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Abstract—The vision of morphological computation proposes
that the complexity of compliant bodies of biological systems
is not accidentally, but rather that it can contribute to the
computations, which are needed for a successful interaction
with the environment. We demonstrate in a simulation that
a compliant, highly nonlinear body (simulated as a random
network of masses and springs) can serve as a computational
resource, which allows the end-effector of a two-link robot arm to
move autonomously on a complex trajectory. Remarkably, simple
linear and static feedback loops from the state of the compliant
structure back to the robot arm torques suffice. This suggests that
by outsourcing parts of the nonlinear and dynamic computation
to the compliant morphology the remaining computational task
is much simpler and can be even represented by some static,
linear weights.1

I. INTRODUCTION

The bodies of biological systems are very complex struc-
tures. They consist of numerous parts made out of various
materials and they interact in a highly nonlinear and dynamic
fashion. From the control theoretical point of view, the control
of such dynamical systems presents a major challenge. Despite
this fact, animals control their complex physical bodies with an
astonishing ease. Moreover, they are able to learn and adapt
the control of their complex bodies. Seeking for biological
inspiration the question arises, how do biological systems
deal with that challenge? One possible answer is provided
by the vision of morphological computation and has been
strengthen lately by related theoretical results by Hauser et
al. [2], [1]. It proposes a paradigm shift: The complexity of
the physical bodies of animals are not sub-optimal results of
the evolutional process, but rather such bodies can potentially
be used as computational resources. They can be controlled,
not despite, but because of their complexity. This implies that
computations (or at least parts of it), which are needed for a
successful interaction with the environment, can be outsourced
to the physical body. As a consequence, the task of controlling
the complex body and even to learn and adapt behavior can
be reduced in their complexity. Hauser et al. [2], [1] showed
that randomly constructed networks2 of masses and nonlinear
springs (which could be used as a model to described complex

1The work has been partly supported by the Swiss National Competence
Center for Research in Robotics.

2Note that their approach is closely related the concept of reservoir
computing (RC), see [3] for a review on RC.

bodies of biological systems as well of compliant robots) can
be employed for a range of computation, which include
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Figure 1: Scheme of the setup of the considered task.

nonlinear operations and memory. A particularly interesting
class of computation can be carried out, when a feedback loop
(or multiple loops) is established. After an initial supervised
learning phase, such morphological computation devices are
able to produce, e.g., autonomously nonlinear limit cycles,
which could be then used, e.g., for locomotion. A remarkable
result of Hauser et al. [1] is that if the physical body is
sufficiently high-dimensional and nonlinear in their dynamics,
even simple static and linear feedbacks can be used to
emulate (with the help of the body) nonlinear, dynamic
computations. This implies that a complex body allows to
reduce the task of learning nonlinear computations (which
can include even persistent memory) to the much simpler
task of finding some linear, static weights. Moreover, it has
been shown that noise during learning is crucial if feedback
is involved, since it provides the necessary robustness of the
learned limit cycle. Note that noise is the standard situation
in real-world applications.
While Hauser et al. [2], [1] presented mathematical proofs
and supported their results with simulations of abstract
networks, we will present here a direct application of their
theory. We will show, that a rigid robot arm augmented by
compliant body parts, which were implemented as a randomly
constructed network of masses and springs (as seen in Figure
1), is able to reproduce a complex, repetitive trajectory
using only linear and static feedbacks from its compliant
“body” (i.e., the state of the body) back to the torque inputs.
The learned trajectory is robust to a certain extend and the
proposed setup is able to recover from external perturbations.
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II. TASK DESCRIPTION

The task was to learn to move robustly the end effector of
a robot arm along a desired trajectory by using a randomly
constructed morphological structure, which was attached to
the robot arm. Figure 1 shows a scheme of the considered
setup and the desired end-effector trajectory (i.e., a figure
eight trajectory). The network consisted of nonlinear springs
and masses in order to approximate the complex behavior
of a real biological body. It was attached to the rigid robot
arm (green input nodes) as well to the shoulder (red, crossed
fixed nodes). As the arm moved the attached green nodes
moved with it and, as a result, the state of the compliant
morphological structure (i.e., the spring lengths) changed too.
The morphological computation device, which consisted of the
nonlinear compliant body and two individual linear readouts
of the actual state of the mass-spring network, had to produce
appropriate torques τ1 and τ2 in order to move along the
desired trajectory (red dashed line in Figure 1) in a robust
fashion.

III. SIMULATIONS

The robot arm was simulated in Matlab at a time step
of 1 ms based on a full dynamic model as used in [2]. It
was a standard two link robot arm restrained to the two-
dimensional plane (i.e., no gravity). The morphological struc-
ture consisted of a random network of masses connected by
nonlinear springs. The structure of the network was based on
a construction policy, which was found to perform well and
which is described below. A typical network, resulting from
this process and which was used for the presented plots, can
be seen in Figure 2. The gray shaded blocks depict the two
links of the robot arm. The so-called input nodes3 (green)
were equally distributed and attached along the axes of the
two links. In order to stabilize the network some additional
(purple) nodes were added. They were fixed relatively to
either one of the links by keeping a constant distance to
them. The red, crossed nodes were fixed in a global reference
frame (i.e., were attached to the robot’s shoulder). Finally, the
red shaded circles denote the areas in which we randomly
positioned additional nodes (i.e., mass points). As in [1], we
used a Delaunay triangulation to find non-crossing connections
between the nodes. These connections were then simulated
as nonlinear springs. Their parameters, which defined the
physical properties of the springs, were randomly drawn from
a defined range. Note that this implies that the compliant
structure was not constructed for this specific task.
The task of the morphological structure was to produce
robustly torque trajectories for the two degrees of freedom,
i.e., τ1 and τ2. Hence, we had two linear readouts, and
two corresponding feedback loops. The linear readouts were
defined as weighted sums of all L actual spring lengths
(li(t), i = 1, 2, . . . , L), hence, τ1 = (t)

