition of Input Output Symbolic Transition Systems is given and the associated seman-
tics will be explained with the aid of Labelled Transition Systems (LTS). Furthermore, different types
of IOSTS will be distinguished and conformance testing (see Section 2.1) on IOSTS will be introduced.
For illustration, a running example called “Triangle Type Checker” will be used throughout this section.
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2.2.1 Definition of IOSTS

Rusu et al. [67] define an IOSTS I as a tuple 〈D,Θ, Q, q0,Σ, T 〉 with the following components:

• D is a set of typed data, which can be expressed by the formula D = V ∪ P ∪M , whereas V
is the set of variables, P is the set of system parameters, and M is the set of messages of I. It
is important not to mix up P and M . P represents the parameters of the whole specified system,
hence, P denotes the system parameters. The messagesM represent the arguments of the system’s
actions specified by Σ, which would be called parameters in other language notations. V , P , and
M are pairwise disjoint. D is nonempty and finite.

• Θ is the initial condition on elements in V ∪ P .

• Q is the nonempty and finite set of locations.

• q0 ∈ Q is the initial location.

• Σ is the nonempty, finite alphabet, which can be expressed by the formula Σ = Σi ∪ Σo ∪ Σint,
whereas Σi is the set of input actions, Σo is the set of output actions, and Σint is the set of internal
actions. Each action a is possibly carrying typed messages. Hence, it has a signature sig(a) =
〈ϑ1, ...ϑk〉, which is a tuple of its message types. Signatures may be the empty tuple, which is
particularly the case for internal actions.

• T is the set of transitions. A transition is a tuple 〈q, a, µ,G,A, q′〉 consisting of:

– q ∈ Q is the location from which the transition starts.
– a ∈ Σ is the action of the transition.
– µ is the tuple of messages for the action a of the transition. The message types have to be

in line with the signature of a. Messages are only visible in the transition in which they are
used. They behave like local variables [49].

– G, called the guard of the transition, is a Boolean expression built upon the elements of
V ∪ P ∪ µ.

– A is a set of expressions and represents the transition’s assignments. It is assigning each
variable of V a new value. This new value is an expression over the elements of V ∪ P ∪ µ.
Self-assignments of variables are made implicitly and do not have to be written explicitly in
STG. For each variable in V , there is exactly one assignment.

– q′ ∈ Q is the destination location of the transition.

2.2.2 Example: Triangle Type Checker

The following simple example is called “Triangle Type Checker”. It will be continued throughout this
thesis to illustrate theoretically explained concepts. Originally, the idea for this example comes from
Myers [58]. The example IOSTS reads three input values of type integer, representing the three side
lengths of a triangle. The IOSTS determines whether these three sides form a valid triangle. If they do,
the type of the triangle (equilateral, isosceles, or scalene) is decided. If one of the side lengths is negative
or zero, NotPositive is sent. If the three side lengths do not form a valid triangle, NotTriangle is reported.

Figure 2.2 shows an IOSTS as defined above: the specification of the Triangle Type Checker printed
by STG. Locations of the IOSTS are depicted as ellipses. Arrows between these ellipses illustrate tran-
sitions. The guards, the actions with their messages, and the assignments of the transitions are depicted
inside rectangles between these arrows. Input actions are followed by ?, output actions by ! in the graph
of Figure 2.2 as well as in the STG syntax (see the STG Reference Manual2). For example, the tran-
sition from location Readabc to CheckPositive has no guard (true), waits for an input of three integers
(Read?(p, q, r)), and assigns these three input values to the IOSTS variables a, b and c.

2http://www.irisa.fr/prive/ployette/stg-doc/stg-web_4.html (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_4.html
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CheckPositive

not (a > 0 and b > 0 and c > 0) [bool ]
sync NotPositive!() 

do {}

a > 0 and b > 0 and c > 0 [bool ]
sync tau() 

do {}

End

CheckType

not (a = b or b = c or a = c) [bool ]
sync Scalene!() 

do {}

not (a = b and b = c) and (a = b or b = c or a = c) [bool ]
sync Isoscele!() 

do {}

a = b and b = c [bool ]
sync Equilateral!() 

do {}

CheckTriangle

not (a + b > c and a + c > b and b + c > a) [bool ]
sync NotTriangle!() 

do {}

a + b > c and a + c > b and b + c > a [bool ]
sync IsTriangle!() 

do {}

Start

true [bool ]
sync Init() 

do {}

Readabc

true [bool ]
sync Read?( p,  q,  r) 

do {a := p [int ]| b := q [int ]| c := r [int ]}

Figure 2.2: This graph depicts the IOSTS specifying the Triangle Type Checker system. It waits
for three integer values, which represent the side lengths of a triangle and determines
whether the triangle is valid. If it is, the type of the triangle is decided. If one of the
integers is negative or zero, “NotPositive” is sent.

Table 2.1 lists the components of an IOSTS as defined above for the IOSTS of Figure 2.2. The set
of variables V of the IOSTS contains three elements. The set of IOSTS system parameters P is empty.
The set of messages M contains three elements. Since the set of typed data D is the union of these
three sets, D contains six elements. The initial condition of the IOSTS is true. The IOSTS consists of
six locations, whereas Start is the initial location. One input action, six output actions, and one internal
action are defined for the IOSTS. The transitions of the IOSTS are not listed in the table, because a
textual description would be long and confusing compared to the visual representation.
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The STG specification file for the above described IOSTS can be found at the STG web page3.

1 V = {a, b, c}
2 P = ∅
3 M = {p, q, r}
4 D = {a, b, c, p, q, r}
5 Θ = true
6 Q = {Start, Readabc, CheckPositive, CheckTriangle, CheckType,End}
7 q0 = Start
8 Σi = {Read}
9 Σo = {NotPositive,NotTriangle, IsTriangle, Scalene, Isoscele, Equilateral}

10 Σint = {tau}

Table 2.1: A list of the main components of the IOSTS specifying the Triangle Type Checker,
which is depicted in Figure 2.2.

2.2.3 Semantics of IOSTS

The semantics of IOSTS can be explained by means of LTS (Labelled Transition Systems [51]), since
the IOSTS model extends LTS with variables and parameters [67]. Therefore, IOSTS deal with sym-
bolic values, whereas LTS handle concrete values. The following terminology, which is necessary for
describing the semantics of an IOSTS I = 〈D,Θ, Q, q0,Σ, T 〉, was defined by Rusu et al. [67]:

Valuation V al(D′) denotes all (type-consistent) valuations of D′, whereas D′ is a subset of the IOSTS
data D (D′ ⊆ D). It associates to each element of D′ a value of correct type.

State A state s is a pair consisting of a location and a valuation for the IOSTS variables and system
parameters (s = 〈q, v〉, whereas q ∈ Q and v ∈ V al(V ∪ P )). The set of states of an IOSTS is
denoted by S.

Initial State An initial state s0 is a state fulfilling the following conditions: its location is the initial
location and its valuation entails the initial condition (s0 = 〈q0, v0〉, whereas v0 |= Θ). The set of
initial states is called S0.

Valued Input/Output A valued input is a tuple consisting of an input action and a list of type-consistent
values for the action’s messages (valued input = 〈a, v1, ..., vl〉, whereas a ∈ Σi, sig(a) =
〈ϑ1, ..., ϑl〉 and type(vi) = ϑi for 1 ≤ i ≤ l). Valued outputs are defined in the same way, except
of having an output instead of an input action. Υ denotes the set of valued inputs, Ω the set of
valued outputs.

Value of a Data Item Given a valuation v ∈ V al(D) and an element d ∈ D, then v(d) denotes the
value for the data item d.
Assuming D′ and D′′ are disjoint subsets of data (D′, D′′ ⊆ D and D′ ∩ D′′ = ∅) and v and w
are two of its valuations (v ∈ V al(D′), w ∈ V al(D′′)), then the valuation v · w(D′ ∪ D′′) is
defined by

• v · w(d) = v(d), if d ∈ D′

• v · w(d) = w(d), if d ∈ D′′.
3http://www.irisa.fr/prive/ployette/stg-doc/stg-web_10.html (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_10.html
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Value of an Expression Given an expression e composed of elements inD and a valuation v ∈ V al(D),
then v(e) is defined by the value resulting after the replacement of all elements d ∈ D occurring
in e by their values v(d).

By now, the semantics of an IOSTS I = 〈D,Θ, Q, q0,Σ, T 〉 can be defined by an LTS L =
〈S, S0, L,→〉 consisting of the following components [67]:

• S denotes the set of states, S0 the set of initial states as they were defined above.

• L, the set of labels of the LTS, is defined as L = Υ ∪ Ω ∪ Σint.

• The transition relation→ is a set of tuples of the form 〈s, l, s′〉 whereas s, s′ ∈ S and l ∈ L.

Given the following information 〈q, a, µ,G,A, q′〉 ∈ T

v, v′ ∈ V al(V ∪ P )

w ∈ V al(µ)

v · w(G) = true

∀x ∈ V : v′(x) = v · w(Ax)

∀x ∈ P : v′(x) = v(x)

the LTS transition relation→ is defined as 〈q, v〉 〈a,w〉−−−→ 〈q′, v′〉.

Thus, there is a transition in the LTS L from state 〈q, v〉 to 〈q′, v′〉 with action a and a valuation of
the action’s messages w if there exists a transition 〈q, a, µ,G,A, q′〉 in the IOSTS I and the guard G of
this transition evaluates to true with the given valuations v and w. The new variable valuation v′ of the
system after firing the transition is calculated by applying the assignments in A for each variable, i.e., for
each variable x ∈ V , the right-hand side of the variable’s assignment Ax is evaluated according to v and
w and assigned to x in the new valuation v′. The system parameters do not change.

The IOSTS transition relation⇒ is a tuple 〈s, l, s′〉 whereas s, s′ ∈ S and l ∈ (Υ ∪ Ω)∗ and can be
derived from→ by dropping all internal actions. ⇒ is defined by Rusu et al. [67] through the following
three rules:

1. s ε⇒ s′ =def ∃τ1, ..., τn ∈ Σint,∃s1, ..., sn−1 ∈ S, s
τ1−→ s1...sn−1

τn−→ s′

s
ε⇒ s′ means that there is a sequence of transitions labelled with internal actions (τ1, ..., τn) which

can be fired to get from state s to state s′ via several intermediate states (s1, ..., sn−1). In other
words, there is a way from s to s′ without observable behaviour.

2. s α⇒ s′ =def ∃s1, s2 ∈ S, s
ε⇒ s1

α−→ s2
ε⇒ s′ with α ∈ Υ ∪ Ω

s
α⇒ s′ means that there is a way to get from state s to state s′ by following a sequence of transitions

consisting of one transition labelled with the valued input/output α preceded and/or followed by a
finite number of transitions labelled with an internal action.

3. s σ⇒ s′ =def ∃s1, ..., sn−1 ∈ S, s
α1⇒ s1...sn−1

αn⇒ s′ with σ = α1, ..., αn ∈ (Υ∪Ω)n with n > 1
s

σ⇒ s′ says that there is a way from state s to s′ by firing transitions labelled with the valued
inputs/outputs from σ. Before, between and after these transitions, there can be an infinite number
of internal actions.

The following terminology defined by Rusu et al. [67] is useful when talking about an IOSTS I =
〈D,Θ, Q, q0,Σ, T 〉 with semantics given by the LTS L = 〈S, S0, L,→〉:

traces traces(I) =
{
σ ∈ (Υ ∪ Ω)∗

∣∣ ∃s0 ∈ S0, ∃s ∈ S : s0
σ⇒ s
}

The traces of an IOSTS I are all sequences of valued inputs/outputs which lead from an initial
state s0 to any other state s of the IOSTS.
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after I after σ =
{
s ∈ S

∣∣ ∃s0 ∈ S0 : s0
σ⇒ s
}

I after σ denotes the set of states which can be reached from an initial state s0 following the
trace σ.

out out(S′) =
{
α ∈ Ω

∣∣ ∃s′ ∈ S′,∃s ∈ S : s′ α⇒ s
}

with S′ ⊆ S
out(S′) denotes the set of valued outputs observable in the states contained in S′. These observa-
tions can possibly take place after internal actions.

pref pref(L) is defined as the set of strict prefixes of sequences in L, where L is a set of traces.

2.2.4 Types of IOSTS

According to Rusu et al. [67], an IOSTS can have several attributes:

Instantiated Given an IOSTS I with system parameters P and a valuation of these system parameters
π ∈ V al(P ), an instance of I named I(π) is obtained by substituting each system parameter
p ∈ P by its value π(p).

Initialized If the initial condition Θ assigns exactly one value to each variable v ∈ V , then an instanti-
ated IOSTS is called initialized. If all instances of an arbitrary IOSTS are initialized, the IOSTS is
initialized.

Deterministic An IOSTS is deterministic if the following two conditions hold:

1. ∀s ∈ S :
∣∣∣∪τ∈Σint

{
s′ ∈ S | s τ−→ s′

}∣∣∣ ≤ 1
The next state s′ depends only on the current state s when executing an internal action.

2. ∀s ∈ S, ∀α ∈ Υ ∪ Ω :
∣∣∣{s′ ∈ S | s α−→ s′

}∣∣∣ ≤ 1
If a valued input/output α is executed, the next state s′ depends only on the current state s
and the valued input/output α.

Complete An IOSTS location q is complete if the following condition holds:
∀s ∈ S, ∀α ∈ Υ ∪Ω ∪ Σint :

{
s′ ∈ S | s α⇒ s′

}
6= ∅

That is, for all states s and all valued inputs/outputs or internal actions α, the set of successor states
reachable through α must be nonempty. An IOSTS is complete if all its locations are complete.
An IOSTS is input-complete if the above condition holds for all valued inputs α ∈ Υ .

2.3 Conformance Testing with IOSTS

The general aspects of conformance testing have already been discussed in Section 2.1. According
to Rusu et al. [67], conformance testing with IOSTS means testing a conformance relation between a
formal specification of the system in the form of an IOSTS and an implementation of the system. Test
purposes define what will be tested throughout a particular test case. During testing, verdicts about
the conformance are returned. In the following, more detailed aspects of conformance testing based on
IOSTS will be considered.

2.3.1 Specification

According to Rusu et al. [67], a specification is a formal model of a system. It is an initialized IOSTS,
which describes how the system should act. Hence, IOSTS belong to the set of behavioural specifications
(see Section 2.1). For the already mentioned Triangle Type Checker (see Section 2.2.2), the specification
IOSTS is depicted in Figure 2.2.
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2.3.2 Implementation

The implementation under test is a black-box application. Due to the test hypothesis (see Section 2.1),
which assumes that each implementation can be represented by a model, the implementation can be con-
sidered as an IOSTS. The only thing known for sure about the implementation’s IOSTS is its interface,
which is assumed to be same as the specification’s interface [67]. Hence, the following items of the
implementation’s IOSTS are known:

• The input alphabet Σi (input actions).

• The output alphabet Σo (output actions).

• The signatures sig(a) of all actions a ∈ Σi ∪ Σo.

The Triangle Type Checker implementation for the running example is a single Java file, which is in-
cluded in the archive stg backend.tgz (/EssaiTri/triangle.java). It can be downloaded
from the download section of the STG web page4.

2.3.3 Test Purpose

As already explained in Section 2.1, a test purpose describes what shall be tested. When working with
STG, a test purpose T P for a specification S is an initialized and complete IOSTS, which is compatible
with S regarding the product operation (see Section 3.1.2). It selects a part of the specification that
shall be tested. Its set of locations QT P includes at least one Accept location. Accept locations indicate
behaviours of the specification which shall be tested. They must not have outgoing transitions that lead
to other locations. Transitions leading to Accept locations (except self-loops) must not be labelled by
internal actions. Test purposes may also contain Reject locations. They indicate behaviours that are not
targeted by the test purpose [80].

A good test purpose should be simple and much smaller than the specification itself. The design
of test purposes has to be done by hand and is said to be an iterative process [67; 80]. Figure 2.3 was
generated by STG. It shows a possible test purpose for the specification depicted in Figure 2.2. It tests
whether the Triangle Type Checker correctly identifies invalid triangles. Since the specification itself is
rather small, the test purpose is very simple.

Test purposes have to be complete by definition. For small IOSTS like the one depicted in Figure 2.3,
it would be easy to keep an overview and thus to ensure completeness by hand. For bigger test purposes,
ensuring completeness manually is troublesome. For this reason, STG does not require complete test
purposes from the user. It is able to compute missing transitions to complete an IOSTS. The completion
of an IOSTS will be elaborated in Section 3.1.1.

2.3.4 Test Case

Rusu et al. [67] define test cases to be initialized, deterministic IOSTS without internal actions in order
to react promptly to inputs from the implementation. If an IOSTS T C has these three attributes, then
the following condition holds: ∀σ ∈ traces(T C) : |T C after σ| = 1. This means that each trace of
the test case leads to exactly one state. Hence, if the same trace is executed several times on a given
implementation, the test case always produces the same verdict. Nevertheless, one test case can result
in different verdicts for the same implementation. This can happen, because the implementation may be
non-deterministic, i.e., it may choose to follow different traces [80].

A further requirement for proper test cases is the input-completeness of all locations of a test case.
Locations which are included in three special sets of locations are an exception. These three sets are
Pass, Fail, and Inconclusive. They are pairwise disjoint and used to generate verdicts (cf. Section 2.1).

4http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html
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Start

true [bool ]
sync Init() 

do {}

S1

true [bool ]
sync NotTriangle!() 

do {}

Accept

Figure 2.3: This test purpose for the Triangle Type Checker specification checks whether the sys-
tem correctly identifies invalid triangles.

To determine the actual verdict, the end location of the test case after running the test case in parallel
to the implementation is used. If the end location is part of the set Pass, the test case passed - the
implementation worked correctly regarding the specification. If the end location is in the set Fail, the
test case detected an error - the implementation is not conform to the specification. In the case of an end
location in the set Inconclusive, the implementation worked correctly, but the test goal defined in the test
purpose could not been reached because of allowed non-determinism in the implementation.

Figure 2.4 shows the test case generated with STG from the specification depicted in Figure 2.2
and the test purpose of Figure 2.3. The guards of the transitions have been rewritten and/or combined
during test case generation (see Section 3.1.5). The location End Accept belongs to the set Pass. The
location inconc is contained in the set Inconclusive, since it indicates valid behaviour but does not lead
to an Accept state any more. To keep the test case as simple as possible, no location of the set Fail is
depicted. STG automatically generates a Fail verdict if an input from the implementation does not match
any transition leaving the current state of the test case.

The process of generating such a test case from a specification and a test purpose will be explained
in more detail in Section 3.1. The most important operation for the creation of test cases is the so-called
product operation (denoted ×), which is applied on a specification and a test purpose. This particular
operation will be discussed in Section 3.1.2.

2.3.5 Conformance Relations

An implementation under test is linked with instances of the specification and the test purpose via con-
formance relations. Rusu et al. [67] as well as Zinovieva-Leroux [80] formally define two conformance
relations for IOSTS :

conf The conformance relation I(π) conf S(π) expresses that an implementation modelled by the in-
stantiated IOSTS I(π) conforms to the instance S(π) of the specification S. Its definition is:

I(π) conf S(π) =def ∀σ ∈ traces(S(π)) : out(I(π) after σ) ⊆ out(S(π) after σ)

That is, after each trace of the specification, all possible valued outputs of the implementation are
included in the set of valued outputs of the specification.
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End_Accept

Readabc_S1

 p - 1 >=0 and  q - 1 >=0 and  r - 1 >=0 [bool ]

sync Read!( p,  q,  r) 

do {a := p [int ]| b := q [int ]| c := r [int ]}

Start_Start

true [bool ]

sync Init() 

do {}

CheckPositive_S1

 c - a + b - 1 >=0 and

 c + a - b - 1 >=0 and  c - a - b + 1 >0 and  c - a - b >=0 or

 c - a + b - 1 >=0 and

 c + a - b - 1 >=0 and

 c - a - b + 1 >0 and  - c + a + b >0 and  - c - a + b >=0 or

 c - a + b - 1 >=0 and  - c - a + b + 1 >0 and  - c - a + b >=0 or

 - c + a - b + 1 >0 and

 c + a - b - 1 >=0 and  - c + a + b - 1 >=0 and  - c + a - b >=0 or

 - c + a - b + 1 >0 and

 c + a - b - 1 >=0 and

 - c + a + b - 1 >=0 and  c - a + b >0 and  c - a - b >=0 or

 - c + a - b + 1 >0 and

 c + a - b - 1 >=0 and

 - c + a + b - 1 >=0 and

 c - a + b >0 and  - c + a + b >0 and  - c - a + b >=0 or

 - c + a - b + 1 >0 and

 c + a - b - 1 >=0 and  c - a - b + 1 >0 and  c - a - b >=0 or

 - c + a - b + 1 >0 and

 c + a - b - 1 >=0 and

 c - a - b + 1 >0 and  - c + a + b >0 and  - c - a + b >=0 or

 - c + a - b + 1 >0 and  - c - a + b + 1 >0 and  - c - a + b >=0 [bool ]

sync NotTriangle?() 

do {}

 c - a + b - 1 >=0 and  c + a - b - 1 >=0 and  - c + a + b - 1 >=0 [bool ]

sync IsTriangle?() 

do {}

inconc

Figure 2.4: The test case generated by STG from the specification depicted in Figure 2.2 and the
test purpose shown in Figure 2.3. End Accept belongs to the set Pass, inconc to the set
Inconclusive. To simplify matters, no location of the set Fail is depicted.

According to Zinovieva-Leroux [80], this conformance relation can be extended to IOSTS that are
not instantiated. Therefor, in addition to the test hypothesis that states that each implementation
can be modelled, a new hypothesis has to be introduced. It says that there exists a one-to-one
correspondence between the system parameters of an implementation and the system parameters
of a specification. Thereby, conformance of not instantiated IOSTS can be defined:

I conf S =def ∀v ∈ V al(P ) :
(
I(v) conf S(v)

)
This means that an implementation, which is modelled by the IOSTS I, conforms to a specifica-
tion S if for all possible valuations v ∈ V al(P ) of their system parameters P , the implementation
instantiated with v conforms to the specification instantiated with the same valuation.
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conf links implementations and specifications. In order to take into account test purposes, which are the
third component of STG’s testing theory, the conformance relation confT P is defined as follows:

confT P The conformance relation I(π) confT P S(π) means that the implementation, which is mod-
elled by the instantiated IOSTS I(π), conforms to the instance S(π) of the specification S and
relative to the instantiated test purpose T P . Its definition is:

I(π) confT P S(π) =def ∀σ ∈ pref (Atraces(P(π))) : out(I(π) after σ) ⊆ out(S(π) after σ)

P = S × T P denotes the product of S and T P , P(π) = (S × T P)(π) is an instance of this
product. Atraces(P) is the set of traces σ, which lead from P’s initial state to a state with a
location q ∈ QS × AcceptT P , whereby QS is the set of states in S and AcceptT P is the set of
Accept states in the test purpose T P . Atraces(P) ⊆ traces(S) applies.

In other words, confT P means that after each strict prefix of a selected trace of the specification,
all possible valued outputs of the implementation have to be included in the set of valued outputs
of the specification.

Similar to conf, confT P can be generalized to be applicable to uninstantiated IOSTS [80]:

I confT P S =def ∀v ∈ V al(PS ∪ PT P) :
(
I(v ↓ PI) confT P(v↓PT P ) S(v ↓ PS)

)
In this definition, the system parameters of the specification S are denoted by PS , the system
parameters of the test purpose T P are denoted by PT P , and the system parameters of the im-
plementation I are denoted by PI . Note that the elements in PI are assumed to be one-to-one
correspondent to the elements in PS . Expressions of the form v ↓ D′ with v ∈ V al(D) and
D′ ⊆ D denote so-called projections. They return the values v(d) for each data item d ∈ D′.
Hence, an implementation, which is modelled by the IOSTS I, conforms to a specification S
relative to a test purpose T P if for all possible valuations v ∈ V al(PS∪PT P), the implementation
instantiated with v ↓ PI and the specification instantiated with v ↓ PS are conform relative to the
test purpose instantiated with v ↓ PT P .

conf and confT P are slightly different. conf is stronger and therefore it implies confT P . If an imple-
mentation conforms to a specification, then it conforms to the specification relative to all test purposes
for this specification. Conversely, confT P does not imply conf [80]. Since STG relies on a set of man-
ually designed test purposes, only confT P can be verified for each specified test purpose. The user is
responsible for providing a sufficient number of test purposes to achieve conformance according to the
conf relation.

Conformance Relations and Quiescence

According to Zinovieva-Leroux [80], the above defined conformance relations conf and confT P are
a weaker version of the conformance relations ioco and ioconf defined by Tretmans [75; 76]. The
difference lies within quiescence (outputlocks, deadlocks, livelocks). ioco and ioconf are based on LTS
(Labelled Transition Systems [51]) and take into account quiescence. Quiescence is not considered by
conf and confT P , which are defined for IOSTS. Note that deciding whether an IOSTS is quiescent or not
is undecidable in general [80].



3 Existing Approach using Reachability Analysis

An already existing approach for symbolic test case generation was implemented in the prototype tool
STG, shorthand for Symbolic Test Generator. It was designed to be applicable to reactive systems (see
Section 1.3.1) specified as IOSTS (Input Output Symbolic Transition Systems, see Section 2.2). STG
was developed at IRISA/INRIA1 Rennes (France) in the course of the project VerTeCs2 [25; 49].

Figure 3.1 was inspired by Clarke et al. [26] and gives an overview of STG’s work flow, which
corresponds to the model-based testing process presented in Section 1.2.1. The main steps are:

1. System modelling and design of test purposes:
The specification of the system under test has to be modelled as an IOSTS. Test purposes have to
be designed and expressed in IOSTS syntax. They serve as test case specifications and select the
part of the system which should be tested. Both tasks have to be done manually by the user.

2. Test generation:
STG processes the two user-defined IOSTS (specification and test purpose) to generate an IOSTS
test case. This abstract test case will be converted into Java format to generate a concrete test case.

3. Test execution:
For test execution, the implementation under test is executed in parallel to the generated test case,
which gives input to the implementation and checks the returned output. The result is a verdict,
which can be pass, fail, or inconclusive.

Two procedures of the above outlined workflow are automated by STG: test generation and test
execution. In the following, those two work steps will be described in more detail. Furthermore, a short
description of the installation and execution of STG’s tool framework is provided. Finally, problems of
the STG prototype will be discussed.

3.1 Test Case Generation with STG

The process performed by STG to generate a test case from a given specification and test purpose is:

1. The test purpose is made complete, i.e., missing transitions are added.

2. The specification and the complete test purpose are processed by the product operation to generate
the basis for the resulting test case, which will be called product in the following.

