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Abstract

Random variables with infinite moments is not a new concept in Probability Theory.

Furthermore, it was shown that quite often one can observe suchlike distributions

in real life. For example (see [37], [72], [73]) distributions of stock and commodity

returns are quite often heavy-tailed with infinite variance. Needless to say that at

this moment in time there exists a big variety of methods to deal with heavy-tailed

distributions. This thesis concentrates on the one which was developed in 1960s,

that is the trimming theory. The main idea of this method is to remove elements

with extreme values from the sample. We develop a new approach to the Central

Limit Theorem for modulus trimmed sums. This approach gives a simpler proof

of the CLT for independent random variables with heavy tails and also provides a

possibility of extending the CLT to the case of dependent random variables. We

immediately demonstrate application of this last result in Analysis by using it for

the case of continued fractions. Further we establish functional trimmed CLT for

AR(1) processes with stable (heavy-tailed) innovations. This result is used to get

the asymptotics of the CUSUM process. Finally, for the same type of samples we

develop two types of test-statistics and run Monte-Carlo simulations, which in the

end give satisfactory results.
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Introduction

Nowadays, eighty years since Kolmogorov laid the modern axiomatic foundations

of probability theory, one can state that a great deal of achievements has been

made, a plenty of probabilistic models has been described and implemented into

real life. However, as it turns out, there is still a lot of space left for new results,

even in the topics which seem to be fairly well explored.

Sequences of random variables with infinite moments have been in the zone

of consideration since the very start of development of probability theory. But in

1960’s a new way of dealing with suchlike sequences started to emerge, i.e. trimming

theory. The main idea of this theory is, given a sample of random variables, to

remove the largest (one or several) elements from it. This approach was motivated

by the fact that for certain distributions the reason one can not handle them in the

same way as the ones which have finite, for example second moments, is essentially

a few large terms (see Figure 1).

Trimming of random variables with heavy tails is what binds all three chapters

of this thesis together. Therefore before we move to the description of each chap-

ter in particular we will give a brief overview on the history and development of

trimming theory.

When talking about trimming of the sample X1, . . . , Xn of random variables

one can consider two models:

(i) We order this sample in a way that X
(n)
1 ≤ · · · ≤ X

(n)
n . Then the sum

S
(r)
n =

∑n−r
k=r+1Xk is called ordinary trimmed sum.

(ii) We order the sample by its moduli, i.e. |Xn,1| ≤ · · · ≤ |Xn,n|. Then a sum

S
(r)
n =

∑n
k=r+1Xk is called modulus trimmed sum.

6



Introduction 7

Figure 1: Simulated sample of AR(1) process with stable innovations

One can immediately see, and commonly known results confirm it, that there are

substantial differences between two models. However before we mention any clas-

sical results in this theory within each model we introduce a subdivision according

to the amount of the removed elements rn

(i) Light trimming, when rn = r is a constant which does not depend on the size

of a sample.

(ii) Moderate trimming, when rn/n→ 0 as n→∞.

(iii) Heavy trimming, when rn ∼ αn, where α is a constant from the interval

(0, 1).

Kesten and Maller studied the effects of both ordinary and modulus trimming

on various forms of convergence and divergence of the sample sum of i.i.d. random

variables (see e.g. [56], [57], [58]), provided that the amount of trimmed variables

is fixed (i.e. under assumption of light trimming). Kesten shown that this kind of

trimming does not lead to a change behavior of the sample sum (see [55]).



8

Stigler in 1973 (see [90]) summarized the limit behavior of heavily trimmed sums

(in case of ordinary trimming) by giving necessary and sufficient conditions of its

asymptotic normality. Note that the sufficient condition was well known before

that (see Huber [50], Stigler [90]). Stigler shown that the asymptotic normality is

guaranteed if and only if the quantiles corresponding to the proportions of trim-

ming are uniquely defined for the underlying distribution. In case this condition

is not satisfied one observes convergence to more complicated process, parame-

ters of which also depend on the proportions of trimming (and quantiles of the

distribution).

Maller (see [71]) and Mori (see [74]) shown that modulus trimmed sum is asymp-

totically normal if and only if the underlying distribution is in the domain of attrac-

tion of the normal. The case of underlying distribution in the domain of attraction

of a stable law was investigated by Arov and Bobrov (see [3]).

The case of moderate ordinary trimming for samples of random variables in a

domain of attraction of a stable law was resolved by Csörgő, Horváth and Mason in

1986(see [26]). They shown that if one removes rn largest and rn smallest elements

from the nth partial sum, provided rn satisfies the conditions of moderate trimming,

one can center and normalize it in a way that it would weakly converge to standard

normal distribution.

However the case of modulus trimming turned out to differ from the ordinary

one quite fundamentally. In 1987 Griffin and Pruitt (see [44]) found necessary and

sufficient conditions for asymptotic normality of a modulus trimmed sum only in

the case when underlying distribution function is symmetric, but not in general.

Later in 1989 (see Griffin and Pruitt [45]) they shown also that if the sum with rn

biggest and rn smallest terms removed is asymptotically normal, then trimming out

elements with 2rn largest modulus will also lead to asymptotic normality. However

this holds again only in case of symmetric distribution function. For the asymmetric

case counterexamples were provided.

Concerning the non-symmetric distribution function a remarkable result was

achieved by Berkes and Horváth in 2012 (see [14]). They shown that the validity

of the Central Limit Theorem for modulus trimmed sum depends sensitively on

the speed of convergence of the tail ratio of the underlying distribution and the

asymptotical amount of the trimmed variables.
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Assuming that to this point we have given enough insight in the history of the

trimming theory we now move into descriptions of the chapters.

Chapter 1:

First chapter deals with modulus trimmed sums of independent identically dis-

tributed random variables in the domain of attraction of a stable law. The main

result is the CLT for modulus trimmed sums with random centering factor. We

show that allowing a random centering, the modulus trimmed CLT holds under

exactly the same conditions as the one for ordinary trimming.

Under additional assumptions modulus trimmed CLT was proved in Berkes,

Horváth and Schauer (see [16]) using a fairly complicated argument. The argu-

ment which is provided in chapter 1 is simpler and allows extension to the case of

dependent variables which is going to be discussed in chapter 2.

The main idea is to deduce the required CLT from the two-dimensional limit

result by using continuity of the limit process and classical results from Kiefer and

Billingsley (see [60], [19] respectively).

This result can also be used to detect change point in the mean or location in

the case of observations without second moments, as it provides a limit relation for

CUSUM process where rn observations with biggest moduli are excluded from the

sample.

Chapter 2:

In chapter 2 we provide a number-theoretical application of the modulus trimmed

CLT for dependent random variables. We consider continued fraction expansion of

an irrational number from the interval (0, 1).

It is known that the sequence of continued fraction expansion of x is a stationary

ergodic sequence with respect to Gauss measure µ on the class of Borel subsets of

(0, 1) (see e.g. Billingsley, [18]), where

µ(E) =
1

log 2

∫
E

1

1 + t
dt.

As it turned out the sequence of continued fraction expansion digits possesses

quite remarkable dependence properties, that is ψ−mixing. Gauss noted that the

distribution of each term of the sequence with respect to the uniform measure in
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(0, 1) converges to µ and asked for the speed of convergence. Almost a hundred

years later Kusmin (see [63]) showed that the convergence speed is sub-exponential

and a year later Lévy (see [66]) improved it to an exponential rate. Lévy’s result

also implies that the sequence is ψ−mixing with an exponential rate.

Khinchin (see [59]) studied asymptotic behavior of partial sums of the continued

fractions expansion digits. He provided a result for convergence of normalized

partial sums in measure and noted that in this case convergence type can not be

improved to almost everywhere convergence.

Later Diamond and Vaaler (see [35]) shown that convergence type actually can

be improved to a.e. However to do it one needs to exclude the largest summand

from the partial sum.

In chapter 2 we provide a CLT for trimmed sums of partial quotients, where

the amount of trimmed elements satisfies the condition of moderate trimming. We

also prove analogous theorem in probabilistic form. Same way as in chapter 1 it is

derived from a corresponding two-dimensional limit theorem.

Chapter 3:

In chapter 3 we discuss important applications of trimming in statistics. As an

example the detection of possible changes in location model is considered. Under

the null hypothesis the location parameter is constant for all elements of the sample

and under alternative certain amount of changes occurs.

A very popular way to test one hypothesis against the other (see Csörgő and

Horváth, [26], Aue and Horváth, [6]) is based on the CUSUM process.

It is well known that for i.i.d. random variables with finite second moment

appropriately normalized CUSUM process converges weakly to Brownian bridge

process. However in case of random variables in the domain of attraction of a

stable law Aue, Berkes and Horváth (see [4]) shown that the limiting process is

different. So far not much is known about this process, therefore Berkes, Horváth

and Schauer (see [16]) suggested to apply trimming procedure to the CUSUM

process.As a result, it turned out that trimmed CUSUM process for i.i.d. variables

with heavy tails also converges weakly to Brownian bridge process.

CUSUM process is also used in the cases of dependent random variables. How-

ever most of the time it is assumed that the variables have high moments and
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the dependence in the sequence is usually quite weak (see e.g. Aue and Horváth

[6]). Fama and Mandelbrot (see [37], [72], [73]) shown that heavy-tailed distribu-

tions have applications in economics, therefore investigation of them is of great

importance.

In chapter 3 we study sequences of trimmed AR(1) variables with heavy tails.

We formulate a limit theorem for CUSUM process based on this sequence.

Further we develop two types of tests to detect changes in the location parame-

ters. We study two types of statistics. The maximally selected CUSUM process we

estimate the long run variance by kernel estimators. We also propose ratio statistics

which do not depend on the long run variances. Monte Carlo simulations illustrate

the the limit results can be used even in case of small and moderate sample sizes.



Chapter 1

On the Central Limit Theorem for
modulus trimmed sums

1.1 Introduction

For convenience in the beginning of the chapter we shall review and discuss some

classical and new results on the subject. Some of them have already been mentioned

in the introduction. Here we are giving a more detailed overview of the results which

are directly connected to those ones of this chapter.

Let X1, X2, . . . be independent, identically distributed random variables in the

domain of attraction of a stable law G with parameter 0 < α < 2. That is, assume

that the partial sums Sn =
∑n

k=1Xk satisfy

(Sn − bn)/an
d−→ G (1.1)

with suitable norming and centering sequences {an}, {bn}. The necessary and

sufficient condition for (1.1) is that F , the distribution function of X1, satisfies

1− F (x) + F (−x) = x−αL(x), x > 0 (1.2)

and

1− F (x)

1− F (x) + F (−x)
→ p,

F (−x)

1− F (x) + F (−x)
→ q (x→∞) (1.3)

12



1.On the Central Limit Theorem for modulus trimmed sums 13

where L is a function slowly varying at ∞ and p, q ≥ 0, p + q = 1. We use the

definition of a slowly varying function given by Feller (1971,[38]).

Definition 1. We say that the function L varies slowly at infinity if it satisfies

the following condition
L(tx)

L(t)
→ 1 as t→∞

for every x > 0.

Similarly,

Definition 2. We say that the function L varies slowly at zero if it satisfies the

following condition
L(tx)

L(t)
→ 1 as t→ 0

for every x > 0.

Further whenever we mention slowly varying function without specification we

mean that the function varies slowly at infinity. Immediately we give several state-

ments for slowly varying functions from Bingham, Goldie and Teugels (1989, [20])

which will be extensively used in the further proofs.

Theorem 1 (Bingham, Goldie and Teugels, 1989). If L is slowly varying,

L(tx)/L(t)→ 1 uniformly in x on each compact set (0,∞).

Theorem 2 (Karamata’s theorem; direct half). Let L vary slowly and be locally

bounded on [X,∞). then

(i) for any σ ≥ −1,

xσ+1L(x)/

x∫
X

tσL(t)dt→ σ + 1 (x→∞)
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(ii) for any σ < −1 (and for σ = −1 if
∫∞

L(t)dt <∞)

xσ+1L(x)/

x∫
x

t∞L(t)dt→ −(σ + 1) (x→∞).

Proposition 1 (Bingham, Goldie and Teugels, 1989). Following statements hold:

(i) If L varies slowly log(L(x))/ log x→ 0 as x→∞.

(ii) If L varies slowly, so does (L(x))α for every α ∈ R.

(iii) If L1, L2 vary slowly, so does L1(x)L2(x), L1(x) +L2(x) and (if L2(x)→∞

as x→∞) L1(L2(x)).

(iv) If L1, . . . , Lk vary slowly and r(x1, . . . , xk) is a rational function with positive

coefficients, r(L1(x), . . . , Lk(x)) varies slowly.

(v) If L varies slowly and α > 0,

xαL(x)→∞, x−αL(x)→ 0, (x→∞).

Proposition 2 (Bingham, Goldie and Teugels, 1989). If L is slowly varying, X

is so large that L(x) is locally bounded on [X,∞), and α > −1, then

x∫
X

tαL(t)dt ∼ {xα+1L(x)}/(α + 1) (x→∞).

Proposition 3 (Bingham, Goldie and Teugels, 1989). Let F satisfy (1.2),(1.3).

Then for V (x) =
∫ x
−x t

2F (t)dt the following holds

x2{1− F (x) + F (−x)}
V (x)

→ 2− α
α

(x→∞).

Another proposition regarding the properties of slowly varying functions in the

stable distributions was given in the paper by Csörgő, Csörgő, Horváth and Mason

([27], 1986).We will need it in further arguments as well.
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Proposition 4 (Csörgő, Csörgő, Horváth and Mason, 1986). There exist a function

l slowly varying at infinity, an 0 < α < 2 and a 0 ≤ p ≤ 1 such that the conditions

(1.2), (1.3) hold if and only if for some function L slowly varying near zero we have

K(1− u) = u−1/αL(u), (1.4)

lim
u↓0

Q1(1− u)/K(1− u) = q1/α, (1.5)

and

lim
u↓0

Q2(1− u)/K(1− u) = p1/α, (1.6)

where Q is the quantile function of our sample, Q1(u) = (−Q(1− u)∨ 0), Q2(u) =

Q(u) ∨ 0, α and p are the same as in (1.2) and (1.3)

In contrast to the case of finite variances, the contribution of extremal terms

in the partial sums Sn is not negligible and dropping a single term can change

the asymptotic behavior of the sum. Let Xn,1 ≤ Xn,2 ≤ . . . ≤ Xn,n be the order

statistics of (X1, X2, . . . , Xn) and put for d ≥ 1

S(d)
n =

n−d∑
j=d+1

Xn,j. (1.7)

For fixed d, LePage et al. ([65]) determined the asymptotic distribution of the

trimmed sum S
(d)
n by using the following elementary property of order statistics: let

G be a function such that F = 1−G, where F is the common distribution function

of our sequence X1, X2, . . . ; then there is a sequence E1, . . . , E2 of exponential

random variables with unit mean for which

(Xn,1, . . . , Xn,n) =d [G−1(Γ1/Γn+1, . . . ,Γn/Γn+1)], n ≥ 1

where

Γk = E1 + . . . Ek k ≥ 1
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and

G−1(u) = inf{y : G(y) ≤ u}, 0 < u < 1.

This property of the order statistics clarified in which way several big summands

determine the limiting distribution.

Later Csörgő, Horváth and Mason ([26], 1986) proved the following under

dn →∞, dn/n→ 0 (1.8)

Theorem 3 (Csörgő, Horváth and Mason, 1986). Let X1, X2 . . . , Xn be indepen-

dent and identically distributed random variables (rv’s) with common distribution

function F , and X1,n < · · · < Xn,n denote the respective order statistics. Assume

F is in the domain of attraction of a stable law. Then for any sequence of positive

integers d, such that 1 ≤ dn ≤ n− dn < n and dn →∞ and dn/n→ 0 as n→∞,

An(dn)

{
n−dn∑
i=dn+1

Xi,n − Cn(dn)

}
D−→ N(0, 1)

where An(dn) = 1/(n1/2σ(dn/n)) with

σ2(s) =

1−s∫
1

1−s∫
1

(u ∧ v − uv)dQ(u)dQ(v)

Q(u) = inf{x : F (x) ≥ u}, 0 < u < 1.

and

Cn(dn) = n

1−dn/n∫
dn/n

Q(u)du.

These results give a remarkable picture on the partial sum behavior of i.i.d.

sequences in the domain of attraction of a non-normal stable law. They show that

the contribution of dn extremal terms under (2.6) already gives the stable limit dis-

tribution of the total partial sum Sn and the contribution of the remaining elements
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will be an asymptotically normal variable with magnitude negligible compared with

Sn.

The previous results describe the effects of the extremal elements of an i.i.d.

sample on their partial sum. Note, however, that other kinds of trimming lead to

different phenomena. For 1 ≤ d ≤ n let ηd,n denote the d-th largest of |X1|, . . . , |Xn|

and let

(d)Sn =
n∑
k=1

XkI{|Xk| ≤ ηd,n}. (1.9)

If the distribution of X1 is continuous, then |X1|, |X2|, . . . are different with prob-

ability 1, and thus (d)Sn coincides with the usual modulus trimmed sum obtained

by discarding from Sn the d − 1 elements with the largest moduli. Griffin and

Pruitt ([44], 1987) showed that if X1 has a symmetric distribution, then (dn)Sn is

asymptotically normal, i.e. provided necessary and sufficient conditions, for any

dn →∞, dn/n→ 0, but this is generally false in the nonsymmetric case.

The purpose of this chapter is to describe the asymptotic distribution of (dn)Sn

in the general case. Put

H(t) = P (|X| ≥ t) and m(t) = EXI{|X| ≤ t},

and let H−1(t) = inf{x : H(x) ≤ t} (0 < t < 1) denote the generalized inverse of

H. Our main result is the following.

Theorem 4. Let X1, X2, . . . be i.i.d. random variables with distribution function

F satisfying (1.2), (1.3) and assume that (2.6) holds. Then we have

1

An

[nt]∑
i=1

(XiI{|Xi| ≤ ηd,n} −m(ηd,n))
D[0,1]−→ W (t) (1.10)

where

A2
n =

α

2− α
d(H−1(d/n))2 (1.11)

and W is the Wiener process.
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Theorem 20 shows that allowing a random centering factor, the modulus trimmed

CLT holds for continuous i.i.d. variables under exactly the same conditions as under

ordinary trimming. If F is not continuous, the sample (X1, . . . , Xn) may contain

equal elements with positive probability; according to the definition in Griffin and

Pruitt ([44], 1987), ’ties’ between elements with equal moduli are broken according

to the order in which the variables occur in (X1, . . . , Xn). But no matter how we

break the ties, it may happen that from a set of sample elements with equal moduli

some are discarded and others are not, which is rather unnatural from the statis-

tical point of view, since trimming is mainly used to improve the performance of

statistical procedures by removing large elements from the sample. The definition

of (d)Sn in (1.9) resolves this difficulty and leads to satisfactory asymptotic results

in the general case.