∑L
i=1 w1,i · li(t) and

τ2(t) =
∑L

i=1 w2,i · li(t).
The target trajectories τ∗1 and τ∗2 for the torques were

found by the following procedure: Based on the trajectories,

3We called them input nodes, since through these nodes the movement of
the arm introduced forces to the compliant morphological structure.
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Figure 2: Explanation of the construction policy with the network,
which was used for the presented experiments. The compliant struc-
ture consisted of N = 44 nodes and L = 122 springs. For a more
detailed description please refer to the text.
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Figure 3: Target torque trajectories, which lead to a figure eight
trajectory in Cartesian space for the end effector. (a) The trajectories
in time and (b) its corresponding limit cycle, i.e., τ1 vs. τ2.

defined by the figure eight trajectory in Cartesian space, a
chosen starting position and the Jacobian of the robot arm we
calculated the corresponding trajectories of the joint angles.
Subsequently, the corresponding torques were found by the
use of PD-controllers4 in order to follow those joint angle
trajectories. Figure 3 shows the resulting target torques and
the corresponding limit cycle they produce.
Figure 4 shows the setups in the learning and the exploitation
phase. During the learning process the loops were open and
noise ν was added directly to the morphological structure
in form of sensory noise, i.e., it was superimposed on the
readouts of the actual state of the morphological structure.
Additionally, the robot was driven with the target torques, i.e.,
τ∗1 and τ∗2 . The lengths of all springs li with i = 1, . . . , 122
were collected over the learning time and the ideal output
weights w∗

1 and w∗
2 (in order to produce the desired torque

signals) were calculated with a simple linear regression. Note
that the described learning approach (i.e., teacher forcing) is a
standard approach used in the context of reservoir computing
(see [3]). For the exploitation phase the loops were closed and
the system ran autonomously (Figure 4b).

IV. RESULTS

A. Reproducing the trajectories

For the following plots we used the network of Figure 2.
Figure 5 shows the trajectories, which were autonomously
produced in the exploitation phase (closed loops). The system

4The used P and D values were empirically found to have a reasonable
performance.
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Figure 4: Schematic figures of (a) the learning phase with open loops
(teacher forcing) and additional noise ν and (b) the exploitation phase
with closed loops.
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Figure 5: Output of the morphological computation device after
learning and the resulting end-effector trajectory.

was able to reproduce the desired limit cycle and the corre-
sponding end-effector trajectory for a little more than three
and a half cycles. After that the system lost track and drifted
away. However, as our robustness test in the next Section IV-B
suggests, the learned trajectory was stable to a certain extent.
Prior to the presented simulation we were able to successfully
demonstrate that abstract random networks (as in [1], i.e.,
without the robot arm) are able to emulate the necessary
computation in a robust fashion. Since in the present robot arm
experiments the ranges, over which the springs were operated,
are much bigger than with the abstract networks, we speculate
that the very simple Matlab implementation of the simulation
of the physics is responsible for the instability. We plan
to implement more sophisticated physical simulations in the
future. Therefore, the presented results should be considered
as preliminary.

B. Robustness

A stability test has been conducted and the results are
summarized in Figure 6. We applied an external perturbation,
which started at 1.5 s and ended at 2.0 s (marked by the red
time window). At every time step we added a value of 0.005
to the angle of the first link. The morphological computation
device was able to recover from this perturbation and found
its way back to the desired trajectories.
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Figure 6: Results of the robustness test.

V. CONCLUSIONS AND POSSIBLE FUTURE WORK

We have demonstrated that, in principle, the morphological
computation setup of [1] is applicable to a robot arm with a
compliant morphology. We were able to employ the compli-
ant parts as a computational resource, which allowed us to
produce nonlinear and time-dependent signals (i.e., τ1 and τ2)
using only static, linear output weights. Although the desired
trajectory could not be followed for a long time, our robustness
experiment and the experience with the simulations conducted
in [1] make us confident that it is possible to improve the
results by using a more sophisticated physical simulation. We
even think that a real-world application of the approach is
feasible. Note that in that case the noise would be provided
naturally by the sensors and by the demonstrator.
Another application could be to use the same setup for a
quadruped robot, e.g., in order to learn different gaits. Note
that the results in [1] suggest that even a switching between
different gaits (e.g., walk and trot) should be possible. The
switching could be initiated either by some internal signal
(e.g., desired walking speed) or by some external force, e.g.,
bending angles of the knees due to a change of the load, which
has to be carried. The fact that the readouts are defined as
some linear weights allows to use directly well-established
linear online adaptation algorithms.
Another direction of improvement could be to try to mimick
better the biological system by using, e.g., antagonistic muscle
pairs and "bones” as rigid body parts. Additionally, the torques
would be then applied by certain muscles instead of artificial
servos.
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