3. Then the product is closed and determinized to become a valid test case.

4. The closed and determinized product is simplified via reachability and coreachability analyses.

Figure 3.2 illustrates STG’s process for test case generation, which has been briefly introduced above.
Framed boxes depict the kinds of objects involved in the procedures (IOSTS process, AUTO file, NBAC
file, . . . ). The dark-red labels near these boxes describe the names given to these objects by STG within
the test case generation process, whereas basename stands for the name of the STG specification file
(basename.stg). Arrows and their captions represent the operations, which need to be performed on
their source object(s) to obtain the target object. Not every operation is implemented in STG itself. For
the reachability and coreachability analysis phases, the external tool NBac was used (see Section 3.3.1).
The operations implemented in NBac and used by STG for test case generation are: (1) auto2nbac,
(2) nbac reachability analysis, (3) nbac coreachability analysis, and (4) nbac2auto. The following sec-
tions will describe the different phases of STG’s test case generation procedure in more detail.

1http://www.irisa.fr (last visit 2009-09-27)
2http://ralyx.inria.fr/2006/Raweb/vertecs/uid34.html (last visit 2009-09-27)
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Figure 3.1: STG’s work flow consists of three main steps: system modelling and test purpose
design, test generation, and test execution.

3.1.1 Completion

STG allows users to design test purposes which are not complete (see Section 2.3.3). Since test purposes
are required to be complete in order to generate test cases, STG has to add transitions to achieve com-
pleteness of a test purpose. According to Zinovieva-Leroux [80], a test purpose T P is made complete
with respect to its specification S by application of the following rules:

1. If a location q of T P has no outgoing transitions labelled with an action a of S, it is assumed
that the test purpose designer does not care about the presence of this action in the implementation
under test (IUT) at this location. Consequently, a self-loop labelled by a will be added to q.

2. If a location q of T P has outgoing transitions labelled with an action a of S, two cases have to be
distinguished:

(a) The test purpose designer wants to test the presence of the action a in the IUT under some
condition G. In other words, the transition labelled with a and guard G does not lead to the
Reject location. In this case, it is assumed that the user does not want to test the presence
of a under other conditions than G. Consequently, a new transition leading from q to Reject
labelled with a and having the guard ¬G will be added.

(b) The test purpose designer does not want to test the presence of the action a in the IUT under
a certain condition G, i.e., the transition labelled with a and G leads to a Reject location. In
this case, it is assumed that the user wants to test the presence of a in the implementation
under any other condition. Consequently, a self-loop labelled with a and ¬G will be added
to q.

For each of the transitions added during completion of the test purpose, the set of assignments is the
so-called set of identity assignments. This means that each variable of T P is assigned to itself.
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Figure 3.2: STG’s test case generation process.
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q
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a
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1 
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1
; var

2 
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2
; ...}

(a) Rule 1. There are no
transitions labelled by
a and starting at loca-
tion q. A self-loop la-
belled with a will be
added to q.

q q'

G
a
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1 
:= x; ...}
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                 ¬G
                    a
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1 
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(b) Rule 2.(a) The transition with ac-
tion a and guardG does not lead to
Reject. A transition leading to Re-
ject with a and guard ¬G will be
added.

q

G
a

{var
1 
:= x; ...}

Reject

                              ¬G
                                 a
{var

1 
:= var

1
; var

2 
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2
; ...}

(c) Rule 2.(b) The transition with ac-
tion a and guard G leads to Reject.
A self-loop with a and guard ¬G
will be added.

Figure 3.3: The rules for completing Input Output Symbolic Transition Systems. Regardless of
which rule has to be applied, the set of assignments is the set of identity assignments.

Figure 3.3 depicts the three rules for the completion of IOSTS. Continuous lines mark transitions
which have already been in the IOSTS before applying a completion rule. Dashed lines depict transitions
which are added through the application of a completion rule.

STG’s approach for completion differs slightly from the rules above. For a direct demonstration
of the differences, the same example as in the work of Zinovieva-Leroux [80] will be used. Figure 3.4
shows the completed test purpose, which is intended to test the coffee functionality of a vending machine
for hot beverages. Black continuous lines depict the incomplete test purpose, which has been designed
by the user. Dashed lines represent the transitions added during completion. Grey parts of the IOSTS
are only added by the algorithm described by Zinovieva-Leroux [80]. STG does not add self-loops in
Accept or Reject locations. It also does not add transitions labelled with actions which are only defined
in the specification but not in the test purpose itself. Since the actions ChooseBeverage, Coin, and the
internal action tau are not used in the test purpose, STG does not add transitions for them during test
purpose completion. However, STG is implemented correctly and the missing transitions are added
implicitly when the actions defined in the specification S are known. That is, when the product (see
Section 3.1.2) between the specification S and the test purpose T Pcomp, which is complete in terms of
STG, is calculated.

Example: Triangle Type Checker

To illustrate the completion mechanism on a practical example, the Triangle Type Checker specification
as introduced in Section 2.2.2 with the test purpose depicted in Figure 2.3 will be used. Since the
specification itself is rather small, the used test purpose is very simple and does not change through
STG’s completion. However, during the product calculation, it will be entirely completed, i.e., it will be
completed with respect to its specification.

The resulting IOSTS is depicted in Figure 3.5. Seven transitions have been added to the location
Start, one for each action defined in the specification and not labelling a transition starting at Start. Since
the action NotTriangle is already labelling a transition originating from location S1, only six transitions
have been added starting at S1: one for each action defined in the specification except for NotTriangle. It
is not specified if the Accept location is completed as well.
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Start

true [bool ]

sync Init() 

do {}

    Begin    

pBev = COFFEE [bool ]

sync Deliver!(pBev)

do {}

not vPaid < cPrice [bool ]

sync Return!(pRemVal)

do {}

true [bool ]

sync Coin?(pCoin) 

do {}

true [bool ]

sync tau()

do {}

vPaid < cPrice [bool ]

sync Return!(pRemVal)

do {}

true [bool ]

sync Cancel?()

do {}

not (pBev = COFFEE) [bool ]

sync Deliver!(pBev)

do {}

true [bool ]

sync ChooseBeverage?(pBev) 

do {}

Accept

Reject

*

*

Figure 3.4: The completion of a test purpose, which is intended to test the coffee functionality of a
vending machine for hot beverages. Black continuous lines depict the incomplete test
purpose designed by the tester. Dashed lines represent the completing transitions. Grey
parts are added by Zinovieva-Leroux’s algorithm [80], but not during STG’s comple-
tion process.

Start

true [bool ]
sync NotPositive!() 

do {}

true [bool ]
sync NotTriangle!() 

do {}

true [bool ]
sync IsTriangle!() 

do {}

true [bool ]
sync Init() 

do {}

true [bool ]
sync Scalene!() 

do {}

true [bool ]
sync Isoscele!() 

do {}

true [bool ]
sync Equilateral!() 

do {}

true [bool ]
sync Read?(p, q, r) 

do {}

S1

true [bool ]
sync NotPositive!() 

do {}

true [bool ]
sync IsTriangle!() 

do {}

true [bool ]
sync Scalene!() 

do {}

true [bool ]
sync NotTriangle!() 

do {}

true [bool ]
sync Isoscele!() 

do {}

true [bool ]
sync Equilateral!() 

do {}

true [bool ]
sync Read?(p, q, r) 

do {}

Accept

Figure 3.5: The test purpose shown in Figure 2.3, which has been completed with respect to its
specification shown in Figure 2.2.
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3.1.2 Product

According to Zinovieva-Leroux [80], the product operation is applied on two IOSTS: the system speci-
fication and the completed test purpose. It is performed to find out which behaviours of the specification
are accepted by the test purpose. The product operation will be denoted as × in the following and can
only be applied if the two IOSTS operands meet certain compatibility requirements. These requirements
as well as the product operation itself will be defined below and an illustration using the Triangle Type
Checker example will be given.

Compatible for Product

Two IOSTS I1 and I2 with data sets D1 = V1 ∪ P1 ∪ M1 and D2 = V2 ∪ P2 ∪ M2 and alphabets
Σ1 = Σi

1 ∪ Σo
1 ∪ Σint

1 and Σ2 = Σi
2 ∪ Σo

2 ∪ Σint
2 are compatible for product if the following conditions

hold [80]:

• I1 and I2 must not have shared variables or action messages (V1 ∩ V2 = ∅ and M1 ∩M2 = ∅).
Common system parameters are no problem. It is also allowed that the variables of I1 serve as
system parameters of I2 and vice versa. The only thing to consider in the case of common data is
that they must be of the same type in both IOSTS.

• I1 and I2 must have exactly the same alphabet for inputs, outputs, and internal actions (Σi
1 = Σi

2,
Σo

1 = Σo
2, and Σint

1 = Σint
2 ). The signatures of common actions must be the same in both IOSTS.

Product Operation

The product of two IOSTS I1 = 〈D1,Θ1, Q1, q01,Σ1, T1〉 and I2 = 〈D2,Θ2, Q2, q02,Σ2, T2〉, which
are compatible for product, is an IOSTS P = I1 × I2 having the following attributes [80]:

• D = V ∪ P ∪M with V = V1 ∪ V2, P = (P1 ∪ P2) \ (V1 ∪ V2), and M = M1

• Θ = Θ1 ∧Θ2

• Q = Q1 ×Q2

• q0 = 〈q01, q02〉 ∈ Q
• Σ = Σi ∪ Σo ∪ Σint with Σi = Σi

1 = Σi
2, Σo = Σo

1 = Σo
2, and Σint = Σint

1 = Σint
2

• T is calculated from T1 and T2:
A new symbolic transition t ∈ T is created for two symbolic transitions t1 ∈ T1 and t2 ∈ T2,
which are both labelled by the same action a ∈ (Σ1 = Σ2). t is obtained according to the
following inference rule:

〈q1, a, µ1, G1, A1, q
′
1〉 ∈ T1

〈q2, a, µ2, G2, A2, q
′
2〉 ∈ T2

a ∈ (Σ1 = Σ2)
〈〈q1, q2〉, a, µ1, G1 ∧G2[µ2/µ1], A1 ∪A2[µ2/µ1], 〈q′1, q′2〉〉 ∈ T

G2[µ2/µ1] denotes the guard of t2 in which each message mi
2 ∈ µ2 of t2’s action a is substituted

by the corresponding message mi
1 ∈ µ1. A2[µ2/µ1] denotes the set of assignments with the same

replacement of messages.

It is important to say that the STG prototype additionally inverts input to output and output to input
actions in the resulting product. Since the implementation has the same interface as the specification, the
product has to change its inputs to outputs and its outputs to inputs. This is necessary for the communi-
cation between the test case (which is based on the product) and the implementation under test.
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While using STG to generate test cases for the Session Initiation Protocol (SIP) Registrar (see Sec-
tion 6.2) and the Conference Protocol (see Section 6.3), it has been observed that the product of the
specification and the test purpose contains a large number of duplicate transitions. This redundancy does
not affect the correctness of the resulting product, but it could influence the performance of the remaining
steps of the test case generation.

Example: Triangle Type Checker

Again, the Triangle Type Checker example will be used for illustration of STG’s product calculation. The
IOSTS shown in Figure 2.2 will be denoted by S = 〈DS ,ΘS , QS , q0S ,ΣS , TS〉, the IOSTS depicted in
Figure 3.5 by T Pcomp = 〈DTPcomp ,ΘTPcomp , QTPcomp , q0TPcomp

,ΣTPcomp , TTPcomp〉. S and T Pcomp
are compatible for product since they do not have shared variables nor shared action messages. Their
alphabets are compatible since all common actions have the same signature in both IOSTS.

The product P = S × T Pcomp generated by STG is shown in Figure 3.6. It is calculated in the
following way:

• V = VS ∪ VTPcomp = {a, b, c} ∪ ∅ = {a, b, c}
P = (PS ∪ PTPcomp) \ (VS ∪ VTPcomp) = (∅ ∪ ∅) \ ({a, b, c} ∪ ∅) = ∅
M = MS = {p, q, r}
D = V ∪ P ∪M = {a, b, c} ∪ ∅ ∪ {p, q, r} = {a, b, c, p, q, r}: The data set is equal to the data
set of the IOSTS S.

• Θ = ΘS ∧ΘTPcomp = true ∧ true = true: The initial condition is true.

• q0 = 〈q0S , q0TPcomp
〉 = 〈Start, Start〉: The initial location is the pair consisting of the two initial

locations.

• The alphabets of input, output, and internal actions are the same as the ones of S.

• The symbolic transitions of P are computed in the following way:

– Starting from the initial location, both IOSTS can execute a transition labelled with Init. In
S, this transition leads to Readabc. In T Pcomp, it leads to S1. Hence, there is a transition
in the product, which starts at 〈Start, Start〉 and leads to 〈Readabc, S1〉. This transition is
labelled by the action Init. Its guard is true and its set of assignments is empty.

– Now, S is in location Readabc. T Pcomp is in location S1. Both IOSTS can fire one tran-
sition labelled by the same action: Read. In S, this transition leads to CheckPositive. In
T Pcomp, it loops back to S1. Hence, a new transition is constructed in P . It is leading
from 〈Readabc, S1〉 to 〈CheckPositive, S1〉. It is labelled by the common input action
Read?(p, q, r). The messages p, q, and r are the same as in the transition in S. The
guard of the newly created transition is the conjunction of the guards of the two transi-
tions in S and T Pcomp, where each message of T Pcomp is replaced by the correspond-
ing message in S. In this case, the new guard is true. The assignments carried by the
new transition in P is the union of the two sets of assignments in S and T Pcomp, which is
{a := p, b := q, c := r} ∪ ∅ = {a := p, b := q, c := r}.

– The rest of the transitions in P is computed analogously to the above examples.

3.1.3 Closure

Test cases are intended to react promptly to inputs from the implementation under test. According to
Rusu et al. [67], a straightforward way to ensure this, is to require input-completeness of the test case.
In some cases, internal actions are hiding input actions. In order to generate test cases which are input-
complete, all internal actions have to be removed from the product. This elimination of internal actions
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Start_Start

true [bool ]
sync Init() 

do {}

Readabc_S1

true [bool ]
sync Read!( p,  q,  r) 

do {a := p [int ]| b := q [int ]| c := r [int ]}

CheckType_S1

not (a = b or b = c or a = c) [bool ]
sync Scalene?() 

do {}

not (a = b and b = c) and (a = b or b = c or a = c) [bool ]
sync Isoscele?() 

do {}

a = b and b = c [bool ]
sync Equilateral?() 

do {}

CheckTriangle_S1

not (a + b > c and a + c > b and b + c > a) [bool ]
sync NotTriangle?() 

do {}

a + b > c and a + c > b and b + c > a [bool ]
sync IsTriangle?() 

do {}

End_Accept

End_S1

CheckPositive_S1

not (a > 0 and b > 0 and c > 0) [bool ]
sync NotPositive?() 

do {}

a > 0 and b > 0 and c > 0 [bool ]
sync tau() 

do {}

Figure 3.6: The IOSTS generated by STG when calculating the product of the IOSTS depicted in
Figure 2.2 and the IOSTS of Figure 2.3.

is called closure and works for IOSTS without cycles of internal actions as depicted in Figure 3.7 and
described below:

As depicted in Figure 3.7a, a sequence of internal actions τ1, τ2, ..., τn, which is leading to an input
action a, is given. The guard belonging to τi is Gi, the corresponding set of assignments is Ai for
1 ≤ i ≤ n. The input action is guarded by G and triggers the assignments A. µ are the messages of
action a. The whole sequence of symbolic transitions can be replaced by one symbolic transition t =
〈q0, a, µ,G1∧(G2◦A1)∧...∧(Gn◦An−1◦...◦A1)∧(G◦An◦An−1◦...◦A1), A◦An◦An−1◦...◦A1, qn+1〉
as shown in Figure 3.7b. f ◦ g denotes composition of the functions f and g.
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Figure 3.7: The principle of the closure operation to eliminate internal actions.

An approach for dealing with cycles of internal actions for specifications with deterministic control
structures like iterations and recursions was also proposed by Rusu et al. [67]. It is also indicated that
the application of their closure algorithm results in an IOSTS with the same traces as the original one,
but without internal actions. During experimentation with STG, it has been found out that the tool is not
always able to eliminate all internal actions.

Example: Triangle Type Checker

Figure 3.8 depicts the IOSTS generated by STG after applying the closure operation on the product
IOSTS of Figure 3.6. The product IOSTS contains one transition labelled with an internal action (from
CheckPositive S1 to CheckTriangle S1). This transition leads to two different input actions: NotTriangle
labels the transition from CheckTriangle S1 to End Accept. IsTriangle is the action of the transition from
CheckTriangle S1 to CheckType S1. These two transition sequences

1. CheckPositive S1
G1, τ, A1−−−−−−→ CheckTriangle S1

G, a, A−−−−→ End Accept

2. CheckPositive S1
G1, τ, A1−−−−−−→ CheckTriangle S1

G′, a′, A′−−−−−−→ CheckType S1

have to be closed. According to the above rules, each of the two transition sequences becomes one
transition:

1. CheckPositive S1
G1∧(G◦A1), a, A◦A1−−−−−−−−−−−−−→ End Accept

2. CheckPositive S1
G1∧(G′◦A1), a′, A′◦A1−−−−−−−−−−−−−−→ CheckType S1

G1 denotes the guard of the transition labelled with τ , which is a > 0 ∧ b > 0 ∧ c > 0. A1 is the
corresponding set of assignments, which is empty. G is the guard of the transition from CheckTriangle S1
to End Accept, which is ¬(a + b > c ∧ a + c > b ∧ b + c > a). a denotes the action of this transition,
which is NotTriangle?(). The set of assignments for this transition is represented by A, which is the
empty set again. Hence, the first transition sequence becomes one transition from CheckPositive S1 to
End Accept with

• guard G1 ∧ (G ◦A1), which is a > 0 ∧ b > 0 ∧ c > 0 ∧ ¬(a+ b > c ∧ a+ c > b ∧ b+ c > a),

• action a, which is NotTriangle?() and

• the set of assignments A ◦A1, which is the empty set.
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G′ denotes the guard of the transition from CheckTriangle S1 to CheckType S1, which is a + b >
c∧a+c > b∧b+c > a. a′ is the action labelling this transition, which is IsTriangle?(). A′ represents
the set of assignments for this transition, which is the empty set. Hence, the second transition sequence
becomes one transition from CheckPositive S1 to CheckType S1 with

• guard G1 ∧ (G′ ◦A1), which is a > 0 ∧ b > 0 ∧ c > 0 ∧ a+ b > c ∧ a+ c > b ∧ b+ c > a,

• action a′, which is IsTriangle?() and

• the set of assignments A′ ◦A1, which is the empty set.

STG removes the internal transition from the IOSTS and adds the two new transitions as described
above. STG does not remove the middle location CheckTriangle S1, because other transitions may lead
to it. The outgoing transitions of this middle location are kept as well. Hence, the IOSTS still has
the location CheckTriangle S1, which has no incoming transitions any more, but still has its outgoing
transitions labelled with NotTriangle and IsTriangle.

3.1.4 Determinization

In order to avoid a dependency of the verdicts on the internal choices of the tester, test cases must
be deterministic. The goal of the determinization step is to compute an IOSTS which has no non-
deterministic choices and is trace-equivalent to the closed product of S and T P [67].

Figure 3.9 is based on a figure of Rusu et al. [67] and shows a non-deterministic IOSTS and the trace-
equivalent IOSTS which is computed via determinization. A typical case of a non-deterministic choice
is depicted in Figure 3.9a. The same action a leads to two different locations and/or causes different
context updates. Since determinizing symbolic transition systems is difficult in general, Rusu et al. [67]
use a heuristic, which deals with common situations like the one depicted in Figure 3.9a. The basic
idea is to delay effects of internal actions until non-determinism can be resolved. Figure 3.9b shows
the application of this idea on the IOSTS of Figure 3.9a: The two symbolic transition, which are both
labelled with action a and therefore cause non-determinism, are split into three transitions guarded by:

1. G1 ∧ ¬G3: It is clear that the next location will be q1.

2. G3 ∧ ¬G1: It is clear that the next location will be q3.

3. G1∧G3: In this case, the next location can either be q1 or q3. The assignments are postponed until
the next observable action. A new location q1/3 is added. If b is the next action, the assignments
A1 should have been carried out. If the next action is c, A3 should have been used. The execution
of the delayed assignments is accomplished by composing A1 (resp. A3) with (a) the guard G2

(resp. G4) and (b) the assignments of the observable action A2 (resp. A4).

Of course, if b and c were the same action, the whole procedure would have to be applied again and
it might not terminate. According to Zinovieva-Leroux [80], the current version of STG does not support
determinization yet.

3.1.5 Test Case Selection: Reachability and Coreachability

According to Zinovieva-Leroux [80], the IOSTS which has been generated so far (see Figure 3.8) is
already a valid test case. Nevertheless, it is bigger than necessary. Some locations may be unreachable,
e.g., in Figure 3.8, it is obvious that the location CheckTriangle S1 cannot be reached. For simplifi-
cation and selection of a smaller but still correct test case, reachability and coreachability analyses are
performed.

The selection algorithm relies on the sets of reachable and coreachable states of an IOSTS. The con-
struction of these sets is not directly implemented in STG. They are calculated by the verification and
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Figure 3.9: The principle of the determinization operation.

slicing tool NBac (see Section 3.3.1). In general, reachability and coreachability problems are undecid-
able, i.e., an IOSTS may have an unbounded state space. Hence, NBac calculates over-approximations
of the sets of reachable and coreachable states [80].

In the following, it will be explained how the sets of reachable and coreachable states are defined,
but not how their approximations are calculated. Furthermore, the selection algorithm used in the STG
tool will be explained.

Set of Reachable States The set of reachable states contains all states s of an IOSTS I, for which the
following condition holds: ∃σ ∈ traces(I), ∃s0 ∈ S0 : s0

σ⇒ s. In other words, a state s of an
IOSTS I belongs to the set of reachable states if there exists a trace σ that ends in s [80].

Set of Coreachable States The set of coreachable states contains all states s of an IOSTS I, for which
the following condition holds: ∃σ ∈ (Υ ∪ Ω)∗, ∃sacc ∈ Sacc : s σ⇒ sacc whereby Sacc denotes
the set of Accept states. In other words, a state s of an IOSTS I belongs to the set of coreachable
states if it is possible to go from s to some accepting state sacc [80].

Test Case Selection Algorithm

The selection algorithm is intended to generate an IOSTS with fewer unreachable states, which may lead
to the satisfaction of the used test purpose [80]. According to Zinovieva-Leroux [80], the inversion of
input and output actions is also performed during test case selection. Actually, STG has already inverted
inputs to outputs and vice versa during the calculation of the product (see Section 3.1.2).

The selection algorithm performed by STG consists of three steps3:

1. First Reachability Analysis:
STG calculates the set of reachable states of the closed product IOSTS with the help of NBac.
All unreachable states and not fireable transitions (transitions with an unsatisfiable guard) will be
removed from the IOSTS [80]. The resulting IOSTS will be called Ireach in the following.

3http://www.irisa.fr/prive/ployette/stg-doc/stg-web_2.html (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_2.html
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2. Coreachability Analysis:
STG calculates the set of coreachable states of the IOSTS resulting from the first reachability
analysis (Ireach) with the help of NBac. When the set of coreachable states is known, the following
steps are performed on Ireach to generate the resulting IOSTS Icoreach [80]:

(a) All transitions labelled by an output action and leaving the set of coreachable states will be
removed. If such a transition was executed, it would not be possible to reach an Accept state
any more. Since output means output of the test case, the transition can be removed to keep
a chance of reaching an Accept state.

(b) All transitions labelled by an input action and leaving the set of coreachable states will be
redirected to the location Inconclusive. Since input means input from the implementation
under test, the transition can not be removed. Each valid input must be accepted by the test
case. The transition will be redirected to an Inconclusive location, because after executing
this transition no Accept state can be reached any more.

(c) The guards of the other transitions will be modified by taking into account the information
about coreachable states. This information includes conditions on the IOSTS data (system
parameters, variables, and messages), which correspond to weakest preconditions (intro-
duced by Dijkstra [31]). These conditions can be used to strengthen the guards of other
transitions in order to increase the probability to reach some Accept state and to avoid incon-
clusiveness.
This guard strengthening may require to add transitions starting at the same location as the
strengthened transition and leading to the location Inconclusive. This is particularly the case
when the guard of a transition labelled by an input action is strengthened. In this case, it is
necessary to ensure that the test case still rejects only non-conformant implementations. The
guard of this new transition is a conjunction of the original guard and the negation of the
strengthening condition.

3. Second Reachability Analysis:
Since the coreachability analysis could have produced unreachable states in the resulting IOSTS
Icoreach, a second reachability analysis is performed.

Example: Triangle Type Checker

The Triangle Type Checker example will be used to explain STG’s test case selection algorithm by
looking at the results of the reachability/coreachability analyses.

First Reachability Analysis: Figure 3.10 depicts STG’s result of the first reachability analysis, which
has been applied to the closed product IOSTS shown in Figure 3.8. It is clear that the location Check-
Triangle S1 in Figure 3.8 is not in the set of reachable states, since (a) it is not the initial location of the
IOSTS and (b) it has no predecessors. During the reachability analysis, all unreachable locations will be
removed. Hence, CheckTriangle S1 and its transitions

• CheckTriangle S1→ End Accept

• CheckTriangle S1→ CheckType S1

will not be part of the IOSTS Ireach any more. The other locations are reachable and part of Ireach.

The guards of the transitions have been transformed by NBac into BDDs (Binary Decision Dia-
grams), respectively MTBDDs (Multi-Terminal Binary Decision Diagrams), by applying the Shannon
Cofactor Expansion. Since an elaboration on (MT)BDDs and Shannon Cofactor Expansion is not essen-
tial for understanding STG’s test generation process, we refer to corresponding literature (e.g., Fujita et
al. [39]) for further information about this topic.