Theorem 20 enables one to give, among others, change point tests for heavy

tailed processes, while the standard CUSUM test fails under infinite variances.

A fairly precise characterization of the modulus trimmed CLT with nonrandom

centering and norming factors was given in Berkes and Horváth ([14], 2012). For

example one of the results of that chapter is the following

Theorem 5 (Berkes and Horváth, 2012). Assume that

1− F (x) + F (−x) = x−αL(x), (1.12)

and the following condition for density f(x) is satisfied

0 < lim inf
x→∞

xf(x)

1− F (x)
≤ lim sup

x→∞

xf(x)

1− F (x)
<∞ (1.13)

Let
1− F (x)

1− F (x) + F (−x)
= p+O(x−β), asx→∞, (1.14)

where 0 < p < 1, 0 < β < 2, β > 0. Let

γ1 =
β

max(1 + 2α, β + α/2)
, γ2 =

β

β + α/4
.
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Under the condition

dn →∞, and dn = O(nγ) with γ < γ1 (1.15)

we have the central limit theorem

1

An
{Tn,d −Bn}

D→ N(0, 1)

where An > 0 and Bn are numerical sequences. On the other hand, for any 0 <

α < 2, β > 0 there exists a distribution function F satisfying (1.12), (1.13) and

(1.14) for some 0 < p < 1 such that with the choice

An interesting fact established in this paper is that paradoxally, as the upper

bound on the power in (1.15) looks somewhat unnatural, the increase in the amount

of trimmed terms does not lead to the improvement of CLT behaviour. In the same

paper it was shown what happens if the expression on the left hand side of (1.14)

is constant for x > x0 or if its convergence to p is slower than any polynomial.

Under additional technical assumptions on the distribution function of X1 and

on the growth speed of dn, i.e. if limn→∞ d(n)/(log n)7+ε = ∞ with some ε > 0,

Theorem 20 was proved in Berkes, Horváth and Schauer ([16], 2011) with a fairly

complicated argument. The proof of Theorem 20 is much simpler and extends to

dependent samples as well, as we will show in chapter 2. Let

Â2
n =

n∑
i=1

X2
i I{|Xi| ≤ ηd,n} −

1

n

(
n∑
i=1

XiI{|Xi| ≤ ηd,n}

)2

.

Berkes, Horváth and Schauer ([14], 2011) showed that under the conditions of

Theorem 20 we have that

Ân/An
P−→ 1

and therefore Theorem 20 yields

1

Ân

 [nt]∑
i=1

XiI{|Xi| ≤ ηd,n} −
[nt]

n

n∑
i=1

XiI{|Xi| ≤ ηd,n}

 D[0,1]−→ B(t),
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where B(t) = W (t)− tW (1) denotes a Brownian bridge. Hence standard CUSUM

techniques can be used to detect changes in the mean and/or location when in the

case of observations without second moments, observations with modulus larger

than ηd,n are excluded from the sample.

Let

Un(t, s) =

[nt]∑
i=1

(
XiI{|Xi| ≤ sH−1(d/n)} − EXiI{|Xi| ≤ sH−1(d/n)}

)
(s ≥ 0, t ≥ 0).

We will deduce (2.15) from the following two-dimensional limit theorem.

Theorem 6. Let X1, X2, . . . be i.i.d. random variables with distribution function

F satisfying (1.2), (1.3) and assume that (2.6) holds. Then

1

An
Un(t, s) −→ W (t, s2−α) weakly in D([0, 1]× [1/2, 3/2]),

where An is defined by (2.14) and {W (x, y), x ≥ 0, y ≥ 0} is a two-parameter

Wiener process.

Note that by Kiefer ([60], 1972) we have

ηd,n
H−1(d/n)

P−→ 1. (1.16)

Since the limit process in Theorem 31 has continuous trajectories a.s., Billingsley’s

argument on the random change of time (see [19], 1968), p. 144-145 we use (1.16)

for a substitution and hence

1

An
Un(t, ηd,n/H

−1(d/n))
D[0,1]−→ W (t, 1)

which is exactly the functional CLT in (2.15), since W (t, 1) is a Wiener process.

Thus Theorem 20 is a consequence of Theorem 31.
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1.2 Proof of the results

For the proof of the tightness we will need the theorem stated by Bickel and Wichura

([17], 1971)

Theorem 7 (Bickel and Wichura, 1971). Let T = T1 × · · · × Tq for some positive

q, where for each 1 ≤ i ≤ q Ti is a subset of [0, 1]. Let (Xt))t ∈ T be a stochastic

process. Call block B a subset of T if B =
∏q

i=1(si, ti] with all si, ti, i = 1, . . . , q

in T . Then define X(B) as follows

X(B) =
∑
ε1=0,1

· · ·
∑
εq=0,1

(−1)q−
∑
p εpX(s1 + ε1(t1 − s1), . . . , sq + εq(tq − sq))

pth face of the block B is
∏

ρ 6=p(sp, tp].Disjoint Blocks B and C are p-neighbours if

they abut and have he same p-face. For each pair of neighbouring blocks B and C

define

m(B,C) = min{|X(B)|, |X(C)|}. (1.17)

Now let {Xn(t), t ∈ [T} be processes vanishing along the lower boundary of T and

there exist constants β > 1, γ > 0 and a finite nonnegative measure µ on T with

continuous marginals such that for each n

P{m(B,C) ≥ λ} ≤ λ−γ(µ(B ∩ C))β, (1.18)

then the sequence of processes {Xn(t)} is tight.

One can easily see that 1.18 follows by Chebyshev’s inequality from its moment

version, that is

E(|X(B)|γ1 |X(C)|γ2) ≤ (µ(B))β
1

(µ(C))β2 , (1.19)

where γ = γ1 + γ2 and β = β1 + β2. However for our purposes we need these

statements only in two-dimensional case. Given a process Y (s, t) defined on a

rectangle H = [a, b] × [c, d], let Y (H) denote the increment of Y over H, i.e.
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Y (H) = Y (a, c)−Y (a, d)+Y (b, d)−Y (b, c). Using 1.19 and reformulating theorem

7 for only two dimensions we get the following lemma.

Lemma 1. Let {Yn(t, s), n ≥ 1} be processes defined on a rectangle [a, b]× [c, d] ⊂

[0,∞)2 and assume that for some γ > 0

E|Yn(B)|γ|Yn(C)|γ ≤ µ(B)µ(C), (1.20)

where µ denotes area and B and C are rectangles of the form [t1, t2]× [s1, s2] having

one common edge, but otherwise disjoint. Then the sequence {Yn(t, s), n ≥ 1}

is tight. If every Yn(t, s) is piecewise constant in t, i.e. there exists a finite set

Hn ⊂ [a, b] such that Yn(t, s) is constant in the left closed intervals determined

by the elements of Hn ∪ {a} ∪ {b}, then it suffices to verify (1.20) for rectangles

[t1, t2]× [s1, s2] where t1, t2 ∈ Hn.

As is shown in Proposition 4, the conditions of Theorem 31 imply that H−1(t) =

t−1/α`(t) (0 < t < 1), where ` is slowly varying at 0. Then by (2.14) we have

A2
n ∼

α

2− α
d (n/d)2/α`2(d/n) as n→∞ (1.21)

where an ∼ bn means an/bn → 1 as n→∞.

Lemma 2. If the conditions of Theorem 31 are satisfied, then for any p ≥ 2 and

any fixed 0 ≤ a < b <∞ we have

E|X1|pI{aH−1(d/n) < |X1| ≤ bH−1(d/n)} ∼ α

p− α
(bp−α−ap−α)`p(d/n)(n/d)(p−α)/α

(1.22)

as n→∞. Also, if b > 0, then

E|X1|I{|X1| ≤ bH−1(d/n)} =


O((n/d)(1−α)/α`(d/n)) if α < 1,

O((n/d)ε) if α = 1,

O(1) if α > 1

(1.23)

for any ε > 0.
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Proof. Assume first p ≥ 2, 0 < a < b < ∞. Clearly the left hand side of (1.22)

equals

−
bH−1(d/n)∫

aH−1(d/n)

tpdH(t) =

H(aH−1(d/n))∫
H(bH−1(d/n))

H−1(u)pdu. (1.24)

(Note that H is non-increasing and thus the left hand side of (1.24) is nonnegative.)

Since H is regularly varying with exponent −α, we have

H(aH−1(d/n)) ∼ a−α(d/n), H(bH−1(d/n)) ∼ b−α(d/n) as n→∞.

Thus using the uniform convergence theorem for regularly varying functions (see

Theorem 1; note that we actually need the analogous result for regular variation at

0), we see that for n→∞ we have, uniformly for all u in the interval of integration

of the second integral in (1.24),

H−1(u) = u−1/α`(u) ∼ u−1/α`(d/n).

Thus the integral equals

(1 + o(1))

(1+o(1))a−α(d/n)∫
(1+o(1))b−α(d/n)

u−p/α`p(d/n) du, (1.25)

which yields the right hand side of (1.22) after a simple calculation, since p 6= α.

If a = 0, then the upper limit in the integral on the right hand side of (1.24) and

thus also in (1.25) becomes H(0) = 1 and by using Theorem 2 we get the right

hand side of (1.22) with a = 0.

In the case of (1.23), instead of the integral in (1.25) we get

1∫
(1+o(1))b−α(d/n)

u−1/α`(u) du. (1.26)

By Proposition 1(i) we have `(u) = O(u−ε) as u → 0 for any ε > 0 which shows

that for α > 1 the integral
∫ 1

0
u−1/α`(u) du converges and thus the expression (1.26)
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is O(1). Using the same estimate for `(u) for α = 1 we get the second bound in

(1.23). Finally, for α < 1 Theorem 2 yields the first bound in (1.23), completing

the proof of Lemma 2.

Before we start the proof of Theorem 31 we will remind to the reader the

fundamental result from classical pobability theory, that is Cramér-Wold theorem.

Theorem 8 (Cramér-Wold). Let X1, . . . ,Xn be a sequence of random k−vectors.

Then Xn → dX if and only if aTXn → daTX for all a ∈ Rk.

Proof of Theorem 31. Let Γ(t, s) denote the limit process in Theorem 31 and

put

Qn =
1

An

M∑
m=1

J∑
j=1

µm,jUn([tm−1, tm]× [sj−1, sj])

and

Z =
M∑
m=1

J∑
j=1

µm,jΓ([tm−1, tm]× [sj−1, sj])

for all M ≥ 1, J ≥ 1, real coefficients µm,j, 1/2 ≤ s1 < s2 < . . . < sJ ≤ 3/2,

0 < t1 < . . . < tM = 1, t0 = s0 = 0. Clearly, Z is a centered normal r.v. and

EZ2 =
M∑
m=1

J∑
j=1

µ2
m,j(s

2−α
j − s2−αj−1 )(tm − tm−1). (1.27)

We claim that

Qn
d−→ Z for all considered values of M,J, µm,j, tm, sj. (1.28)

Since the processes Un and Γ are equal to 0 on the boundary of the first quadrant,

we have

Un(tm, sj) =
M∑
m=1

J∑
j=1

Un([tm−1, tm]× [sj−1, sj])

and the same relation holds for Γ. Thus (2.24) implies

1

An

M∑
m=1

J∑
j=1

µ∗m,jUn(tm, sj)
d−→

M∑
m=1

J∑
j=1

µ∗m,jΓ(tm, sj)



1.On the Central Limit Theorem for modulus trimmed sums 25

for arbitrary real coefficients µ∗m,j and this, by the Cramér-Wold device (theorem

8), implies the convergence of the finite-dimensional distributions in Theorem 31.

In view of the definition of Un(t, s) in Section 1 we have

Un([tm−1, tm]× [sj−1, sj]) =

[ntm]∑
i=[ntm−1]+1

(vi,j − Evi,j)

where

vi,j = XiI{sj−1H−1(d/n) < |Xi| ≤ sjH
−1(d/n)}.

Thus relation (2.24) can be written equivalently as

1

An

n∑
k=1

(zk,n − Ezk,n)
d−→ N(0, EZ2) as n→∞, (1.29)

where

zk,n =
J∑
j=1

µm,jXkI{sj−1H−1(d/n) < |Xk| ≤ sjH
−1(d/n)}, [ntm−1]+1 ≤ k ≤ [ntm].

Since the terms in the last sum are random variables with disjoint support, we get

from Lemma 2

Ez2k,n = (1+on(1))
α

2− α
(n/d)(2−α)/α`2(d/n)

J∑
j=1

µ2
m,j(s

2−α
j −s2−αj−1 ), [ntm−1]+1 ≤ k ≤ [ntm]

and similarly

Ez4k,n = (1+on(1))
α

4− α
(n/d)(4−α)/α`4(d/n)

J∑
j=1

µ4
m,j(s

4−α
j −s4−αj−1 ), [ntm−1]+1 ≤ k ≤ [ntm].

Thus using d = dn →∞ we get by a simple calculation

lim
n→∞

∑n
k=1Ez

4
k,n(∑n

k=1Ez
2
k,n

)2 = 0. (1.30)

On the other hand, the previous asymptotics for Ez2k,n and the statement of Lemma

2 for p = 1 imply

E2|zk,n| = on(1)Ez2k,n, 1 ≤ k ≤ n



26

and thus by Minkowski’s inequality

E|zk,n−Ezk,n|2 = (1+on(1))Ez2k,n, E|zk,n−Ezk,n|4 = (1+on(1))Ez4k,n. (1.31)

Thus (1.30) remains valid if we replace zk,n with zk,n − Ezk,n. Further by (1.21)

and (2.23)

n∑
k=1

Ez2k,n = (1 + on(1))
α

2− α
n(n/d)(2−α)/α`2(d/n)

M∑
m=1

J∑
j=1

µ2
m,j(s

2−α
j − s2−αj−1 )(tm − tm−1)

= (1 + on(1))A2
nEZ

2.

The last relation, together with (1.30), (1.31) and Ljapunov’s CLT for triangular

arrays, implies (2.25).

Next we prove tightness in Theorem 31. Consider two pairs of sets B11 =

[t1, t] × [s1, s], B12 = [t1, t] × [s, s2] and B11 = [t1, t] × [s1, s], B21 = [t, t2] × [s1, s],

where t1 < t < t2, s1 < s < s2. In view of Lemma 1, it suffices to show that

E

∣∣∣∣ 1

An
Un(B11)

∣∣∣∣2 ∣∣∣∣ 1

An
Un(Bij)

∣∣∣∣2 ≤ Cµ(B11)µ(Bij), (1.32)

holds for each ij ∈ {12, 21} with some constant C > 0. Moreover, since Un(t, s) is

constant on intervals k/n ≤ t < (k + 1)/n, by the last statement of Lemma 1 we

may assume that nt, nt1 and nt2 are all integers. Using the independence of the

Xj’s, relation (1.21), Lemma 2 and the fact that the function x2−α has a bounded

derivative on [1/2, 3/2], we get

E

∣∣∣∣ 1

An
Un(B11)

∣∣∣∣2 ∣∣∣∣ 1

An
Un(B21)

∣∣∣∣2
= E

(
1

An

nt∑
i=nt1+1

(
XiI{s1H−1(d/n) < |Xi| ≤ sH−1(d/n)} −mi

))2

×

(
1

An

nt2∑
i=nt+1

(
XiI{s1H−1(d/n) < |Xi| ≤ sH−1(d/n)} −mi

))2

= E

(
1

An

nt∑
i=nt1+1

(
XiI{s1H−1(d/n) < |Xi| ≤ sH−1(d/n)} −mi

))2
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× E

(
1

An

nt2∑
i=nt+1

(
XiI{s1H−1(d/n) < |Xi| ≤ sH−1(d/n)} −mi

))2

≤ 1

A4
n

(
nt∑

i=nt1+1

EX2
i I{s1H−1(d/n) < |Xi| ≤ sH−1(d/n)}

)
(1.33)

×

(
nt2∑

i=nt+1

EX2
i I{s1H−1(d/n) < |Xi| ≤ sH−1(d/n)}

)
≤ C1(t− t1)(t2 − t)(s2−α − s2−α1 )2 ≤ C2(t− t1)(t2 − t)(s− s1)2

= C2µ(B11)µ(B21),

where

mi = mi(s1, s) = EXiI{s1H−1(d/n) < |Xi| ≤ sH−1(d/n)}

and C1, C2 are positive constants. On the other hand,

E

∣∣∣∣ 1

An
Un(B11)

∣∣∣∣2 ∣∣∣∣ 1

An
Un(B12)

∣∣∣∣2
=

1

A4
n

E

(
nt∑

i=nt1+1

(
XiI{s1H−1(d/n) < |Xi| ≤ sH−1(d/n)} −m(s1,s)

i

))2

×

(
nt∑

i=nt1+1

(
XiI{sH−1(d/n) < |Xi| ≤ s2H

−1(d/n)} −m(s,s2)
i

))2

=
1

A4
n

E

(
nt∑

i=nt1+1

(X
(s1,s)
i −m(s1,s)

i )

)2( nt∑
i=nt1+1

(X
(s,s2)
i −m(s,s2)

i )

)2

(1.34)

where we put

X
(u,v)
i = XiI{uH−1(d/n) < |Xi| ≤ vH−1(d/n)}, m

(u,v)
i = EX

(u,v)
i .

Expanding the product expectation in (2.33), we get the sum of all expressions

E(X
(s1,s)
i −m(s1,s)

i )(X
(s1,s)
j −m(s1,s)

j )(X
(s,s2)
k −m(s,s2)

k )(X
(s,s2)
` −m(s,s2)

` ), (1.35)

where nt1 + 1 ≤ i, j, k, ` ≤ nt. By the independence of the Xν ’s, the product

expectation in (1.35) equals 0 if one of the i, j, k, ` differs from the other three.
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Thus it suffices to estimate the contribution of the terms where i, j, k, ` are pairwise

equal, or all are equal. Assume first that i = j, k = ` and i 6= k; the other cases

i = k, j = `, i 6= j and i = `, j = k, i 6= j can be handled similarly as the case

i = j = k = ` below. Then Xi and Xk are independent, and thus using Lemma 2,

the product expectation (1.35) becomes

E
[
(X

(s1,s)
i −m(s1,s)

i )2(X
(s,s2)
k −m(s,s2)

k )2
]

= E(X
(s1,s)
i −m(s1,s)

i )2E(X
(s,s2)
k −m(s,s2)

k )2

(1.36)

≤ E(X
(s1,s)
i )2E(X

(s,s2)
k )2 ∼ α2

(2− α)2
(s2−α − s2−α1 )(s2−α2 − s2−α)`4(d/n)(n/d)(4−2α)/α

≤ C3(s− s1)(s2 − s)`4(d/n)(n/d)(4−2α)/α.

