
Extracting Independent Components with Spiking Neurons
(to be presented at NIPS 2006, funded by the CoVi project)

Stefan Klampfl, Robert A. Legenstein, and Wolfgang Maass
Institute for Theoretical Computer Science, Graz University of Technology

1 Introduction:
ICA: Independent Component Analysis (ICA) [1] is a well-known statistical technique for
decomposing complex data into statistically independent parts, thereby providing a less re-
dundant representation. Although ICA is one major candidate for unsupervised learning in
nervous systems, an application to spiking neurons has still been missing.
Our approach: We minimize the mutual information between the outputs of two spiking
neurons receiving the same input. Simultaneously, we want to maximize the information
transmission of both neurons while maintaining a constant target firing rate, thereby extending
the approach in [2].

2 Neuron Model:

We use a stochastically spiking neuron with refractoriness where the membrane potential of
neuron i at time tk = k∆t is given as the sum over all postsynaptic potentials at synapses
j = 1, . . . , N :

ui(t
k) = ur +

N
∑

j=1

k
∑

n=1

wijε(t
k − tn)xn

j , (1)

where ur = −70mV is the resting potential and wij is the weight of synapse j. xn
j ∈ {0, 1}

denotes the presence of a input spike at synapse j at time tn, which evokes a postsynaptic
potential (PSP) with time course ε(tk − tn).
At each time step the neuron fires with a certain probability that depends on the current
membrane potential and refractory state. This neuron model is a stochastic version of the
integrate-and-fire model [3].

3 Learning Rule:

Consider input spike trains XK and output spike trains Y K
1 and Y K

2 of length K∆t. The
objective function to be maximized for neuron i (i = 1, 2) is

Li = I(XK;YK
i )−βI(YK

1 ;YK
2 )−γDKL(P (Y K

i )||P̃ (Y K
i )), (2)

where

I(XK ;YK
i ) mutual information between input spike trains XK and output

spike train Y K
i of neuron i

I(YK
1 ;YK

2 ) mutual information between output spike train Y K
1 and output

spike train Y K
2

DKL(P (Y K
i )||P̃ (Y K

i )) Kullback-Leibler divergence between current output distribution
P (Y K

i ) and desired target output distribution P̃ (Y K
i ) (constant

target firing rate of 30Hz)
β, γ optimization constants

We have derived a learning rule which performs gradient ascent on the objective function Li

(2).

4 Results:
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In this experiment two neurons receive the same input at 100
synapses, consisting of Poisson spike trains at a constant rate
of 20Hz. The input is divided into two groups of 40 spike
trains each, such that synapses 1 to 40 and 41 to 80 receive
correlated input with a correlation coefficient of 0.5 within
each group, however, any spike trains belonging to different
input groups are uncorrelated. The remaining 20 synapses
receive uncorrelated Poisson input. Each neuron develops
strong weights for different correlated groups.
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5 Discussion:
Independent Component Analysis (ICA) has been proposed as a general principle for un-
supervised learning, however, learning rules that can implement this principle with spiking
neurons have still been missing. In this work we have derived a learning rule from abstract
information theoretic principles that allows two neurons to extract statistically independent
components from a common spiking input.
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Appendix: Gradient ascent rule

Performing gradient ascent on Li (2) and taking the limit ∆t → 0 yields an online learning rule for the weights
of neuron i, wij,

dwij

dt
= αCij(t)

[

B
post
i (t) − βB

post
12 (t)

]

, (3)

with a learning rate α > 0.
The correlation term Cij measures coincidences between postsynaptic spikes at neuron i and PSPs generated by
presynaptic action potentials arriving at synapse j:

dCij(t)

dt
= −

Cij(t)

τC

+
∑

f

ε(t − t
(f)
j )

g′(ui(t))

g(ui(t))
[δ(t − t̂i) − g(ui(t))Ri(t)] (4)

τC time constant of correlation window (1s)
g′(u) derivative of g(u) with respect to u

δ(t) Dirac-δ function
t̂i time of last spike of neuron i

t
(f)
j time of f -th presynaptic spike at synapse j

The term B
post
i maximizes information transmission and maintains the constant target firing rate for neuron

i. It compares the current firing rate g(ui(t)) with its running average ḡi(t), and simultaneously the running
average ḡi(t) with the constant target rate g̃:

B
post
i (t) = δ(t − t̂i) log

[

g(ui(t))

ḡi(t)

(

g̃

ḡi(t)

)γ]

− Ri(t)[g(ui(t)) − (1 + γ)ḡi(t) − γg̃]

(5)

The term B
post
12 measures the mutual information between the output spike trains of neurons 1 and 2. It basically

compares the average product of firing rates ḡ12(t) with the product of average firing rates ḡ1(t)ḡ2(t):

B
post
12 (t) = δ(t − t̂1)

{

δ(t − t̂2) log
ḡ12(t)

ḡ1(t)ḡ2(t)
− R2(t)

[

ḡ12(t)

ḡ1(t)
− ḡ2(t)

]}

−

− R1(t)

{

δ(t − t̂2)

[

ḡ12(t)

ḡ2(t)
− ḡ1(t)

]

− R2(t) [ḡ12(t) − ḡ1(t)ḡ2(t)]

} (6)