Chapter 3. Existing Approach using Reachability Analysis 36

Start_Start

true [bool ]
sync Init() 

do {}

End_Accept CheckType_S1

 c - a >=0 and  c - a >0 and  c - b >=0 and  c - b >0 and  - a + b >0 or

 c - a >=0 and  c - a >0 and  c - b >=0 and  c - b >0 and  a - b >0 or
 c - a >=0 and  c - a >0 and  - c + b >0 and  - a + b >0 or

 c - a >=0 and  c - a >0 and  - c + b >0 and  a - b >0 or
 - c + a >0 and  c - b >=0 and  c - b >0 and  - a + b >0 or
 - c + a >0 and  c - b >=0 and  c - b >0 and  a - b >0 or

 - c + a >0 and  - c + b >0 and  - a + b >0 or
 - c + a >0 and  - c + b >0 and  a - b >0 [bool ]

sync Scalene?() 
do {}

 - c + a =0 and  - c + b =0 and  - a + b >0 or
 - c + a =0 and  - c + b =0 and  a - b >0 or

 - c + a =0 and  c - b >0 or

 - c + a =0 and  - c + b >0 or
 - c + b =0 and  c - a >=0 and  c - a >0 and  - a + b >0 or

 - c + b =0 and  c - a >=0 and  c - a >0 and  a - b >0 or
 a - b =0 and  c - a >=0 and  c - a >0 and  c - b >0 or

 a - b =0 and  c - a >=0 and  c - a >0 and  - c + b >0 or

 - c + b =0 and  - c + a >0 and  - a + b >0 or
 - c + b =0 and  - c + a >0 and  a - b >0 or

 a - b =0 and  - c + a >0 and  c - b >0 or
 a - b =0 and  - c + a >0 and  - c + b >0 [bool ]

sync Isoscele?() 

do {}

 - c + b =0 and  a - b =0 [bool ]
sync Equilateral?() 

do {}

End_S1

CheckPositive_S1

 c - 1 >=0 and  b - 1 >=0 and  a - 1 >=0 and
( c - a + b - 1 >=0 and  c + a - b - 1 >=0 and  c - a - b + 1 >0 or

 c - a + b - 1 >=0 and  - c - a + b + 1 >0 or  - c + a - b + 1 >0) [bool ]
sync NotTriangle?() 

do {}

 c - a + b - 1 >=0 and
 c + a - b - 1 >=0 and

 - c + a + b - 1 >=0 and  c - 1 >=0 and  b - 1 >=0 and  a - 1 >=0 [bool ]
sync IsTriangle?() 

do {}

 c - 1 >=0 and  b - 1 >=0 and  - a + 1 >0 or
 c - 1 >=0 and  - b + 1 >0 or  - c + 1 >0 [bool ]

sync NotPositive?() 

do {}

Readabc_S1

true [bool ]
sync Read!( p,  q,  r) 

do {a := p [int ]| b := q [int ]| c := r [int ]}

Figure 3.10: The IOSTS Ireach generated by STG after the first reachability analysis applied to
the IOSTS depicted in Figure 3.8.

Coreachability Analysis: Figure 3.11 shows the IOSTS Icoreach generated by STG during the core-
achability analysis. The set of coreachable states has been calculated for the IOSTS Ireach shown in
Figure 3.10. The states with the locations End Accept, CheckPositive S1, Readabc S1, and Start Start
are coreachable. When the set of coreachable states is known, the following actions can be performed to
generate Icoreach out of Ireach:

• The transitions leaving CheckPositive S1, leading to a not coreachable location, and labelled by an
input action will be redirected to a newly introduced location inconc (inconclusive). The affected
transitions and their replacements are:

CheckPositive S1
IsTriangle?−−−−−−−→ CheckType S1 ⇒ CheckPositive S1

IsTriangle?−−−−−−−→ inconc

CheckPositive S1 NotPositive?−−−−−−−−→ End S1 ⇒ CheckPositive S1 NotPositive?−−−−−−−−→ inconc

• Due to the redirection of the transition leading from CheckPositive S1 to CheckType S1, the latter
does not have any incoming transitions any more. Since CheckType S1 is not coreachable, its
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outgoing transitions will be redirected to the location inconc as well.

• The guard of the transition from Readabc S1 to CheckPositive S1 has been strengthened by adding
the condition p− 1 ≥ 0∧ q− 1 ≥ 0∧ r− 1 ≥ 0, which is equivalent to p > 0∧ q > 0∧ r > 0 for
integer values. Since this transition is labelled by an output action, no additional transition leading
to an inconclusive location is necessary.

• NBac tries to strengthen the guard of the transition from CheckPositive S1 to End Accept, although
no new information can be added. Thus, the guard looks more complicated, but is equivalent to
the guard of the same transition in Ireach from Figure 3.10. Since this transition is labelled by
an input action and it has been tried to strengthen its guard, a transition from CheckPositive S1
to inconc is introduced. Its guard is the conjunction of the original guard and the negation of the
strengthening condition. Since the original guard could not be strengthened, the guard of the newly
added transition is the same as the original one. This means that the guard of the new transition is
not satisfiable.

Second Reachability Analysis: Figure 2.4 has already shown the final test case, whereby the Fail
locations are still missing. This IOSTS is generated by applying the second reachability analysis on the
IOSTS depicted in Figure 3.11.

CheckType S1 is unreachable. Hence, it has been removed together with its outgoing transitions.
The transition labelled with NotTriangle from CheckPositive S1 to inconc has been removed, because
its guard is not satisfiable. Note that this transition has been added due to guard strengthening during
coreachability analysis.

The transition from CheckPositive S1 to inconc labelled by IsTriangle is kept in the resulting IOSTS.
Its guard can be made weaker, because the guard of the only preceding transition from Readabc S1 to
CheckPositive S1 has been strengthened by p− 1 ≥ 0 ∧ q − 1 ≥ 0 ∧ r − 1 ≥ 0. Since the assignments
of this transition are a := p | b := q | c := r, the condition c− 1 ≥ 0∧ b− 1 ≥ 0∧ a− 1 ≥ 0 is assured
in this state of the IOSTS and it can be removed from the guard.

For the same reason, the guard of the transition from CheckPositive S1 to inconc labelled with Not-
Positive has become unsatisfiable. The conjunction of the original guard (c−1 ≥ 0∧b−1 ≥ 0∧−a+1 >
0 ∨ c − 1 ≥ 0 ∧ −b + 1 > 0 ∨ −c + 1 > 0) and c − 1 ≥ 0 ∧ b − 1 ≥ 0 ∧ a − 1 ≥ 0 is not satisfiable.
Hence, this transition has to be removed.

3.1.6 Input-Completion and Transformation into Java

As defined in Section 2.3.4, a test case has to be input-complete except for the locations Accept, Reject,
and Inconclusive. This is not yet the case for the generated test case of Figure 2.4. Zinovieva-Leroux [80]
presents the following algorithm for making a generated test case T C input-complete:

For each location q ∈ QT C \ {Accept, Inconclusive, Reject} and each input action a ∈ Σi
T C :

1. If there are one or more transitions starting at q which are labelled with input action a, and if the
conjunction of the guards of these transitions is not equal to true, then a new transition originating
at q has to be created. It leads to the new location Fail (respectively Reject), is labelled by a, and
is guarded by the negated disjunction of the guards of the other transitions labelled with a and
starting from q.

2. If there is no transition labelled with a and starting at q, a new transition starting at q and leading
to Fail/Reject has to be created. It is labelled with a and its guard is true.

In both cases, the set of assignments of the newly introduced transitions is the so-called set of identity
assignments. This means that each variable of T C is assigned to itself.
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The process of making the test case input-complete is implemented within the transformation of the
IOSTS test case into a Java (respectively SJava, see Section 3.2.1) test case. The generated Java test case
is ready to be executed against an implementation under test. The test case execution process will be
elaborated in the next section of this chapter.

Example: Triangle Type Checker

Figure 3.12 shows the final test case. It was generated by making the test case resulting from the second
reachability analysis (see Figure 2.4) input-complete. Four transitions leading to the location Fail have
been added. To keep the IOSTS graph well-arranged, some transitions have been merged.

The transition from Readabc S1 to Fail represents six transitions. Each of them has the same source
and destination location. They only differ in their actions. The set {∗} denotes the six input actions Not-
Positive, NotTriangle, IsTriangle, Equilateral, Isoscele, and Scalene. These input actions are labelling
the six merged transitions. The transition from CheckPositive S1 to Fail labelled by {∗} \ {NotTriangle,
IsTriangle} represents four transitions labelled by the input actions NotPositive, Equilateral, Isoscele,
and Scalene. These transitions were created according to Rule 2 of the algorithm for making a test case
input-complete.

Rule 1 of the input-completion algorithm causes the other two transitions which have been added.
Since there are two transitions labelled with an input action (NotTriangle and IsTriangle) originating
from CheckPositive S1 in Figure 2.4, two transitions labelled with the same input actions leading to the
Fail location have been added in Figure 3.12. Each of these transitions is guarded by the negated guard
of the corresponding existing transition. The captions of the transitions labelled with NotTriangle have
been coloured red. The captions of the transitions labelled with IsTriangle are blue. The guards of the
transitions leading to Fail have been abbreviated for clarity.

3.2 Test Case Execution with STG

This section is intended to explain how STG executes the generated test cases. STG uses external com-
ponents for test case execution, which will be introduced in the beginning of this section. Afterwards,
requirements for interfacing with the implementation under test will be discussed. Finally, the test exe-
cution process will be explicated.

3.2.1 External Tools

For the execution of the generated test case, two external tools are employed by STG: the SJava compiler
and the constraint solver Lucky. Both tools are included in the STG backend package available in the
download section of the STG web page4.

SJava

SJava5, shorthand for Synchronous Java, was developed at EPFL (École Polytechnique fédérale de Lau-
sanne), Switzerland. It is an extension of the Java programming language designed to simplify concur-
rency issues in Java. Although SJava source code has to be compiled with its own compiler, the produced
byte code is executable with any Java Runtime Environment.

SJava is based on the concept of Synchronous Active Objects (SAO), which was introduced by
Petitpierre [59]. In an active object, a thread is tightly bound to the object. Each active object has a run
method, which defines its behaviour. The active object’s thread is started at the instantiation of the object

4http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html (last visit 2009-09-27)
5http://ltiwww.epfl.ch/sJava/ (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html
http://ltiwww.epfl.ch/sJava/
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1 1 public active class B {

2 public active class A { 2    public void method1()

3    public void run () { 3    {...}

4       ... 4

5       B objectB = new B(); 5    public void run () {

6       ... 6       ...

7       objectB.method1(); 7       accept method1;

8       ... 8       ...

9    } 9    }

10 } 10 }

(a) Perspective of the caller (objectA): objectA calls objectB’s method1 and blocks
until objectB accepts this call.

1 1 public active class B {

2 public active class A { 2    public void method1()

3    public void run () { 3    {...}

4       ... 4

5       B objectB = new B(); 5    public void run () {

6       ... 6       ...

7       objectB.method1(); 7       accept method1;

8       ... 8       ...

9    } 9    }

10 } 10 }

(b) Perspective of the callee (objectB): When objectB gets to the accept statement in
line 7, it blocks until its method1 has been executed.

Figure 3.13: SJava’s synchronization mechanism can be seen as a rendezvous between two Syn-
chronous Active Objects.

and killed when the object is destructed. In SJava programs, every thread has to be encapsulated into an
object. This object’s class is marked with the keyword active.

Two active objects communicate via method calls, which have to be synchronized because of con-
currency. This synchronization is implemented via the keyword accept. Figure 3.13 is an adaption of
a figure created by Petitpierre [59] and shows the two perspectives of this synchronization. Figure 3.13a
depicts the caller’s point of view (view of objectA). objectA calls objectB’s method1 and blocks until
objectB accepts this call. The callee’s perspective, the view of objectB, is shown in Figure 3.13b. When
objectB gets to the accept statement in line 7, objectB blocks until its method1 has been executed.
Therefore, the synchronization can be seen as a rendezvous (as defined by Hoare [45]) between two
SAOs in which both objects/threads have to be in line 7 (call statement, respectively accept statement).
During their rendezvous, the called method is executed.

For more sophisticated applications, select, when (guard) and waituntil (timeout) statements
have been introduced in SJava. Listing 3.1 shows an example of a select statement according to
Petitpierre [59]. The first statement in each case has to be a so-called trigger: a method invocation, a
possibly guarded accept statement, or a timeout. case statements with guards evaluating to false are
omitted for the current execution of the select statement.
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1 public void run ( ) {
2 . . .
3 for ( ; ; ) {
4 select {
5 case
6 result = object .methodA (argument ) ;
7 . . .
8 case
9 when (guard ) accept methodB ;

10 . . .
11 case
12 waituntil (currentTimeMillis ( ) +1000) ;
13 . . .
14 }
15 }
16 }

Listing 3.1: Example of the SJava select statement.

Lucky

For test case execution, STG employs a constraint solver. According to Jeannet et al. [49], this constraint
solver is used to perform the following two tasks:

1. It is used to generate concrete values for the messages of test case outputs, such that the corre-
sponding guard is fulfilled and the goal specified in the used test purpose can be achieved.

2. It is used to decide which transition can be fired when the test case receives some input from the
implementation.

For the STG execution framework, the constraint solver Lucky6 was selected to perform these tasks.

3.2.2 Implementation under Test

In order to execute test cases with the STG backend, an interface for the implementation under test (IUT)
has to be implemented. In the literature, an exact specification of this interface is hard to find. Two rather
outdated sources (Belinfante et al. [10] and Clarke et al. [24]) provide basic information about how this
interface should look like. They deal with an earlier version of STG, which generated C++ test cases.

According to Clarke et al. [24], the IUT is assumed to be a C++ class. The IUT and the test case
are executed in parallel during testing. They communicate via method invocations: inputs to the IUT
become synchronous method calls with arguments representing the action’s messages. The output from
the IUT is the return value of the method invocation. In other words, the interface class for the IUT
has to implement a method for each action of the test case. These methods must have the same signa-
tures as their corresponding actions, so that the action’s messages can be passed through the method’s
parameters [10].

As already mentioned, the current version of STG generates Java test cases and literature on the
IUT’s interface concerning the current version of STG is hard to find. In the following, the Triangle Type
Checker example will be used to demonstrate how the interface for the IUT is supposed to look like in
order to work with the current version of STG.

6http://www-verimag.imag.fr/˜synchron/lurette/lucky.html (last visit 2009-09-27)

http://www-verimag.imag.fr/~synchron/lurette/lucky.html
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Example: Triangle Type Checker

triangle.java contains the implementation of the Triangle Type Checker example and is included
in the archive stg backend.tgz (folder EssaiTri). The archive can be downloaded from the
STG web page7. The class triangle implements the Java Runnable interface, since the implementation
and the test case will be executed in parallel during testing. It uses different classes provided by the
STG backend. They are located in the sub-folder fichiersjavaainclure and implement the Java
Serializable interface:

• IfGate represents the gates/actions of an IOSTS.

• IostsMess represents an IOSTS action and its messages.

• MessInt is derived from IostsMess and represents actions with integer messages.

• Void represents the empty message.

The implementation breaks with the principles introduced by Belinfante et al. [10] and Clarke et al. [24].
The communication of the implementation and the tester is not realized by direct method invocation, but
via streams. There is an OutputStream for the implementation’s output and an InputStream for the input
received by the implementation. The methods provided by the implementation are:

• void run() implements the main program logic.

• void setInput(InputStream) sets the InputStream.

• void setOutput(OutputStream) sets the OutputStream.

• void send(IostsMess) sends the specified IOSTS action with its messages by writing it to the Out-
putStream.

• void NotPositive() is called if the output action NotPositive should be sent. It constructs the cor-
responding IostsMess and sends it by invoking the send method. For each action (NotTriangle,
Scalene, . . . ), one method is implemented like the one for NotPositive.

The class providing the interface to the implementation must have the same name as the specifica-
tion file. For example, if the system specification is in the file triangle.stg, the interface to the
implementation has to be in the file triangle.java.

3.2.3 Test Case Execution Process

In the following, a description of how STG executes its generated test cases will be given. The main roles
and their interactions will be described. For better understanding, a sequence diagram for the Triangle
Type Checker example will be presented.

The Actors and their Interactions

The main actors in the execution process of STG’s test cases are:

1. The implementation under test.

2. The tester, which is the test case generated by STG.

3. The implementation manager, which is also created by STG during test case generation.
7http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html
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Implementation

Implementation
Manager

input

output

1) output message
    (from tester)

2) input message
    (for implementation)

3) output message
    (from implementation)

4) input message
    (for tester)

Tester

method invocation streams & polling

Figure 3.14: A schematic illustration of STG’s test case execution: The tester’s output is not sent
directly to the implementation under test (IUT), but to the implementation manager.
The latter is a mediator between the tester and the IUT and forwards the received
output to the IUT, which receives it as input. The same applies for communication
into the other direction.

These three actors and their relationships are represented in Figure 3.14. The tester sends some
output, which is intended for the implementation under test (IUT). This output is not sent directly to
the IUT, but to the implementation manager, which is a mediator between the tester and the IUT. The
implementation manager forwards the received output from the tester to the IUT, which receives it as
input. The same applies for communication into the other direction.

The mechanism used for communication between the implementation manager and the IUT differs
from the one used for communication between the implementation manager and the tester. The tester
and the implementation manager interact via method invocations, while the IUT and the implementation
manager interact via streams and polling.

Three files, which have been generated during test case generation (see Section 3.1), will be used
during test execution:

TestDrive.sjava is the main class for test execution. If the implementation under test has parameters, it
parses them from the command line. Additionally, it reads in a user-defined delay value, which will
be used as timeout value during message passing. The test driver instantiates the implementation
interface class, the test class, and the implementation manager. The implementation manager gets
three important pieces of information from the test driver: the tester (an instance of the test class),
the implementation under test (an instance of the implementation interface class) and the delay
value, which was read in before.

ImpManager.sjava contains the implementation manager class. The most important methods provided
by this class are:

• void receive(IostsMess) is used for receiving messages from the tester. It forwards the input
from the tester to the implementation under test. This method is called by the tester to send
its output to the implementation via the implementation manager.

• void checkOutput() checks if some output from the implementation is available (see Fig-
ure 3.14, “output”). If output from the implementation is available, it can be forwarded to the
tester by invoking the tester’s receive method.

• void run() sets the implementation manager’s input and output streams needed for commu-
nication with the implementation under test. It starts the implementation under test in a new
thread and subsequently executes a loop until the test case has finished.
The loop contains an SJava select statement (see Section 3.2.1), which distinguishes three
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cases: The first one applies if some output from the implementation has to be forwarded to
the tester. Then the tester’s receive method is called.
The second and the third case apply if there is nothing to forward. The second case accepts
a call of the implementation manager’s own receive method and starts a timeout. The value
for the timeout (delay) has been specified by the user when starting the test execution. The
third case calls the tester’s release method. Hence, if the implementation manager’s receive
method is not invoked while it is accepted, the implementation manager calls the tester’s re-
lease method.
After each execution of the select statement, the decision parameters are updated. In other
words, it is checked if the implementation has sent a message.

The implementation manager and the tester communicate by invoking each others’ receive meth-
ods. For interaction with the IUT, the implementation manager employs streams and polling.

basenameTest.sjava is the SJava class for the generated test case. basename stands for the name of the
STG specification file. For example, for the specification file triangle.stg, the test class file
will be named triangleTest.sjava.
The test class uses a symbolic transition system for modelling the generated test case. The base
classes of this transition system can be found in the folder fichiersjavaainclure of the
archive stg backend.tgz, which can be downloaded from the STG web page8. The test class
extends these base classes by adding input and output transitions to the locations (class IostsState)
and by adding actions, guards, and assignments to the transitions (class IostsTrans). It calls the
Lucky constraint solver to generate concrete input values for the implementation under test and for
validating the guard to determine if a transition is fireable or not.

The most important methods provided by this class are:

• void receive(IostsMess) is used for receiving messages from the implementation manager.
This method is called by the implementation manager to forward output from the implemen-
tation under test to the tester. receive additionally causes the transition system to execute a
fireable transition of the current location and switch over to the next location.

• void release() causes the test case to fire a transition and move on to the next location of the
transition system.

• void run() initializes the transition system and executes a loop until no more transition in the
current state of the transition system is ready to be fired. The loop contains an SJava select
statement (see Section 3.2.1), which has three cases:
The first one applies if a message is ready to be sent to the implementation manager (the
implementation under test respectively). The receive method of the implementation manager
will be called in order to deliver the message to the implementation under test. The second
and the third case statement apply if no message is ready for sending. Then either a call of
the tester’s own receive (case 2) or of its release (case 3) method is accepted.
In other words, if there is a message ready to be sent, it will be transmitted to the imple-
mentation manager. Otherwise the tester is either expecting to receive a message and to
fire a transition of the transition system or expecting a command to fire a transition without
receiving a message.

Example: Triangle Type Checker

For a better understanding of the roles and their interactions, which were explained previously, the se-
quence diagram of an example execution shall be discussed.

Figure 3.15 is the sequence diagram for an execution of the test case depicted in Figure 2.4. At
first, the test driver instantiates the class interfacing the implementation. In the Triangle Type Checker

8http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html
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Figure 3.15: Sequence diagram for a test execution of the test case shown in Figure 2.4.
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example, this class is called triangle and is depicted in red in the diagram. Subsequently, the test driver
instantiates the implementation manager (green) and the test class (blue), which is called triangleTest
in this example. Since the implementation manager and the tester are declared active (see Section 3.2.1
about SJava), instantiating them also means invoking their run methods.

By now, two threads have been started: The tester initializes its transition system by setting the
current state and waits for input from the implementation manager. In the meantime, the implementation
manager connects itself with the implementation by setting the streams needed for communication and
starts the implementation in a new thread. Henceforward, each of the main actors has its own thread.
The tester, the implementation, and the implementation manager run in parallel and have to synchronize
each other. The tester and the implementation manager handle synchronization via mechanisms like
accept and select statements introduced by SJava (see Section 3.2.1). The implementation and the
implementation manager communicate via polling for input data from the other party.

The implementation under test expects to receive three integer values as input and has no output to
send. The tester has nothing to send in its current state as well and accepts either a call of its receive or of
its release method. The implementation manager detects that no input will be received - neither from the
tester nor from the implementation. In this case, it calls the tester’s release method and causes the test
case to move on in its transition system. The tester fires Transition1 and traverses from state “Start Start”
to state “Readabc S1”.

This scenario repeats once more, since still no input is ready to be sent: The tester moves from state
“Readabc S1” to state “CheckPositive S1” by firing Transition9. By executing this transition, the tester
produces input data for the implementation and sends the message to the implementation manager by
invoking its receive method. The implementation manager accepts this method call and forwards the
input from the tester to the implementation under test by writing the message to the implementation’s
input stream. The implementation, which is still polling for input, detects the message and processes it.
The result “NotTriangle” will be written to the implementation’s output stream.

The implementation manager, which is polling for output from the implementation, detects the mes-
sage and forwards it to the tester by invoking its receive method. The tester accepts the call and executes
Transition10, which leads from state “CheckPositive S1” to state “End Accept” and whose action is
“NotTriangle”. Once again, the implementation manager calls the tester’s release method. The tester is
now in state “End Accept”, which has no more outgoing transitions. Since no more transition can be
fired, the test execution is aborted. The resulting verdict is “Pass”.

3.3 STG Usage

3.3.1 Installation

This section is supposed to give installation support for the STG tool. As there are many pieces of soft-
ware which have to be installed and configured properly in order to run STG, this document is supposed
to be an installation help by reporting already made experiences.

As a prerequisite for a successful installation of the STG tool, the following programs and libraries
have to be installed and configured properly:

1. NBac

2. MLCuddIDL

3. Lucky

4. Graphviz -Dotty

The required installation packages can be found in the download section of the official STG web page9.
9http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html
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Generally, installation instructions are provided by each software package, which should contain suf-
ficient information to install the respective tool. In the following, additional hints will be given and
experienced problems will be described.

NBac

NBac is a verification and slicing tool developed by Bertrand Jeannet. According to the official NBac
web page10, reachability (forward) and coreachability (backward) analyses and a combination thereof
can be performed. STG employs NBac to execute reachability and coreachability analyses to prune the
test case [49]. It is not required to explicitly install NBac, since the required binaries are included in the
STG packages.

MLCuddIDL

According to Bertrand Jeannet’s MLCuddIDL web page11, MLCuddIDL is a C library allowing to inter-
face with the CUDD BDD library for OCaml. The following requirements need to be met for a proper
installation of MLCuddIDL:

1. gcc (version 4.2.3)

2. CUDD BDD library (version 2.4.1)

3. CUDDAUX library (not versioned)

4. OCaml (version 3.10.0)

5. CamlIDL stub code generator (version 1.05)

The parenthesized numbers state the version numbers used in the reference installation of this thesis.

It is recommended to keep the installation order from the list above, because some of the tools and
libraries are built on their predecessors in the list. For example, CUDDAUX needs the CUDD BDD
library to be already installed.

A notably remark is that each of the above tools except of OCaml was downloaded and installed
manually according to the installation instructions in the corresponding README file. OCaml was
installed via apt-get install ocaml on a Debian-based system.

For the installation of MLCuddIDL, ocamlc.opt is required. According to the manpages of ocamlc,
ocamlc.opt is not available in all installations of Objective Caml. This was the case in the reference
installation of this work. Therefore a new folder bin had to be created in the ocaml installation directory
(e.g., /usr/lib/ocaml/3.10.0/bin) and the following two symbolic links had to be added in this
new bin directory as well as in /usr/bin:

1. ocamlc.opt links to the file ocamlc, which is located in /usr/bin for the reference installation.

2. ocamlopt.opt links to the file ocamlopt, which is located in /usr/bin for the reference installa-
tion.

This workaround can be used without risk, because according to the ocamlc manpages, ocamlc.opt be-
haves exactly the same as ocamlc but it compiles faster. The same holds for ocamlopt.opt and ocamlopt.

10http://pop-art.inrialpes.fr/people/bjeannet/nbac/index_1.html
(last visit 2009-09-27)

11http://mlxxxidl.gforge.inria.fr/mlcuddidl/index.html (last visit 2009-09-27)

http://pop-art.inrialpes.fr/people/bjeannet/nbac/index_1.html
http://mlxxxidl.gforge.inria.fr/mlcuddidl/index.html
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Lucky

Lucky12 is a constraint solver used in the STG execution framework to produce appropriate test case
inputs and to check constraints. The STG execution framework includes an already compiled library of
LUCKY, which makes an additional installation unnecessary.

Graphviz - Dotty

Graphviz is a program widely used for graph visualization [34]. It can either be downloaded and in-
stalled by following the download link on the Graphviz web page13 or preferably by using the command
apt-get install graphviz on Debian-based systems.

STG

After the installation of all required tools, STG can be installed. There are two packages available for
download14, which are both needed:

1. stg linux.tgz: The test generation tool itself, which offers to generate Java test cases.

2. stg backend.tgz: The test execution framework, which allows to execute the generated tests
against a given implementation.

Both packages need to be extracted. The best way to run both components of STG is to use shell scripts,
which will be introduced in Section 3.3.2.

Note that STG is not versioned. The files used for this installation have been downloaded from the
STG web page15 dated with August 28, 2008.

3.3.2 Executing STG

This section gives a short description of how to automatically generate and execute test cases with STG.

Test Case Generation

As already mentioned in Section 3.3.1, the test generation component of STG is contained in the archive
stg linux.tgz. To generate Java test cases, the following two IOSTS are needed:

1. A specification of the system.

2. A test purpose to select the part of the specification which shall be tested.

The most comfortable way to generate test cases with STG is to use shell scripts. Listing 3.2 shows
the script we used for test case generation. It can be reused with adoption of the user-specific paths.

At first, the directory stg linux, which includes the STG executable file, has to be added to the
PATH variable. In Line 5, the rung file is copied from stg linux/tmp to the global tmp directory as
described in the INSTALL file of stg linux. Since the global tmp directory is purged from time to
time, the most convenient way to ensure the existence of the rung file is to automatically copy it every
time.