The number of such pairs (i, k) is at most (nt−nt1)2 and thus dividing by A4
n and

using (1.21) we get that the contribution of such terms (1.35) is not greater than

C4(t− t1)2(s− s1)(s2 − s) = C4µ(B11)µ(B12).

Consider now the case i = j = k = `. In this case (1.35) becomes, expanding and

introducing new letters to lighten the notations,

E
[
(X

(s1,s)
i −m(s1,s)

i )2(X
(s,s2)
i −m(s,s2)

i )2
]

= E(ξ −m(1))2(η −m(2))2 (1.37)

= Eξ2η2 − 2m(2)Eξ2η + (m(2))2Eξ2 − 2m(1)Eξη2 + 4m(1)m(2)Eξη

− 2m(1)(m(2))2Eξ + (m(1))2Eη2 − 2(m(1))2m(2)Eη + (m(1))2(m(2))2,

where

ξ = X
(s1,s)
i , η = X

(s,s2)
i , m(1) = Eξ, m(2) = Eη.

Clearly ξ and η have disjoint support and thus ξη = 0, showing that the first,

second, fourth and fifth term of the last sum in (1.37) are equal to 0. Thus the

sum equals

(m(2))2Eξ2 − 2m(1)(m(2))2Eξ + (m(1))2Eη2 − 2(m(1))2m(2)Eη + (m(1))2(m(2))2
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= (m(2))2Eξ2 − 2(m(1))2(m(2))2 + (m(1))2Eη2 − 2(m(1))2(m(2))2 + (m(1))2(m(2))2.

By the Cauchy-Schwarz inequality we have (m(1))2 ≤ Eξ2, (m(2))2 ≤ Eη2 and thus

the absolute value of the last sum is at most 7E(η2)E(ξ2), which, apart from the

coefficient, is exactly the third expression in (1.36), leading to the same estimate

as there. The number of choices for i in (1.37) is nt − nt1 ≤ (nt − nt1)
2, so for

the contribution of all terms in (1.37) we get the same estimate as for (1.36), i.e.

C5µ(B11)µ(B12). Thus we proved (2.32) for Bij = B12 and the proof of Theorem

31 is completed.�



Chapter 2

On the extremal theory of the
continued fractions

2.1 Introduction

In this chapter we extend the results of the previous chapter to the dependent

samples and mainly discuss its applications to the theory of continued fractions.

Therefore in this chapter we will give a brief overview on the main results in this

theory in connection to our problem.

For an irrational number x ∈ (0, 1) let

x =
1

a1 +
1

a2 +
1

. . .

be the continued fraction expansion of x. Clearly

a1(x) = [1/x], an+1(x) = a1(T
nx), n ≥ 1,

where the transformation T : (0, 1)→ [0, 1) is defined by Tx = {1/x}; here [·] and

{·} denote integral resp. fractional part. Let

µ(E) =
1

log 2

∫
E

1

1 + x
dx

30
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be the Gauss measure on the class B of Borel subsets of (0, 1). It is known (see e.g.

Billingsley ([18], 1965) that T is an ergodic transformation preserving the Gauss

measure and thus with respect to the probability space ((0, 1),B, µ),

{an(x), n ≥ 1} is a stationary ergodic sequence. Clearly, the set {a1 = k} is the

interval (1/(k + 1), 1/k] and thus

µ{a1 = k} =
1

log 2

1/k∫
1/(k+1)

1

1 + x
dx =

1

log 2
log

{
1 +

1

k(k + 2)

}
∼ 1

log 2

1

k2
.

(We say that ak ∼ bk if limk→∞ ak/bk = 1.) Thus by the ergodic theorem we have

for any function F : N→ R

lim
N→∞

1

N

N∑
k=1

F (ak(x)) =
1

log 2

∞∑
j=1

F (j) log

{
1 +

1

j(j + 2)

}
a.e. (2.1)

provided that the series on the right hand side converges absolutely.

The sequence {ak(x), k ≥ 1} has remarkable mixing properties. Gauss noted

that the distribution of ak with respect to the uniform measure in (0, 1) converges

to µ and asked for the speed of convergence. Kusmin ([63], 1928) showed that

the convergence speed is O(e−λ
√
k) and Lévy ([66], 1929) improved this to O(e−λk).

Lévy’s result implies that the sequence {ak(x), k ≥ 1} is ψ-mixing with exponential

rate, i.e.

sup
A∈Fk1 ,B∈F∞k+n

|µ(A ∩B)− µ(A)µ(B)| ≤ Ce−λnµ(A)µ(B)

with positive absolute constants C, λ, where F sr denotes the σ-field generated by

the variables {ak(x), r ≤ k ≤ s}.

Letting E denote expectation with respect to µ, we have Ea1 = ∞ and corre-

spondingly for F (x) = x the right hand side of (2.1) is +∞. Thus the partial sums∑N
k=1 ak(x) grow faster than N . Lévy ([68], 1952) proved that

1

N

N∑
k=1

ak(x)− logN

log 2

d−→ G, (2.2)
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where
d−→ means convergence in distribution in the probability space ((0, 1),B, µ)

and G is the stable distribution with characteristic function

exp

(
−it log |t| − π|t|

2 log 2

)
. (2.3)

Remainder term estimates for the convergence in (2.2) were obtained by Heinrich

in the following theorem.

Theorem 9. For the continued fraction expansion (an)n∈N by the Gaussian measure

µ we have∣∣∣∣∣µ
({

ω :
1

n

n∑
k=1

ak(ω)− lnn− κ
ln 2

−G1,1

(
x,

π

2 ln 2

)})∣∣∣∣∣ ≤ C0
(lnn)2

n
,

where C0 does not depend on x and n and κ stands for Euler’s constant being equal

to

lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− lnn

)
= 0.57722..

This implies that

lim
N→∞

1

N logN

N∑
k=1

ak(x) =
1

log 2
in measure, (2.4)

a result obtained earlier by Khinchin ([59], 1935). Khinchin also noted that (2.4)

cannot hold almost everywhere. Diamond and Vaaler ([35], 1986) showed that the

obstacle to a.e. convergence in (2.4) is the occurrence of one single large term in the

sum
∑N

k=1 ak(x) and established an a.e. analogue of (2.4) by excluding the largest

summand.

They proved namely

lim
N→∞

1

N logN
S
(1)
N (x) =

1

log 2
for almost all x (2.5)

where S
(d)
N (x) denotes the sum

∑N
k=1 ak(x) after discarding its d largest summands.

The proof shows that (2.5) remains valid if S
(1)
N is replaced by S

(d)
N for any fixed

d ≥ 2 and discarding more terms improves the rate of a.e. convergence in (2.5).
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Interestingly, similar results were obtained for St. Petersburg game. This is a

game of chance in which a fair coin s tossed at each stage. The first time a tail

appears (assume it happened at kth stage), the game ends and the player wins 2k

units of money. Obviously this game can be modeled by a random variable with

infinite expectation.

An analogous to (2.5) result for the St. Petersburg game was proved by Csörgő

and Simons ([28], 1996). For further analogies between continued fraction digits

and the St. Petersburg game we refer to Vardi ([96], 1997). In view of these facts

it is natural to ask what happens if from the sum SN =
∑N

k=1 ak(x) we remove

d = dN terms, where

dN →∞, dN/N → 0 (2.6)

so that the number of discarded terms is ’large’, but is still negligible compared

with N . The purpose of this chapter is to answer this question. Let

m(t) =
1

log 2

∑
1≤k≤t

k log

(
1 +

1

k(k + 2)

)
, t ≥ 1. (2.7)

We will prove the following result.

Theorem 10. Let d = dN satisfy (2.6). Then we have

S
(d)
N −Nm(ηd,N)

N/
√
d

d−→ N
(
0, (log 2)−1

)
(2.8)

where ηd,N denotes the d-th largest of a1, . . . , aN and N(µ, σ2) denotes the normal

distribution with mean µ and variance σ2.

Theorem 10 reduces the asymptotic study of S
(d)
N to that of ηd,N , which is a

much simpler problem. We will show in (2.36) that ηd,N ∼ N/d in probability and

since m(t) ∼ (log 2)−1 log t as t→∞, Theorem 10 can be rewritten equivalently as

S
(d)
N = Nm(ηd,N) + (N/

√
d)ζN = (1 + oP (1))

1

log 2
N log(N/d) + (N/

√
d)ζN , (2.9)
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where ζN
d−→ N(0, 1/ log 2). Here and in the sequel,

P−→ will denote convergence

in probability and oP (1) a quantity converging to 0 in probability. Relation (2.9)

shows that Nm(ηd,N) is the main term in an asymptotic expansion of S
(d)
N . As a

comparison, write Lévy’s limit theorem (2.2) in the form

SN =
1

log 2
N logN +Nζ∗N , (2.10)

where ζ∗N converges in distribution to the Cauchy variable with characteristic func-

tion (2.3). In addition to the change of the order of magnitude of SN caused

by removing the d largest terms, note that the Cauchy fluctuations of SN around

1
log 2

N logN described by (2.10) changed to Gaussian fluctuations around Nm(ηd,N)

in (2.9). An immediate consequence of relation (2.9) is

S
(d)
N

N log(N/d)

P−→ 1

log 2

under (2.6). If d grows slower than any power of N , i.e. log d/ logN → 0, then the

last relation implies
1

N logN
S
(d)
N

P−→ 1

log 2
.

Thus in this case the order of magnitude of S
(d)
N is the same as that of the complete

sum SN , i.e. the contribution of the d largest terms of SN is still negligible compared

to the whole sum. If d ∼ Nγ for some 0 < γ < 1, then

1

N logN
S
(d)
N

P−→ 1− γ
log 2

.

We thus see that the removal of of a small portion of extreme elements of SN

changes the asymptotic order of magnitude of the sum, hence the role of large

elements in SN is very substantial.

In case of i.i.d. variables in the domain of attraction of a stable law with pa-

rameter 0 < α < 2, the effect of the extremal terms on the partial sums is well

known. For positive variables Darling ([29], 1952) obtained the following results

(see also Arov and Bobrov [3], 1960).
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Theorem 11 (Darling, 1952). Let Xi ≥ 0 have an exponent 1 < α < 2 and such

that Sn has a limiting stable distribution, then

lim
n→∞

P {Sn < yX∗n} = G(y)

where G(y) has the characteristic function

∞∫
0

eitydG(y) =
eit

1− γ
∫ 1

0
(eitα − 1) dα

αγ+1

Theorem 12. [Darling, 1952] Let Xi ≥ 0 have an exponent 1 < α < 2 and such

that Sn has a limiting stable distribution, and let a sequence {cn} be determined by

the relation f(cn) = 1/n. Then µ = E(Xi) exists, and if an = n/cn, we have

lim
n→∞

P

{
Sn
X∗n

< anx

}
= 1− e−(x/µ)γ

The case α = 1 is critical and is not covered neither in [3], nor in [29]. The

sequence {ak(x), k ≥ 1} in the continued fraction expansion corresponds to this

case, except that the variables ak are weakly dependent. Theorem 10 and its

corollaries above show that the contribution of the d largest terms of SN is negligible

(in probability) compared with the total sum SN if and only if log d/ logN → 0.

In particular this holds for d = 1, i.e. in the case of the largest term. In the

i.i.d. case, Csörgő, Horváth and Mason (see Theorem 3) also showed that removing

the d largest and d smallest elements from the partial sum, where (2.6) holds,

the remaining sum S
(d)
N becomes asymptotically normal. Our Theorem 10 is a

dependent analogue of this result for continued fractions. There is a large literature

on the metric properties of continued fractions and using the exponential ψ-mixing

property of the transformation T above, many classical limit theorems for partial

sums of independent random variables have been extended to continued fractions.

Series of remarkable results were established by Doeblin (see [36], 1940). Stack-

elberg (see [89], 1966) shown that the law of iterated logarithm holds for the se-

quence log ai(x). Doeblin’s result concerning the law of iterated logarithm was later
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generilized by Philipp and Stackelberg ([80], 1969). Gordin and Reznick ([42], 1970)

provided the law of iterated logarithm for the denominators of continued fractions

qn(x). They shown that

lim sup{| log qn(x)− na|/(b
√

2n log log n)} = 1

for n→∞, where a = π2/(12 log 2) and b > 0 is a constant.

Ibragimov (see [51], 1960) established existence of the constants a and σ > 0

such that

lim mes Ex∈(0,1)
[

log qn(x)− na
σ
√
n

< z

]
=

1√
2π

z∫
−∞

e−u
2/2du.

Philipp ([79], 1988) shown that partial quotients ai cannot satisfy a strong law of

large numbers for any sequence {σ(n), n ≥ 1}, such that σ(n)/n is non-decreasing.

In particular,

lim
N→∞

SN
σ(N)

= 0 a.s.

or

lim sup
SN
σ(N)

=∞ a.s.,

according as
∑

1
σ(N)

<∞ or =∞. Iosifescu in his works ([53], 1977) using the

methods of Galambos ([39], 1972) shown that the number mN(x, y) of the partial

quatients aj(x), 1 ≤ j ≤ N such that aj(N) > yN with respect to measure Q. Last

one is supposed to be absolutely continuous with respect to the Gauss measure.

Later he gave a large survey on the results in metric theory of contiued fractions,

where he takes Doeblin’s paper ([36], 1940) as a starting point ([54], 1990).

Samur ([86], 1989) applied his preceding results for mixing random variables

([85], 1984) to the sequences of partial quotients and obtained certain functional

limit theorems for quantities directly connected to the continued fraction expansion.

Later he shown that in case the variance of the partial sums is strictly positive,
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result due to Philipp and Stout ([81], 1975) can be applied to the sequence {uj}j≥,

where uj is defined as follows

xj(x) = [aj(x), aj+1(x) . . . ],

yj(x) = [aj(x), aj−1(x) . . . a1(x)],

u1 = x1, uj = xj +
1

yj−1
,

giving the final result

Theorem 13 (Samur, 1996). Assume that f : [0,∞)→ R is either

f = I[b,∞) for some b > 1

or a function satisfying

|f(x)− f(y)| ≤ K|x− y| (x, y > 1) for some K > 0

and
∞∫
1

|f(x)|2+δx−2dx <∞ for some δ > 0.

V ar(
n∑
j=1

f(uj)) = nσ2 +O(1) as n→∞. (2.11)

Define the partial sums process {S(t) : t ∈ [0,∞)} by

S(t) =
∑
1≤j≤t

(f(uj)−m), j ≥ 0

with m =
∫∞
1
f(x) 1

log 2

(
I[1,2](x) 1

x

(
1− 1

x

)
+ I[2,∞)(x) 1

x2

)
dx.

If the constant σ2 in (2.11) is strictly positive then the almost sure invariance

principle holds for {S(t)}, that is, there exists a probability space and processes

{S∗(t) : t ∈ [0,∞)}, {X(t) : t ∈ [0,∞)} defined on it such that

(i) {S(t)} and {S∗(t)} has the same distribution,



38

(ii) {X(t)} is a standard Brownian motion,

(iii) |S∗(t) − X(σt)| = O(t
1
2
−ε) almost surely as t → ∞ for some ε > 0(the

constant implied by O being random).

The same result holds for xj, yj but with other values of m.

Some of the most recent results were provided by Szewczak ([92], 2009). These

concern the functionals of partial quotients themselve.

Theorem 14 (Szewczak, 2009). Let cn → ∞ be a sequence of positive numbers

and f be a Borel function. In order that there exist a sequence {bn} such that

c−1n (
n∑
i=1

f(ak)− bn)→ P0

it is necessary and sufficient that simultaneously

nP [|f(a1)| > cn]→∞, n

c2n
E[f 2(a1)I[|f(a1)|≤cn]]→ 0.

If the latter conditions are satisfied we can set bn = nE[f(a1)I[|f(a1)|≤cn]

Another theorem by Szewczak is related to the domain of attraction of the

normal law.

Theorem 15 (Szewczak, 2009). Let f be a Borel function.In order that there exist

sequences {cn} and {dn} such that

lim
n→∞

L(c−1n (
n∑
i=1

f(ak)− dn)) = N (0, 1)

it is necessary and sufficient that the function E[f 2(a1)I[|f(a1)|≤x]] is slowly varying.

If the latter condition is satisfied we can set dn = nE[f(a1)].
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Clearly it is very hard to list here all the remarkable results in the metric

theory of continued fractions. For a more complete picture we refer the reader to

the references of already mentioned works.

Using the extremal theory of dependent processes, (see e.g. Leadbetter and

Rootzen [64], 1988), asymptotic properties of the (individual) extremes of

(a1(x), . . . , an(x)) can be established. And as the extreme values are of a particular

interest to us we are giving here the results on the asymptotics of the largest digits,

obtained by Galambos and Philipp in the 70s. Galambos (see [39], 1972) established

the following limit theorem which is closely connected with Philipp’s result on the

mixing stochastic processes ([76], 1969)

Theorem 16 (Galambos, 1972). Put an = an(x) and let

LN = max(a1, a2 . . . , aN).

Then

lim
n→∞

P

(
LN
N

<
y

log 2

)
= exp

(
1

−y

)
. (2.12)

Later Galambos ([40], 1974/75) provided the result for almost everywhere con-

vergence.

Theorem 17 (Galambos, 1974/75). For almost all x in (0, 1) (with respect to

Lebesgue measure),

lim sup
N→∞

logLN − logN

log logN
= 1

and

lim inf
N→∞

logLN − logN

log logN
= 0,

where LN is the same as in theorem 16

Slightly later Philipp ([78], 1975/76) provided series of asymptotic results on

the limit behavior of the largest digit of continued fraction expansion. He improved
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the result of theorem 16 introducing more precise asymptotics of the limit, namely

replacing o(1) on the right hand side of the expression (2.12) by O(exp(−(logN)δ)).

He also proved the following Erdös’s conjecture

Theorem 18 (Philipp, 1975/76). For allmost all x

lim inf
N→∞

LN(x) log logN

N
=

1

log 2

In the same work Philipp also gave a refinement of the theorem 18 by replacing

the iterated logarithm by an arbitrary sequence ψN , satisfying certain constraints

Theorem 19 (Philipp, 1975/76). Let ψN be nonincreasing such that ψNN is non-

decreasing. Then

LN(x) ≤ ψNN

log 2

finitely often or infinitely often for almost all x according as∑
e−1/ψn

n

log log n

converges or diverges.

However, given all the variety of the results we have mentioned, no results on

trimmed sums S
(d)
N are known for continued fractions or, for that matter, for any

dependent sequence of random variables. In Section 2.2, we will prove Theorem 10

in a probabilistic form and we will change the notation accordingly.

Theorem 20. Let {Xj, j ≥ 1} be a strictly stationary sequence of positive, integer

valued random variables with

P (X1 = k) ∼ c0k
−2 as k →∞ (2.13)

for some constant c0 > 0. Assume that {Xj, j ≥ 1} is ψ-mixing with rate ψ(n) =

Ce−λn for some C > 0, λ > 0. Let ηd,n denote the d-th largest of X1, . . . , Xn and
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assume that d = dn satisfies (2.6). Let m(t) = EX1I{X1 ≤ t} and

An =
√
c0 n/

√
d. (2.14)

Then

1

An

[nt]∑
i=1

(XiI{Xi ≤ ηd,n} −m(ηd,n))
D[0,1]−→ W (t), (2.15)

where W is the Wiener process.

Remark 2.1.1. If (Xn) is a sequence of positive random variables such that with

probability one X1, X2, . . . are different, then the sum
∑[nt]

i=1XiI{Xi ≤ ηd,n} in

(2.15) is obtained from
∑[nt]

i=1Xi by removing the d− 1 largest terms and thus the

conclusion of Theorem 20 for t = 1 reduces to that of Theorem 10. However, for

integer valued variables Xn, ηd,n can appear in the sequence (X1, . . . , Xn) more

than once and in this case the number of terms of the sum
∑[nt]

i=1Xi exceeding

ηn,d can be smaller than d − 1 and can actually be random. Thus, in a formal

sense, Theorem 10 is not a special case of Theorem 20. However, using a simple

perturbation argument Theorem 10 will be deduced from Theorem 20.

Let

Un(t, s) =

[nt]∑
i=1

(XiI{Xi ≤ s(n/d)} − EXiI{Xi ≤ s(n/d)}) (t ≥ 0, s ≥ 0).

We will derive Theorem 20 from the following two-dimensional limit theorem.

Theorem 21. Under the assumptions of Theorem 20 we have

1

An
Un(t, s) −→ W (t, s) weakly in D[0, 1]×D[1/2, 3/2], (2.16)

where {W (t, s), t ≥ 0, s ≥ 0} is a two-parameter Wiener process.

As we already noted, under (2.6) we have

ηd,n
n/d
−→ 1 in probability.
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Since the limit process W (t, s) in (2.16) has continuous trajectories a.s., Theorem

21 and Billingsley’s argument on the random change of time ([19], p. 144-145, 1968)

imply that
1

An
Un(t, ηd,n/(n/d))

D[0,1]−→ W (t, 1)

which is exactly the functional central limit theorem (2.15).

2.2 Preliminary lemmas

In the rest of the chapter 2 (Xk)k≥1 denotes a sequence of random variables sat-

isfying the conditions of Theorem 20 and d = dn denotes a sequence of positive

integers satisfying (2.6). Moreover, c0 denotes the constant in (2.13). Given a

process Y (s, t) defined on a rectangle H = [a, b] × [a′, b′], let Y (H) denote the

increment of Y over H, defined as in the beginning of section 1.2.

For our argument in this chapter we again will need Bickel and Wichura’s

theorem, to be more precise its special case which is given by lemma 1 in section

1.2.

For the purpose of dealing with dependents we would need also a correlation

inequlity (see Bradley, [21], 2007)

Theorem 22. Suppose A and B are σ−fields such that ψ(A,B) < ∞. If X ∈

L1(A) and Y ∈ L1(B), then E|XY | <∞, and

|EXY − EXEY | ≤ ψ(A,B)||X||1||Y ||1.

However in our argument we are going to use not theorem 22 but the lemma

below which easily follows from the latter one.

Lemma 3. Let X, Y be integrable random variables such that X is measurable with

respect to σ(X1, . . . , Xk) and Y is measurable with respect to σ(Xk+n, Xk+n+1, . . .).
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Then XY is also integrable and

|EXY − EXEY | ≤ ψ(n)E|X|E|Y |.

Lemma 4. Let Gk denote the σ-field generated by Xk, let n1 < . . . < nr be positive

integers and let Y1, . . . , Yr be bounded r.v.’s such that Yj is Gnj measurable (j =

1, 2, . . . , r). Then

E|Y1 · · ·Yr| ≤ CrE|Y1| · · ·E|Yr|,

where Cr = (1 + ψ(1))r.

Proof. This is immediate by induction upon observing that by the previous

lemma we have for any 1 ≤ j ≤ r − 1

E|Y1 · · ·Yj+1| ≤ E|Y1 · · ·Yj|E|Yj+1|+ψ(1)E|Y1 · · ·Yj|E|Yj+1| = (1+ψ(1))E|Y1 · · ·Yj|E|Yj+1|.

Lemma 5. For any T ≥ 3 we have

EX1I{X1 ≤ T} ≤ C1 log T. (2.17)

Moreover, for any fixed 0 ≤ s1 < s2 we have

EX2
1I{s1(n/d) < X1 ≤ s2(n/d)} ∼ c0(s2 − s1)(n/d) as n→∞ (2.18)

and for any fixed 0 < s1 < s2 and sufficiently large n

EX1I{s1(n/d) < X1 ≤ s2(n/d)} ≤ C2(s2 − s1)/s1. (2.19)

Here C1, C2 are positive constants depending only on the sequence (Xk).

This is immediate from (2.13).

Lemma 6. Let

X
(s1,s2)
k,n = XkI{s1(n/d) < Xk ≤ s2(n/d)} − EXkI{s1(n/d) < Xk ≤ s2(n/d)}.
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Then for any fixed 0 ≤ t1 < t2 ≤ 1, 0 ≤ s1 < s2 <∞ we have

E

(
nt2∑

k=nt1+1

X
(s1,s2)
k,n

)2

∼ c0(n
2/d)(t2 − t1)(s2 − s1) as n→∞ (2.20)

provided nt1, nt2 are integers. Moreover,

E

(
nt2∑

i=nt1+1

X
(s1,s2)
i,n

) nt′2∑
j=nt′1+1

X
(s′1,s

′
2)

j,n

 = o(n2/d) as n→∞ (2.21)

provided 0 ≤ t1 < t2 ≤ 1, 0 ≤ t′1 < t′2 ≤ 1, 0 ≤ s1 < s2 < ∞, 0 ≤ s′1 < s′2 < ∞,

nt1, nt2, nt
′
1, nt

′
2 are integers and the intervals (nt1, nt2) and (nt′1, nt

′
2) are identical

or disjoint and the same holds for the intervals (s1, s2) and (s′1, s
′
2), but identity

cannot hold at both places.

Proof. We have

E

(
nt2∑

k=nt1+1

X
(s1,s2)
k,n

)2

= n(t2 − t1)E
(
X

(s1,s2)
1,n

)2
+R

where

R = 2

nt2−nt1∑
j=2

(nt2 − nt1 − j + 1)E
(
X

(s1,s2)
1,n X

(s1,s2)
j,n

)
.

Using Lemmas 3 and 5 we get, using n/d→∞,

E
(
X

(s1,s2)
1,n

)2
= E (X1I{s1(n/d) < X1 ≤ s2(n/d)})2 − E2 (X1I{s1(n/d) < X1 ≤ s2(n/d)})

= c0(1 + o(1))(n/d)(s2 − s1) +O(log2(n/d)) ∼ c0(n/d)(s2 − s1)

and

|R| ≤ 2n

nt2−nt1∑
j=2

ψ(j − 1)
(
E|X(s1,s2)

1,n |
)2
≤ C3n log2(n/d)

∞∑
j=2

e−λj = o(n2/d),

proving (2.20).

To prove (2.21), consider a generic term

EX
(s1,s2)
i,n X

(s′1,s
′
2)

j,n
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= EXiXjI{s1(n/d) < Xi ≤ s2(n/d)}I{s′1(n/d) < Xj ≤ s′2(n/d)} (2.22)

− EXiI{s1(n/d) < Xi ≤ s2(n/d)}EXjI{s′1(n/d) < Xj ≤ s′2(n/d)}

of the left hand side of (2.21). Fix r ≥ 0 and sum those covariances in (2.22) where

j− i = r and nt1+1 ≤ i ≤ nt2, nt
′
1+1 ≤ j ≤ nt′2. Clearly, the case r = 0 can occur

only if (nt1, nt2) = (nt′1, nt
′
2), but in this case by the assumptions of the lemma

(s1, s2) and (s′1, s
′
2) must be disjoint and thus the product of the two indicators in

the second line of (2.22) is 0. Thus by the first statement of Lemma 5 the product

expectation in the first line of (2.22) is O(log2(n/d)) and since the number of such

terms in the expansion of (2.21) is at most n, the contribution of such terms in

the sum in (2.21) is at most O(n log2(n/d)) = o(n2/d) by n/d → ∞. For r ≥ 1

the covariance in (2.22) is at most ψ(r)O(log2(n/d)) by Lemma 3 and the first

statement of Lemma 5 and since for fixed r the number of pairs (i, j) is at most n,

the contribution of all such terms for all r ≥ 1 is at most Cn log2(n/d)
∑∞

r=1 ψ(r) =

O(n log2(n/d)) = o(n2/d), proving (2.21).

The central limit theorem for ψ-mixing sequences follows after applying a simple

blocking argument and theorem 1.7.3 from [53].

2.3 Proof of the main results

Put

Qn =
1

An

M∑
m=1

J∑
j=1

µm,jUn([tm−1, tm]× [sj−1, sj])

and

Z =
M∑
m=1

J∑
j=1

µm,jW ([tm−1, tm]× [sj−1, sj])

for all M ≥ 1, J ≥ 1, real coefficients µm,j, 0 = s0 < s1 < s2 < . . . < sJ < ∞,

0 = t0 < t1 < . . . < tM = 1. Clearly, Z is a normal random variable with mean
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zero and

EZ2 =
M∑
m=1

J∑
j=1

µ2
m,j(tm − tm−1)(sj − sj−1). (2.23)

We claim that

Qn
d−→ Z for all considered values of M,J, µm,j, tm, sj. (2.24)

Since the processes Un and W are equal to 0 on the boundary of the first quadrant,

we have

Un(tm, sj) =
m∑
p=1

j∑
q=1

Un([tp−1, tp]× [sq−1, sq])

and the same relation holds for W . Thus (2.24) implies

1

An

M∑
m=1

J∑
j=1

µ∗m,jUn(tm, sj)
d−→

M∑
m=1

J∑
j=1

µ∗m,jW (tm, sj)

for arbitrary real coefficients µ∗m,j and this, by the Cramér-Wold device, implies the

convergence of the finite-dimensional distributions in Theorem 21.

Clearly, Un([tm−1, tm]× [sj−1, sj]) equals

[ntm]∑
k=[ntm−1]+1

XkI{sj−1(n/d) < Xk ≤ sj(n/d)} − EXkI{sj−1(n/d) < Xk ≤ sj(n/d)}

and thus relation (2.24) is equivalent to

1

An

n∑
k=1

(znk − Eznk)
d−→ N(0, EZ2), (2.25)

where

znk =
J∑
j=1

µm,jXkI{sj−1(n/d) < Xk ≤ sj(n/d)}, [ntm−1] + 1 ≤ k ≤ [ntm].

(2.26)

Since the terms of the sum in (2.26) are random variables with disjoint support,

by the second relation of Lemma 5 we have

Ez2nk = (1 + on(1))c0(n/d)
J∑
j=1

µ2
m,j(sj − sj−1), [ntm−1] + 1 ≤ k ≤ [ntm].
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Also, by the first relation of Lemma 5 we have

E|znk| = O (log(n/d)) ,

where the constant in the O depends also on the µm,j, sj. Consequently, letting

Bm = c0

J∑
j=1

µ2
m,j(sj − sj−1), (2.27)

we get

Var znk

= (1 + on(1))c0(n/d)
J∑
j=1

µ2
m,j(sj − sj−1) = (1 + on(1))(n/d)Bm, [ntm−1] + 1 ≤ k ≤ [ntm].

(2.28)

Further, Lemma 6 implies for n→∞

EUn([tm−1, tm]× [sj−1, sj])
2 = (1 + on(1))c0(tm − tm−1)(sj − sj−1)(n2/d)

and

EUn([tm1−1, tm1 ]× [sj1−1, sj1 ])Un([tm2−1, tm2 ]× [sj2−1, sj2 ]) = on(n2/d)

provided the pairs (m1, j1) and (m2, j2) are different. Thus

E

(
n∑
k=1

(znk − Eznk)

)2

= E

(
M∑
m=1

J∑
j=1

µm,jUn([tm−1, tm]× [sj−1, sj])

)2

=
M∑

m1,m2=1

J∑
j1,j2=1

µm1,j1µm2,j2E [Un([tm1−1, tm1 ]× [sj1−1, sj1 ])Un([tm2−1, tm2 ]× [sj2−1, sj2 ])]

(2.29)

∼ c0(n
2/d)

M∑
m=1

J∑
j=1

µ2
m,j(tm − tm−1)(sj − sj−1) = c0(n

2/d)EZ2 = A2
nEZ

2.

Let

B = max
1≤m≤M

Bm, B′ = min
1≤m≤M

Bm
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where Bm is defined by (2.27). Clearly, without loss of generality we can assume

that for each 1 ≤ m ≤ M at least one µm,j differs from 0, and thus B,B′ are

positive numbers depending on the numbers c0, sj, µm,j. Now let

xnk =
znk − Eznk√

Bn/d
. (2.30)

Let us also note that by the first relation of Lemma 5, we have

u+r∑
k=u+1

E|znk − Eznk| ≤ C4r log(n/d) (2.31)

where C4 is a positive constant depending on the µm,j, sj. Using (2.31), (2.29) and

correlation inequality for ψ−mixing one can easily show that CLT also holds for

the sequence (2.30) by applying to it the same tools as in the end of section 2.2.

Next we prove tightness in Theorem 21. Let

B11 = [t1, t]× [s1, s], B12 = [t1, t]× [s, s2], B21 = [t, t2]× [s1, s].

where 0 ≤ t1 < t < t2 ≤ 1, 1/2 ≤ s1 < s < s2 ≤ 3/2. In view of Theorem 7, it

suffices to show that

E

∣∣∣∣ 1

An
Un(B11)

∣∣∣∣2 ∣∣∣∣ 1

An
Un(Bij)

∣∣∣∣2 ≤ C∗µ(B11)µ(Bij), (2.32)

holds for each ij ∈ {12, 21} with some constant C∗ > 0. Moreover, since Un(t, s)

is constant on intervals k/n ≤ t < (k + 1)/n, by the last statement of Theorem 7

we may assume that nt, nt1 and nt2 are all integers. To prove (2.32), we introduce

the notations

X
(1)
i = XiI{s1(n/d) < Xi ≤ s(n/d)}, m

(1)
i = EX

(1)
i ,

X
(2)
i = XiI{s(n/d) < Xi ≤ s2(n/d)}, m

(2)
i = EX

(2)
i .

Using Lemmas 4 and 6 and (2.14) we get

E

∣∣∣∣ 1

An
Un(B11)

∣∣∣∣2 ∣∣∣∣ 1

An
Un(B21)

∣∣∣∣2
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= E

(
1

An

nt∑
i=nt1+1

(X
(1)
i −m

(1)
i )

)2(
1

An

nt2∑
i=nt+1

(X
(1)
i −m

(1)
i )

)2

≤ (1 + ψ(1))2
1

A4
n

E

(
nt∑

i=nt1+1

(X
(1)
i −m

(1)
i )

)2

E

(
nt2∑

i=nt+1

(X
(1)
i −m

(1)
i )

)2

≤ C8(t− t1)(t2 − t)(s− s1)2 = C8µ(B11)µ(B21).

for n ≥ n0. On the other hand,

E

∣∣∣∣ 1

An
Un(B11)

∣∣∣∣2 ∣∣∣∣ 1

An
Un(B12)

∣∣∣∣2
=

1

A4
n

E

(
nt∑

i=nt1+1

(X
(1)
i −m

(1)
i )

)2( nt∑
i=nt1+1

(X
(2)
i −m

(2)
i )

)2

=
1

A4
n

E

(
nt∑

i=nt1+1

Y
(1)
i

)2( nt∑
i=nt1+1

Y
(2)
i

)2

, (2.33)

where we put

Y
(1)
i = X

(1)
i −m

(1)
i , Y

(2)
i = X

(2)
i −m

(2)
i .

The expression in the third line of (2.33) equals the sum of all expressions

A−4n E(Y
(1)
i Y

(1)
j Y

(2)
k Y

(2)
` ), (2.34)

where nt1 + 1 ≤ i, j, k, ` ≤ nt. The following facts can be verified by elementary

calculations using Lemmas 3–5:

(a) E|Y (1)
i | � s− s1, E|Y (2)

i | � s2 − s, E|Y (1)
i Y

(2)
i | � (s− s1)(s2 − s)

(b) E(Y
(1)
i )2 � (n/d)(s− s1), E(Y

(2)
i )2 � (n/d)(s2 − s),

(c) E(Y
(1)
i )2|Y (2)

i | � (n/d)(s − s1)(s2 − s), E|Y (1)
i |(Y

(2)
i )2 � (n/d)(s −

s1)(s2 − s),

(d) E(Y
(1)
i )2(Y

(2)
i )2 � (n/d)(s− s1)(s2 − s),

where � means the same as the O notation, with an implied constant depending

on the sequence (Xn). We prove relation (d), the proof of (a), (b), (c) is similar
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(and simpler). We have

E(Y
(1)
i )2(Y

(2)
i )2 = E

[
(X

(1)
i −m

(1)
i )2(X

(2)
i −m

(2)
i )2

]
= E(X

(1)
i )2(X

(2)
i )2 − 2m

(2)
i E(X

(1)
i )2X

(2)
i + (m

(2)
i )2E(X

(1)
i )2 − 2m

(1)
i EX

(1)
i (X

(2)
i )2

+ 4m
(1)
i m

(2)
i EX

(1)
i X

(2)
i − 2m

(1)
i (m

(2)
i )2EX

(1)
i + (m

(1)
i )2E(X

(2)
i )2 − 2(m

(1)
i )2m

(2)
i EX

(2)
i

+ (m
(1)
i )2(m

(2)
i )2.

Clearly X
(1)
i and X

(2)
i are supported on different sets and thus X

(1)
i X

(2)
i = 0. Thus

among the 9 terms above, the first, second, fourth and fifth are equal to 0. Also, the

second and third statement of Lemma 5 imply, in view of 1/2 ≤ s1 < s < s2 ≤ 3/2,

m
(1)
i = EX

(1)
1 � s− s1, m

(2)
i = EX

(2)
i � s2 − s

E(X
(1)
i )2 � (s− s1)(n/d), E(X

(2)
i )2 � (s2 − s)(n/d)

for n ≥ n0. This shows that the remaining five terms of the sum above are �

(n/d)(s−s1)(s2−s), proving statement (d) above. Statements (a), (b) and (c) can

be proved similarly.