The script expects the STG specification file to be located in a directory called spec (see Line 8 in
Listing 3.2). After changing into the spec directory, the required NBac library files, which are located in

12http://www-verimag.imag.fr/˜synchron/lurette/lucky.html (last visit 2009-09-27)
13http://www.graphviz.org/ (last visit 2009-09-27)
14http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html (last visit 2009-09-27)
15http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html (last visit 2009-09-27)

http://www-verimag.imag.fr/~synchron/lurette/lucky.html
http://www.graphviz.org/
http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html
http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html
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1 # e x t e n d t h e PATH v a r i a b l e by add ing t h e pa th t o t h e s t g l i n u x f o l d e r
2 export PATH=$PATH : / stg_linux
3
4 # copy ”rung” f i l e i n o r d e r t o be a b l e t o e x e c u t e t h e s t g t o o l
5 cp /stg_linux /tmp /rung /tmp /rung
6
7 # go t o d i r e c t o r y ” spec ” ( c o n t a i n s s p e c i f i c a t i o n f i l e <name . s t g >)
8 cd spec
9

10 # c r e a t e f o l d e r ” l i b ” i n work ing d i r e c t o r y and copy NBac l i b r a r y i n t o i t
11 mkdir −p . / lib /nbac
12 cp /stg_linux /lib /nbac / * . / lib /nbac
13
14 # c a l l s t g t o g e n e r a t e ” j a v a t e s t program ” , ”ImpManager” and ” T e s t D r i v e ”
15 # from s p e c i f i c a t i o n f i l e w i t h d e f a u l t o p e r a t i o n s
16 # s t g < s t g s p e c f i l e . s t g> − t e s t n a m e < t e s t > − t e s t p u r p o s e n a m e <TP>
17 stg triangle .stg −test_name Triangle −test_purpose_name TP1
18 # s t g t r i a n g l e . s t g −c m d f i l e <c m d f i l e>

Listing 3.2: Shell script for test case generation with STG.

stg linux/lib, are copied directly into the spec directory. This is necessary, because STG expects
the NBac library to be in the same folder as the specification file it is processing.

Finally, STG is called. Line 17 shows the simplest way of invoking STG by specifying the input
file, the process name of the specification, and the process name of the test purpose in this file. This
command prompts STG to execute its default operation sequence (see Section 3.1 for an explanation of
these operations):

1. completion (of the test purpose specification)

2. product (between the specification and the test purpose)

3. closure (of the product)

4. reach (first reachability analysis)

5. coreach (coreachability analysis)

6. reach (second reachability analysis)

7. tojava (transformation of the resulting test case into Java classes)

An alternative way of calling STG is shown as a comment in Line 18: the definition of the operation
sequence via a command file. More detailed information about STG’s program options and its command
line syntax can be found in the “Reference Manual” section of the STG web page16.

Test Case Execution

The package stg backend.tgz represents the test execution component of STG (see Section 3.3.1).
Listing 3.3 is an adapted and enhanced shell script of the one that can be found in section “Executing the
test” of the STG web page17.

At first, the script has to set the path to an already installed Java environment and some other paths
to files in stg backend (Lines 1 to 7). In the course of this thesis, Java SDK 1.4 was used because
problems with higher versions of Java were encountered.

16http://www.irisa.fr/prive/ployette/stg-doc/stg-web_4.html (last visit 2009-09-27)
17http://www.irisa.fr/prive/ployette/stg-doc/stg-web_11.html (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_4.html
http://www.irisa.fr/prive/ployette/stg-doc/stg-web_11.html
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1 # s e t j a v a p a t h s
2 export JAVA_HOME=/java_sdk_1 . 4 / j2sdk1 . 4 . 2_18
3
4 # s e t backend p a t h s needed f o r e x e c u t i o n
5 export BACKEND=/stg_backend
6 export CLASSPATH=$BACKEND /sjava /lib /sjavaEnv .jar :$BACKEND /sjava /bin /

sjavac .jar :$BACKEND /solveur / : .
7 export LD_LIBRARY_PATH=$BACKEND /solveur /
8
9 # c r e a t e a d i r e c t o r y t o g a t h e r a l l i s needed and go t o i t

10 mkdir exec
11 cd exec
12
13 # copy g e n e r i c f i l e s ( Enum , I f G a t e , I o s t s M e s s , I o s t s S t a t e , . . . )
14 cp $BACKEND /fichiersjavaainclure / * . java .
15
16 # copy s p e c i f i c f i l e s : T e s t D r i v e . s j a v a , ImpManager . s j a v a and
17 # < t e s t f i l e >. s j a v a
18 cp . . / spec / * . java .
19 cp . . / spec / * . sjava .
20
21 # copy t h e i m p l e m e n t a t i o n program
22 cp . . / impl / * . java .
23
24 # b e f o r e c o m p i l i n g , remove o l d c l a s s− f i l e s
25 # ( s j a v a does n o t seem t o r e c o m p i l e a u t o m a t i c a l l y )
26 rm * .class
27
28 # c o m p i l e e v e r y t h i n g w i t h s j a v a
29 # ATTENTION : L i s t L i r e . j a v a s e p a r a t e l y ( o t h e r w i s e S e g m e n t a t i o n F a u l t )
30 $BACKEND /sjava /bin /sjavac −label *sjava Lire .java
31
32 # e x e c u t e t h e t e s t
33 java TestDrive

Listing 3.3: Shell script for test case execution with STG.

The best way to keep track of the files needed for test execution and the generated Java test class files
is to put them altogether into an empty folder. Therefor, a directory named exec is created and set to be
the new working directory (Line 10 and Line 11). Afterwards, the following Java classes (respectively
SJava classes) have to be copied into this directory:

1. Generic files (Line 14):
Every Java file located in the folder fichiersjavaainclure of the STG backend component.
These files involve for example IostsMess.java and IostsState.java and are the same
for each test case execution scenario.

2. Specific files (Line 18 and Line 19):
Every SJava18 and Java file generated by STG in the test generation phase (thus different for each
test case execution scenario and located in the spec directory).

3. Implementation files (Line 22):
The implementation of the SUT with all of its files. The script in Listing 3.3 expects the Java
implementation files to be located in the directory impl.

18http://ltiwww.epfl.ch/sJava/ (last visit 2009-09-27)

http://ltiwww.epfl.ch/sJava/
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Test Purpose # Transitions # Duplicate Redundancyincl. Duplicates Transitions
1 register delete tp 611 49 8.01 %
2 register invalidrequest tp 201 18 8.96 %
3 register notfound tp 201 18 8.96 %
4 register ok tp 239 22 9.21 %
5 register unauthorized tp 529 47 8.88 %
6 register notfound guarded tp 211 0 0 %
Sum 1992 154 –
Average 332 26 7.83 %

Table 3.1: This table presents statistics about redundant transitions in the closed products from the
SIP Registrar specification and five different test purposes.

The used SJava compiler does not seem to recompile already existing class files automatically, al-
though there were changes. Thus, already existing class files are removed (Line 26) to ensure that all
class files correspond to the latest version of their source files.

Line 30 shows the invocation of the SJava compiler sjavac (see Section 3.2.1), which is included
in the STG backend package. There is one important remark for this line: The file Lire.java has
to be passed as a separate argument to the SJava compiler. If not, a segmentation fault occurs and the
compilation does not work. Finally, Line 33 starts the test execution by invoking the TestDrive class.

3.4 Encountered Problems

In the following, deficiencies that have been identified in the current implementation of STG will be dis-
cussed. The affected operations are: product calculation, closure, determinization, and test case selection
(reachability and coreachability).

3.4.1 Duplicate Transitions in the Product

While using STG to generate test cases for the Session Initiation Protocol (SIP) Registrar (see Sec-
tion 6.2) and the Conference Protocol (see Section 6.3), it has been observed that the product of the
specification and the test purpose contains a large number of duplicate transitions. These transitions are
redundant, since they are exactly the same. They have the same start and destination locations and their
guards, actions, messages, and assignments are equal.

For example, the closed products generated for the SIP Registrar specification and six different test
purposes include 26 redundant transitions on average, i.e., each closed product could be reduced by ap-
proximately 8 % of its transitions. The Conference Protocol results in even more considerable values. At
an average, each closed product for the Conference Protocol specification and ten different test purposes
contains 149 redundant transitions, i.e., the number of transitions per product could be reduced by about
30 %. Table 3.1 and Table 3.2 give detailed information about the exact values for each test purpose.

Due to this high redundancy, performance issues could arise. Possibly, STG could work more effi-
ciently if duplicate transitions in the product of the specification and the test purpose were prevented.

3.4.2 Insufficient Closure

Test cases are intended to react promptly to inputs from the IUT. STG’s way to ensure this, is to require
input-completeness of the test case. In some cases, internal actions are hiding input actions. In order to
generate test cases which are input-complete, all internal actions have to be removed.
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Test Purpose # Transitions # Duplicate Redundancyincl. Duplicates Transitions
1 answer leave tp 360 100 27.78 %
2 answer pdu tp 232 61 26.29 %
3 double msgs tp 314 82 26.11 %
4 join tp 154 49 31.82 %
5 join leave2 tp 378 102 26.98 %
6 join leave tp 433 127 29.33 %
7 join leave join tp 510 162 31.76 %
8 receive msg2 tp 879 271 30.83 %
9 send msg2 tp 953 298 31.27 %

10 send msg tp 805 237 29.44 %
Sum 5018 1489 –
Average 502 149 29.67 %

Table 3.2: This table presents statistics about redundant transitions in the closed products from the
Conference Protocol specification and ten different test purposes.

As already mentioned in Section 3.1.3, experiments with the SIP Registrar specification (see Sec-
tion 6.2) and the Conference Protocol specification (see Section 6.3) showed that STG is not always able
to eliminate all internal actions during the closure procedure. Hence, it is possible that the generated test
cases do not always react promptly to inputs from the IUT.

3.4.3 Missing Determinization

The determinization operation is not yet implemented in the current version of STG. Hence, the generated
test cases may be non-deterministic and verdicts may depend on the internal choices of the tester (see
also Section 3.1.4).

3.4.4 Memory Errors

While experimenting with the STG tool and the Session Initiation Protocol (SIP, see Section 6.2), severe
problems have been encountered. STG was not able to generate test cases for the specification of a SIP
Registrar. Three main problems occurred during test case generation:

• Two test purposes caused a stack overflow (see Listing 3.4).

• The test case generation processes for three test purposes were aborted due to an error regarding
buffer growth (see Listing 3.5).

• For one test purpose, STG exceeded the limit of 2.5 GB of RAM.

Due to the output shown in Listing 3.4 and Listing 3.5, it can be assumed that the main problems lie
within the first reachability analysis phase performed by the tool NBac.

The SIP Registrar specification is large compared to previous examples used with STG (see Ta-
ble 6.3). It consists of 24 locations, 52 transitions, 28 variables, and 2 system parameters although the
SIP Registrar is just one part of the whole Session Initiation Protocol and a lot of abstractions have been
performed. The bigger part of the transitions are guarded by long Boolean expressions. Listing 3.6
shows an example of a transition in the SIP Registrar specification with a guard of this complexity. The
Conference Protocol specification is a rather large specification as well (see Table 6.5). It consists of
15 locations, 34 transitions, 15 variables, and no system parameters.



Chapter 3. Existing Approach using Reachability Analysis 54

1 Reachability analysis phase :
2 converting iosts . . / . . / sip_closure to auto . . .
3 DONE => . . / . . / sip .aut
4 Fatal error : exception Stack_overflow

Listing 3.4: Stack overflow error produced by STG during test case generation for the SIP
Registrar.

1 Fatal error : exception Failure ( ’ ’Buffer .add : cannot grow buffer ’ ’ )
2 [SNIP ]
3 Reachability analysis : nbac2auto .opt command failed

Listing 3.5: Buffer error produced by STG during test case generation for the SIP Registrar.

1 from InitialSecondRequest
2 if (userId = request userId and callId = request callId and branch =
3 request branch + 1 and cSeq > request cSeq and hasAuthentication =
4 true and not (addr1 = missing and exp1 <> missing ) and not (addr2 =
5 missing and exp2 <> missing ) and not (addr1 = missing and addr2 <>
6 missing ) and (not (user1 addr1 <> missing and user1 addr2 <> missing )
7 or ( (user1 addr1 = addr1 or user1 addr2 = addr1 or addr1 = missing
8 or addr1 = asterisk ) and (user1 addr1 = addr2 or user1 addr2 = addr2
9 or addr2 = missing or addr2 = asterisk ) ) ) and (not ( (user1 addr1 =

10 missing or user1 addr2 = missing ) and not (user1 addr1 = missing and
11 user1 addr2 = missing ) ) or addr2 = missing or addr1 = user1 addr1 or
12 addr1 = user1 addr2 or addr2 = user1 addr1 or addr2 = user1 addr2) )
13
14 sync pin ? (userId , callId , branch , cSeq , hasAuthentication , addr1 , exp1 ,

addr2 , exp2 , exp )
15
16 do { request userId := userId |
17 request callId := callId |
18 request branch := branch |
19 request cSeq := cSeq |
20 request hasAuthentication := hasAuthentication |
21 request addr1 := addr1 |
22 request exp1 := exp1 |
23 request addr2 := addr2 |
24 request exp2 := exp2 |
25 request exp := exp }
26 to InitialSendToCore ;

Listing 3.6: A transition in the Session Initiation Protocol having a complex guard.

Unlike SIP, the Conference Protocol (see Section 6.3) can be handled by STG. Since the Conference
Protocol does not contain guards which are as complex as the ones in the SIP Registrar specification, it
could be guessed that the main problems lie within the complicated Boolean expressions of the guards.
This sounds reasonable, since STG uses BDDs, which are limited in their applicability due to their
memory requirements. In the worst case, BDDs grow exponentially with the size of the Boolean formula
they are representing. Hence, the most common failure related to BDDs is “running out of memory” [17].
This conforms to our experiences.



4 New Approach using Symbolic Execution and
SAT Solving

As already mentioned in Section 3.4, several problems were encountered while experimenting with STG:

• Potentially, the product operation produces redundant transitions.

• The closure operation is not always able to eliminate all internal actions.

• The determinization operation is not implemented.

• Presumably, large guards lead to severe problems during the reachability analysis.

Solving all of these problems in one master’s thesis would go over the top. Hence, our approach is
designed to sort out the last problem of the above list: Due to a severe problem during reachability
analysis, STG was not able to generate test cases for one of our case studies: the SIP Registrar (see
Section 6.2), which is of industrial relevance. The test case generation did not succeed for any of the
used test purposes and terminated with a stack overflow error. As already mentioned in Section 3.4, it is
supposed that this problem is caused by too large Boolean expressions in the guards of the transitions.
The goal of the approach, which will be presented throughout this chapter, is to be able to generate test
cases for the SIP Registrar specification.

4.1 Relation to STG

To refer to Figure 3.1 again, the user’s manual work of modelling specifications and designing test
purposes will stay the same. Inputs given to STG can serve as inputs for the new approach as well.
The middle part depicted in light orange, i.e., the test case generation, will be changed. In general,
it is possible to reuse STG’s test execution process, which is depicted in dark orange at the bottom
of the graphic. However, since our approach does not generate test cases in the form of IOSTS, this
proceeding would require a transformation of our test cases into IOSTS. Nevertheless, the development
of a new test execution framework is less elaborate than the transformation of our test cases into IOSTS.
At the moment of writing this thesis, an appropriate execution framework is under development at Graz
University of Technology.

Since STG’s test case generation works fine before the first reachability analysis is performed, cer-
tain parts of STG will be reused by our approach. To recap, the test generation steps of STG are (cf.
Section 3.1):

1. completion of the test purpose

2. product of the specification and the test purpose

3. closure of the product

4. determinization of the closed product (not implemented)

5. test case selection:

(a) first reachability analysis
(b) coreachability analysis
(c) second reachability analysis

6. input completion and transformation to Java

55
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The first three steps, i.e., completion, product, and closure, will be reused from STG. Hence, our ap-
proach is based on the same model (IOSTS, see Section 2.2). Furthermore, it uses the same conformance
testing theory (see Section 2.3). The great benefit of reusing the concepts and interfaces of STG is that
the same inputs can be used again. Thus, already defined system specifications and test purposes can be
directly reused.

The problematic part of STG beginning at the test case selection via reachability and coreachability
analysis will be replaced by symbolic execution and a test case selection algorithm based on the resulting
symbolic execution tree.

Figure 4.1 shows the differences between STG’s approach and our idea. Parts of STG which are
reused are depicted in black and white. STG’s test case selection algorithm with reachability and core-
achability analyses is not part of our approach. Hence, it is semi-transparent and crossed out. It is
replaced by a new test case selection procedure depicted in green and black.

Due to the different techniques used for test case selection, the obtained results are different and not
directly comparable. Test cases generated by STG are IOSTS, whereas test cases generated via symbolic
execution are trees (see Section 4.4.1). This implies two things:

1. Test cases generated by STG may contain loops. In contrast, test cases generated by our approach
do not contain any loops, since they are trees.

2. The test case execution framework implemented by STG cannot be directly reused for test cases
generated by our approach. In order to utilize STG’s execution procedure, a transformation into
IOSTS would be necessary. In Figure 4.1, the possible retransformation is indicated by a blue
arrow. However, this transformation has not been implemented since it is more elaborate than the
development of a simple test execution procedure that is directly applicable to our test cases.

4.1.1 Interfacing with STG

As can be seen in Figure 4.2, we do not directly work on STG’s source, which is written in Objective
Caml (OCaml)1. The new test case selection is implemented in Java (for further details see Chapter 5).
Hence, an interface between STG’s output and our implementation had to be found. There exist only two
possibilities of saving IOSTS, which are internally used by STG (see STG Reference Manual2):

1. A dot file for an IOSTS can be generated via STG’s show command.

2. A java test case can be generated from the IOSTS by using STG’s tojava command.

The dot format contains a good representation of the structure of the IOSTS, which can be parsed
automatically. However, it does not include a declaration of the data of the IOSTS. Hence, the data
types of the variables, messages, and system parameters are missing. This lack of information can be
compensated by the java test case implementation file, which contains a declaration of variables and
parameters. The data types of the messages can be determined by parsing the action signatures. As can
be seen in Figure 4.2, the interfacing of STG and our implementation requires both files, the dot and
the sjava file of the IOSTS representing the closed product of the specification and the test purpose.

Since it is no great extra effort, we eliminate redundant transitions during parsing of the above men-
tioned files. Depending on the input specification, we can thus improve the performance of our approach,
e.g., about 30 % of the Conference Protocol’s transitions are redundant (see Section 3.4). The potential
of saving calculation effort during symbolic execution (see Section 4.3.2) is especially high if the used
specification contains loops in which many transitions are redundant and no state inclusion can be iden-
tified.

1http://caml.inria.fr/ocaml/ (last visit 2009-09-27)
2http://www.irisa.fr/prive/ployette/stg-doc/stg-web_4.html (last visit 2009-09-27)

http://caml.inria.fr/ocaml/
http://www.irisa.fr/prive/ployette/stg-doc/stg-web_4.html
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Figure 4.1: Comparison of our test case generation process to the one of STG: Although our test
case generation process reuses certain parts of STG, it differs in the test case selection
procedure. Reused parts of STG are depicted in black and white. STG’s test case
selection algorithm with reachability and coreachability analyses is semi-transparent
and crossed out, since it is not part of our test case generation approach. It is substituted
by a new test case selection procedure depicted in green and black.

4.2 Overview of the New Test Case Generation Approach

The main steps of our test case generation approach are:

1. completion of the test purpose

2. product of the specification and the test purpose

3. closure of the product

4. symbolic execution

5. test case selection

As depicted in Figure 4.2, the first three steps (completion, product calculation, and closure) are per-
formed by STG (see Section 3.1 for further details). They are depicted in black and white, whereas
newly implemented components are green and black. As already described in Section 4.1.1, we do
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Figure 4.2: The new test case generation process is based on the foundations of STG. It reuses test
purpose completion, product calculation, and closure. Parts implemented by STG are
depicted in black and white. The test case selection is realized via symbolic execution
and selection of certain paths of the resulting symbolic execution tree. It is depicted in
green and black.

not work directly on STG’s source. Hence, our implementation has to parse two output files generated
by STG, which represent the closed product of the specification and the test purpose. This IOSTS is
symbolically executed in order to generate a symbolic execution tree from which a test case is selected
subsequently. The symbolic execution tree and the generated test case are written into a dot file and
converted into pdf format via the Graphviz tool3. Additionally, the test case is exported into a specified
text format in order to interface with a new test execution framework.

Symbolic execution (see Section 4.3) is a common methodology for test case generation. Although
its main goal is to explore the possible execution paths of an application, it can be employed for test
case generation, which can be seen as a side-effect of symbolic execution. By solving the constraints

3http://www.graphviz.org (last visit 2009-09-27)

http://www.graphviz.org
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of the path condition and providing the resulting values as input for the application, a program can be
forced to follow a certain path. In this way, test cases can be constructed. More detailed information
about symbolic execution of IOSTS and test case selection from symbolic execution trees will be given
subsequently.

4.3 Symbolic Execution

Originally, symbolic execution was applied to programs (see Section 4.3.1). Recently, it has been adapted
in order to be applicable on IOSTS (see Section 4.3.2).

4.3.1 Symbolic Execution of Programs

Symbolic execution, which is also referred to as symbolic evaluation or symbolic computation, is a
technique for executing programs without concrete input values. Instead of using specific data, e.g.,
numbers, symbolic values are used as inputs. Hence, the calculation results of a symbolic execution
differ from the ones obtained from normal program execution. In general, the outcome of a symbolic
execution will be a term depending on the input symbols rather than a concrete value [53].

An approach similar to symbolic execution was already introduced in 1969 by Balzer [5]. Since then,
a lot of research in the field of symbolic execution of programs has been conducted, e.g., by Boyer et
al. [16], King [53; 54], Clarke [27], or Coward [29].

When talking about symbolic execution, it is necessary to clearly distinguish between symbols and
symbolic variable names. Symbols represent the program inputs, which cover any data external to a
program including parameters, global variables, read statements, etc. Symbols have to be looked at in
the static mathematical sense and are used to represent some unknown but already fixed input value. The
value of a program variable may change during program execution [53].

According to King [53], symbolic execution proceeds like normal program execution except when
symbolic inputs are encountered. There are two basic scenarios, in which symbolic inputs have to be
handled:

1. Computation of an expression involving symbols:
Each programming language has different operators defined over data types, e.g., addition of in-
tegers, addition of floating point numbers, etc. These operators have to be extended in order to
deal with symbolic values. This is easy for arithmetic operators by using the relationship between
arithmetic and algebra. The value of a program variable X is denoted by v(X). Consider a func-
tion with formal parameters A, B and symbolic input values v(A) = α and v(B) = β. Then, the
symbolic execution of the statement C = A+ 2 ∗B would result in α+ 2 ∗β. At least in theory, it
is possible to do similar generalizations for all computational operators defined for a programming
language.

2. Conditional branching dependent on symbols:
Consider the IF statement of the form IF B THEN S1 ELSE S2, where B is some Boolean expres-
sion and S1 and S2 are some statements. When executing a program normally, it is clear whether
S1 or S2 has to be executed. This is not always the case in symbolic execution. v(B) could be
some expression over the input symbols. In this case, it is not always possible to decide whether
v(B) or ¬v(B) evaluates to true. Since both scenarios are possible, the execution forks into two
parallel executions. One assumes v(B), the other one ¬v(B). These assumptions are called path
conditions. Each path of an execution has its own path condition. If one of the parallel executions
reaches another conditional statement, another execution split may be required.
At each conditional statement IF B THEN S1 ELSE S2, the path condition pc has to be updated
by pc = pc ∧ v(B) or pc = pc ∧ ¬v(B) respectively. The path condition is an accumulator of
conditions on symbolic inputs and determines a unique control path through the program.
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1  int a, b;

2  if(a != b) {

3     a = a + b;

4     b = a - b;

5     a = a - b;

6  } else {

7     print(“Nothing to do...”);

8  }

(a) A program for swapping the val-
ues of two integers without using
an intermediate variable.

7
α == β

[a  α | b  β]

(a != b) == true (a != b) == false

1
true

[a  α | b  β]

2
true

[a  α | b  β]

3
α != β

[a  α + β | b  β]

4
α != β

[a  α + β | b  α + β – β = α]

5
α != β

[a  α + β – α = β | b  α]

(b) The symbolic execution tree for the program
that swaps two integer values.

Figure 4.3: An example of a symbolic execution tree.

In some cases, the path condition pc before an IF statement can help to determine whether the con-
dition B of this IF statement evaluates to true or to false. Under the condition that pc 6= false,
either pc → v(B) or pc → ¬v(B) is true. Hence, the symbolic execution does not need to fork
again. If the implication pc → v(B) evaluates to true, then only the branch with statement S1 is
followed. If the implication pc → ¬v(B) evaluates to true, then only the branch with statement
S2 is followed.

The symbolic execution of a program can be represented by a tree, the so-called symbolic execution
tree. The nodes of this tree are called execution states, which are triples consisting of the program
statement counter, the path condition, and the variable values. The execution states are connected via
directed arrows, which represent the transitions between the corresponding program statements. Each
conditional statement, which forked the execution into several parallel executions, has more than one
outgoing arrow labelled with the corresponding path choices. If the symbolically executed program
contains a loop whose number of iterations depends on symbolic inputs, the symbolic execution tree is
infinite [53].

Figure 4.3 gives an example to illustrate symbolic execution trees. Figure 4.3a shows a short program
that swaps the values of two integers without using an intermediate variable. Figure 4.3b shows the
corresponding symbolic execution tree. Each node has the following structure: The first line states the
statement counter, the second line represents the path condition, and the third line shows the variable
values. The variable values are enclosed by square brackets whereas the single values are divided by “|”.

Symbolic execution is used for different purposes, e.g., verification, testing, debugging, program
optimization, and program development. A survey about the various applications of symbolic execution
was carried out by Clarke and Richardson [28].
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4.3.2 Symbolic Execution of IOSTS

The technique of symbolic execution of programs has already been presented in Section 4.3.1. Gaston et
al. [40] introduce symbolic execution for Input Output Symbolic Transition Systems (IOSTS, see Sec-
tion 2.2). The main idea is the same as for symbolically executing programs. Concrete values of action
messages as well as initialization values for IOSTS variables are replaced by symbolic values, which
have unique names. Constraints on these variables are computed, which are named path conditions.

Similar to the symbolic execution of programs (see Section 4.3.1), a symbolic execution tree is built
while symbolically executing an IOSTS. According to Gaston et al. [40], it consists of symbolic extended
states (cf. execution states for programs), which are the vertexes of the tree, and symbolic transitions
labelled by symbolic communication actions, which represent the tree’s edges (cf. transitions between
program statements):

Symbolic Extended State A symbolic extended state (SES) in a symbolic execution tree of an IOSTS
I = 〈D,Θ, Q, q0,Σ, T 〉 with data D = V ∪ P ∪M is a triple η = 〈q, π, σ〉. q identifies the
corresponding location in the IOSTS I and conforms to the statement counter of an execution state
for a program. Just like in the symbolic execution tree of a program, π is called path condition.
σ is a mapping from I’s variables and messages to their symbolic values (formulae). Hence, σ
corresponds to the variable values, which are part of each execution state of a symbolic execution
tree for a program. An SES is satisfiable if its path condition π, which is a Boolean expression, is
satisfiable.