We can now estimate the expressions in (2.34). We will distinguish four cases

according as i, j, k, ` are all different, or the number of different ones among them

is 1, 2 or 3. Consider first the case when i, j, k, l are all different, say i < j < k < `;

let r = j − i. Applying Lemma 3 with X = Y
(1)
i , Y = Y

(1)
j Y

(2)
k Y

(2)
` and using that

EX = 0, we get that the absolute value of the expression (2.34) is bounded by

A−4n ψ(r)E|X|E|Y | ≤ CA−4n ψ(r)E|Y (1)
i |E|Y

(1)
j |E|Y

(2)
k |E|Y

(2)
` | ≤ CA−4n ψ(r)(s−s1)2(s2−s)2,

where we used Lemma 4 to estimate E|Y | and relation (a) above. Here, and in the

rest of the tightness proof, C denotes (possibly different) constants depending only

on the sequence (Xn). Arguing similarly, but splitting the four-term product in

(2.34) after the third term, we get the same bound, except that ψ(r) gets replaced
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by ψ(r′), where r′ = ` − k. Thus the absolute value of the expression in (2.34) is

at most

CA−4n ψ(r)1/2ψ(r′)1/2(s− s1)2(s2 − s)2.

Fixing the pair (i, `) and summing for (j, k) means summing for (r, r′) and since∑∞
n=1 ψ(n)1/2 <∞ and the pair (i, `) can be chosen by at most (nt−nt1)2 different

ways, it follows that the contribution of all terms (2.34) with i < j < k < ` is at

most

CA−4n (nt− nt1)2(s− s1)2(s2 − s)2 ≤ C(d2/n2)(t− t1)2(s− s1)2(s2 − s)2

≤ C(t− t1)2(s− s1)(s2 − s) = Cµ(B11)µ(B12),

using (2.14) and d/n → 0. The contribution of terms (2.34) where i, j, k, ` are

different, but their order is different can be estimated similarly.

Next we consider the case when i = j = k = `. In this case the expression

(2.34) becomes A−4n E(Y
(1)
i )2E(Y

(2)
i )2, which by the estimate in (d) above is at most

CA−4n (n/d)(s−s1)(s2−s). Since the number of choices for i is nt−nt1 ≤ (nt−nt1)2,

the contribution of all such expressions is bounded by

CA−4n (n/d)(s−s1)(s2−s)(nt−nt1)2 ≤ C(d/n)(s−s1)(s2−s)(t−t1)2 ≤ Cµ(B11)µ(B12),

using again (2.14) and d/n→ 0.

Assume now that among i, j, k, ` there are two different ones, i.e. these numbers

are pairwise equal or three are equal and the fourth is different. Starting with the

case of two pairs, assume e.g. that i = j and k = l, but i 6= k. In this case the

expression (2.34) becomes A−4n E(Y
(1)
i )2(Y

(2)
k )2 which, in view of Lemma 4 and the

estimate in (b) above is at most

CA−4n (n/d)2(s− s1)(s2 − s).
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Since the number of choices for the pair (i, k) is at most (nt − nt1)2, using (2.14)

it follows that the total contribution of all such terms (2.34) is at most

CA−4n (n/d)2(s−s1)(s2−s)(nt−nt1)2 ≤ C(s−s1)(s2−s)(t−t1)2 = Cµ(B11)µ(B12).

If i = k, j = l and i 6= j, then the expression (2.34) becomes A−4n EY
(1)
i Y

(2)
i Y

(1)
j Y

(2)
j

which by Lemma 4 and the estimate in (a) above is bounded by

CA−4n E|Y (1)
i Y

(2)
i |E|Y

(1)
j Y

(2)
j | ≤ CA−4n (s− s1)2(s2 − s)2.

Since the number of pairs (i, j) is ≤ (nt− nt1)2, the contribution of such terms is

at most

CA−4n (s− s1)2(s2 − s)2(nt− nt1)2 ≤ C(s− s1)(s2 − s)(t− t1)2 = Cµ(B11)µ(B12).

Assume now that from the indices i, j, k, l three are equal and the fourth one

is different. Letting e.g. i = j = k and i 6= `, the expression (2.34) becomes

A−4n E(Y
(1)
i )2Y

(2)
i Y

(2)
` which is, by Lemma 4 and the estimates (a) and (c) above is

bounded by

CA−4n E(Y
(1)
i )2|Y (2)

i |E|Y
(2)
` | ≤ CA−4n (n/d)(s− s1)(s2 − s)2.

Since the number of pairs (i, `) is ≤ (nt−nt1)2, the total contribution of such terms

is at most Cµ(B11)µ(B12).

Finally, if the number of different indices among i, j, k, l is 3, e.g. if i = j < k < `,

then the expression (2.34) becomes A−4n E(Y
(1)
i )2Y

(2)
k Y

(2)
` which by using EY

(2)
` = 0,

Lemma 3, Lemma 4 and estimates (a) and (b) above, can be estimated by

CA−4n ψ(r)E(Y
(1)
i )2E|Y (2)

k |E|Y
(2)
` | ≤ CA−4n ψ(r)(n/d)(s− s1)(s2 − s)2, (2.35)

where r = ` − k. Since for fixed r the number of triples (i, k, `) with ` − k = r is

at most (nt− nt1)2, the contribution of such terms (2.34) is at most

CA−4n ψ(r)(n/d)(s− s1)(s2 − s)2(nt− nt1)2 ≤ Cψ(r)(s− s1)(s2 − s)(t− t1)2
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and summing for r we get again ≤ Cµ(B11)µ(B12). The other cases (e.g. i < j =

k < `, etc.) can be treated similarly and the proof of tightness in Theorem 21 is

completed. This also completes the proof of the theorem.

We prove now, as claimed after Theorem 21, that

ηd,n
n/d

P−→ 1 (2.36)

for d = dn → ∞, dn/n → 0. Fix n ≥ 1, 1/2 < t < 2 and let Tk = I{Xk ≥

tn/d}, 1 ≤ k ≤ n. Then by Lemma 3 and (2.13) we get

|ET1Tk − ET1ETk| ≤ ψ(k − 1)ET1ETk ≤ C9 exp(−λk)(d/n)2

and thus setting T̄k = Tk − ETk we conclude that

E

(
n∑
k=1

T̄k

)2

= nET̄ 2
1 + 2

n∑
k=2

(n− k + 1)ET̄1T̄k

≤ n

(
ET̄ 2

1 + 2
n∑
k=2

|ET̄1T̄k|

)

≤ n

(
ET 2

1 + C10(d/n)2
n∑
k=2

exp(−λk)

)
≤ n

(
ET1 + C11(d/n)2

)
≤ C12d.

Hence Markov’s inequality and d = dn →∞ imply for any ε > 0

P

{
n∑
k=1

T̄k ≥ εd

}
−→ 0,

and since ETk = ET1 ∼ d/(nt) by (2.13), it follows that

#{k ≤ n : Xk ≥ tn/d} =
n∑
k=1

I{Xk ≥ tn/d} ∼ d/t in probability as n→∞.

Thus for fixed t > 1 and n large, with probability tending to 1 the number of Xk’s,

1 ≤ k ≤ n exceeding tn/d is smaller than d, and thus ηd,n ≤ tn/d. Similarly, for
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t < 1 and n large, with probability tending to 1 we have ηd,n ≥ tn/d, and thus

(2.36) is proved.

Proof of Remark 1.1. Let (Xn) be a sequence satisfying the assumptions of

Theorem 20, and put X ′n = Xn + 4−n. Letting η′d,n denote the d-th largest of

X ′1, . . . , X
′
n and S

(r)
n and S

′(r)
n denote the sums

∑n
k=1Xk,

∑n
k=1X

′
k after removing

their r largest terms, it is easily seen that

|S(r)
n − S ′(r)n | ≤ 2 for any r ≥ 1 (2.37)

and

n|m(ηd,n)−m(η′d,n)| = OP (1). (2.38)

Clearly, relation (2.13) will fail for the perturbed sequence (X ′n), but as inspection

shows, all the lemmas in the proof of Theorem 20 and the subsequent arguments

remain valid, so conclusion (2.15) of the theorem remains valid if we replace Xi

by X ′i and ηd,n by η′d,n. Since the Xn are integer valued, with probability one all

the X ′j, j = 1, 2, . . . are different, and thus the sum of the Xj’s, 1 ≤ j ≤ n not

exceeding η′d,n equals S
′(d−1)
n . Thus we have

S
′(d−1)
n − nm(η′d,n)

n/
√
d

d−→ N(0, c0). (2.39)

In view of (2.37) and (2.38), we can drop the primes in (2.39) and since S
(d−1)
n −

S
(d)
n = ηd,n = OP (n/d) by (2.36), the conclusion of Theorem 10 follows.�



Chapter 3

Trimmed stable AR(1) processes

3.1 Introduction

In this chapter we concentrate on the applications of trimming in statistics. We

provide theoretical base for AR(1) processes and then illustrate it with simulations.

As usual we start with a brief historical overview.

Let X1, X2, . . . , be independent, identically distributed random variables in

the domain of attraction of a stable law with index 0 < α < 2. Lévy ([67],

1935) and Darling (see theorems 11, 12) noted that the order of magnitude of the

sum Sn =
∑n

k=1Xk is the same as that of its largest term and the contribution

of a fixed, but large number of extremal terms is essentially responsible for the

distribution of Sn. The asymptotic distribution of the trimmed sum S
(d)
n obtained

from Sn by discarding the d smallest and d largest summands was determined by

LePage, Woodrofe and Zinn ([65], 1981) as we have already mentione in section

1.1 and Csörgő, Horváth and Mason (see theorem 3) proved that for d(n)→∞,

d(n)/n → 0 the trimmed sum S
(d)
n satisfies the central limit theorem. Arov and

Bobrov ([3], 1960), Mori ([74], 1984), Hall ([46], 1978), Teugels ([94], 1981), Griffin

and Pruitt ([44], 1987, [45] 1989) and Kesten ([55], 1993) considered a different

type of trimming of the sample. Let now ηn,d denote the d–th largest element of

55
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|X1|, . . . , |Xn|. These authors were interested in the asymptotic behavior of the

modulus trimmed sum (d)Sn =
∑n

k=1XkI{|Xk| ≤ ηn,d}, i.e. when from the sum we

remove the d elements with the largest absolute values.

In case of light trimming, that is when the amount of removed alements dn is

constant an important result for both modulus and ordinary trimming was obtained

by Kesten (see [55], 1993). This result shows that light trimming simply does not

lead to change of limit behavior.

Theorem 23 (Kesten,1993). Let X1, X2, . . . be i.i.d. random variables. If for

some fixed d and sequences of constants an, bn with bn →∞ one has

(d)Sn − an
bn

converges in distribution as n→∞ (3.1)

or
S
(d)
n − an
bn

converges in distribution as n→∞, (3.2)

then also
Sn − an
bn

converges in distribution as n→∞. (3.3)

However the case of moderate trimming (dn → ∞, dn/n → 0) appears to be

more complicated.

Arov and Bobrov ([3], 1960) stated the following asymptotics for partial sums

Sn given that condtions (1.2),(1.3) are satisfied.

Theorem 24 (Arov and Bobrov, 1960). Let X1, . . . , Xn be independent random

variables with the same distribution function, satisfying (1.2),(1.3). Then using

the above notation for α = 0

Sn = ηn,1 + · · ·+ ηn,d + o(1)ηn,d,

for 0 < α < 1

Sn = ηn,1 + · · ·+ ηn,dn +

(
α

1− α
+ o(1)

)
dnηn,dn , dn = o(n/ log n), dn →∞,
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for 1 < α < 2

Sn = na+ o(1)ηn,dn , a =

∞∫
−∞

xdF (x), dn = o(n/ log n), dn →∞.

Hall ([46], 1978) found the limiting characteristic function of a suitebly normal-

ized trimmed sum (d)Sn and stated the folloewing.

Theorem 25 (Hall, 1978). Define the constants bn by

bn =


0 if 0 < α < 1,

nanE sin(X1/an) if α = 1,

nEX1 if 1 < α < 2.

(3.4)

where an is defined by

an = inf{x : F (−x) + 1− F (x) ≤ 1/n},

and F satisfies (1.2),(1.3). Then as n→∞ a random variable ((d)Sn−an)/bn with

characteristic function given by

ηk(t) = [(k − 1)!]−1ζα(t)

∞∫
0

uk−1 exp{−µα(t, u)}du,

where ζα ≡ 1 if α < 1, ζα ≡ ψα if 1 ≤ α < 2,

µα(t, u) = u[p exp(itu−1/α) + q exp{itu−1/α}]− it
u−1/α∫
0

z−α(peitz − qe−itz)

for 0 < α < 1 and

µα(t, u) = u[p exp(itu−1/α) + q exp{itu−1/α}] + it

u−1/α∫
0

z−α(peitz − qe−itz)

for 1 ≤ α < 2

ψα is a characteristic function of a stable distribution and therefore

logψα(t) = −|t|α
 ∞∫

0

x−α sinxdx

 (1− sgn(t)i(p− q) tan(απ/2)) (3.5)
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for α 6= 1 and

logψ1(t) = −|t|(1

2
π + sgn(t)i(p− q) log |t|). (3.6)

Teugels (see [94], 1981) was studying the distribution of ratio (d)Sn/|ηn,d|. Under

conditions (1.2), (1.3) he provided the limiting characteristic function of (d)Sn/|ηn,d|

and as a corollary established the limit result

Theorem 26 (Teugels, 1981). There exist dn and d′n tending to infinity such that

(d)Sn
dn|ηn,d|

P−→ γ (3.7)

(d)Sn/|ηn,d| − γd′n
(βd′n)1/2

D−→ N (0, 1), (3.8)

where

γ =
α

1− α
(p− q) β =

α

2− α
+

(
α(p− q)
α− 1

)
In the same work Teugels provided the constraints on dn and d′n such that (3.7)

and (3.8) hold.

As we have already mentined in chapter 1 Griffin and Pruitt ([44], 1987) proved

that the trimmed central limit theorem of Csörgő, Horváth and Mason (theorem

3) remains valid for modulus trimmed sums provided the distribution of X1 is

symmetric, but it generally fails for nonsymmetric variables and it can happen that

(d)Sn is asymptotically normal for some d(n), but not for another d′(n) ≥ d(n).

Sufficient conditions for the asymptotic normality of (d)Sn in the nonsymmetric

case were given by Berkes and Horváth ([14], 2012, see e.g. theorem 5). On the

other hand, Berkes, Horvath and Schauer ([16], 2011) showed that if d(n) → ∞,

d(n)/n→ 0, a functional central limit theorem always holds for (d)Sn with a random

centering factor.

Trimming also has important applications in statistics. As an example, we

consider the detection of possible changes in the location model

Xj = cj + ej, 1 ≤ j ≤ n, (3.9)



3.Trimmed stable AR(1) processes 59

where e1, . . . , en are random errors. Under the null hypothesis of stability, the

location parameter is constant, i.e.

H0 : c1 = c2 = . . . = cn.

If H0 holds, then

Xj = c+ ej, 1 ≤ j ≤ n, (3.10)

with some constant c. Under the alternative there are r changes:

HA : there is r ≥ 1 and 1 < k1 < k2 < . . . < kr < n such that

c1 = . . . = ck1−1 6= ck1 = ck1+1 = . . . = ck2−1 6= ck2 = ck2+1 = . . .

= ckr−1 6= ckr = . . . = cn.

The most popular methods to test H0 against HA (cf. Csörgő and Horváth [25],

1998 and Aue and Horváth [5], 2012) are based on the CUSUM process

Un(x) =

bnxc∑
i=1

Xi −
bnxc
n

n∑
i=1

Xi, (3.11)

where b·c denotes the integer part. Clearly, if H0 is true, then Un(t) does not

depend on the common but unknown location parameter c1. It is well known if

X1, . . . , Xn are independent and identically distributed random variables with a

finite second moment, then

1

(nvar(X1))1/2
Un(x)

D[0,1]−→ B(x),

where B(x) is a Brownian bridge and
D[0,1]−→ means weak convergence in the space

D[0, 1] of cadlag functions equipped with the Skorokhod J1 topology (cf. Billingsley

[19], 1968) which is defined as follows.

Definition 3. Let Λ denote the class of strictly increasing, continuous mappings

of [0, 1] onto itself. If λ ∈ Λ, then λ(0) = 0 and λ(1) = 1. For x and y in the



60

space of cadlag functions D, define d(x, y) to be the infimum of those positive ε for

which there exists in Λ a λ such that

sup
t
|λt− t| ≤ ε

and

sup
t
|x(t)− y(λt)| ≤ ε.

Metric d defines Skorokhod J1 topology.

Assuming that X1, X2, . . . , Xn are independent and identically distributed ran-

dom variables in the domain of attraction of a stable law of index α ∈ (0, 2), Aue,

Berkes and Horváth ([4], 2008) showed that

1

n1/αL̂(n)
Un(x)

D[0,1]−→ Bα(x),

where L̂ is a slowly varying function at ∞ and Bα(x) is an α–stable bridge. (The

α–stable bridge is defined as Bα(x) = Wα(x) − xWα(1), where Wα is a Lévy α–

stable motion.) Since nothing is known on the distributions of the functionals of

α–stable bridges, Berkes, Horváth and Schauer ([16], 2011) suggested the trimmed

CUSUM process

Tn,d(x) =

bnxc∑
i=1

XiI{|Xi| ≤ ηn,d} −
bnxc
n

n∑
i=1

XiI{|Xi| ≤ ηn,d}. (3.12)

Assuming that the Xi’s are independent and identically distributed and are in the

domain of attraction of a stable law, they proved

1

σn
Tn,d(x)

D[0,1]−→ B(x), (3.13)

where

σ2
n =

α

2− α
(H−1(d/n))2d,
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B(t) is a Brownian bridge and H−1 denotes the generalized inverse of H, the

survival function of X1. The CUSUM process has also been widely used in case

of dependent variables but it is nearly always assumed that the observations have

high moments and the dependence in the sequence is weak. For a review we refer

to Aue and Horváth ([5], 2012). However, very few papers consider the instability

of time series models with heavy tails.

Fama ([37], 1965) and Mandelbrot ([72], 1963, [73], 1967) pointed out that the

distributions of commodity and stock returns are often heavy tailed with possible

infinite variance. We can easily the similarities between the simulated values for

AR(1) process (see Figure 1) and the actuall values obtained during the study on

the stock return on the swedish index (see Figure 3.1).

Figure 3.1: Empirical returns obtained during the study on the swedish stock
market

Fama’s and Mandelbrot’s research started the investigation of time series models
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where the marginal distributions have regularly varying tails. Davis and Resnick

([31], 1985, [32], 1986) investigated the properties of moving averages with regularly

varying tails and obtained non–Gaussian limits for the sample covariances and

correlations. Here we are giving some important results

Theorem 27 (Davis and Resnick, 1985). Let {Yk,−∞ < k < ∞} be a sequence

of i.i.d. variables, such that (1.2), (1.3) are satisfied with 0 < α < 2. Define

Xn =
∑∞

j=0 cjYn−j. Let {an} be a sequence of numbers such that

nP (|X1| > anx)→ x−α for all x > 0,

and let
∞∑
j=0

|cj|δ <∞ for some δ < α, δ ≤ 1.

Then
Sn − n

∑∞
j=0 cjbn

an
⇒ S in R

where S has a stable distribution with index α.

Theorem 28 (Davis and Resnick, 1986). Let {Yk,−∞ < k < ∞} be a sequence

of i.i.d. variables, such that (1.2), (1.3) are satisfied with 2 ≤ α < 4. Define

Xn =
∑∞

j=−∞ cjYn−j so that
∑∞
−∞ |cj| <∞.

an = inf{x : P (|Y1| > x) ≤ n−1},

γ̂(h) is a sample covariance function of (X1, ..., Xn), and γ(h) = cov(Xn, Xn+h). If

EYk = 0, then for any positive integer l(
n(γ̂(h)− bh,n)

a2n
, 0 ≤ h ≤ l

)
⇒ S

(∑
j

c2j ,
∑
j

cjcj+1, . . . ,
∑
j

cjcj+1

)
,

where S is a stable random variable with index α/2 and bh,n =
∑∞

i=−∞ cici+hEY
2
1 I{|Y1≤an|},

0 ≤ h ≤ l. Moreover, if 2 < α < 4,then(
n(γ̂(h)− γ(h)

a2n
, 0 ≤ h ≤ l

)
⇒
(
S − α

2− α

)
(γ(0), . . . , γ(l))

σ2
,

where σ2 = varXn.
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These results were extended to heavy tailed ARCH by Davis and Mikosch ([30],

1998). The empirical periodogram of the form

In,X = |Jn,X |2 = |b−1n
n∑
t=1

Xt exp(−i2πxt)|2 =(
b−1n

n∑
t=1

Xt cos(2πxt)

)2

+

(
b−1n

n∑
t=1

Xt sin(2πxt)

)2

, x ∈ [0, 0.5], (3.14)

where {Xt} is a heavy-tailed random sequence and bn is a sequence of appropri-

ate norming factors was studied by Mikosch, Resnick and Samorodnitsky ([74],

2000). They shown that in case α < 1 maxima is a weakly converges to a certain

distribution.

Theorem 29 (Mikosch, Resnick and Samorodnitsky, 2000). Let {Xt} be a sequence

of i.i.d. heavy-tailed random variables stisfying (1.2),(1.3) for α ∈ (0, 1). Then

max
x∈[0,0.5]

In,X(x)⇒ Y 2
α

holds, where Yα has a stable distribution with parmeter α.

For the case of 1 ≤ α < 2 they shown that the sequence of maxima is not tight

and determined that

max In,X
lnn

(2/α)(α−1)
, n ≥ 2, α ∈ (1, 2)

and
max In,X
(ln lnn)2

, n > e, α = 1

are tight.

Andrews, Calder and Davis ([1], 2009) studied autoregressive processes with

stable innovations. They gave a nondegenerate limiting distribution for maximum-

likelihood parameters of the autoregressive model equation and the peremeters of

the stable noise distribution.
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In this chapter we study trimmed sums of AR(1) sequences with heavy tails.

Let ei be a σ(εj, j ≤ i) measurable solution of

ei = ρei−1 + εi −∞ < i <∞. (3.15)

We assume throughout this chapter that

εj,−∞ < j <∞ are independent and identically distributed, (3.16)

ε0 belongs to the domain of attraction of a stable (3.17)

random variable ξ(α) with parameter 0 < α < 2,

and

ε0 is symmetric when α = 1. (3.18)

Assumption (3.17) means that(
n∑
j=1

εj − an

)/
bn

D−→ ξ(α) (3.19)

for some numerical sequences an and bn. The necessary and sufficient condition for

this is

lim
t→∞

P{ε0 > t}
L∗(t)t−α

= p and lim
t→∞

P{ε0 ≤ −t}
L∗(t)t−α

= q (3.20)

for some numbers p ≥ 0, q ≥ 0, p + q = 1, where L∗ is a slowly varying function

at ∞. It is known that (3.15) has a unique stationary non–anticipative solution if

and only if

− 1 < ρ < 1. (3.21)

Under assumptions (3.16)–(3.21), {ej} is a stationary sequence and E|e0|κ < ∞

for all 0 < κ < α but E|e0|κ =∞ for all κ > α.

AR(1) processes with stable innovations were considered by Chan and Tran

([23], 1989). They established strong consistency of the ordinary least squares
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estimator bn of ρ in case ρ = 1. Chan and Tran also shown that the limiting

distribution of bn has a form of a functional of Lévy process.

Chan ([22], 1990) established the asymptotic distribution of least squares esti-

mator for the case when ρ is close to 1. This case was also covered by Aue and

Horváth ([5], 2007) in their work on structural breaks in time sreies models. Zhang

and Chan ([98], 2010) who investigated the model Xt = ρnXt−1 + εt−1 in our nota-

tion with ρn = 1−y/n, where y > 0 is a constant. They shown that the distribution

of maximum likelihood estimator of ρn and θ are mixtures of a stable procces and

Gaussian processes. Here θ is the parameter of the characteristic function of εt.

The convergence of the finite dimensional distributions of Un(x) in the AR(1)

case is an immediate consequence of Phillips and Solo ([82], 1992) stable limit rep-

resentation. Let
fdd−→ denote the convergence of the finite dimensional distributions.

If (3.10)–(3.18) and (3.21) hold, then we have

1− ρ
n1/αL∗(n)

Un(x)
fdd−→ Bα(x), (3.22)

where Bα(x), 0 ≤ x ≤ 1 is an α–stable bridge and L∗ is defined in (3.20). It has been

pointed out by Avram and Taqqu ([7], 1986, [8], 1992) that the fdd convergence

in (3.22) cannot be replaced with weak convergence in D[0, 1]. However, Avram

and Taqqu ([8], 1992) proved that Un(x) converges in the weak–M1 sense. The

definition of M1-topology is given below (see also Basrak, Krizmanič and Segers,

[9], 2012).

Definition 4. For x ∈ D[0, 1] the completed graph of x is the set

Γx = {(t, z) ∈ [0, 1]× R : z = λx(t−) + (1− λ)x(t) for some λ ∈ [0, 1]}

We define order on the graph Γx by saying that (t1, z1) ≤ (t2, z2) if either t1 ≤ t2

or t1 = t2 and |x(t1−) − z1| ≤ |x(t2−) − z2|. A parametric representation of the

completed graph Γx is a continuous nondecreasing function (r, u) mapping [0, 1]
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onto Γx with r being the time component and u being the spatial component. Let

Π(x) denote the set of parametric representations of the graph Γx. For x1, x2 define

dM1(x1, x2) = inf{||r1 − r2||[0,1] ∨ ||u1 − u2||[0,1] : (ri, ui) ∈ Π(xi), i = 1, 2},

where ||x(t)||[0,1] = sup{x(t) : t ∈ [0, 1]}. Metric dM1 induces M1-topology.

Avram and Taqqu’s result holds under the following technical conditions (which

are necessary for the case α > 1).

Let α > 1, c = {ci,−∞ < i <∞},
∑∞

i=−∞ |ci|δ, where 0 < δ < α and for some

0 < η < α− 1

lim
n→∞

(lnn)1+α+ηs(α− η, c>n) = 0.

Here s(α − η, c) =
(∑∞

i=−∞ |ci|δ
) (∑∞

i=−∞ |ci|
)α−η−δ

, where α − η > 1 > δ and

c>n = {c>ni ,−∞ < i <∞}, where

c>ni =

{
ci if |i| > n,

0 otherwise.

Some of these conditions were removed by Tyran–Kamińska ([95], 2010). For

further results on this subject we refer to Basrak, Krizmanič and Segers ([9], 2012)

who provided a new limit theorem for point processes which they use to derive a

functional limit theorem for weak convergence of dependent sequence with infinite

variance in M1 topology.

We formulate now our main results. On the truncation parameter d = d(n) we

will assume

lim
n→∞

d(n)/n = 0 (3.23)

and

d(n) ≥ nδ with some 0 < δ < 1. (3.24)

Let F (x) = P{X0 ≤ x}, H(x) = P{|X0| > x} and let H−1(t) be the (generalized)

inverse of H. Our last condition will be used to establish the weak law of large
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numbers for ηn,d. We assume that ε0 has a density function p(t) which satisfies

∞∫
−∞

|p(t+ s)− p(t)|dt ≤ C|s| with some C. (3.25)

Let

An = d1/2H−1(d/n) (3.26)

and

m(t) = EX1I{|X1| ≤ t}. (3.27)

Theorem 30. If (3.10)–(3.18) and (3.21)–(3.25) hold, then we have that(
2− α
α

)1/2(
1− ρ
1 + ρ

)1/2
1

An

n∑
k=1

[XkI{|Xk| ≤ ηn,d} −m(ηn,d)]
D[0,1]−→ W (x),

where W (x) is a Wiener process.

The result in Theorem 30 uses the the random centering factor m(ηn,d). This

factor is characteristic for the asymptotic distribution of the modulus trimmed

partial sums process, as first observed in Berkes, Horváth and Schauer ([14], 2011).

Since a random translation of the terms in the CUSUM process cancels out, the

next result is an immediate consequence of Theorem 30.

Theorem 31. If (3.10)–(3.18) and (3.21)–(3.25) hold, then we have that(
2− α
α

)1/2(
1− ρ
1 + ρ

)1/2
Tn,d(x)

An

D[0,1]−→ B(x),

where B(x) is a Brownian bridge.

Statistical applications of Theorem 31 require the estimation of the norming

factor from the observations. The estimation of this term will be studied in sections

3.5, 3.6.
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3.2 Preliminary results

The proofs of Theorems 30 and 31 are based on several technical lemmas.

We can and will assume without loss of generality that

Eε0 = 0, if 1 < α < 2. (3.28)

Under these conditions, in (3.19) we can choose an = 0 and bn can be chosen any

sequence satisfying
n

bαn
L∗(bn)→ 1. (3.29)

According to the result of Cline ([24], 1983) (cf. also Davis and Resnick ([32],

1986)), H(x), the survival function of |X0| satisfies

H(x) = x−αL(x), (3.30)

where L(x) is a slowly varying function at ∞ and

lim
x→∞

H(x)

P{|ε0| > x}
= lim

x→∞

L(x)

L∗(x)
=

1

1− |ρ|α
. (3.31)

Let

uk,n(t) = XkI{|Xk| ≤ tH−1(d/n)} and mn(t) = E[X0I{|X0| ≤ tH−1(d/n)}].

The main goal of this section is to get bounds for Eu0(t)uk(s) and cov(u0(t), uk(s)).

Lemma 7. We assume that (3.10)–(3.18), (3.21)–(3.24) and (3.28) hold. Let

Y(k) = (X0, Xk) and let Y
(k)
i , i = 1, 2, . . . be independent and identically distributed

copies of Y(k). Then

Y
(k)
1 + . . .+ Y

(k)
n

n1/αL∗(n)

D−→ Z(k) as n→∞,
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where Z(k) = (Z
(k)
1 , Z

(k)
2 ) with

Z
(k)
1 =

∞∑
`=0

ρ`ξ
(α)
−` and Z

(k)
2 =

∞∑
`=0

ρ`ξ
(α)
k−`

and ξ
(α)
` ,−∞ < ` <∞ are independent and identically distributed copies of ξ(α).

Proof. It follows from (3.15) that

Xk − c =
∞∑
`=0

ρ`εk−` =
k−1∑
`=0

ρ`εk−` + ρkX0, 1 ≤ k <∞. (3.32)

Let ε
(i)
` ,−∞ < ` < ∞, i = 1, 2, . . . be independent and identically distributed

copies of ε0. Clearly

Y
(k)
i = (Y

(k)
i,1 , Y

(k)
i,2 ) with Y

(k)
i,1 =

∞∑
`=0

ρ`ε
(i)
−` and Y

(k)
i,2 =

∞∑
`=0

ρ`ε
(i)
k−`

are independent and identically distributed copies of Y(k). Elementary algebra

gives

n∑
i=1

Y
(k)
i,1 =

∞∑
`=0

ρ`
n∑
i=1

ε
(i)
−` and

n∑
i=1

Y
(k)
i,2 =

k−1∑
`=0

ρ`
n∑
i=1

ε
(i)
k−` + ρk

∞∑
`=0

ρ`
n∑
i=1

ε
(i)
−`.

For every L ≥ 0 by (3.19) we have that (recall that under our conditions the

centering factors an in (3.19) can be chosen 0)

1

bn

(
n∑
i=1

ε
(i)
` ,−L ≤ ` ≤ L

)
D→
(
ξ
(α)
` ,−L ≤ ` ≤ L

)
,

where ξ
(α)
` ,−∞ < ` <∞ are independent and identically distributed copies of ξ(α).

Theorem 32 (Acosta and Giné, [34], 1979). Let ρ be a non-degenerate stable

probability measure of order α ∈ (0, 2] on B and let X belong to the domain of

attraction of ρ with norming constants {an} ∈ R+ and centering constants {bn} ∈

B,. Then for every β ∈ (0, α)

lim
n
E||Sn/an − bn||β =

∫
||x||βdρ(x).
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Let 0 < κ < α. It follows from theorem32 that

E

∣∣∣∣∣ 1

bn

n∑
i=1

ε
(i)
`

∣∣∣∣∣
κ

≤ C1,

and therefore for every x > 0 we have that

lim
L→∞

lim sup
n→∞

P

{
∞∑

`=L+1

ρ`

∣∣∣∣∣ 1

bn

n∑
i=1

ε
(i)
`

∣∣∣∣∣ > x

}
= 0

and similarly

lim
L→∞

P

{
∞∑

`=L+1

ρ`|ξ(α)` | > x

}
= 0.

This completes the proof of the lemma.

Let i denote the imaginary unit.

Lemma 8. Let Y be a stable vector variable with characteristic function ψ(s, t).

Then there exists a measure ν on the Borel sets of R2 such that for some C1, C2 and

any γ > 0

ψ(s, t) = exp

{
i(C1s+ C2t) +

∫
|u|>γ

(ei(su1+tu2) − 1)ν(du1, du2)

+

∫
0<|u|≤γ

(ei(su1+tu2) − 1− i(su1 + tu2))ν(du1, du2)

}
,

where u = (u1, u2).

The result can be found, for example, in Gikhman and Skorohod ([88], Chapter

5, 1969). ν is called the Lévy measure in the canonical representation of the

characteristic function of Y. The stable vectors in our paper will be centered, i.e.

c1 = c2 = 0.

Lemma 9. If (3.10)–(3.18), (3.21)–(3.24) and (3.28) hold, then we have

lim
T→∞

Tα−2

L∗(T )
EX0I{|X0| ≤ vT}XkI{|Xk| ≤ wT} =

α

2− α
ρk

1− |ρ|α
(min(v, w|ρ|−k))2−α.
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Proof.

Theorem 33 (Resnick and Greenwood,[84], 1979). Let {Yn} = {Y (1)
n , Y

(2)
n } be

i.i.d. sectors in R2 and let X(t) be a Lévy process with Lévy measure ν, defined by

ν ◦ τ = ν̃, τx = ((signx1)|x1|1/α1 , (signx2)|x2|1/α2), and ν̃ is a measure of a certain

form. The following are equivalent: there exist a
(i)
n > 0, bn ∈ R2 such that

(i) (S
(1)
n /a

(1)
n , S

(2)
n /a

(2)
n )− bn ⇒ X(1) in R2

(ii) (S
(1)
[n·]/a

(1)
n , S

(2)
[n·]/a

(2)
n )− (·)bn ⇒ X(·) in R2

(iii) Let Yni = (Y
(1)
i /a

(1)
n , Y

(2)
i /a

(2)
n ) for all A ∈ B(R− {0}) such that ν(∂A) = 0,

ν(A) <∞ we have

lim
n→∞

nP (Yn1 ∈ A) = ν(A),

where ν is Lévy measure of X, and B denotes borel sigma-algebra.

It follows from Theorem 33 that

lim
n→∞

nP

{
(X0, Xk)

bn
∈ A

}
= ν(A), (3.33)

where bn is defined in (3.29) and A is any Borel set of R2, not containing (0, 0),

ν(A) < ∞ and the ν–measure of the boundary of A is 0. Since nL∗(bn)/bαn → 1,

with the choice of n = bTα/L∗(T )c we get from (3.33) that

lim
T→∞

Tα

L∗(T )
P{(X0, Xk)/T ∈ A} = ν(A), (3.34)

where ν is the Lévy measure in the canonical representation of the characteristic

function of Z(k). By elementary arguments we conclude from (3.34)

lim
T→∞

Tα−2

L∗(T )
EX0I{|X0| ≤ vT}XkI{|Xk| ≤ wT} =

v∫
−v

w∫
−w

xyν(dx, dy).
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Since ξ(α) is a stable random variable, its characteristic function can be written as

exp(−ψ(t)) and with this notation we get

E exp(i(sZ
(k)
1 + tZ

(k)
2 )) = exp

(
−
∞∑
`=0

ψ(sρ` + tρk+`)−
k−1∑
`=0

ψ(tρ`)

)
.

If ν̂` denotes the Lévy measure associated with the characteristic function exp(−ψ(sρ`+

tρk+`)) and ν̃` corresponds to exp(−ψ(tρ`)), then we have

ν(A) =
∞∑
`=0

ν̂`(A) +
k−1∑
`=0

ν̃`(A).

Hence
v∫

−v

w∫
−w

xyν(dx, dy) =
∞∑
`=0

v∫
−v

w∫
−w

xyν̂`(dx, dy).

Next we note that there is a positive constant A∗ such that

lim
x→∞

P{|ξ(α)| > x}
x−α

= A∗

and therefore by Bingham, Goldie and Teugels ([20], p. 346, 1989) we obtain that

lim
x→∞

E(ξ(α))2I{|ξ(α)| ≤ x}
x2P{|ξ(α)| > x}

=
α

2− α

resulting in

lim
x→∞

E(ξ(α))2I{|ξ(α)| ≤ x}
x2−α

= A∗
α

2− α
.