Symbolic Transition A symbolic transition is a triple 〈η, sa, η′〉. It is a connection between symbolic
extended states. η is the source SES, η′ the destination SES. A symbolic transition is labelled by a
symbolic communication action sa.

Symbolic Communication Action A symbolic communication action is a tuple sa = 〈a, µsa, σsa〉. a
contains information about the IOSTS action from which the symbolic communication action is
derived. This information includes the action’s name and type. Each symbolic communication
action has its own list of action messages (µsa), which consists of unique identifiers. Additionally,
a mapping σsa from the original action’s message names in µ to the symbolic communication
action’s unique message names in µsa is maintained.

By now, the components of a symbolic execution tree for an IOSTS have been introduced. The
algorithm for the calculation of such a tree from IOSTS is based on the algorithm introduced by Gaston
et al. [40]. However, they use a slightly different IOSTS model.

The discrepancy between the two IOSTS models concerns the use of messages as arguments for the
actions. The IOSTS definition used in this work (see Section 2.2) and by STG does not support the use of
variables, system parameters, or terms thereof as arguments of any actions. Hence, temporary variables
only visible in a certain transition, so-called messages, have to be used. By contrast, Gaston et al. [40]
do not support messages. Instead, the IOSTS variables and system parameters have to be used directly
as arguments of the actions. Input actions carry variables and directly store the received input into these
variables. Output actions pass certain values to the environment by using terms consisting of variables
and system parameters.

To compensate this difference, the original algorithm by Gaston et al. [40] had to be adapted. In
the following, the algorithm for executing an IOSTS with messages will be presented. Subsequently,
modifications regarding the original algorithm will be discussed.

Modified Symbolic Execution Algorithm

The algorithm for calculating a symbolic execution tree for an IOSTS I with data D = V ∪ P ∪M is:
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1. At first, the initial SES init is calculated. It is a tuple init = 〈q0, true, σ0〉 consisting of:

• q0, which is the initial location of the IOSTS I.
• true, which is the initial path condition.
• σ0, which is the initial σ and chosen arbitrarily. It maps each data item in the set V ∪M to a

new unique variable, which represents its symbolic value. In the following, the set of unique
variables in the symbolic execution tree will be called F . Each newly created identifier id
must neither be in the set D, nor in the current set of unique variables F . Hence, id /∈ D
and id /∈ F is true at the point of creation. Afterwards, id will be added to F . The creation
of unique identifiers for the system parameters P is unnecessary, because no new value can
be assigned to a constant during execution of the IOSTS. System parameters can be seen as
symbolic values, which do not change throughout execution. They have to be considered in
test case execution by replacing them with their initially assigned values.

The initial SES init will be added to the set S, which is initially empty. S contains the symbolic
extended states that have to be executed in the future.

2. Some SES η = 〈q, π, σ〉 is chosen from the set S and removed from S.

3. All IOSTS transitions originating from the location q of the chosen SES η are symbolically exe-
cuted to calculate the corresponding symbolic transitions and their destination symbolic extended
states. For each IOSTS transition t = 〈q, a, µ,G,A, q′〉 originating from q, the following steps are
executed:

(a) The symbolic communication action which labels the symbolic transition st corresponding
to the IOSTS transition t is denoted by sa. It is a tuple sa = 〈a, µsa, σsa〉 where:

• a is the IOSTS transition’s action.
• µsa denotes the list of symbolic messages. It is created by generating a new unique name
id ∈ F for each message of a. Hence, it contains only unique variables that are neither
contained in D nor in F yet.

• σsa maps the messages in µ to their corresponding symbolic messages in µsa.

(b) The destination SES η′ of the currently calculated symbolic transition st is η′ = 〈q′, π′, σ′〉.
It consists of:

• q′, which is the IOSTS location of η′. It is the destination location of the symbolically
executed transition t.

• π′, which is the path condition of η′. It is the conjunction of the path condition of the
source SES η and the guard of the executed IOSTS transition t in which each variable
and message name has been substituted by its final unique identifier, i.e., π′ = π ∧
σ(σsa(G)). Note that the application of mappings like σ and σsa to an expression like
G substitutes all identifiers x ∈ A (variables and messages of the IOSTS) that occur in
the given expression by their corresponding symbolic values in the applied mapping (σ
or σsa respectively). Hence, the application of a mapping to an expression returns an
expression again.

• σ′, which contains the symbolic values for each x ∈ V ∪M in η′. The symbolic values
for each x ∈ V ∪M can be expressed as σ ◦ σsa ◦ A(x), whereas the assignments A
can be interpreted as a function that returns for each x ∈ V ∪M its assigned expression.
f ◦g denotes function composition of f and g. Hence, at first each identifier x ∈ V ∪M
is mapped to its value assigned by A, which may be an expression. Afterwards, each
identifier x ∈ V ∪M in the obtained expression will be substituted by its mappings in
σsa. Finally, each identifier x ∈ V ∪M in the last obtained formula will be substituted
by its mapping in σ.

(c) Thus, the calculated symbolic transition st is the triple st = 〈η, sa, η′〉.
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(d) The destination SES η′ is added to the set S and hence will be symbolically executed in the
future if it satisfies the following requirements:

• Its IOSTS location q′ is neither an Accept nor a Reject location. Accept and Reject
locations always indicate the end of an execution path, since Accept means that the goal
of the test purpose has been reached and Reject indicates that this behaviour shall not be
tested by the used test purpose.

• It is satisfiable. If it is not, all symbolic extended states reachable from η′ will not be
satisfiable and hence not reachable.

• It is not included in another already calculated SES. State inclusion has to be consid-
ered, because symbolic executions of IOSTS with cycles would not terminate without
an inclusion criterion. State inclusion will be explained below.

• Its IOSTS location q′ has not been visited too often in the current path of the symbolic
execution tree. An upper bound is necessary, since state inclusion is not always sufficient
to guarantee termination. As already mentioned in Section 4.3.1, programs that contain
loops whose number of iterations depends on symbolic inputs have an infinite symbolic
execution tree.

If all IOSTS transitions originating from q have been symbolically executed, the symbolic execu-
tion of the SES η is finished. η is said to be symbolically executed.

4. The algorithm continues at Step 2 if there exists an already calculated SES that has not been
executed yet, i.e., if the set S contains an SES that has not been executed yet.

Modifications

As already described above, the IOSTS model defined by Gaston et al. [40] does not support messages.
Instead, IOSTS variables, system parameters, and terms thereof are used directly as arguments of the
actions. Since STG is not compatible with this approach, the following modifications to the original
algorithm by Gaston et al. [40] were necessary:

1. Gaston et al. create new identifiers only for the arguments of input actions. Output actions pass
values to the environment via terms consisting of variables and system parameters, which do not
need to be renamed, since no data is changed. In contrast, STG requires the use of messages
as arguments of all actions. These messages are restricted to the desired output values by the
guard. Since messages are local to the affected transition, message names can be reused in other
transitions. In order not to mess up messages of different transitions in the path condition, output
actions need to be handled like input actions: For each message of the action, a new identifier
id ∈ F needs to created.

2. The second modification affects the calculation of the path conditions and is caused by the first
change. The generation of new message names for output actions as well as for input actions
requires to take into account σsa in the calculation of π′. Gaston et al. calculate the path condition
π′ of the destination SES η′ according to the formula π′ = π ∧ σ(G). When new message names
are generated for all kinds of actions, the path condition has to be calculated by π′ = π∧σ(σsa(G))
in order to use the current symbolic value of each message.

State Inclusion

Gaston et al. [40] motivate the use of a state inclusion criterion by the need of reactive systems to
continuously communicate with their environments. In most cases, specifications of reactive systems
contain internal loops. Without the state inclusion criterion, the symbolic execution of an IOSTS with
internal loops would never terminate. Often, infinite behaviours are just sequences of “basic” behaviours.
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If there exists an SES that comprises another one, there is no need to execute both. The symbolic
execution of the included SES would be redundant.

Faivre and Gaston [35] base their state inclusion criterion on the so-called symbolic state semantics
of an SES. Given an SES η = 〈q, π, σ〉, its symbolic state semantics is a tuple Sem = 〈q, cA〉 consisting
of

• q, which is the IOSTS location of the SES.

• cA, which represents the constraints associated to the set A containing the variables and messages
of the IOSTS. It is defined as the conjunction of the path condition π with all equations of the form
x = σ(x) for all x ∈ A. Formally:

cA = π ∧
∧
x∈A

(x = σ(x))

An SES η1 = 〈q1, π1, σ1〉 with symbolic state semantics Sem1 = 〈q1, c
A
1 〉 is included in another SES

η2 = 〈q2, π2, σ2〉 with symbolic state semantics Sem2 = 〈q2, c
A
2 〉 if:

• q1 = q2 and

• cA1 is stronger than cA2 . More formally said, the implication cA1 → cA2 has to be a tautology.

Satisfiability and Tautology Checking

To find out whether an SES η = 〈q, π, σ〉 is satisfiable, it has to be determined whether its path condi-
tion π is satisfiable. However, the problem of deciding about the satisfiability of Boolean formulae is
NP-complete [46]. Nevertheless, recent advances in SAT (Boolean satisfiability) solving have yielded
powerful SAT solvers. In most cases, they can efficiently handle problems with up to millions of clauses
and variables [33].

STG supports only two data types in its current version: Boolean and integer. Hence, the path
condition π is a Boolean expression over identifiers and constants of type Boolean and/or integer, which
may include arithmetic operators (see STG Reference Manual4). SMT (Satisfiability Modulo Theories)
solvers are an extension to SAT solvers, which support arithmetics and other first-order theories like
uninterpreted functions, arrays, or recursive datatypes [33]. Hence, for our application, SMT solvers are
better suited than pure SAT solvers, since they allow the direct use of arithmetics in Boolean formulae.

For the calculation of state inclusions, it has to be found out whether the constraints associated to
the variables and messages of the one state (cA1 ) are stronger than the constraints of the other state (cA2 ).
Hence, it has to be determined, whether the implication cA1 → cA2 is a tautology or not. Again, this
check can be accomplished by using an SMT solver. Obviously, a formula is a tautology if its negation is
unsatisfiable. Hence, the SMT solver can be used to decide whether a formula is a tautology by checking
whether the negated formula is unsatisfiable.

Termination and Loops

As already mentioned in Section 4.3.1, programs that contain loops whose number of iterations depends
on symbolic inputs have an infinite symbolic execution tree. Generally, the same holds for IOSTS.
However, state inclusion aims at preventing the symbolic execution from unnecessary loop unfolding.
By checking if the semantics of a certain SES is already covered by the semantics of any other SES,
the unfolding of a loop can be stopped. Nevertheless, this is not always possbile, since state inclusion
checking requires SAT solving, which is known to be NP-complete. If the IOSTS contains an infinite
loop that cannot be stopped via state inclusion, there is no chance to terminate at all.

4http://www.irisa.fr/prive/ployette/stg-doc/stg-web_4.html (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_4.html
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In order to guarantee program termination independently from the IOSTS that is symbolically exe-
cuted, an upper bound for loop unfolding is introduced. It is defined as the upper limit for the number
of SES in any path of the symbolic execution tree that correspond to a certain IOSTS location. For ex-
ample, an upper bound of two means that each path of the symbolic execution tree has at most two SES
corresponding to the same IOSTS location.

Generally, the lower the value for the upper bound is chosen, the smaller is the resulting symbolic
execution tree and thus, the faster the symbolic execution terminates. If it is too small, the symbolic
execution may be terminated too soon and a test case selection, which requires at least one satisfiable
Accept state, may not be possible (see Section 4.4.1).

4.3.3 Example: Triangle Type Checker

As already mentioned in Section 4.1, our approach for test case generation is based on the closed product
generated by STG for a given specification and test purpose. For the Triangle Type Checker specification
(Figure 2.2) and the “NotTriangle” test purpose (Figure 2.3), the closed product is depicted in Figure 3.8.
Figure 4.4 shows the symbolic execution tree for the closed product. It was calculated according to the
above described symbolic execution algorithm.

Each ellipse represents a symbolic extended state η = 〈q, π, σ〉. The first line in each ellipse consists
of (1) an ID, which is a consecutive number, (2) the IOSTS location q, and (3) the number of visits of q,
which states how many SES in the path leading to η (including η) have q as their IOSTS location. The
following lines consist of η’s path condition π and its σ, which maps each variable and message to its
symbolic value. σ is enclosed by square brackets.

Consider the third SES in Figure 4.4. Its first line is “3 CheckPositive S1 (1)”, which means that its
ID is “3”, it refers to the IOSTS location “CheckPositive S1”, and “(1)“ states that this IOSTS location
is referred to for the first time in the current path of the symbolic execution tree. The second line
contains ”true“, which is the path condition. The last two lines contain the symbolic values for the
variables and messages that apply in this SES. All newly created identifiers that represent symbolic
values are a concatenation of the original variable’s name, the character ”#“, and a consecutive number.
For example, ”b → q#1” says that the symbolic value of the variable b is q#1, whereas the symbolic
value q#1 represents some value of the message q.

Arrows represent the symbolic transitions of the form st = 〈η, sa, η′〉, whereas each symbolic com-
munication action sa = 〈a, µsa, σsa〉 is depicted by a rectangle, in which the first part states the name
a of the symbolic communication action, its type (input ?, output !), and its symbolic messages µsa.
The second part represents the mapping σsa from the original message names in the IOSTS to the newly
created symbolic messages. σsa is enclosed by square brackets.

Consider the transition between the second and the third SES of Figure 4.4. Its first line “Read!(p#1,
q#1, r#1)” means that the symbolic communication action is named “Read” and that this action is an
input action, which is indicated via an exclamation mark. The symbolic communication action has
three symbolic messages, i.e., µsa = [p#1, q#1, r#1]. The second line representing the mapping σsa is
“[r → r#1 | q → q#1 | p → p#1]”, which means that the IOSTS message r is mapped to the symbolic
value r#1, q is mapped to q#1, and p is mapped to p#1. Again, identifiers containing a “#” denote
symbolic values.

Note that locations in the closed product which are unreachable due to the structure of the IOSTS
are not part of the symbolic execution. For example, the location CheckTriangle S1 in Figure 3.8 is not
taken into account, since it has no predecessors and it is not the initial location of the IOSTS. Hence, the
symbolic execution algorithm will never calculate an SES related to the location CheckTriangle S1.
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1 Start_Start (1)
 true

[b -> b#0 | c -> c#0 | r -> r#0 |
q -> q#0 | a -> a#0 | p -> p#0]

 Init()
[]

2 Readabc_S1 (1)
 true

[b -> b#0 | r -> r#0 | c -> c#0 |
q -> q#0 | p -> p#0 | a -> a#0]

 Read!(p#1, q#1, r#1)
[r -> r#1 | q -> q#1 | p -> p#1]

3 CheckPositive_S1 (1)
 true

[b -> q#1 | c -> r#1 | r -> r#1 |
q -> q#1 | a -> p#1 | p -> p#1]

 NotPositive?()
[]

 IsTriangle?()
[]

 NotTriangle?()
[]

4 End_S1 (1)
(not (((p#1 > 0) and (q#1 > 0)) and

(r#1 > 0)))
[b -> q#1 | r -> r#1 | c -> r#1 |
q -> q#1 | p -> p#1 | a -> p#1]

5 CheckType_S1 (1)
((((((p#1 > 0) and (q#1 > 0)) and

(r#1 > 0)) and ((p#1 + q#1) > r#1))
and ((p#1 + r#1) > q#1))
and ((q#1 + r#1) > p#1))

[b -> q#1 | r -> r#1 | c -> r#1 |
q -> q#1 | p -> p#1 | a -> p#1]

 Equilateral?()
[]

 Isoscele?()
[]

 Scalene?()
[]

6 End_Accept (1)
((((p#1 > 0) and (q#1 > 0)) and

(r#1 > 0)) and (not ((((p#1 + q#1) > r#1)
and ((p#1 + r#1) > q#1)) and

((q#1 + r#1) > p#1))))
 [b -> q#1 | r -> r#1 | c -> r#1 |
q -> q#1 | p -> p#1 | a -> p#1]

7 End_S1 (1)
(((((((p#1 > 0) and (q#1 > 0)) and

(r#1 > 0)) and ((p#1 + q#1) > r#1))
and ((p#1 + r#1) > q#1))

and ((q#1 + r#1) > p#1)) and
((p#1 = q#1) and (q#1 = r#1)))
[b -> q#1 | c -> r#1 | r -> r#1 |
q -> q#1 | a -> p#1 | p -> p#1]

8 End_S1 (1)
(((((((p#1 > 0) and (q#1 > 0)) and

(r#1 > 0)) and ((p#1 + q#1) > r#1))
and ((p#1 + r#1) > q#1)) and

((q#1 + r#1) > p#1)) and
((not ((p#1 = q#1) and (q#1 = r#1)))

and (((p#1 = q#1) or (q#1 = r#1))
or (p#1 = r#1))))

[b -> q#1 | c -> r#1 | r -> r#1 |
q -> q#1 | a -> p#1 | p -> p#1]

9 End_S1 (1)
(((((((p#1 > 0) and (q#1 > 0)) and

(r#1 > 0)) and ((p#1 + q#1) > r#1))
and ((p#1 + r#1) > q#1))

and ((q#1 + r#1) > p#1)) and
(not (((p#1 = q#1) or (q#1 = r#1))

or (p#1 = r#1))))
[b -> q#1 | c -> r#1 | r -> r#1 |
q -> q#1 | a -> p#1 | p -> p#1]

Figure 4.4: The symbolic execution tree for the IOSTS depicted in Figure 3.8.
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4.4 Test Case Selection

STG uses reachability and coreachability analyses to select a test case from the closed product of a given
specification and test purpose (see Section 3.1.5). By contrast, the approach of this work symbolically
executes the closed product and subsequently generates a test case by selecting certain paths from the
resulting symbolic execution tree. By the use of these different techniques, the generated test cases are
different and not directly comparable. Test cases generated by STG are IOSTS that possibly contain
loops. In contrast, test cases generated via symbolic execution are trees. Hence, our test cases do not
contain any loops. Anyway, it is possible to transform test cases generated by our approach into IOSTS.
Subsequently, the algorithm for selecting test cases from symbolic execution trees will be presented and
illustrated with our running example.

4.4.1 Test Case Selection Algorithm

The algorithm for the generation of a test case from a symbolic execution tree is based on the idea of
selecting accepted behaviour similarly to TGV [48]. Our algorithm selects one test case per test purpose
and consists of the following steps:

1. An arbitrary, but satisfiable Accept state ηA = 〈qA, πA, σA〉 is chosen. The location qA is an
accepting state as defined by the used test purpose. If there is no satisfiable SES that corresponds
to an Accept location, no test case can be generated.

2. The path leading from the root SES init to the chosen Accept state ηA is added to the test case by
backtracking from ηA, which is a leaf of the symbolic execution tree, to the root node init.

3. By now, the selected test case is one path of the symbolic execution tree. In this step, it is possibly
extended to a tree by adding additional symbolic transitions and symbolic extended states. The
algorithm for deciding which symbolic transitions and SES have to be added works top-down.
Starting at the root SES init, it investigates the outgoing symbolic transitions of the symbolic
extended states and decides whether they have to be added to the test case. Therefor, a list S is
maintained, which contains all SES that have to be investigated in the future. Initially, S contains
all SES that already belong to the test case due to Step 2 of the test case selection algorithm except
for the leaf SES. Hence, one outgoing symbolic transition and one successor state of each SES in
S is already part of the test case initially.

In order to add a symbolic transition st = 〈η, sa, η′〉 and its destination SES η′ to the test case, η′

has to be satisfiable. If η′ is part of the test case and it is no Accept or Reject state, then it is added
to S. Hence, its outgoing symbolic transitions will be investigated. If all outgoing transitions of an
SES η are checked, then η is removed from S. Step 3 loops until no more symbolic transitions have
to be investigated, i.e., until S is empty. The exact rules for deciding which symbolic transitions
and SES have to be added to the test case will be presented below.

In the context of test case selection, input and output refer to the input/output of the tester (not of
the system specification or the SUT respectively), since STG has already switched input actions
to output actions and vice versa. The rules that define which outgoing symbolic transitions of an
SES η have to be added to the test case are:

I. If one of η’s outgoing transitions labelled with an output action is already part of the test
case, then no further outgoing transitions of η have to be added to the case.

II. If one of η’s outgoing transitions labelled with an input action is already part of the test case,
then all outgoing transitions of η that are labelled by input, initial, or internal actions have to
be added to the test case.

III. If one of η’s outgoing transitions labelled with an initial or internal action is already part of
the test case, then all transitions of η that are labelled by input, initial, or internal actions have
to be added to the test case.
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IV. If none of η’s outgoing transitions is part of the test case yet, then the following rules apply:
(a) If η has outgoing transitions labelled by input actions, then all transitions of η that are

labelled by input, initial, or internal actions have to be added to the test case.
(b) If η does not have any outgoing transitions labelled by input actions, but it has outgoing

transitions labelled by output actions, then one of η’s transitions labelled with an output
action has to be added to the test case.

(c) If η does neither have transitions labelled by an input action nor transitions labelled by
an output action, then all of η’s transitions labelled with an initial or internal action have
to be added to the test case.

To summarize the above rules, one SES in a test case may either have only inputs or only outputs
as outgoing symbolic transitions. If possible, i.e., if no output is already part of the test case,
inputs have priority. Symbolic transitions labelled with symbolic communication actions of type
init or internal are only added if there are no outputs added to the test case at the current SES. In
this way, controllability of the test case is ensured, i.e., choices between outputs or between inputs
and outputs are prevented [48]. The reasons why initial and internal actions have to be taken into
account are the following:

• STG requires each IOSTS to be initialized via an init action, which is a special action. It
does not belong to any alphabet of the IOSTS (Σi, Σo, Σint). Hence, it has to be treated in a
special manner.

• As already mentioned in Section 3.1.3, STG is not always able to eliminate all internal actions
during closure. Hence, the symbolic execution tree may contain internal actions that have to
be considered during test case selection.

Main Differences to TGV’s Approach

Besides the fact that our algorithm is based on symbolic execution trees while TGV [48] works with
IOLTS, the following differences can be identified:

• TGV offers two methods for test case generation: The first one creates a complete test graph
(CTG) from which all test cases corresponding to the used test purpose are selected. The second
way of test case generation works on the fly and produces just one test case. So far, our approach
supports the generation of one test case per test purpose, but it is not able to generate all potential
test cases. Hence, no CTG is generated.

• Test cases created by TGV include explicit verdicts. In contrast, tests generated by our approach
contain implicit verdicts. There are no Inconclusive or Fail states in our test cases. Paths that do
not lead to an Accept state are not pruned and substituted by an Inconclusive state, which indicates
that the goal of the test purpose cannot be achieved any more. Verdicts for our test cases have to be
made explicit during test case execution: If the test execution ends in an Accept state, the verdict is
Pass. If it reaches an end state that is not an Accept state, i.e., the IUT behaved correctly although
the goal of the test purpose could not be attained, then the verdict is Inconclusive. If the IUT sends
some input to the test case that is not recognized in the current state, then the verdict is Fail.

4.4.2 Example: Triangle Type Checker

It is possible to generate a test case from the symbolic execution tree of the Triangle Type Checker shown
in Figure 4.4, since it contains a satisfiable Accept state (End Accept). After the selection of the path

Start Start Init−−→ Readabc S1 Read!−−−→ CheckPositive S1
NotTriangle?−−−−−−−−→ End Accept,

the investigation whether other transitions have to be added to the test case is performed. Since there are
no symbolic extended states where choices have to be made between several outputs or between inputs
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and outputs, the test case selection algorithm results in a test case that covers the whole tree. Hence, the
symbolic execution tree and the generated test case are equivalent. They are depicted in Figure 4.4.

4.5 Benefits and Limitations

As already stated at the beginning of this chapter, the main goal of this work was to resolve the problems
faced by STG during test case generation for the SIP Registrar (see Section 3.4). We were successful in
overcoming this difficulty and have managed to generate test cases for the SIP Registrar (see Section 6.2).
Nevertheless, when applied to the Conference Protocol (see Section 6.3), our approach suffers from
performance problems and is not able to generate test cases for all specified test purposes.

The approach as it has been presented in this work has still room for improvement. At present, the
algorithm for test case selection (see Section 4.4.1) is not very sophisticated. It generates just one test
case by arbitrarily selecting one Accept state of the symbolic execution tree.

Another weakness of our approach is the missing guard strengthening. STG strengthens the guards
during its coreachability phase in order to avoid that the test case follows a path that leads to an Incon-
clusive state (see Section 3.1.5). Although an inconclusive verdict cannot be prevented entirely, STG has
better chances of reaching the goal of the test purpose than our approach has. Hence, the approach of
this work is more likely to generate test cases that lead to an inconclusive verdict than the STG tool.

Since the determinization of IOSTS is not implemented in STG and this was not the main focus of
this work, we cannot guarantee to generate test cases that do not depend on internal choices of the tester.

On the other hand, our approach does also provide several advantages. Besides the capability to
generate test cases for industrial-sized specifications like the SIP Registrar (see Section 6.2), it generates
test cases that do not contain any loops. Without loops, the test case execution framework does never have
to decide when to stop looping. Under the condition that the IUT does not deadlock, we can guarantee
that the test case execution results in a verdict for the executed test.

Our approach is designed to work with the same input as used for test case generation with STG.
Hence, specifications and test purposes can be reused without modification. Since the modelling of large
systems and the design of significant test purposes is a challenging task that cannot be entirely automated,
the direct reuse of input files is a great advantage.

Another benefit of our work is the elimination of duplicate transitions in the product of the specifica-
tion and the test purpose. STG processes IOSTS that possibly contain redundant transitions caused by the
product operation. The resulting test cases are possibly larger than necessary. Our approach eliminates
duplicate transitions and can thus increase its chances to successfully handle large specifications.



5 Design and Implementation

This chapter will present the prototype implementation of the new test case generation approach that was
introduced in Chapter 4. It is intended to give an overview of the main aspects of the implementation
and will not elaborate on each single class. For a more detailed description of the Java classes, we refer
to the source code documentation in Javadoc format.

5.1 Overview

Figure 5.1 gives a rough overview of the prototype implementation of the new test case generation
approach (see Chapter 4). It illustrates that the implementation of our approach splits in two main
parts, which are integrated into one application by the use of a shell script. The first part is depicted in
yellow and consists of STG’s reused components that are implemented in OCaml. The second part is
represented in green and comprises a new Java implementation.

At first, our approach uses STG to calculate the closed product of the two input IOSTS, which are a
specification of the SUT and a test purpose in the form of an IOSTS like they are used for test case gen-
eration with STG. The closed product is calculated by (1) completion of the test purpose, (2) calculation
of the product between the specification and the completed test purpose, and (3) closure of the product.
The closed product is exported into dot and java format in order to interface with the Java part of this
implementation. Details about STG’s operations have already been given in Section 3.1. The interface
between STG and the new Java implementation has already been discussed in Section 4.1.1.