The last relation implies

lim
T→∞

Tα−2E
[
ρ2`+k(ξ(α))2I{|ξ(α)| ≤ T min(v|ρ|−`, w|ρ|−(`+k))}

]
= A∗

α

2− α
ρ2`+k(min(v|ρ|−`, w|ρ|−(`+k)))2−α.

We note that exp(−ψ(sρ` + tρk+`)) is the characteristic function of the vector

(ρ`ξ(α), ρk+`ξ(α)), so repeating the arguments leading to (3.33) and (3.34) for this

vector instead of (X0, Xk) we get

lim
T→∞

ρk+2`T
α−2

A∗
Eξ(α)I{|ρ`ξ(α)| ≤ vT}ξ(α)I{|ρ`+kξ(α)| ≤ wT} =

v∫
−v

w∫
−w

xyν̂`(dx, dy),
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and therefore
v∫

−v

w∫
−w

xyν̂`(dx, dy) =
α

2− α
ρk|ρ|α`(min(v, w|ρ|−k))2−α.

Summing for ` = 0, 1, . . ., we get Lemma 9.

Lemma 10. If (3.10)–(3.18), (3.21)–(3.24) and (3.28) hold, then for every k =

0, 1, 2, . . .

lim
n→∞

nE(u0,n(s)−mn(s))(uk,n(t)−mn(t))

A2
n

=
α

2− α
ρk(min(s, t|ρ|−k))2−α. (3.35)

Proof. If 1 < α < 2, then

lim
n→∞

mn(t) = EX0 for any t > 0. (3.36)

If 0 < α < 1, then

|mn(t)| ≤
tH−1(d/n)∫

−tH−1(d/n)

|x|dF (x) (3.37)

= −
tH−1(d/n)∫

0

xdH(x) = −xH(x)

∣∣∣∣tH−1(d/n)

0

+

tH−1(d/n)∫
0

H(x)dx.

By (3.30) and Bingham, Goldie and Teugels ([20], p. 26, 1989) we have for 0 <

α < 1

lim
y→∞

y∫
0

H(x)dx

yH(y)/(1− α)
= 1, (3.38)

and therefore

mn(t) = O

(
H−1(d/n)

d

n

)
. (3.39)

If α = 1, by assumption e0 is symmetric, so under (3.10) we have that X1 = e1 + c1

and therefore

mn(t) = O(1) + E[e0I{|X0| ≤ tH−1(d/n)}] (3.40)
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= O(1) +

tH−1(d/n)+c1∫
tH−1(d/n)−c1

xdP{e1 ≤ x}

= O

(
H−1(d/n)

d

n

)
+

tH−1(d/n)+c1∫
tH−1(d/n)−c1

P{e1 ≤ x}dx

= O

(
H−1(d/n)

d

n
logH−1(d/n)

)
.

Thus we get from (3.36)–(3.40) for all 0 < α < 2 that

nmn(s)mn(t)

A2
n

→ 0. (3.41)

Lemma 9 yields

lim
n→∞

n

A2
n

L(H−1(d/n))

L∗(H−1(d/n))
EX0I{|X0| ≤ sH−1(d/n)}XkI{|Xk| ≤ tH−1(d/n)}

=
α

2− α
ρk

1− |ρ|α
(min(s, t|ρ|−k))2−α.

By (3.31) we have

lim
n→∞

L(H−1(d/n))

L∗(H−1(d/n))
=

1

1− |ρ|α
,

which completes the proof of the lemma.

Lemma 11. If (3.10)–(3.18), (3.21)–(3.24) and (3.28) hold, we have for all 1/2 ≤

s ≤ t ≤ 3/2 and 0 ≤ x ≤ 1 that

lim
n→∞

1

A2
n

E

bnxc∑
k=1

(uk,n(s)−mn(s))

bnxc∑
k=1

(uk,n(t)−mn(t))


= x

α

2− α

(
s2−α +

∞∑
k=1

ρk[(min(s, t|ρ|−k)2−α + min(t, s|ρ|−k)2−α]

)
.

Proof. We note that

E

( bnxc∑
k=1

(uk,n(s)−mn(s))

)(bnxc∑
k=1

(uk,n(t)−mn(t))

)
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= bnxcE(u0,n(s)−mn(s))(u0,n(t)−mn(t))

+

bnxc−1∑
k=1

(bnxc − k)E(u0,n(s)−mn(s))(uk,n(t)−mn(t))

+

bnxc−1∑
k=1

(bnxc − k)E(u0,n(t)−mn(t))(uk,n(s)−mn(s)).

Let

e∗k =
k−1∑
`=0

ρ`εk−` and X∗k = c1 + e∗k. (3.42)

It follows from Cline([24], 1983) that there is a constant C1 such that

P{|X∗k | > x} ≤ C1x
−αL(x) for all k and 0 ≤ x <∞. (3.43)

Clearly as in (3.32),

Xk −X∗k = ek − e∗k =
∞∑
`=k

ρ`εk−` =
∞∑
j=0

ρk+jε−j = ρk(X0 − c1). (3.44)

Next we write

|E(u0,n(s)−mn(s))(uk,n(t)−mn(t))|

= |Eu0,n(t)u0,n(s)−mn(t)mn(s)|

≤ |E(X0,n(Xk −X∗k)I{|X0| ≤ sH−1(d/n)}I{|Xk| ≤ tH−1(d/n)}|

+ |E(X0X
∗
kI{|X0| ≤ sH−1(d/n)}I{|Xk| ≤ tH−1(d/n)} −mn(s)mn(t)|

≤ A1,k,n + A2,k,n + A3,k,n

with

A1,k,n = E|X0(Xk −X∗k)I{|X0| ≤ sH−1(d/n)}I{|Xk| ≤ tH−1(d/n)}|,

A2,k,n = E
[
|X0X

∗
k |I{|X0| ≤ sH−1(d/n)}

×
∣∣I{|Xk| ≤ tH−1(d/n)} − I{|X∗k | ≤ tH−1(d/n)}

∣∣ ]
and

A3,k,n = |E(X0X
∗
k)I{|X0| ≤ sH−1(d/n)}I{|X∗k | ≤ tH−1(d/n)} −mn(s)mn(t)|.
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Using (3.41) and (3.44) we conclude

A1,k,n ≤ |ρ|kE|X0||X0 − c1|I{|X0| ≤ sH−1(d/n)} (3.45)

≤ C2|ρ|k(H−1(d/n))2d/n

with some constant C2. Next we note that

A2,k,n ≤ E
[
|X0X

∗
k |I{|X0| ≤ sH−1(d/n)} (3.46)

× I{tH−1(d/n)− |ρ|k|X0| ≤ |X∗k | ≤ tH−1(d/n)}
]

+ E
[
|X0X

∗
k |I{|X0| ≤ sH−1(d/n)}

× I{tH−1(d/n) ≤ |X∗k | ≤ tH−1(d/n) + |ρ|k|X0|}
]

= A
(1)
2,k,n + A

(2)
2,k,n.

Using the independence of X0 and X∗k we get

A
(1)
2,k,n ≤ E|X0|I{|X0| ≤ sH−1(d/n)}

× E|X∗k |I{tH−1(d/n)− |ρ|kH−1(d/n) ≤ |X∗k | ≤ tH−1(d/n)}.

By (3.43) we have that

E|X∗k |I{tH−1(d/n)− |ρ|kH−1(d/n) ≤ |X∗k | ≤ tH−1(d/n)} (3.47)

= −xP{|X∗k | > x}
∣∣∣∣tH−1(d/n)}

tH−1(d/n)−|ρ|kH−1(d/n)

+

tH−1(d/n)}∫
tH−1(d/n)−|ρ|kH−1(d/n)

P{|X∗k | > x}dx

≤
tH−1(d/n)}∫

tH−1(d/n)−|ρ|kH−1(d/n)

P{|X∗k | > x}dx

≤ C3|ρ|kH−1(d/n)d/n,

where C3 is a constant. Hence, on account of (3.36), (3.39) and (3.40) we obtain

that with some constant C4

A
(1)
2,k,n ≤ C4ρ

k(H−1(d/n))2d/n
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and similarly

A
(2)
2,k,n ≤ C4ρ

k(H−1(d/n))2d/n,

resulting in

A2,k,n ≤ C5ρ
k(H−1(d/n))2d/n. (3.48)

Using again the independence of X0 and X∗k we get

A3,k,n = |mn(s)||EX∗kI{|X∗k | ≤ tH−1(d/n)} −mn(t)|.

It is easy to see that

EX∗kI{|X∗k | ≤ tH−1(d/n)}

= EX∗kI{|X∗k | ≤ tH−1(d/n)}I{|X0| > |ρ|−k/2H−1(d/n)}

+ EX∗kI{|X∗k | ≤ tH−1(d/n)}I{|X0| ≤ |ρ|−k/2H−1(d/n)}

and by the independence of X0 and X∗k and (3.43) we have

|EX∗kI{|X∗k | ≤ tH−1(d/n)}I{|X0| > |ρ|−k/2H−1(d/n)}| ≤ C5|mn(t)|H(|ρ|−k/2H−1(d/n))

≤ C6|mn(t)|ρ|kα/2d/n.

Next we note that

∣∣E[X∗kI{|X∗k | ≤ tH−1(d/n), |X0| ≤ |ρ|−k/2H−1(d/n)}
]

− E
[
(X∗k + ρk(X0 − c1))I{|X∗k + ρk(X0 − c1))| ≤ tH−1(d/n),

|X0| ≤ |ρ|−k/2H−1(d/n)}
]∣∣

≤ |ρ|kE
[
|X0 − c1|I{|X∗k + ρk(X0 − c1))| ≤ tH−1(d/n),

|X0| ≤ |ρ|−k/2H−1(d/n)}
]

+ E
[
|X∗k ||I{|X∗k | ≤ tH−1(d/n), |X0| ≤ |ρ|−k/2H−1(d/n)}

− I{|X∗k + ρk(X0 − c1))| ≤ tH−1(d/n), |X0| ≤ |ρ|−k/2H−1(d/n)}|
]
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≤ |ρ|k(|ρ|−k/2H−1(d/n) + |c1|)

+ E|X∗k |I{(t− |ρ|k/2)H−1(d/n)− |c1||ρ|k ≤ |X∗k | ≤ tH−1(d/n)}

+ E|X∗k |I{tH−1(d/n) ≤ |X∗k | ≤ (t+ |ρ|−k/2)H−1(d/n) + |c1||ρ|k}

≤ C7(|ρ|k/2H−1(d/n) + |ρ|kH−1(d/n)d/n)

by (3.47). Similarly

|EXkI{|Xk| ≤ tH−1(d/n)} − EXkI{|Xk| ≤ tH−1(d/n), |X0| ≤ |ρ|−k/2H−1(d/n)}|

≤ C8(|ρ|k/2H−1(d/n) + |ρ|kH−1(d/n)d/n).

Hence

A3,k,n ≤ C9|ρ|τk(H−1(d/n))2d/n, where τ = min{1, α}/2. (3.49)

Putting together (3.45), (3.48) and (3.49) we get that

lim
K→∞

lim sup
n→∞

1

A2
n

bnxc−1∑
k=K

|(bnxc−k)E(u0,n(s)−mn(s))(uk,n(t)−mn(t))| = 0. (3.50)

The lemma now follows from Lemma 10 and (3.50).

3.3 A weak convergence result

Define the two–parameter process

Ln(t, x) =
1

An

bnxc∑
i=1

(XiI{|Xi| ≤ tH−1(d/n)} −mn(t)),

for 0 ≤ x ≤ 1, 1/2 ≤ t ≤ 3/2. First we show the tightness of Ln(t).

Lemma 12 (Berkes, Horváth, Ling, Schauer, [13], 2011). Let {ζi(s), 0 ≤ s ≤ 1, i ≥

1} be non-decreasing processes in D[0, 1], let ζ(s), 0 ≤ s ≤ 1, be a non-decreasing

function and define

Kn(t, s) =
1

n1/2

[nt]∑
i=1

(ζi(s)− ζ(s)).
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If there exist a τ > 2, C > 0 and a sequence an such that an
√
n→ 0 and

E(Kn(t2, s)−Kn(t1, s))
6 ≤ C|t2 − t1|τ if |t2 − t1| ≥ an,

E(Kn(t, s2)−Kn(t, s1))
6 ≤ C|s2 − s1|τ if |s2 − s1| ≥ an,

and

n1/2 sup
|s2−s1|≤an

|ζ(s2)− ζ(s1)| → 0,

then Kn(t, s) is tight.

The proof is based on a generalization of Lemma 12 in Berkes, Horváth, Ling,

Schauer ([13], 2011). We introduce

Xi,1 = max(Xi, 0), Xi,2 = min(Xi, 0)

and

mn,1(t) = EX0,1I{|X0| ≤ tH−1(d/n)}, mn,2(t) = EX0,2I{|X0| ≤ tH−1(d/n)}.

Similarly to Ln(t, x), we define

Ln,1(t, x) =
1

An

bnxc∑
i=1

(Xi,1I{|Xi| ≤ tH−1(d/n)} −mn,1(t)),

and Ln,2(t, x) is defined in a similar fashion. Clearly, if both Ln,1 and Ln,2 are tight,

then Ln(t, x) is tight as well. We prove only tightness of Ln,1, the same argument

can be used in case of Ln,2. Let

gn =
1

d1/2 log log n
.

Lemma 13. If (3.10)–(3.18), (3.21)–(3.24) and (3.28) hold, then

mn,1(t) is a non-decreasing function on [1/2, 3/2], (3.51)

n

An
sup

|t2−t1|≤gn
|mn,1(t2)−mn,1(t1)| → 0, n→∞, (3.52)
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E|Ln,1(t2, x)− Ln,1(t1, x)|6 ≤ C1|t2 − t1|τ , if |t2 − t1| ≥ gn, (3.53)

and

E|Ln,1(t, x2)− Ln,1(t, x1)|6 ≤ C1|x2 − x1|τ , if |x2 − x1| ≥ gn, (3.54)

with some τ > 2 and constant C1.

Proof. The definition of mn,1(t) implies immediately (3.51).

By the definition of mn,1(t) we have for all 1/2 ≤ t1 ≤ t2 ≤ 3/2 that

0 ≤ mn,1(t2)−mn,1(t1) = EX0,1(I{t1H−1(d/n) < |X0| ≤ t2H
−1(d/n)})

≤
t2H−1(d/n)∫
t1H−1(d/n)

xdH(x)

≤ C2

(
|t2H−1(d/n)H(t2H

−1(d/n))− t1H−1(d/n)H(t1H
−1(d/n))|

+ |t2 − t1|H−1(d/n)H(t1H
−1(d/n))

)
≤ C3|t2 − t1|

d

n
H−1(d/n)

on account of integration by parts and (3.30), establishing (3.52).

Next we introduce

Yi =

bK lognc∑
k=0

ρkεi−k + c1, Yi,1 = max(Yi, 0) (3.55)

and ξi = ηi − Eηi with

ηi = ηi(t1, t2) = Yi,1I{t1H−1(d/n) < |Yi| ≤ t2H
−1(d/n)}.
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Since E|ε0|α/2 <∞, using Markov’s inequality we see that for every β > 0 there is

a constant K = K(β) such that∣∣∣∣∣∣E(Ln,1(t2, x)− Ln,1(t1, x))6 − 1

A6
n

∑
1≤i1,...,i6≤bnxc

Eξi1 . . . ξi6

∣∣∣∣∣∣ ≤ C5n
−β. (3.56)

We note that by definition, {ξi} is a stationary, bK log nc–dependent sequence with

zero mean. Let us divide the indices i1, . . . , i6 into groups so that the difference

between the indices within a group are less than bK log nc and between groups

is larger than bK log nc. Clearly Eξi1 . . . ξi6 = 0, if there is at least one group

containing a single element. So it suffices to consider the cases when all groups

contain at least two elements. This allows the cases of one single group with 6

elements (D1), two groups with 3+3 (D2) or 4+2 (D3) elements and finally 3

groups with 2 elements in each (D4). If there is only one group, then via Hölder’s

inequality we have

|Eξi1 . . . ξi6| ≤ E|ξ0|6 ≤ 26(E|η0|6 + |Eη0|6)

Since the cardinality of D1 is bounded by constant times n(log n)5 we conclude∣∣∣∣ 1

A6
n

∑
D1

Eξi1 . . . ξi6

∣∣∣∣
≤ C6

(
n(log n)5

A6
n

[EX6
0I{t1H−1(d/n) ≤ |X0| ≤ t2H

−1(d/n)}

+ (EX0I{t1H−1(d/n) ≤ |X0| ≤ t2H
−1(d/n)})6] + n−β

)
.

Integration by parts and (3.30) yield

EX6
0I{t1H−1(d/n) ≤ |X0| ≤ t2H

−1(d/n)} ≤ C7|t2 − t1|
d

n
(H−1(d/n))6,

resulting in ∣∣∣∣ 1

A6
n

∑
D1

Eξi1 . . . ξi6

∣∣∣∣≤ C8

(
(log n)5

d2
|t2 − t1|+ n−β

)
.
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Using again the bK log nc dependence of {ξi} and the fact that the cardinality of

D2 is constant times n2(log n)4 we conclude via Hölder’s inequality∣∣∣∣ 1

A6
n

∑
D2

Eξi1 . . . ξi6

∣∣∣∣
=

∣∣∣∣ 1

A6
n

∑
D2

Eξi1ξi2ξi3Eξi4ξi5ξi6

∣∣∣∣
≤ C8

(
n2(log n)4

A6
n

[EX3
0I{t1H−1(d/n) ≤ |X0| ≤ t2H

−1(d/n)}

+ (EX0I{t1H−1(d/n) ≤ |X0| ≤ t2H
−1(d/n)})3]2 + n−β

)
≤ C9

(
(log n)4

d
(t2 − t1)2 + n−β

)
.

Similar arguments give∣∣∣∣ 1

A6
n

∑
D3

Eξi1 . . . ξi6

∣∣∣∣≤ C10

(
(log n)4

d
(t2 − t1)2 + n−β

)
.

Following the proof of Lemma 11 we obtain∣∣∣∣ 1

A6
n

∑
D4

Eξi1 . . . ξi6

∣∣∣∣ ≤ C11

(
1

A6
n

(
n
∞∑
i=0

ξ0ξi

)3

+ n−β
)

≤ C11

(
|t2 − t1|3 + n−β

)
.

Putting together our estimates and using the choice of gn we conclude for all |t2 −

t1| ≥ gn

E(Ln,1(t2, x)− Ln,1(t2, x))6 ≤ C12

(
(log n)5

d2
|t2 − t1|+

(log n)4

d
|t2 − t1|2 + |t2 − t1|3 + n−β

)
≤ C13|t2 − t1|τ

with any 2 < τ ≤ 3 on account of assumption (3.24). Hence the proof of (3.53) is

complete.