The second part concerns our new Java implementation, which deals with three tasks. At first, the
two files containing the closed product generated by STG are parsed. Subsequently, the closed product
is symbolically executed like described in Section 4.3.2. Finally, a test case is selected from the resulting
symbolic execution tree according to the algorithm introduced in Section 4.4.1. The final test case is
exported into dot, pdf, and a specified text format (tc) in order to interface with the test execution
framework, which is under development at the moment of writing this thesis.

Since STG has already been described in detail in Chapter 3, the rest of this chapter will be focused
on the Java part implementing symbolic execution and test case selection from symbolic execution trees.
In addition, a shell script for the integration of STG and the Java implementation into one application
will be given.

5.2 Java Implementation

This section discusses the main aspects of the Java application, which was developed for Java 6. It
represents the second part of the implementation of the new test case generation approach (cf. Figure 5.1)
and implements two main functionalities, which are the symbolic execution of IOSTS and the test case
selection from symbolic execution trees. Note that this program was written in order to process input that
was automatically generated by STG. Since STG’s output is supposed to be type-correct, our program
does not perform any type checking.

5.2.1 IOSTS Input Parsing

IOSTS Parsers

As already described in Section 4.1.1, the only possibility to gather all needed information about an
IOSTS, which is internally used by STG, is to export it into both dot and sjava format. The dot
file contains information about the structure of the IOSTS, but it does not provide sufficient information
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STG:
   1) compTP = complete TP
   2) product = S x compTP
   3) closedProduct = closure(product)

New Implemenation:
   1) closedProduct = parse(inputIOSTS)
   2) symbExecTree = symbolicExec(closedProduct)
   3) testCase = selectTC(symbExecTree)
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Figure 5.1: This figure gives a rough overview of the prototype implementation of the new test
case generation approach. It illustrates that the implementation of our approach splits
in two main parts, which are integrated into one application by the use of a shell script.
The first part is depicted in yellow and consists of STG’s reused components. The
second part is represented in green and comprises a new Java implementation.

about its data. In order to determine the data types of the system parameters, variables, and messages of
the IOSTS, the sjava file has to be parsed, too. Figure 5.2 shows the classes responsible for IOSTS
parsing:

The IostsParser is an abstract class. It implements the parseIosts method, which reads the con-
tent of a text file into a String and calls the abstract parse method. Each derived class must implement
this method with its own parser logic. Two classes are derived from the IostsParser:

The IostsStructureParser is responsible for parsing the dot file. It provides information about the
locations and transitions of the IOSTS. The information about the transitions is split into two parts:
The method getTransitions returns the source and destination location of each transition. The
method getTransitionInfos returns action name and type as well as the guard and the assignments
associated to the transitions. The IostsDataParser is responsible for parsing the sjava file. It provides
information about the system parameters, variables, and action signatures.

The IostsBuilder invokes the parseIosts method on an instance of the IostsStructureParser and
an instance of the IostsDataParser. It uses the information provided by the two parsers in order to build
an IOSTS structure consisting of the classes shown in Figure 5.3.



Chapter 5. Design and Implementation 72

IostsParser

+ parseIosts(pathToFile : String, debug : Debug)
# parse()

IostsStructureParser

+ getLocations() : ArrayList<String>
+ getTransitionInfos() : HashMap<String,ArrayList<String>>
+ getTransitions() : ArrayList<Pair<String,String>>

IostsDataParser

+ getParamters() : HashMap<String,DataType>
+ getVariables() : HashMap<String,DataType>
+ getActionSignatures() : HashMap<String,ArrayList<DataType>>

IostsBuilder

+ buildIosts(pathToDotFile : String, pathToSjavaFile : String, debug : boolean) : Iosts
- buildIostsData(pathToSjavaFile : String)
- determineMessageDataTypes()
- buildIostsStructure(pathToDotFile : String) : Location
- createLocations(locations : ArrayList<String>)
- createTransitions(transitionInfos : HashMap<String,ArrayList<String>>)
- linkLocationsAndTransitions(transitionRelations : ArrayList<Pair<String,String>>) : Location

usesuses

Diagram: iosts_parser Page 1

Figure 5.2: This class diagram shows the classes responsible for IOSTS parsing. The abstract
class IostsParser has two subclasses: IostsStructureParser and IostsDataParser. The
information provided by the two parsers is used by the IostsBuilder to construct an
IOSTS data structure like depicted in Figure 5.3.

Data Structure for IOSTS

As shown in Figure 5.3, the IOSTS data structure is implemented straight forward. An Iosts consists
of Locations which are connected via Transitions. Each transition has a start and destination location
as well as a Guard, an Action that carries messages, and Assignments. An Iosts object and all of its
components are built and assembled by the IostsBuilder that gets information about the IOSTS from the
IostsStructureParser and the IostsDataParser (see Figure 5.2).

Expression Parser and Expression Trees

While the IostsStructureParser and the IostsDataParser are implemented by hand, the classes for parsing
expressions like they are used for the guard of a transition or for the single assignments, were generated
by using the ANTLR Parser Generator (version 3.0). In our application, each expression is represented
by an expression tree [62]. In Figure 5.4, the classes generated by ANTLR from a simple grammar file are
depicted in grey. White classes were implemented manually in order to provide additional functionality
for expression trees. For example, our class ExprTree provides a method to construct conjunctions,
implications, or equalities of two given expression trees. Additionally, it supports the conversion of the
represented expression into various text formats, e.g., infix notation.

5.2.2 Symbolic Execution

Symbolic Execution Algorithm

Figure 5.5 shows the classes that are involved in the symbolic execution of an Iosts object. The Sym-
bolicExecutor is the central class of this package and implements the symbolic execution algorithm as
defined in Section 4.3.2 as a breadth-first search. It maintains a list named statesToBeExecuted
corresponding to the set S introduced in the algorithm. It contains all symbolic extended states (SES)
that have to be executed in the future.

The initial SymbolicExtendedState init is created according to Step 1 of the algorithm when a Sym-
bolicExecutor is instantiated with an Iosts object. The actual symbolic execution (Step 2 to 4 of the



Chapter 5. Design and Implementation 73

Location
� name_ : String
� isInitial_ : boolean
� inTransList_ : ArrayList<Transition>
� outTransList_ : ArrayList<Transition>
� isPrinted_ : boolean
+ Location(name : String, isInitial : boolean)
+ Location(name : String)
+ getName() : String
+ isInitial() : boolean
+ setIsInitial(isInitial : boolean)
+ hasPredecessors() : boolean
+ getInTransList() : ArrayList<Transition>
+ addInTrans(trans : Transition)
+ getOutTransList() : ArrayList<Transition>
+ addOutTrans(trans : Transition)
# toIostsString() : String
+ toString() : String
+ toDot() : String

Transition
� name_ : String
� source_ : Location
� destination_ : Location
� guard_ : Guard
� action_ : Action
� assigns_ : Assignments
+ Transition(name : String, infos : ArrayList<String>)
+ setSourceLocation(source : Location)
+ getSourceLocation() : Location
+ setDestinationLocation(destination : Location)
+ getDestinationLocation() : Location
+ getAction() : Action
+ getGuard() : Guard
+ getAssignments() : Assignments
+ toString() : String
+ toDot() : String

�initial_

�guard_ �action_ �assigns_

*

�incoming transitions

*

�outgoing transitions

instantiates

Iosts
� initial_ : Location
� parameters_ : HashMap<String,DataType>
� variables_ : HashMap<String,DataType>
� messages_ : HashMap<String,DataType>
� actionSignatures_ : HashMap<String,ArrayList<DataType>>
+ Iosts(initial : Location, {parameters, variables, messages} : HashMap<String,DataType>, actionSignatures : HashMap<String,ArrayList<DataType>>)
+ getInitial() : Location
+ getVariables() : HashMap<String,DataType>
+ getParameters() : HashMap<String,DataType>
+ getMessages() : HashMap<String,DataType>
+ getActionSignature(action : String) : ArrayList<DataType>
+ toString() : String
+ writeDotFile(dotPath : String)

IostsBuilder

+ buildIosts(pathToDotFile : String, pathToSjavaFile : String, debug : boolean) : Iosts
� buildIostsData(pathToSjavaFile : String)
� determineMessageDataTypes()
� buildIostsStructure(pathToDotFile : String) : Location
� createLocations(locations : ArrayList<String>)
� createTransitions(transitionInfos : HashMap<String,ArrayList<String>>)
� linkLocationsAndTransitions(transitionRelations : ArrayList<Pair<String,String>>) : Location

Guard
� guardString_ : String
� guardExprTree_ : ExprTree
+ Guard(guardString : String)
+ getExprTree() : ExprTree
+ toString() : String

Action
� name_ : String
� type_ : ActionType
� messages_ : ArrayList<String>
� actionString_ : String
+ Action(actionString : String)
+ getName() : String
+ getType() : ActionType
+ getMessages() : ArrayList<String>
� determineActionType()
� determineName()
� determineMessages()
+ toString() : String

Assignments
� assignsString_ : String
� assignments_ : HashMap<String,ExprTree>
+ Assignments(assignsString : String)
+ getAssignments() : HashMap<String,ExprTree>
� parseExpression(expr : String) : expr.ExprTree
+ toString() : String

�destination_

�source_

Diagramm: iosts Seite 1

Figure 5.3: The IOSTS data structure is implemented straight forward. An Iosts consists of Loca-
tions which are connected via Transitions. Each transition has a start and destination
location as well as a Guard, an Action that carries messages, and Assignments. The
Iosts with all of its subcomponents is constructed by the IostsBuilder class.
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CommonTreeAdaptor

ANTLR 3.0

uses

ExprTree

+ ExprTree(payload : Token)
+ ExprTree(node : ExprTree)
+ createBinaryOperator(operatorId : int, leftOperand : ExprTree, rightOperand : ExprTree) : ExprTree
+ substitute(mapping : VariableMapping)
+ getIdentifiers() : HashSet<String>
+ toString() : String
+ getInfix() : String
+ getYicesPrefix() : String

ExprTreeAdaptor

+ create(payload : Token) : Object

creates

uses

creates

ExpressionLexer

ExpressionParser

CommonTree

Diagramm: expr_exprparser Seite 1

Figure 5.4: The classes for parsing expressions and constructing expression trees were generated
by the parser generator ANTLR 3.0.

algorithm) starts when the execute method is invoked. It symbolically executes each SES in the
statesToBeExecuted list with the aid of the executeTransitions method, which symboli-
cally executes all transitions of the current SES. The calculation of the destination SES of the currently
executed transition is encapsulated in the method createDestinationSES. The path condition of
the destination SES is calculated with the method createNewPC. The mapping σ : A → F , which
maps all variables and messages to their symbolic values in the destination SES is created with the
method createNewSigma. The VariableGenerator class is used to create unique identifiers id ∈ F ,
which serve as symbolic values of the variables and messages of the IOSTS. In order to guarantee that
all created identifiers are unique, each SymbolicExecutor must not use more than one instance of the
Variable Generator class (singleton). The execute method of the SymbolicExecutor class returns an
instance of the class SymbolicExecutionTree. This data structure is depicted in Figure 5.6 and will be
described later in the course of this section.

The SMT Solver Yices

As already discussed in Section 4.3.2, the symbolic execution of an IOSTS requires to decide about
the feasibility of paths, i.e., the path conditions have to be checked for satisfiability. Furthermore, it is
necessary to determine whether some Boolean formula is a tautology in order to identify state inclusions.
These two tasks are performed by the SMT solver Yices1 [33], which has won six out of twelve categories
in the Satisfiability Modulo Theories Competition of 2007 (SMT-COMP’072). Although a Java API for
Yices3 is available, we have integrated the Yices command line tool. The reasons for this decision are
the limited functionality of the Java API as well as problems that were encountered with the underlying
library.

1http://yices.csl.sri.com/ (last visit 2009-09-27)
2http://www.smtcomp.org/2007/ (last visit 2009-09-27)
3http://atlantis.seidenberg.pace.edu/wiki/lep/Yices%20Java%20API%20Lite
(last visit 2009-09-27)

http://yices.csl.sri.com/
http://www.smtcomp.org/2007/
http://atlantis.seidenberg.pace.edu/wiki/lep/Yices%20Java%20API%20Lite
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SymbolicExecutor

+ SymbolicExecutor(iosts : Iosts, debug : boolean, maxLocationVisitsPerPath : int)
+ execute() : SymbolicExecutionTree
  executeTransitions(transitions : ArrayList<Transition>)
  createDestinationSES() : SymbolicExtendedState
  createNewPC(oldPC : ExprTree, oldSigma : VariableMapping, guard : ExprTree, messageMapping : VariableMapping) : ExprTree
  createNewSigma(oldSigma : VariableMapping, trans : Transition, symbAction : SymbolicCommunicationAction) : VariableMapping

SymbolicExtendedStateList

+ addState(state : SymbolicExtendedState)
+ getNotVisitedState() : SymbolicExtendedState
+ hasNotVisitedState() : boolean
+ getSatisfiableAcceptState() : SymbolicExtendedState
+ hasSatisfiableAcceptState() : boolean

VariableGenerator
  variableNumbering_ : HashMap<String,Integer>
# VariableGenerator(iosts : iosts.Iosts)
+ getNewVariable(variable : String) : expr.ExprTree

YicesSolver

+ YicesSolver(constants : HashMap<String,DataType>)
+ getInput() : String
+ addConstants(constants : HashMap<String,DataType>)
+ addAssert(assertion : String)
+ checkSat() : boolean
+ isTautology(expr : ExprTree) : boolean

SymbolicExtendedState

ProgramInvoker
  process_ : Process
+ executeProcess(executionCommand : String, wait : boolean)
+ getProcessErrorOutput() : String
+ getProcessOutput() : String

maintains

1*

 acceptStates_

uses

 statesToBeExecuted_

 root_  currentSymbState_

uses

 varGen_1

Diagramm: symb_exec Seite 1
Figure 5.5: The SymbolicExecutor is the central class for the symbolic execution of IOSTS. It im-

plements the algorithm as defined in Section 4.3.2. The VariableGenerator is used to
generate unique identifiers that serve as symbolic values for the variables and mes-
sages. The YicesSolver class interfaces with the SMT solver Yices and is used to de-
termine the satisfiability of a SymbolicExtendedState as well as to decide about state
inclusions. The Yices command line tool is started by the ProgramInvoker class.

As illustrated in Figure 5.5, the YicesSolver class is a wrapper class for the Yices command line
tool (version 1.0.21). It is used by the class SymbolicExtendedState to calculate its satisfiability and
to determine whether it is included in any of the already calculated SES. The YicesSolver class calls
Yices with the aid of a ProgramInvoker class, which starts a new process via Java’s Runtime.exec
method. The method takes a String object that represents the command that has to be executed and
returns an instance of Java’s Process class, which allows to read its output stream. In this way, the result
delivered by Yices can be accessed. The Yices command line tool is invoked by the command “yices
input file.ys”. Of course, this solution requires that Yices is properly installed. Furthermore, its
bin folder, which contains the Yices executable, has to be part of the PATH system variable.

The input file which is passed to Yices is created by the YicesSolver class as a temporary file, which
is deleted after the Yices solver has delivered a result. Generally, Yices supports the SMT-LIB stan-
dard4 [65], which defines a common interface for SMT solvers. Hence, by using the SMT-LIB language,
it would be easier to integrate a different SMT solver. Nevertheless, we decided to use the specific Yices
input language5, since it is more powerful and flexible [33].

4http://combination.cs.uiowa.edu/smtlib/ (last visit 2009-09-27)
5http://yices.csl.sri.com/language.shtml (last visit 2009-09-27)

http://combination.cs.uiowa.edu/smtlib/
http://yices.csl.sri.com/language.shtml
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SymbolicExecutionTree
� root_ : SymbolicExtendedState
� acceptStates_ : SymbolicExtendedStateList
� testCaseFlag_ : boolean
+ writeDotFile(dotPath : String)
+ writeTestCaseFile(filePath : String) : boolean

SymbolicExtendedState
� id_ : int
� location_ : Location
� pathCondition_ : ExprTree
� mapping_ : VariableMapping
� iosts_ : Iosts
� inTrans_ : SymbolicTransition
� outTransList_ : ArrayList<SymbolicTransition>
� isInitial_ : boolean
� isVisited_ : boolean
� isSatisfiable_ : boolean
� isInTC_ : boolean
+ isAcceptState() : boolean
+ isRejectState() : boolean
+ isIncluded(state : SymbolicExtendedState) : boolean
� calculateSatisfiability()
+ toDot(testCase : boolean) : String

SymbolicTransition
� id_ : String
� source_ : SymbolicExtendedState
� destination_ : SymbolicExtendedState
� symbolicAction_ : SymbolicCommunicationAction
� isInTC_ : boolean

SymbolicCommunicationAction
� varGen_ : VariableGenerator
� name_ : String
� type_ : SymbolicActionType
� messages_ : HashMap<ExprTree,DataType>
� messageMapping_ : VariableMapping
+ toTestCaseString() : String
� createSymbMsgs(msgs : ArrayList<String>, actionSignature : ArrayList<DataType>)
� determineType(action : Action)

VariableMapping
� mapping_ : HashMap<String,ExprTree>
+ getMapping() : HashMap<String,ExprTree>
+ putMapping(key : String, value : ExprTree)
+ putMappings(mappings : HashMap<String,ExprTree>)
+ getValue(key : String) : ExprTree
+ substitute(substitutionMapping : VariableMapping)
+ toString() : String

�root_

�outgoing transitions

�symbolicAction_

�messageMapping_�mapping_

*

�source_

�destination_

�inTrans_

Diagramm: symb_exec_tree Seite 1

Figure 5.6: SymbolicExecutionTrees are implemented straight forward with a class for Symbol-
icExtendedStates (SES) and a class for SymbolicTransitions. Each SES except for the
initial SES has one incoming symbolic transition and zero or more outgoing symbolic
transitions. Each symbolic transition has one SymbolicCommunicationAction. The
message mappings µsa of the symbolic transitions as well as the variable mappings σ
of the symbolic extended states are represented as instances of the class VariableMap-
ping.
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works on

SymbolicExecutionTree
� root_ : SymbolicExtendedState
� acceptStates_ : SymbolicExtendedStateList
� testCaseFlag_ : boolean
+ writeDotFile(dotPath : String)
+ writeTestCaseFile(filePath : String) : boolean

TestCaseSelector
� states_ : symb_exec.SymbolicExtendedStateList
� inputs_ : ArrayList<SymbolicTransition>
� outputs_ : ArrayList<SymbolicTransition>
� initInternals_ : ArrayList<SymbolicTransition>
+ selectTC(symbExecTree : SymbolicExecutionTree)
� markStraightPath(acceptState : SymbolicExtendedState)
� markFurtherValidTransitions(root : SymbolicExtendedState)
� classifyTransitions(transitions : ArrayList<SymbolicTransition>)
� markTransition(transition : SymbolicTransition)
� markTransitions(transitions : ArrayList<SymbolicTransition>)

Diagramm: tc_gen Seite 1

Figure 5.7: The algorithm for the test case selection from SymbolicExecutionTrees is implemented
in the class TestCaseSelector.

Data Structure for Symbolic Execution Trees

Figure 5.6 shows a class diagram of the data structure used to represent symbolic execution trees. Sym-
bolicExecutionTrees are implemented straight forward with a class for SymbolicExtendedStates (SES)
and a class for SymbolicTransitions. Each SES except for the initial SES has one incoming symbolic
transition and zero or more outgoing symbolic transitions. Each symbolic transition has one source SES,
one destination SES, and one SymbolicCommunicationAction. The message mappings µsa of the sym-
bolic transitions as well as the variable mappings σ of the symbolic extended states are represented as
instances of the class VariableMapping.

5.2.3 Test Case Selection

The algorithm for the test case selection from symbolic execution trees (see Section 4.4.1) is implemented
in the class TestCaseSelector. The method selectTC takes an instance of a SymbolicExecutionTree
and selects the straight path from one arbitrarily chosen Accept state to the root SES. Subsequently, it
investigates further SES according to Step 3 of the selection algorithm. For this purpose, it maintains
a list states that corresponds to the set S used in the algorithm. It contains all SES that have to
be investigated in the future. Note that no new instance of the SymbolicExecutionTree is created. The
TestCaseSelector just sets the isInTC flags of the SymbolicExtendedStates in the symbolic execution
tree. Avoiding the creation of a new SymbolicExecutionTree object saves computation time and memory.

5.2.4 Program Logic

Figure 5.8 shows the central classes of our Java implementation. The controller class SymbTCGen (Sym-
bolic Test Case Generator) contains the main method of our application. It parses the command line
arguments and implements the test case generation process by calling the IostsBuilder with the dot
and pdf files, which were specified as command line arguments. Subsequently, it passes the generated
Iosts to an instance of the SymbolicExecutor and calls its execute method. Finally, an instance of the
TestCaseSelector is invoked with the resulting SymbolicExecutionTree.

Additionally to the test case generation process, the SymbTCGen class is responsible for exporting
the parsed Iosts and the SymbolicExecutionTree into dot and pdf format if the command line flag
debug is set. The resulting test case, which is represented by an instance of the class SymbolicExe-
cutionTree, is transformed into dot, pdf, and a text format for interfacing with a new test execution
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employs

SymbolicExecutor

+ SymbolicExecutor(iosts : Iosts, debug : boolean, maxLocationVisitsPerPath : int)
+ execute() : SymbolicExecutionTree

TestCaseSelector

+ selectTC(symbExecTree : SymbolicExecutionTree)

SymbolicExecutionTree
employs

works on

IostsBuilder

+ buildIosts(pathToDotFile : String, pathToSjavaFile : String, debug : boolean) : Iosts

Iosts

instantiates

SymbTCGen

+ main(args : String[])
# parseArguments(args : String[])
# executeTcGenerationProcess()

employs

uses

instantiates

Diagramm: main Seite 1
Figure 5.8: The class SymbTCGen contains the main method of our application. It parses the

command line arguments and implements the test case generation process by invoking
the IostsParser, the SymbolicExecutor, and the TestCaseSelector.

shows

Iosts

«interface»
DotRepresentable

+ writeDotFile(dotPath : String)

employs

ProgramInvoker
� process_ : Process
+ executeProcess(executionCommand : String, wait : boolean)
+ getProcessErrorOutput() : String
+ getProcessOutput() : String

SymbolicExecutionTree

DotHandler

+ showGraph(dotRepr : DotRepresentable, graphName : String, outputFolder : String)
+ insertLineBreaks(text : String) : String
+ generatePdf(dotPath : String, pdfPath : String)
+ generatePs(dotPath : String, psPath : String)
+ showPdf(pdfPath : String)
+ showPs(psPath : String)

Diagramm: dot_pdf Seite 1
Figure 5.9: The class DotHandler generates dot files for classes that implement the interface

DotRepresentable. Additionally, it supports the conversion of dot files into pdf or
ps format and is able to display such files.

framework. For this purposes, it uses the method showGraph of the DotHandler class, which gets the
dot representation of the Iosts and the SymbolicExecutionTree instances and converts them into pdf
or ps (Post Script) format with the dot command provided by the Graphviz tool set6. Furthermore, it
allows to open the generated pdf file with the tool Xpdf 7 and the generated ps file with the Ghostview
implementation gv8. Figure 5.9 shows the classes that are involved in this process.

5.2.5 External Dependencies

As already mentioned in the previous sections, our Java implementation depends on several external
tools. Since most of them are only available for Linux platforms, our implementation does not support
other operating systems either. The external dependencies of our Java application are:

6http://www.graphviz.org/ (last visit 2009-09-27)
7http://www.foolabs.com/xpdf/ (last visit 2009-09-27)
8http://pages.cs.wisc.edu/˜ghost/gv/index.htm (last visit 2009-09-27)

http://www.graphviz.org/
http://www.foolabs.com/xpdf/
http://pages.cs.wisc.edu/~ghost/gv/index.htm
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• The Yices SMT solver9: command line tool, version 1.0.21

• Graphviz10: graph visualization software

• Xpdf11: a PDF viewer for X

• gv12: implementation of Ghostview, allows to view and navigate PostScript files

• ANTLR Parser Generator13: jar files, version 3.0

5.2.6 Usage

Our Java application is started with the following command:

main.SymbTCGen <path to input dot file>
<path to input sjava file>
<path for output file storage>
<debug flag>
<upper bound>

Note that the ordering of the command line arguments is relevant and that all five arguments have to
specified. They have the following meaning:

path to input dot/sjava file The first two arguments specify the path to the dot file and sjava file
respectively. They contain the closed product of the specification and a test purpose in the form of
an IOSTS, which will be used to calculate a test case. Both files can be automatically generated
with STG.

path for output file storage The third command line argument specifies where the generated output
files shall be stored.

debug flag The fourth argument can be “true” or “false”. If the debug flag is set, additional debug
information will be printed and intermediate results, i.e., the parsed IOSTS and the generated
symbolic execution tree, will be exported to dot and pdf format.

upper bound The last argument is an integer value greater than zero. It specifies an upper bound for
loop unfolding, i.e., the maximum number of visits of one IOSTS location in each path of the
symbolic execution tree.

The following entries have to be specified in Java’s classpath:

• ANTLR:

– antlr-2.7.7.jar
– antlr-3.0.jar
– antlr-runtime-3.0.jar
– stringtemplate-3.0.jar

• bin folder containing the binaries of our Java implementation
9http://yices.csl.sri.com/ (last visit 2009-09-27)

10http://www.graphviz.org/ (last visit 2009-09-27)
11http://www.foolabs.com/xpdf/ (last visit 2009-09-27)
12http://pages.cs.wisc.edu/˜ghost/gv/index.htm (last visit 2009-09-27)
13http://www.antlr.org/ (last visit 2009-09-27)

http://yices.csl.sri.com/
http://www.graphviz.org/
http://www.foolabs.com/xpdf/
http://pages.cs.wisc.edu/~ghost/gv/index.htm
http://www.antlr.org/
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5.3 Shell Script Combining STG and the Java Implementation

As already mentioned in Section 5.1, STG and our new Java implementation have been integrated into
one application by the use of a shell script (see Listing 5.1). The script was written for the Bash shell
and expects five arguments:

1. The first argument specifies the name of the STG file, which contains the specification of the SUT
and the test purpose, without any path information. The file is supposed to be in a folder named
spec, which has to be located in the same directory as the script.

2. The name of the IOSTS that represents the system specification.

3. The name of the IOSTS that represents the test purpose.

4. The debug flag is directly passed to the Java program (see Section 5.2.6).

5. The last argument is supposed to be an integer value and will be used as the upper bound for the
Java program (see Section 5.2.6).

In the lines 2 to 6 of Listing 5.1, the script prints information about its usage if the number of arguments
with which it was called is wrong. The lines 9 to 13 carry out preparations that are necessary in order to
execute STG (see Section 3.3.2).

Since we do not need to execute STG’s complete test case generation process, we use a command
file to specify the operations that have to be carried out by STG. The shell script requires a template
command file called cmdfile to be in the same directory as the script itself. Its content must be the
same as the STG commands presented in Listing 5.2. The lines 16 to 19 of the shell script modify the
command file by inserting the name of the specification (second argument of the script) and the name of
the test purpose (third argument of the script).

Line 22 changes into the directory spec, which contains the STG file. The NBac library files, which
are located in stg linux/lib, are copied directly into the spec directory (lines 25 and 26). This is
necessary, because STG expects the NBac library to be in the same folder as the file it is processing.

Line 31 invokes STG, which calculates the closed product between the specification and the test
purpose according to the operations specified in the command file. Listing 5.2 shows its content: At
first, the specification (Line 1) and the test purpose (Line 2) are parsed. Subsequently, the test purpose is
completed (Line 3) and the product between the specification and the completed test purpose is calculated
(Line 4). Finally, the product is closed (Line 5) and exported into dot (Line 6) and sjava format
(Line 7).

After STG has finished, the script shown in Listing 5.1 invokes our Java program (Line 45). The
classpath is set according to Section 5.2.6. The arguments passed to the program are:

1. The dot file generated by STG: Its name consists of the name of the STG file without file extension
concatenated with the string “ closure.dot”.

2. The sjava file generated by STG: Its name consists of the name of the STG file without file
extension concatenated with the string “Test.sjava”.

3. The third argument specifies the folder in which outputs will be stored. The script uses the current
folder (spec).

4. The debug flag is specified by the user as the fourth argument of the script.

5. The upper bound is specified by the user as the last argument of the script.

This completes the presentation of our tool. The next chapter reports about its application in three
case studies. In our discussion about future work (see Section 8.3), we will make some suggestions about
how this prototype implementation can be enhanced.
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1 # check arguments
2 if [ $# −ne 5 ] ; then
3 echo Wrong number of parameters !
4 echo Usage : $0 ”<file .stg> <test name> <test purpose name> <debug> <

upper bound>”
5 exit 127
6 fi
7
8 # set PATH
9 export STG LINUX=/stg linux

10 export PATH=$PATH : $STG LINUX
11
12 # copy ”rung” file in order to be able to execute the stg tool
13 cp $STG LINUX /tmp /rung /tmp /rung
14
15 # put correct test name and test purpose name into command file
16 touch cmdfile .tmp
17 sed s / ”spec := getiosts ( ” [ . ] * ” ) ” / ”spec := getiosts ( ” $ 2 ” ) ” / <cmdfile >

cmdfile .tmp
18 sed s / ”tp := getiosts ( ” [ . ] * ” ) ” / ”tp := getiosts ( ” $ 3 ” ) ” / <cmdfile .tmp >

cmdfile
19 rm cmdfile .tmp
20
21 # go to directory ”spec” (contains <file .stg>)
22 cd spec
23
24 # create folder ”lib” in working directory and copy NBAC library into it
25 mkdir −p . / lib /nbac
26 cp $STG LINUX /lib /nbac / * . / lib /nbac
27
28 # generate closed product with STG
29 # stg <file>.stg −cmdfile cmdfile
30 echo ”\n>>> Starting STG . . . \ n”
31 stg $1 −cmdfile . . / cmdfile
32
33 # set path variables for ANTLR and our Java implementation
34 ANTLR LIB=/antlr−3 .0 /lib
35 SYMB TC GEN=/thesis /implementation /bin
36
37 # cut file extension from STG file and build names for DOT and SJAVA file
38 BASENAME= ‘basename $1 .stg ‘
39 DOT=”${BASENAME} closure .dot”
40 SJAVA=”${BASENAME}Test .sjava”
41
42 # invoke Java implementation SymbTCGen
43 # main .SymbTCGen <path to input dot file> <path to input sjava file> <

path for output file storage> <debug flag = true | | false> <upper
bound>

44 echo ”\n>>> Starting SymbTCGen . . . \ n”
45 java −classpath ”$SYMB TC GEN : $ANTLR LIB /antlr−2 . 7 . 7 .jar : $ANTLR LIB /antlr

−3 .0 .jar : $ANTLR LIB /antlr−runtime−3 .0 .jar : $ANTLR LIB /stringtemplate
−3 .0 .jar” main .SymbTCGen $DOT $SJAVA . $4 $5

Listing 5.1: Shell script for integrating STG and our new Java implementation into one application.
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1 spec := getiosts ( . . . ) ;
2 tp := getiosts ( . . . ) ;
3 complete tp := complete (tp ) ;
4 product := spec*complete tp ;
5 closed p := close (product ) ;
6 show closed p ;
7 tojava closed p

Listing 5.2: Command file template for calculating the closed product with STG.



6 Case Studies and Results

This chapter shows the applicability of the developed test generation tool. Since a full presentation of the
used specifications and test purposes as well as of the resulting symbolic execution trees and test cases
would be too extensive, this chapter will only give metrics about them. Furthermore, the performance in
terms of time of STG’s test case generation process will be compared to the performance of our approach.
For our implementation, the elapsed time was measured from executions without having the debug flag
set, i.e., no debug output was printed and the parsed IOSTS as well as the symbolic execution tree were
not exported to dot and pdf format respectively. All experiments were run on the following system:

• Intel® Core™2 Duo Processor T7200 (2.00 GHz)

• 2 GB RAM

• Ubuntu 8.04

• Java Runtime Environment: java version 1.6.0 0

• Java Compiler: javac 1.6.0 0-internal

• STG: unversioned, downloaded from the STG web page1 dated with August 28, 2008

• Yices SMT solver: command line tool, version 10.0.21

• Bash shell: version 3.2.39(1)

The case studies used to evaluate our test case generation approach consist of three examples of
different size. The first one is called Triangle Type Checker and is a very small example, which has
already been used for illustration throughout this work. The second case study is of industrial relevance.
It concerns a Session Initiation Protocol (SIP) Registrar, which is informally specified in RFC 3261. The
Conference Protocol is the subject of the third case study. It has already served as a case study during
the development of other formal testing tools. Note that the case studies cover test case generation and
do not deal with test case execution.

6.1 Triangle Type Checker

This section deals with the Triangle Type Checker example, which has already been introduced in Sec-
tion 2.2.2. The original idea for this example stems from Myers [58]. The Triangle Type Checker takes
three integer values as inputs. They are representing the three side lengths of a triangle. Afterwards, the
Triangle Type Checker determines whether these three side lengths form a valid triangle. If they do, the
type of the triangle (equilateral, isosceles, or scalene) is decided. If one of the side lengths is negative
or zero, “NotPositive” is output. If the three side lengths do not form a valid triangle, “NotTriangle” is
reported.

6.1.1 Specification

The IOSTS representing the specification of this example has already been shown in Figure 2.2. The
Triangle Type Checker example is a small example that is used for demonstration throughout the STG
website2. Table 6.1 describes the size of the Triangle Type Checker specification, which consists of about
80 lines of code. It needs only 3 variables for its data and has only 6 locations connected via 9 transitions
with simple guards. The biggest guard contains just 10 operators from which 5 are logical operators.
Almost all actions of this specification do not carry messages.

1http://www.irisa.fr/prive/ployette/stg-doc/stg-web_5.html (last visit 2009-09-27)
2http://www.irisa.fr/prive/ployette/stg-doc/stg-web.html (last visit 2009-09-27)
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Specification (Triangle Type Checker)
Category Metric Value
general information lines of code ∼ 80

# system parameters 0
# variables 3
# locations 6
# transitions 9

actions # different input actions 1
# different output actions 6
# different internal actions 1

# messages of different actions minimum 0
maximum 3
average 0

# operators in guards minimum 0
(logical, arithmetic, and comparison operators) maximum 10

average 5
# logical operators in guards minimum 0
(not, and, or) maximum 5

average 2

Table 6.1: This table describes the size of the Triangle Type Checker specification.

6.1.2 Test Case Generation

Test Purposes

Six test purposes, which have already been designed by the STG team, were used for this case study.
They can be found in the file triangle.stg, which is available at the STG web page3. Table 6.2
gives an overview of the size of the (intermediate) results produced throughout test case generation. The
size of the different test purposes is presented at the top of the table. Since the specification itself is
quite small, the test purposes are very simple. Each of them consists of approximately 20 lines of code,
3 locations, and 2 transitions.

Closed Products

The test case generation starts with the calculation of the products between the specification and a test
purpose. Subsequently, these products are closed. These closed products, which are calculated by STG,
are the input for the new test case generation approach of this work (see Chapter 4). In Table 6.2, the
size of the closed products for the Triangle Type Checker example is described by five metrics: (1) the
number of locations, (2) the number of transitions, (3) the number of system parameters, (4) the number
of variables, and (5) the number of different message names. Since the used test purposes have the same
structure, the closed products are of the same size. Each of them consists of 7 locations, which are
connected via 10 transitions. None of the closed products has any system parameters. Each of them has
3 variables and 3 different message names.

3http://www.irisa.fr/prive/ployette/stg-doc/triangle.stg (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/triangle.stg
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Test
Purposes

lines of code ∼ 20 ∼ 20 ∼ 20 ∼ 20 ∼ 20 ∼ 20 ∼ 20
# locations 3 3 3 3 3 3 3
# transitions 2 2 2 2 2 2 2

Closed
Products

# locations 7 7 7 7 7 7 7
# transitions 10 10 10 10 10 10 10
# system parameters 0 0 0 0 0 0 0
# variables 3 3 3 3 3 3 3
# messages 3 3 3 3 3 3 3

Symbolic
Execution
Trees

# SES 9 9 6 9 9 9 9
# satisfiable Accept states 1 1 1 1 1 1 1
upper bound 2 2 2 2 2 2 2

Generated
Test Cases

# SES 9 9 6 9 9 9 9
# SES in longest path 5 5 4 5 5 5 5
# SES in shortest path 4 4 4 4 4 4 4
# Pass 1 1 1 1 1 1 1

Test Case
Generation
Time [sec]

STG 2.14 1.99 2.25 1.68 3.51 3.85 2.57
regular termination yes yes yes yes yes yes –

New Approach 2.17 1.05 1.22 0.91 0.95 1.03 1.22
STG 0.09 0.17 0.15 0.21 0.14 0.23 0.17
own implementation 2.08 0.88 1.07 0.7 0.81 0.8 1.05
regular termination yes yes yes yes yes yes –

Table 6.2: This table describes the process of generating test cases for the Triangle Type Checker. It
states the size of the intermediate and final results as well as the time needed to generate
test cases for different test purposes.

Symbolic Execution Trees

Next, the closed products are symbolically executed in order to generate test cases. Some metrics describ-
ing the resulting symbolic execution trees are presented in the middle part of Table 6.2. The symbolic
execution tree for the test purpose “TP IsTriangle” has 6 Symbolic Extended States (SES). Each of the
other symbolic execution trees consists of 9 SES. None of the symbolic execution trees contains more
than one satisfiable Accept state. Hence, at most one test case per test purpose can be generated at all.
The upper bound for loop unfolding was chosen to be 2, i.e., each path of the symbolic execution tree
has at most 2 SES corresponding to the same IOSTS location (see Section 4.3.2 for more details). For
the small Triangle Type Checker example, in which neither the specification nor any of the test purposes
contains any loops, an upper bound of value 2 is sufficient.

Note that all symbolic execution trees except for the one for the test purpose “TP IsTriangle“ have
the same structure, but they are not exactly the same. The symbolic execution tree for “TP IsTriangle“
is smaller, because it reaches an Accept state before deciding about the type of the triangle. Hence, three
SES (for the three triangle types) are not part of this symbolic execution tree.
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Figure 6.1: This diagram illustrates the time consumed by STG compared to the time needed by
our approach to generate test cases for the Triangle Type Checker.

Generated Test Cases

After the symbolic execution of the closed products, symbolic test cases are extracted from the symbolic
execution trees according to the test case selection algorithm defined in Section 4.4.1. Table 6.2 describes
the resulting test cases with the aid of four metrics: (1) the total number of SES in each test case, (2)
the number of SES in the longest path, (3) the number of SES in the shortest path, and (4) the number
of Pass verdicts in each test case. The test cases generated for the Triangle Type Checker comprise the
whole corresponding symbolic execution trees, i.e., the symbolic execution trees are equivalent to the
generated test cases. The shortest path in each test case consists of 4 SES. The longest path comprises
5 SES for all test cases except of “TP IsTriangle”, which has only 4 SES in its longest path. Each test
case contains one Pass verdict, i.e., one Accept state.

Test Case Generation Time

At the bottom of Table 6.2, the amount of time that was needed for test case generation by STG and the
amount of time that was taken by our approach are listed. Additionally, the elapsed time for test case
generation with our approach is broken down into two parts: (1) the amount of time that is needed by
STG to complete the test purpose, to calculate the product, and to close the product, and (2) the amount
of time that is consumed by the newly implemented parts of our approach, i.e., by the symbolic execution
of the closed product and the test case selection from the resulting symbolic execution tree. Note that all
values are given in seconds and were measured from program executions without printing debug output
and without exporting intermediate results like the parsed IOSTS as well as the generated symbolic
execution tree into dot/pdf format. The rows labelled by regular termination state whether STG and
the program which implements our approach terminated successfully, i.e., whether they generated test
cases.

Both, STG as well as our program, are able to generate test cases for each of the test purposes for the
Triangle Type Checker. At an average, our implementation is faster than STG. Just for one test purpose,
which is “TP NotPositive”, STG is slightly faster than our approach. Figure 6.1 illustrates the difference
between the time consumed by STG and the time needed by our approach. STG’s proportion of time
for generating test cases with our approach is rather low. On average, the time needed by the reused
components of STG forms about 13.8 % of the overall test case generation time of our approach.
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Example Test Case

Since a full presentation of all generated test cases would be too extensive, we give just one example of
a test case for the Triangle Type Checker. The test case for the test purpose “TP NotTriangle” (depicted
in Figure 2.3) tests whether the IUT correctly identifies invalid triangles. The generated test case has
already been shown in Figure 4.4.

6.2 Session Initiation Protocol

The Session Initiation Protocol (SIP) is of industrial relevance. It is a signalling protocol for commu-
nication sessions between two end points and is informally specified in RFC 3261 [66]. Since SIP is
independent of the exchanged media type, it can be used for various applications, e.g., internet telephony
(VoIP), multimedia distribution, or multimedia conferences. There exist many implementations of the
Session Initiation Protocol, e.g., OpenSIPS (Open SIP Server)4 or Asterisk5, which can be tested with
the test cases generated by our approach.

According to Aichernig et al. [2], the functionalities provided by SIP can be divided into two cate-
gories: session management and user management. Session management comprises the establishment,
transfer, and termination of sessions as well as the modification of session parameters. User management
includes functionalities like the determination of the user location and of the user availability. The ability
of SIP to locate users allows them to have just one externally visible identifier, although they may access
the SIP network from different network locations. The therefore necessary location information about
users is maintained by the so-called SIP Registrar, which is the focus of this case study.

SIP is a text based protocol that works with the concept of requests and responses. The basic version
of SIP knows six different request methods. The request method that is primarily used in connection
with the SIP Registrar is called REGISTER and associates a user address with an end point. Requests
as well as responses are transferred in the form of messages. Each message has the same structure. It
consists of a start line, a message header, and a message body. The start line indicates the request method
or response type. The message header gives information about the message, e.g., the sender, the receiver,
or the content type. For example, the message header of the REGISTER request method may contain
CONTACT header fields that are used to modify already stored user location information. The message
body may contain data. For the REGISTER request method, it is usually empty [2].

Aichernig et al. [2] used the formal testing tool TGV for conformance testing of a SIP Registrar. The
used LOTOS specification was developed by Weiglhofer [78]. This work also concentrates on test case
generation for the SIP Registrar.

6.2.1 Specification

Table 6.3 describes the size of the specification of the SIP Registrar, which is the biggest of the three
examples used for this case study. It consists of 530 lines of STG code in which 2 system parameters
and 28 variables are defined. The IOSTS consists of 24 locations and 52 transitions. The protocol
specification uses three different actions: one input action, one output action, and one internal action.
The minimum number of messages for one action is 5, the maximum is 10. At an average, each used
action carries 8 messages. The guards of some transitions are rather large. The maximum number
of operators in one guard is 66. The maximum number of logical operators in one guard is 35. At
an average, each guard consists of 14 operators from which 7 are logical operators. However, some
transitions are not guarded at all.

4http://www.opensips.org/ (last visit 2009-09-27)
5http://www.asterisk.org (last visit 2009-09-27)

http://www.opensips.org/
http://www.asterisk.org
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Specification (SIP Registrar)
Category Metric Value
general information lines of code ∼ 530

# system parameters 2
# variables 28
# locations 24
# transitions 52

actions # different input actions 1
# different output actions 1
# different internal actions 1

# messages of different actions minimum 5
maximum 10
average 8

# operators in guards minimum 0
(logical, arithmetic, and comparison operators) maximum 66

average 14
# logical operators in guards minimum 0
(not, and, or) maximum 35

average 7

Table 6.3: This table describes the size of the SIP Registrar specification.

6.2.2 Test Case Generation

Test Purposes

Table 6.4 gives an overview of the size of the (intermediate) results produced throughout test case gener-
ation. The different test purposes are described at the top of the table. Three metrics are used to describe
their size: (1) the lines of code needed to specify them in STG format, (2) the number of locations, and
(3) the number of transitions that each test purposes contains. The used test purposes are very different
in their size. Two of them are specified in about 90 lines of STG code and consist of 7 locations and
17 to 18 transitions. The other test purposes are significantly smaller. Three of them are written in 30 to
35 lines of code and contain only 4 locations and 5 to 6 transitions. One test purpose comprises 40 lines
of STG code and contains 5 locations and 5 transitions. An average test purpose for the SIP Registrar
comprises 53 lines of STG code and consists of 5 locations connected via 9 transitions.

Closed Products

The second part of Table 6.4 describes the closed products generated by STG. Five metrics state the size
of each closed product. They count the number of (1) locations, (2) transitions, (3) system parameters,
(4) variables, and (5) different message names. Note that the values given for the number of transitions
do not include duplicates, since redundant transitions are removed from the closed products before they
are symbolically executed. At an average, each closed product consists of 65 locations connected via
306 transitions. Each of them has 2 system parameters, 28 variables, and 11 different message names.

Symbolic Execution Trees

The symbolic execution trees for the closed products are described in the middle of Table 6.4. At an
average, each symbolic execution tree contains 210 symbolic extended states (SES), whereof 28 are
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Test
Purposes

lines of code ∼ 90 ∼ 30 ∼ 30 ∼ 35 ∼ 90 ∼ 40 ∼ 53
# locations 7 4 4 4 7 5 5
# transitions 18 5 5 6 17 5 9

Closed
Products

# locations 112 30 30 30 113 73 65
# transitions 562 183 183 217 482 211 306
# system parameters 2 2 2 2 2 2 2
# variables 28 28 28 28 28 28 28
# messages 11 11 11 11 11 11 11

Symbolic
Execution
Trees

# SES 566 101 101 125 328 38 210
# satisfiable Accept states 100 18 4 8 38 1 28
upper bound 2 2 2 2 2 2 2

Generated
Test Cases

# SES 38 15 15 17 29 6 20
# SES in longest path 7 4 4 4 6 4 5
# SES in shortest path 4 4 4 4 4 4 4
# Pass 24 9 2 4 9 1 8

Test Case
Genera-
tion Time
[sec]

STG 30 min 13 min 18 min 16 min 2 min 4 min 14 min
regular termination no no no no no no –

New Approach 14.35 4.66 4.43 4.56 11.89 3.93 7.31
STG 3.16 1.33 1.33 1.78 3.37 1.31 2.05
own implementation 11.19 3.33 3.1 2.78 8.52 2.62 5.26
regular termination yes yes yes yes yes yes –

Table 6.4: This table describes the process of generating test cases for the SIP Registrar. It states the
size of the different intermediate and final results as well as the time needed to generate
test cases for different test purposes.

satisfiable Accept states. Figure 6.2 shows that except for two test purposes, the single values show a
correlation between the size of the test purposes (measured in the number of locations and transitions)
and the size of the resulting symbolic execution trees (measured in the number of SES). The upper bound
used for symbolic execution has been 2 for all test purposes, i.e., each path of the symbolic execution
tree has at most 2 SES corresponding to the same IOSTS location (see Section 4.3.2 for more details).

Generated Test Cases

Table 6.4 also describes the test cases that were extracted from the symbolic execution trees according
to the algorithm defined in Section 4.4.1. Therefor, four metrics are used: (1) the total number of SES



Chapter 6. Case Studies and Results 90

register_notfound_tp
register_invalidrequest_tp

register_notfound_guarded_tp
register_ok_tp

register_unauthorized_tp
register_delete_tp

0

100

200

300

400

500

600

# Transitions of Closed 
Product

# Locations of Closed 
Product

# SES of Symbolic 
Execution Tree

Figure 6.2: For the SIP Registrar example, the size of the closed products show a correlation with
the size of the resulting symbolic execution trees except for two test purposes.
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Figure 6.3: The size of the symbolic execution trees and the size of the generated test cases in
terms of their number of SES correlate.

in each test case, (2) the number of SES in the longest path, (3) the number of SES in the shortest path,
and (4) the number of Pass verdicts in each test case. At an average, each test case consists of 20 SES,
whereof 8 are Accept states, i.e., Pass verdicts. The average number of SES in the shortest paths of
the symbolic execution trees is 4. The longest paths consist of 5 SES on average. As can be seen in
Figure 6.3, the single values show a correlation between the size of the symbolic execution trees and the
size of the generated test cases.

Test Case Generation Time

Finally, the amount of time that was needed for test case generation by STG and the amount of time
that was taken by our approach are listed at the bottom of Table 6.4. The elapsed time for test case
generation with our approach is broken down into two parts: (1) the amount of time that is needed by
STG to complete the test purpose, to calculate the product, and to close the product, and (2) the amount
of time that is consumed by the newly implemented parts of our approach, i.e., by the symbolic execution
of the closed product and the test case selection from the resulting symbolic execution tree. Note that all
values which are not listed with a specifically unit are given in seconds. All values were measured from
program executions without printing debug output and without exporting intermediate results, i.e, the
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Figure 6.4: This diagram illustrates the time consumed by STG compared to the time needed by
our approach to generate test cases for the SIP Registrar. Note that STG failed to
generate test cases for all of the used test purposes. The given time values state after
which period of time an error occurred.

parsed IOSTS as well as the generated symbolic execution tree, into dot/pdf format. The rows labelled
by regular termination state whether STG and the program which implements our approach terminated
successfully, i.e., whether they generated test cases.

For the SIP Registrar specification and its 6 different test purposes, STG was not able to gener-
ate any test cases. The test case generation for the test purposes “register invalidrequest tp”, “regis-
ter notfound tp”, “and register ok tp” were aborted with the following error message:

Fatal error: exception Failure("Buffer.add: cannot grow buffer")

The test purposes “register unauthorized tp” and “register notfound guarded tp” caused a stack over-
flow. STG’s error message was:

Fatal error: exception Stack overflow

For the test purpose “register delete tp”, STG exceeded the limit of 2.5 GB of RAM.

By contrast, our approach successfully generated test cases for all of the used test purposes within
seconds. Figure 6.4 illustrates the elapsed time until STG reported an error and the time needed by
our approach to generate test cases. For none of the used test purposes, our approach took longer than
15 seconds. The average time needed for test case generation was about 7 seconds.

Example Test Case

Figure 6.5 serves as an example of a generated test case. The symbolic extended states and symbolic
transitions of the test case have the same structure as already explained in Section 4.3.3. For this example,
the path conditions and symbolic values for each SES as well as the symbolic action messages and
message mappings for each symbolic transition have been removed in order to present the test case on a
single A4 page.

The depicted test case corresponds to the test purpose “register notfound tp”. It tests whether the
IUT correctly implements the following behaviour: If the SIP Registrar receives a REGISTER request
for a user for which it is not responsible, it has to answer it with the message “404 (Not Found)”
and must stop the registration process.

Test cases generated with our tool contain implicit verdicts, which have to be made explicit during test
case execution. If the test execution ends in an Accept state, which is specified through the test purpose,
then the verdict is Pass. The test case depicted in Figure 6.5 contains nine Pass verdicts represented by
the nine SES labelled with “Comp Accept” in the last row of the tree.

All other leaves in the tree structure represent the verdict Inconclusive, since no Accept state can be
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reached any more. The test case in Figure 6.5 contains 13 of these states. Some of them are labelled
by the IOSTS location “Comp Reject”. The “Reject” phrase originates from the used test purpose and
indicates behaviours that are not targeted by the test purpose. Note that each Reject state is a leaf of the
tree. The SES labelled by the number 123 is an Inconclusive state as well. The closed product, which
has been symbolically executed, contains a self-loop for the IOSTS location “Comp state2” that is not
guarded. Since we used an upper bound of value 2 for the generation of this test case, loop unfolding is
stopped after the second time an SES labelled with the same IOSTS location in calculated.

The test case does not contain any Fail verdicts. They are identified during test case execution if the
IUT sends some input to the test case that is not recognized in the current state.

6.3 Conference Protocol

The Conference Protocol, which has been used previously for the assessment of formal testing tools like
TGV [48] or TorX [9], is the third example to evaluate our approach. It is a simple communication
protocol for a chat application, whose central part is the so-called Conference Protocol Entity (CPE).
The CPE serves as chat client and allows the user to participate in conferences and exchange messages
with all other members of the same conference. Each user has a nickname and may only participate in
one conference at a time. In the following, the most important aspects of the Conference Protocol will be
presented. A more detailed description of the Conference Protocol is provided online6 by the University
of Twente, Netherlands.

Service Primitives and PCOs The Conference Protocol provides four service primitives that can be
performed at the Conference Service Access Points (CSAPs). They are called join, leave, dataind, and
datareq. The communication between the conference partners is accomplished via dataind for receiving
messages and datareq for sending messages. The partners in a conference may change dynamically,
since users may join conferences and leave them again. The Protocol Data Units (PDUs) processed by
these four service primitives are transferred via the User Datagram Protocol (UDP). Its service primi-
tives udp datareq for sending data and udp dataind for receiving data are performed at the Underlaying
Service Access Point (USAP). CSAP and USAP form the PCOs (Points of Control and Observation) for
a tester.

Protocol Behaviour Initially, the user is only allowed to join a conference. Once a user is participant
of a conference, he/she may send and receive messages or leave the conference. Each join is sent to all
potential conference partners in the form of a join-PDU, which is acknowledged by all participants of
the joined conference by sending an answer-PDU back to the sender. Each performed datareq causes
the CPE to construct a data-PDU, which is sent to all conference partners. The CPEs that receive the
data-PDU perform a dataind in order deliver the received message to the user. If a CPE performs a
leave, a leave-PDU is constructed and sent to all conference partners. Note that all PDUs are sent via
UDP’s service primitive udp datareq and received by UDP’s service primitive udp dataind. Since UDP
is a connectionless and unreliable service, it has to be considered that data packages may get lost or may
be received out of sequence. The web page describing the Conference Protocol7 presents an adequate
handling of these cases.

6.3.1 Specification

The size of the Conference Protocol Entity (CPE) specification is described by Table 6.5. The IOSTS
specification comprises approximately 310 lines of code written in STG format (see the STG Reference

6http://fmt.cs.utwente.nl/ConfCase/ (last visit 2009-09-27)
7http://fmt.cs.utwente.nl/ConfCase/v1.00/description/confprot.html
(last visit 2009-09-27)

http://fmt.cs.utwente.nl/ConfCase/
http://fmt.cs.utwente.nl/ConfCase/v1.00/description/confprot.html
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Specification (Conference Protocol)
Category Metric Value
general information lines of code ∼ 310

# system parameters 0
# variables 15
# locations 15
# transitions 34

actions # different input actions 2
# different output actions 2
# different internal actions 1

# messages of different actions minimum 2
maximum 6
average 5

# operators in guards minimum 0
(logical, arithmetic, and comparison operators) maximum 12

average 6
# logical operators in guards minimum 0
(not, and, or) maximum 7

average 3

Table 6.5: This table describes the size of the Conference Protocol specification.

Manual8). It consists of 15 locations connected via 34 transitions. The CPE specification does not have
any system parameters, but needs 15 variables for storing its data. It supports 5 different actions: two
input actions, two output actions, and one internal action. At an average, each action carries 5 messages.
The maximum number of messages for one action is 6. One action has only 2 messages. At an average,
the guards of the transitions include 6 operators, whereof 3 are logical operators. The highest number of
operators in one guard is 12. The highest number of logical operators in one guard is 7. There are also
transitions that are not guarded.

6.3.2 Test Case Generation

Test Purposes

Table 6.6 gives an overview of the size of the (intermediate) results produced throughout test case gener-
ation. The different test purposes are described at the top of the table. Three metrics are used to describe
their size: (1) the lines of code needed to specify them in STG format, (2) the number of locations, and
(3) the number of transitions that each test purposes contains. An average test purpose for the Conference
Protocol comprises about 313 lines of STG code. It consists of 13 locations connected via 71 transitions.

Closed Products

The second part of Table 6.6 describes the closed products generated by STG. Five metrics state the size
of each closed product. They count the number of (1) locations, (2) transitions, (3) system parameters,
(4) variables, and (5) different message names. Note that the values given for the number of transitions
do not include duplicates, since redundant transitions are removed from the closed products before they
are symbolically executed. At an average, each closed product consists of 59 locations connected via

8http://www.irisa.fr/prive/ployette/stg-doc/stg-web_4.html (last visit 2009-09-27)

http://www.irisa.fr/prive/ployette/stg-doc/stg-web_4.html
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Figure 6.6: For the Conference Protocol example, the size of the closed products in terms of the
number of transitions or locations are only weakly correlated with the size of the re-
sulting symbolic execution trees in terms of their number of SES.

353 transitions. None of them has system parameters. Each closed product has 15 variables and contains
12 to 13 different message names.

Symbolic Execution Trees

The symbolic execution trees for the closed products are described in the middle of Table 6.6. Note
that not all symbolic execution trees could be completely calculated in reasonable time. The test case
generation process for the test purposes “join leave join tp” and “send msg tp” was aborted after 36
hours and 54.5 hours respectively. At this program state, the symbolic executions were not finished yet.
Hence, the values in Table 6.6 give a lower bound for the size of the symbolic execution trees as well
as for the time needed to generate test cases for the affected test purposes. The average values take
the upper bounds into account as normal values. At an average, each symbolic execution tree contains
26572 symbolic extended states (SES), whereof 469 are satisfiable Accept states. The single values show
only a weak correlation between the size of the closed products in terms of the number of transitions
or locations and the size of the resulting symbolic execution trees in terms of their number of SES (cf.
Figure 6.6).

The upper bound that limits the depth of loop unfolding during symbolic execution (see Section 4.3.2)
has been 3 for all test purposes except for “join leave tp” and “join leave join tp”. For these two test
purposes, the value of 3 was too low. Since the loop unfolding was stopped too early, no satisfiable
Accept states were calculated and hence it was not possible to generate any test cases. Instead we used
an upper bound of value 4, which lead to a successful test case generation for “join leave tp”. For the
test purpose “join leave join tp”, we do not know if this value was sufficiently high, since the symbolic
execution could not be finished within a reasonable amount of time and no satisfiable Accept states
have been found until the program was stopped. Note that a higher value for the upper bound would
cause the program to need even more time. Furthermore, the test case generation for the test purpose
“send msg tp” was aborted after about 54.5 hours. But in this case we know for sure that an upper bound
of value 3 is sufficient, since there were already 548 satisfiable Accept states found before the symbolic
execution was stopped. For the two test purposes “join leave join tp” and “send msg tp”, the values in
Table 6.6 describe the size of the symbolic execution trees at the moment of interrupting the program.
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Figure 6.7: The size of the symbolic execution trees and the size of the generated test cases in
terms of their number of SES do not correlate for the Conference Protocol example.

Generated Test Cases

Table 6.6 also describes the test cases that were extracted from the symbolic execution trees according
to the algorithm defined in Section 4.4.1. Therefor, four metrics are used: (1) the total number of SES
in each test case, (2) the number of SES in the longest path, (3) the number of SES in the shortest path,
and (4) the number of Pass verdicts in each test case. For two test purposes (“join leave join tp” and
“send msg tp”) the symbolic execution could not be finished in reasonable time. Hence, no test cases
could be generated for them. At an average, each of the generated test cases consists of 28 SES, whereof
one is an Accept states, i.e., a Pass verdict. The average number of SES in the shortest paths of the
symbolic execution trees is 3. The longest paths consist of 13 SES on average. The size of the symbolic
execution trees and the size of the generated test cases do not correlate (cf. Figure 6.7).

Test Case Generation Time

Finally, the amount of time that was needed for test case generation by STG and the amount of time
that was taken by our approach are listed at the bottom of Table 6.6. The elapsed time for test case
generation with our approach is broken down into two parts: (1) the amount of time that is needed by
STG to complete the test purpose, to calculate the product, and to close the product, and (2) the amount
of time that is consumed by the newly implemented parts of our approach, i.e., by the symbolic execution
of the closed product and the test case selection from the resulting symbolic execution tree. Note that
all values which are not listed with a specifically unit are given in minutes and seconds. All values were
measured from program executions without printing debug output and without exporting intermediate
results, i.e., the parsed IOSTS as well as the generated symbolic execution tree, into dot/pdf format.
The rows labelled by regular termination state whether STG and the program which implements our
approach terminated successfully, i.e., whether they generated test cases.

For the Conference Protocol example, STG did significantly perform better than our approach. First
of all, STG was able to generate test cases for all test purposes. Our approach did not manage to generate
test cases for two test purposes in reasonable time. Furthermore, STG generated each test case in less
than two minutes. By contrast, our approach took up to twelve hours to successfully create a test case.
Figure 6.8 illustrates the test case generation times of STG and our approach. Note that all values are
given in seconds and that the ordinate is scaled logarithmically.
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Figure 6.8: This diagram illustrates the time consumed by STG compared to the time needed by
our approach to generate test cases for the Conference Protocol.

Example Test Case

Figure 6.9 serves as an example of a generated test case. The symbolic extended states and symbolic
transitions of the test case have the same structure as already explained in Section 4.3.3. For this example,
the path conditions and symbolic values for each SES as well as the symbolic action messages and
message mappings for each symbolic transition have been removed in order to present the test case on a
single A4 page. The depicted test case corresponds to the test purpose “answer pdu tp”. It tests whether
the IUT correctly implements the answering of received join PDUs.

Test cases generated with our tool contain implicit verdicts, which have to be made explicit during test
case execution. If the test execution ends in an Accept state, which is specified through the test purpose,
then the verdict is Pass. The test case depicted in Figure 6.9 contains one Pass verdict represented
by the SES labelled with “Joined Accept”. All other leaves in the tree structure represent the verdict
Inconclusive, since no Accept state can be reached any more. The test case in Figure 6.9 contains two of
these states. They are labelled with “3 Initial2Idle state0 (2)” and “21 Joined state3 (1)”. The test case
does not contain any Fail verdicts. They are identified during test case execution if the IUT sends some
input to the test case that is not recognized in the current state.

6.4 Summary and Conclusion

This chapter has presented the results of applying our approach to three examples. The specifications of
the SUTs differ heavily in their size. Whereas the Triangle Type Checker specification (see Table 6.1)
is very small, the specification of the Conference Protocol Entity (see Table 6.5) is significantly larger,
but still not as large as the SIP Registrar specification (see Table 6.3). This applies for almost all of the
metrics used for measuring the size of the specifications.

The size of the used test purposes for each example was described. Additionally to the size of the
generated test cases, the size of the closed products and the symbolic execution trees was presented
for each test purpose. Furthermore, the time needed for test case generation was compared to the time
needed by STG to calculate test cases. Table 6.7 summarizes the test case generation metrics for all used
examples by stating the minimum, maximum, and arithmetic average values. Note that the minimum and
maximum values of the test case generation times state the minimum and maximum values of each single
metric. Hence, the sum of the minimum/maximum value of the time needed by the reused parts of STG
and the time needed by our implementation does not need to be the same as the minimum/maximum
amount of time needed by our approach as a whole.
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1 Initial_Initial (1)

 Init()

2 Initial2Idle_state0 (1)

 tau()
 tau()

[]

3 Initial2Idle_state0 (2) 4 Idle_state0 (1)

 CSAP_in!(...)

5 Joining_state1 (1)

 UDP_out?(...) UDP_out?(...)

16 Join2Sent_state2 (1)

 UDP_out?(...)

17 Join1Sent_state2 (1)

 UDP_out?(...)

20 Joined_state3 (1)

 UDP_in!(....)

35 Joined_state4 (1)

 UDP_in!(....)

244 ReceivedDataPDU_state5 (1)

 UDP_out?(...)

489 Joined_Accept (1)

21 Joined_state3 (1)

Figure 6.9: This graph shows the structure of one example test case for the Conference Protocol.
The used test purpose was “answer pdu tp”.
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Although the specification for the SIP Registrar was by far the largest of the three used specifications,
the average size of the closed products of the Conference Protocol was not much smaller than the average
size of the closed products of the SIP Registrar. This can be led back to the used test purposes, which
were relatively small for the SIP Registrar (about 53 lines of STG code on average) and rather large for
the Conference Protocol (approximately 313 lines of STG code on average).

Notably are the values describing the size of the symbolic execution trees. At an average, a symbolic
execution tree for the Conference Protocol has 26572 SES, whereas a symbolic execution tree for the SIP
Registrar has only 210 SES on average. Hence, the Conference Protocol causes huge symbolic execution
trees compared to the symbolic execution trees of the SIP Registrar, while their closed products were
almost of the same size. Although the size of the closed products and the symbolic execution trees
show a correlation except for two outliers for the SIP Registrar (see Figure 6.2), the Conference Protocol
shows that this correlation cannot be established in general (see Figure 6.6). An explanation for this
circumstance may be the internal structure of the closed products. By trend, IOSTS with many loops
result in larger symbolic execution trees. Obviously, the size of the symbolic execution trees correlates
with the amounts of time needed for test case generation. However, it does not correlate with the size of
the generated test cases in general (see Figure 6.7), although a correlation could be identified in the SIP
Registrar case study (see Figure 6.3).

Compared to STG, our approach works well for the SIP Registrar for which STG cannot generate
any test cases. However, it suffers from performance problems when being applied to the Conference
Protocol. While STG uses BDDs, our approach is based on a combination of symbolic execution and
SAT solving. In the field of model checking, it has been observed that BDD-based model checkers and
SAT-based model checkers are often able to solve different classes of problems. Hence, BDD-based
techniques and SAT-based techniques are assumed to be complementary [21; 23]. The two test case
generation techniques presented in this work seem to behave similarly, although our approach is not
solely based on SAT solving.

STG uses BDDs, which are limited in their applicability due to their memory requirements. In the
worst case, BDDs grow exponentially with the size of the Boolean formula they are representing. Hence,
the most common failure related to BDDs is “running out of memory” [17]. This conforms to our
experience made by applying STG to the SIP Registrar specification, which uses very large guards and a
considerable number of variables and messages (see Table 6.3).

By contrast, our approach employs a combination of symbolic execution and SAT solving and does
not perform well for the Conference Protocol, which comprises smaller guards and less variables (see
Table 6.5). Nevertheless, its symbolic execution trees are huge and the longest paths in the resulting
test cases contain significantly more SES than the longest paths in the SIP Registrar test cases (see
Table 6.7). Again, an analogy to model checkers exists: It has been observed that BDD-based techniques
show a good performance for designs with deep counterexamples, whereas SAT-based model checking
techniques are more effective for designs with shallow counterexamples [3].



7 Related Work

7.1 Related Work on Transition Systems

Since the field of model-based testing (MBT) is very large, several surveys were already conducted in
order to point out the main trends in MBT. Aichernig et al. [1] as well as Hierons et al. [44] give a good
overview about different modelling techniques and corresponding test case generation approaches. The
main models presented by at least one of these two surveys are:

• Contract-like specifications/Model-based formal specifications

• Abstract data types/Algebraic languages

• Labelled Transition Systems (LTS)

• Kripke structures and temporal logic for model checking

• Finite State Machines (FSMs)

• Hybrid systems

• Dataflow models

Testing with model checkers is studied in more detail by Fraser et al. [38]. Lee and Yannakakis [55] give
a deeper insight on testing with FSMs. Broy et al. [19] are also concerned with MBT. They focus on
MBT of reactive systems and concentrate on two system models: FSMs and LTS. Moreover, they deal
with model-based test case generation techniques and present up-to-date tools and case studies. In the
following, several more specific publications that are closely related to this work will be presented.

As already explained in Chapter 4, this work’s approach is based on the tool STG, which is described
in detail in Chapter 3. STG reuses various ideas implemented in the tool TGV [48]. Both tools use spec-
ifications and test purposes as starting point for test case generation. TGV uses Input Output Labelled
Transition Systems (IOLTS) as underlying model. As already mentioned in Section 2.2, the IOSTS
model used by STG extends IOLTS with parameters and variables. Hence, TGV does not work on a
symbolic level like STG. TGV implements the ioco conformance relation, which means that quiescence
is taken into account. STG does not consider any quiescence (see Section 2.3). The test generation pro-
cesses of both tools are very similar, since STG adopts TGV’s approach to be applicable on a symbolic
level.

Aichernig, Weiglhofer et al. [2] employed the TGV tool for conformance testing of a Session Initi-
ation Protocol (SIP) Registrar, which is also part of our case study (see Section 6.2). The used LOTOS
specification was developed by Weiglhofer [78].

Another testing tool that implements the ioco conformance relation is TorX [9]. During test case
generation, TorX randomly walks through the model, which is represented by an LTS. In case of a non-
deterministic choice, several paths are followed in parallel. Just like STG and TGV, TorX supports test
purposes, which are a set of traces over visible labels of the LTS. The algorithm implemented by TorX
has been modified in order to work with symbolic values by Frantzen et al. [37].

AGATHA [12] is a test case generation tool that accepts specifications written in different languages,
e.g., UML, SDL, and STATEMATE. Each specification is transformed into the internally used model
IOSTS, which is also employed in this work (see Section 2.2). In the literature about AGATHA, IOSTS
are sometimes referred to as EIOLTS (Extended Input Output Labelled Transition Systems). AGATHA
also uses symbolic execution as discussed in the following section.
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7.2 Related Work on Symbolic Execution

Lúcio and Samer [56] address different techniques employed for test case generation. Besides theorem
proving and model checking, symbolic execution is one of them. The application of symbolic execution
in the area of testing was already proposed in the 1970s, when King [54] developed the interactive
program testing and debugging tool EFFIGY. In the following, more recent work in the field of testing
with symbolic execution will be presented.

The AGATHA tool set [12], which was already mentioned in Section 7.1, is applying the same
technique as this work: symbolic execution of IOSTS. In contrast to our approach, AGATHA does not use
the concept of test purposes. While we symbolically execute a part of the system specification selected
via test purposes, AGATHA automatically generates test cases from a whole system specification, which
is symbolically executed. Since AGATHA is intended for the validation of system specifications, it
attempts to achieve exhaustive symbolic path coverage. In this way, system properties shall be verified
by proving them for all paths of the system.

Gaston et al. [40] present an extension of the AGATHA tool set, which aims at helping the tester to
identify test purposes. The approach defines test purposes as subtrees of the symbolic execution tree.
Test purposes may still be chosen manually by the user, though two coverage criteria are introduced to
automatically derive test purposes. According to the selected test purposes, test cases are generated.

The AGATHA tool as well as our work employ symbolic execution of a model of the SUT (system
under test) to generate tests and hence deal with black-box testing. By contrast, all of the publications
presented in the following are engaged in white-box testing, i.e., they work directly on the system’s code.

Symstra [79] is a test generation framework that is focused on object-oriented systems. It uses sym-
bolic execution in order to generate unit tests that reach a high branch and intra-method path coverage.

Khurshid et al. [52] present a framework for correctness checking and test input generation based
on symbolic execution and model checking. A source to source translation for program instrumentation
is defined in order to allow standard model checkers to symbolically execute the program. In general,
model checkers are used to check whether or not a certain property is violated by a system. If a violation
is found, a counterexample is computed. The basic idea of testing with model checkers is to use coun-
terexamples as test cases. The survey about testing with model checkers conducted by Fraser et al. [38]
gives a deeper insight to the subject.

The testing approaches of this work and of the tools that were mentioned so far use pure symbolic ex-
ecution. Due to potential non-determinism, a huge number of possible execution paths may be followed,
which leads to vast symbolic execution trees. There exist many approaches for testing that employ a
combination of concrete and symbolic execution to reduce the number of execution paths. This approach
is often referred to as dynamic symbolic execution or concolic execution (concrete symbolic execution).
Boyer et al. [16] were probably the first to apply this technique. Their interactive tool SELECT computes
symbolical constraints on particular program runs selected by the user.

DART (Directed Automated Random Testing) [41] is a fully automated tool for software testing. It
extracts the program’s interface and generates a test driver for random testing. During random testing,
DART computes symbolic constraints on the current program path, which are used to generate further
test inputs forcing the program to follow another path. The goal is to test all possible program paths.
DART is limited, since it only supports linear integer constraints. It has been extended in the tools
CUTE (Concolic Unit Testing Engine) and jCUTE [69], which support any data type including pointers.
An approach similar to the one of DART and CUTE/jCUTE is implemented in the tool EXE [22]. DART,
CUTE, and EXE were developed to test C programs. jCUTE is a version of CUTE to test Java programs.

Another tool that employs dynamic symbolic execution is Pex [73]. It generates test input data for
parameterized unit tests with the goal to achieve a preferably high code coverage. Griesmayer et al. [42]
extend dynamic symbolic execution to be applicable to distributed and concurrent systems specified in
the modelling language Creol.
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The algorithm DASH [6] does not directly address the generation of test cases. Its goal is to prove
programs similarly to SLAM [4]. Test generation operations and symbolic execution are used to decide
where to abstract and how to refine the introduced abstractions. DASH’s symbolic execution algorithm
relies on techniques inspired by CUTE [69].

As can be seen from the above presented publications, symbolic execution is an active area of re-
search. Although the symbolic execution of programs has already been introduced in the 1970s [53], it
has been revived and applied to executable models. Moreover, many recent testing tools employ both
concrete and symbolic execution.



8 Concluding Remarks

8.1 Summary

In this work, we addressed automated conformance testing and presented two symbolic test case gener-
ation approaches. Both are based on IOSTS (Input Output Symbolic Transition Systems), which extend
Input Output Labelled Transition Systems (IOLTS) by the use of variables and parameters. System spec-
ifications as well as test purposes, which are used in conformance testing to specify what aspects of the
system have to be tested, are modelled as IOSTS. In this way, test cases can be generated without enu-
merating the specification’s state space. The resulting test cases are symbolic and can be made executable
by instantiation of their variables.

The first approach was already implemented in the tool STG (Symbolic Test Generator). The single
steps of its test case generation process have been described in detail. Basically, STG completes the spec-
ified test purpose and calculates the product between the specification and the completed test purpose.
Subsequently, the product is closed, i.e., transitions labelled by internal actions are eliminated. Theoret-
ically, the next step of the test case generation approach is to determinize the closed product. However,
STG does not implement this operation. The IOSTS which has been generated so far is already a valid
test case. Nevertheless, it is bigger than necessary and may include unreachable locations. Thus, a test
case selection procedure is performed. STG’s approach uses reachability and coreachability analyses for
this task. Finally, the selected test case has to be made input-complete.

However, this approach shows weaknesses for some kinds of systems. In our case, STG was not able
to generate test cases for the SIP Registrar. Thus, an alternative way of generating test cases from IOSTS
has been developed and presented in this work. Since only a part of the existing STG tool set causes
problems, the new approach does not start from scratch, but was designed to reuse basic functionality
concerning IOSTS from STG. Above all, the new approach replaces STG’s problematic parts concerning
the test case selection, which is based on reachability analyses. Instead, it employs symbolic execution
of IOSTS, which requires SAT solving.

The new test case generation process presented in this work consists of the following steps: It starts
like STG’s test case generation procedure and calculates the product between the specification and the
completed test purpose. Then, the closure operation is applied to the calculated product. Subsequently,
our new test case selection is performed. It symbolically executes the closed product generated by STG
and selects a test case from the resulting symbolic execution tree.

This work also covered the prototype implementation of our new approach, which has been used to
show the applicability of our test case generation procedure in the course of three case studies. The first
case study covered a very small example called Triangle Type Checker, which was used for illustration
purposes throughout this work. The other two case studies dealt with protocols: the Session Initiation
Protocol (SIP) and the Conference Protocol. In particular, the former is of industrial relevance since it is
a popular signalling protocol used in various applications, e.g., VoIP. The conclusions that can be drawn
from the case studies will be discussed in the following section.

8.2 Conclusion

One of the main contributions of this work is the implementation of our test case generation approach
based on the symbolic execution of IOSTS and SMT solving. The developed tool provides the same in-
terface as STG, which means that specifications written for STG can be reused without any modification.
A further advantage of our implementation is its modular architecture. For example, the integration of
another SMT solver than Yices should cause no big effort.

By the development of our tool, we were able to contribute to the field of symbolic conformance
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testing by evaluating both test case generation approaches presented in this work. In the course of our
three case studies, it has turned out that none of the approaches is better than the other. Each of them
has its strengths and weaknesses. Our approach works well for the SIP Registrar. This means that we
have achieved our key objective to generate symbolic test cases for the SIP Registrar, for which STG
cannot generate any test cases. However, we have also shown the limits of our approach. It suffers from
performance problems when being applied to the Conference Protocol, for which STG achieves good
results. This circumstance indicates that the application areas of the two approaches are different.

In this regard, we could identify analogies to the field of model checking, where it has been observed
that BDD-based model checkers and SAT-based model checkers are often able to solve different classes
of problems [21; 23]. STG uses BDDs, while our approach employs a combination of symbolic execution
and SAT solving. Although our approach is not solely based on SAT solving, the experiences from model
checking saying that BDD-based and SAT-based techniques are somehow complementary seems to apply
for the investigated test case generation techniques as well.

Furthermore, it has been noticed that BDD-based model checkers show a good performance for
designs with deep counterexamples, whereas SAT-based model checkers are more effective for designs
with shallow counterexamples [3]. In the field of test case generation, we have observed that STG,
which uses BDDs, shows a better performance for examples that result in test cases with deep paths.
By contrast, our approach, which is based on a combination of symbolic execution and SAT solving,
achieves better results for examples that result in test cases of a smaller depth.

Finally, we come to the conclusion that there is no silver bullet for the automated generation of test
cases. Each approach is somehow limited. Fortunately, they seem to complement each other so that a
solution can be found for each problem, either by applying the one or the other approach.

8.3 Future Work

Although we have achieved good results for the SIP Registrar (see Section 6.2), the application of our
approach to the Conference Protocol Entity specification (see Section 6.3) has shown that there is still
room for improvement. Some proposals about future work will be given in the following.

At present, the algorithm for test case selection (see Section 4.4.1) is not very sophisticated. It
generates just one test case by arbitrarily selecting one Accept state of the symbolic execution tree. One
improvement could be to implement TGV’s policy [48] and to support both, (1) the generation of just
one test case per test purpose and (2) the generation of all possible test cases for one test purpose.

Furthermore, if the user chooses to generate just one test case although the symbolic execution tree
contains more than one Accept state, then the decision about which test case will be generated should be
up to the user. He/she could decide from which Accept state the test case selection starts. In this way, the
user would be able to influence test case selection and help to generate more useful test cases.

In the case of generating just one test case, an opportunity to improve the performance of our al-
gorithm would be to use an on-the-fly approach. The full symbolic execution of the IOSTS could be
stopped when the first satisfiable Accept state has been calculated. Henceforward, only transitions which
are part of the generated test case according to the rules presented in Section 4.4.1 have to be executed.
In this way, it would be possible to minimize the effort for symbolic execution.

Another point of future work is the integration of guard strengthening. STG strengthens the guards
during its coreachability phase in order to avoid test cases from following paths that lead to an Inconclu-
sive state (see Section 3.1.5). Although an inconclusive verdict cannot be prevented entirely, STG has
better chances of reaching the goal of the test purpose than we have.

Currently, we cannot guarantee to generate test cases that do not depend on internal choices of the
tester. Hence, some determinization heuristic like it was planned but not implemented by STG (see
Section 3.1.4) would be desireable.

At the moment, our approach is implemented in the form of a prototype, which could be enhanced in
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many ways. Besides an improved memory usage, the invocation of STG could be integrated into our Java
application. In this way, the shell script currently used to combine STG and our Java implementation
would be unnecessary. Thus, the usability of our tool could be facilitated. The user would only have to
bother with one Java application, which could provide a graphical user interface (GUI).

Moreover, the test case generation tool of this work shall be combined with an already existing
software for translating UML State Charts into IOSTS [72]. By allowing the user to define system
specifications and test purposes via UML State Charts, a better support for the modelling of large systems
is provided. Furthermore, a tool for executing the generated test cases is under development while writing
this thesis. Hence, a framework for covering the model-based testing process including model creation,
test case generation, and test case execution could be provided.

The work done so far in the course of this thesis already contributes to the efficiency and acceptance
of model-based testing. Nevertheless, as can be seen from the above proposals, it is far from being
completed and stimulates further research in the field of automated test case generation.
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[49] Bertrand Jeannet, Thierry Jéron, and Vlad Rusu. Model-Based Test Selection for Infinite-State
Reactive Systems. In 5th International Symposium on Formal Methods for Components and Objects
(FMCO 2006), volume 4709 of Lecture Notes in Computer Science, pages 47–69. Springer, 2006.
(Cited on pages 13, 14, 23, 42 and 48.)
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