The proof of (3.54) goes along the lines of the arguments used to establish (3.53)

and therefore it is omitted.
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Lemma 14. If (3.10)–(3.18), (3.21)–(3.24) and (3.28) hold, then Ln(t, x) is tight

in

D([1/2, 3/2]× [0, 1]).

Proof. It follows from a minor modification of Lemma 5.1 in Berkes, Horváth, Ling

and Schauer ([13], 2011) that both Ln,1 and Ln,2 are tight. Since Ln = Ln,1 +Ln,2,

the result is proven.

Next we consider the convergence of the finite dimensional distributions. It is

based in the following lemma:

Lemma 15. We assume that (3.10)–(3.18), (3.21)–(3.24) and (3.28) hold. Let

N = b(log n)γc with some γ > 0. Then

E

( N∑
i=1

(XiI{|Xi| ≤ tH−1(d/n)} − E[XiI{|Xi| ≤ tH−1(d/n)}]
)4

(3.57)

≤ C13

(
N(logN)3(H−1(d/n))4

d

n
+N2(H−1(d/n))4

(
d

n

)2)
with some constant C13 and

lim
n→∞

Nn

A2
n

E

(
N∑
k=1

(uk,n(s)−mn(s))

)(
N∑
k=1

(uk,n(t)−mn(t))

)
(3.58)

=
α

2− α

(
s2−α +

∞∑
k=1

ρk[(min(s, t|ρ|−k)2−α + min(t, s|ρ|−k)2−α]

)
.

Proof. We recall the definition of ξi from the proof of Lemma 13. For any β > 0,

choosing K in the definition of Yi in (3.55) we get that

E

( N∑
i=1

(XiI{|Xi| ≤ tH−1(d/n)}−E[XiI{|Xi| ≤ tH−1(d/n)}]
)4

≤ C14

(
E

( N∑
i=1

ξi

)4

+n−β
)
.

We write

E

( N∑
i=1

ξi

)4

=
N∑

i1,...,i4

Eξi1 . . . ξi4 .
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We note again that the {ξi} is a stationary K log n dependent sequence with 0

mean. Let us divide the indices i1, . . . , i4 into blocks so that the difference between

the indices within a block is less than K log n and between blocks is larger than

K log n. Clearly Eξi1 . . . ξi4 = 0, if there is at least one block containing only a single

element. So we need to consider the cases of one single block with 4 elements (D1)

and two blocks with 2+2 elements (D2). The number of the elements in D1 is not

greater than constant times N(logN)3 and as we showed in the proof of Lemma

13

Eξ40 ≤ C14

(
(H−1(d/n))4

d

n
+ n−β

)
,

assuming that K in (3.55) is sufficiently large. Hence∣∣∣∣∣
N∑
D1

Eξi1 . . . ξi4

∣∣∣∣∣ ≤ C15

(
N(logN)3(H−1(d/n))4

d

n
+ n−β

)
.

As in the proof of Lemma 13 we get that∣∣∣∣∣
N∑
D2

Eξi1 . . . ξi4

∣∣∣∣∣ ≤ C16N
2

(∑
i=0

|Eξ0ξi|

)2

and
∞∑
i=0

|Eξ0ξi| ≤
(
C17(H

−1(d/n))2
d

n
+ n−β

)
,

completing the proof of (3.57). The proof of (3.58) goes along the lines of the

arguments used to establish Lemma 11.

Lemma 16. If (3.10)–(3.18), (3.21)–(3.24) and (3.28) hold, then

Ln(t, x) −→ Γ(t, x) weakly in D([1/2, 3/2])× [0, 1]),

where Γ(t, x) is a Gaussian process with EΓ(t, x) = 0 and

EΓ(t, x)Γ(s, y)

= min(x, y)
α

2− α

(
(min(s, t))2−α +

∞∑
k=1

ρk[(min(s, t|ρ|−k)2−α + min(t, s|ρ|−k)2−α]

)
.
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Proof. By Lemma 14, the process Ln(t, x) is tight, so we need only to show the

convergence of the finite dimensional distributions. By the Cramér–Wold device it

is sufficient to prove the asymptotic normality of

Qn =
J∑
j=1

L∑
`=0

µj,`(Ln(tj, x`+1)− Ln(tj, x`))

for all J, L, real coefficients µj,`, 1/2 ≤ tj ≤ 3/2, 1 ≤ j ≤ J, and 0 = x0 < x1 <

. . . < xL < xL+1 = 1. We recall the definition of X∗k from the proof of Lemma 11

(cf. (3.44)) and define

L̄n(t, x) =
1

An

bnxc∑
i=1

(X∗kI{|X∗k | ≤ tH−1(d/n)} − EX∗kI{|X∗k | ≤ tH−1(d/n)}).

Choosing K large enough in the definition of X∗k , we get from the arguments used

in the proof of Lemmas 11, 13 and 15 that

E(Ln(t, x)− L̄n(t, x))2 → 0.

So we need to establish only the asymptotic normality of

Q̄n =
L∑
`=0

J∑
j=1

µj,`(L̄n(tj, x`+1)− L̄n(tj, x`)).

Let

zk,` =
J∑
j=1

µj,`(X
∗
kI{|X∗k | ≤ tjH

−1(d/n)} − E[X∗kI{|X∗k | ≤ tjH
−1(d/n)}]).

Since for all `

E

 1

An

bK lognc∑
k=1

zk,`

2

→ 0,

by stationarity and the bK log nc–dependence of zk,` for any ` we get that the

variables

1

An

bnx`+1c∑
k=bnx`c+1

zk,`, 1 ≤ ` ≤ L are asymprotically independent.
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By stationarity we have

1

An

bnx`+1c∑
k=bnx`c+1

zk,`
D
=

1

An

bnx`+1c−cnx`c∑
k=1

zk,`.

Let us divide the integers of [1, bnx`+1c−bnx`c] into consecutive blocksR1, V1, R2, V2, . . . , Rs, Vs

such that for 1 ≤ i ≤ s − 1, Ri contains b(log n)γc integers, Vi contains bK log nc

integers, the last two blocks might contain less elements. Let

ζi,1 =
∑
k∈Ri

zk,` and ζi,2 =
∑
k∈Vi

zk,`.

Due to the bK log nc dependence and stationarity, the variables ζi,2, 1 ≤ i < s are

independent and identically distributed and the proof of Lemma 11 shows that

E

(
1

An

s∑
i=1

ζi,2

)2

→ 0.

Using Lemma 15 we get that

Eζ2i,1 ≥ C18(log n)γ(H−1(d/n))2d/n

and

Eζ2i,1 ≤ C19

(
(log n)γ(log log n)3(H−1(d/n))4

d

n
+ (log n)2γ(H−1(d/n))4

(
d

n

)2
)
.

Since s is proportional to n/(log n)γ, a simple calculation yields

s∑
i=1

Eζ4i,1(
s∑
i=1

Eζ2i,1

)2 → 0,

Thus the central limit theorem with Lyapunov’s remainder term (cf. Petrov [83],

p. 154, 1995, p. 154) implies the asymptotic normality of∑
1≤k≤bnx`+1c−cnx`c zk,`. This completes the proof of Lemma 16. �
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3.4 Proof of the main results

To prove the results of this chapter we will need the following theorems.

Theorem 34 (Withers,[97], 1981). Let {Zj} be independent r.v.s. on R with

densities {pj(x)} satisfying γ = maxj E|Zj|δ <∞ for some δ > 0 and

max
j

∫
|pj(x)− pj(x+ y)|dx ≤ C|y|, where C <∞.

Suppose that

EZj ≡ 0 if δ ≥ 1

and

varZj ≡ 1 if δ ≥ 2,

{gk} are the complex numbers, satisfying

Gt = St(min(1, δ))max(1,δ) → ast→∞,

where

St(δ) =
∞∑
ν=t

|gν |δ

and
∞∑
0

gkz
k 6= 0 for |z| ≤ 1.

(a) Suppose that gk = O(k−ν) where ν > 3
2
. For {Xt} defined as above, if ν +

1/2 > δ > 2/(ν − 1), then

α(k) = O(k−ε) with ε = (δ(ν − 1)− 2)/(δ + 1).

Under the slightly stronger moment condition δ = ν+1
2
, α(k) = O(k

3
2
−ν(ln k)1/2).

(b) Suppose that gk = O(e−νk) where ν > 0. Then for {Xt}, α(k) = O(e−νλk),

where λ = δ(1 + δ)−1.
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(c) Also, (a) and (b) are true for process

Yi =
∞∑
i=0

hiZt−i

where {hi} are given by
∑∞

0 hiz
i = P (z)

∑∞
0 gkz

k and P (z) is any polyno-

mial.

Similar result can be found in Gorodetskii([43], 1977).

Theorem 35 (Davydov, [33], 1968). Let Xn satisfy the strong mixing condition.

Let r.v. ξ be measurable in respect to Mk
0 and η be measurable in respect to Mn+k

+∞ .

Let E|ξ|p <∞ and |E|η|q| <∞, 1/p+ 1/q < 1. Then

|Eξη − EξEη| ≤ 12(α(k))1−1/p−1/q(E|ξ|p)1/p(E|η|q)1/q.

We need the weak law of large numbers for ηd,n.

Lemma 17. If (3.10)–(3.18) and (3.21)–(3.25) hold, then we have

ηd,n
H−1(d/n)

P→ 1

Proof. Using theorem 34 and Gorodetskii ([43], 1977) we get that Xk is a strongly

mixing stationary sequence with mixing rate α(k) ≤ C1 exp(−λk) for some C1 > 0

and λ > 0. Fix 1/2 < t < 2 and let Tk = I{|Xk| ≥ tH−1(d/n)}, 1 ≤ k ≤ n.

Clearly, ETk = P{|Xk| ≥ tH−1(d/n)} = H(tH−1(d/n)) and due to the the regular

variation of H, ETk/(d/n)→ t−α, as n→∞. On the other hand, by the correlation

inequality of theorem 35 we get for any p > 2 that

|ET0Tk − ET0ETk| ≤ (α(k))(p−1)/p(ET p0 )1/p(ET pk )1/p

≤ C1 exp(−λk(p− 1)/p)(ET p0 )2/p

= C1 exp(−λk(p− 1)/p)(ET0)
2/p

≤ C2 exp(−λk(p− 1)/p)(d/n)2/p.



3.Trimmed stable AR(1) processes 89

Hence setting T̄k = Tk − ETk we conclude that

E

(
n∑
k=1

T̄k

)2

= nET̄ 2
0 + 2

n−1∑
k=1

(n− k)ET̄0T̄k

≤ n

(
ET̄ 2

k + 2
n−1∑
k=1

|ET̄0T̄k|

)

≤ n

(
ET 2

0 + C3

n−1∑
k=1

exp(−λk(p− 1)/p)(d/n)2/p

)
≤ n

(
ET0 + C5(d/n)2/p

)
≤ n(d/n)2/p.

Thus by Markov’s inequality we have that

P

{
n∑
k=1

T̄k ≥ d2/p

}
≤ C6n

(p−2)/p/d2/p → 0,

provided that d/n(2−p)/p → 0. Since d ≥ nδ, choosing p near 2, it follows that

n∑
k=1

Tk = t−αd(1 + oP (1)) + oP (d2/p) = t−αd(1 + oP (1)).

In other words,

1

d
#{k ≤ n : |Xk| ≥ tH−1(d/n)} P→ t−α, as n→∞.

This shows that

lim
n→∞

P{ηn,d ≥ tH−1(d/n)} = 1 for t < 1

and

lim
n→∞

P{ηn,d ≥ tH−1(d/n)} = 0 for t > 1,

completing the proof of Lemma 17.

Proof of Theorem 30. We note that Γ(t, x) is a continuous process. Hence combin-

ing Lemmas 16 and 17 we conclude

Ln(ηd,n/H
−1(d/n), x)

D[0,1]−→ Γ(1, x).
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It is easy to see that

{Γ(1, x), 0 ≤ x ≤ 1} D=

{(
α

2− α
1 + ρ

1− ρ

)1/2

W (x), 0 ≤ x ≤ 1

}
,

where W (x) is a Wiener process, which completes the proof.

Proof of Theorem 31. Since

1

An
Tn,d(x) = Ln(ηd,n/H

−1(d/n), x)− bnxc
n

Ln(ηd,n/H
−1(d/n), 1),

Theorem 30 yields

1

An
Tn,d(x)

D[0,1]−→
(

α

2− α
1 + ρ

1− ρ

)1/2

(W (x)− xW (1)).

By definition, B(x) = W (x)−xW (1), 0 ≤ x ≤ 1 is a Brownian bridge, so the proof

of Theorem 31 is complete.

3.5 Estimation of the long run variance

The weak convergence in Theorem 31 can be used to construct tests to detect pos-

sible changes in the location parameter in model (3.9). However, the normalizing

sequence depends heavily on unknown parameters and they should be replaced

with consistent estimators. We discuss this approach in this section. We show in

section 3.6 that ratio statistics can also be used so we can avoid the estimation of

the long run variances.

The limit result in Theorem 31 is the same as one gets for the CUSUM process

in case of weakly dependent stationary variables (cf. Aue and Horváth ([5], 2013)).

Hence we interpret the normalizing sequence as the long run variance of the sum

of the trimmed variables. Based on this interpretation we suggest Bartlett type

estimators as the normalization.
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The Bartlett estimator computed from the trimmed variables X∗i = XiI{|Xi| ≤

ηn,d} is given by

ŝ2n = γ̂0 + 2
n−1∑
j=1

ωj

(
j

h(n)

)
γ̂j,

where

γ̂j =
1

n

n−j∑
i=1

(X∗i − X̄∗n)(X∗i+j − X̄∗n), X̄∗n =
1

n

n∑
i=1

X∗i ,

ω(·) is the kernel and h(·) is the length of the window. We assume that ω(·) and

h(·) satisfy the following standard assumptions:

ω(0) = 1, (3.59)

ω(t) = 0 if t > a with some a > 0, (3.60)

ω(·) is a Lipschitz function, (3.61)

ω̂(·), the Fourier transform of ω(·), is also Lipschitz and integrable (3.62)

and

h(n)→∞ and h(n)/n→∞ as n→∞. (3.63)

For functions satisfying (3.59)–(3.62) we refer to Taniguchi and Kakizawa ([93],

2000). Following the methods in Liu and Wu ([70], 2010) and Horváth and Reeder

([49], 2012), the following weak law of large numbers can be established under H0:

nŝ2n
A2
n(1 + ρ)α/((1− ρ)(2− α))

P→ 1, as n→∞. (3.64)

The next result is an immediate consequence of Theorem 31 and (3.64).

Corollary 1. If H0, (3.15)–(3.18), (3.21)–(3.25) and (3.64) hold, then we have

that
Tn(x)

n1/2ŝn

D[0,1]−→ B(x),

where B(x) is a Brownian bridge.
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It follows immediately that under the no change null hypothesis

Q̂n = sup
0≤x≤1

|Tn(x)|
n1/2ŝn

D−→ sup
0≤x≤1

|B(x)|.

Simulations show that ŝn performs well under H0 but it overestimates the norming

sequence under the alternative. Hence Q̂n has little power. The estimation of the

long–run variance when a change occurs has been addressed in the literature. We

follow the approach of Antoch, Huškova and Praškova ([2], 1997), who provided

estimators for the long run variance which are asymptotically consistent under the

H0 as well as under the one change alternative. Let x0 denote the smallest value in

[0, 1] where |Tn(x)| reaches its maximum and let k̃ = bx0nc. The modified Bartlett

estimator is defined as

s̃2n = γ̂′0 + 2
n−1∑
j=1

ω

(
j

h(n)

)
γ̃j,

where

γ̃j =
1

n− j

n−j∑
`=1

ι`ι`+j, ι` = X∗` −
1

k̂

k̂∑
`=1

X∗` , ` = 1, ..., k̂,

ι` = X∗` −
1

n− k̂

n∑
`=k̂+1

X∗` , ` = k̂ + 1, ..., n.

Combining the proofs in Antoch, Huškova and Praškova ([2], 1997) with Liu and

Wu ([70], 2010) and Horváth and Reeder ([49], 2012) one can verify that

ns̃2n
A2
n(1 + ρ)α/((1− ρ)(2− α))

P→ 1, as n→∞ (3.65)

under H0 as well as under the one change alternative HA. Due to (3.65) we imme-

diately have the following result:

Corollary 2. If H0, (3.15)–(3.18), (3.21)–(3.25) and (3.65) hold, then we have

that
Tn(x)

n1/2s̃n

D[0,1]−→ B(x),

where B(x) is a Brownian bridge.
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We suggest testing procedures based on

Q̃n =
1

n1/2s̃n
sup

0≤x≤1
|Tn(x)|.

It follows immediately from Corollary 2 that under H0

Q̃n
D−→ sup

0≤x≤1
|B(x)|. (3.66)

First we study experimentally the rate of convergence in Theorem 31. In this

section we assume that the innovations εi in (3.15)–(3.19) have the common dis-

tribution function

F (t) =

q(1− t)
−3/2, if −∞ < t ≤ 0,

1− p(1− t)−3/2, if 0 < t <∞,

where p ≥ 0, q ≥ 0 and p + q = 1. We present the results for the case of

ρ = p = q = 1/2 based on 105 repetitions. We simulated the elements of an

autoregressive sample (e1, . . . , en) from the recursion (3.15) starting with some

initial value and with a burn in period of 500, i.e. the first 500 generated variables

were discarded and the next n give the sample (e1, . . . , en). Thus (e1, . . . , en) are

from the stationary solution of (3.15). We trimmed the sample using d(n) = bn0.45c

and computed

Qn =

(
2− α
α

)1/2(
1− ρ
1 + ρ

)1/2
1

An
sup

0≤x≤1
|Tn(x)|.

Under H0 we have

Qn
D−→ sup

0≤x≤1
|B(x)|.

The critical values in Table 3.1 provide information on the rate of convergence in

Theorem 31.

Figures 3.2 and 3.3 show the empirical power of the test for H0 against HA

based on the statistic Qn for a change at time k∗ = n/4 and n/2 and when the
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n 400 600 800 1000 ∞
1.29 1.32 1.33 1.34 1.36

Table 3.1: Simulated 95% percentiles of the distribution of Qn under H0

location changes from 0 to c ∈ {−3,−2.9, ..., 2.9, 3} and the level of significance is

0.05. We used the asymptotic critical value 1.36. Comparing Figures 3.2 and 3.3 we

see that we have higher power when the change occurs in the middle of the data at

k∗ = n/2. We provided these results to illustrate the behaviour of functionals of Tn

without introducing further noise due to the estimation of the norming sequence.

Figure 3.2: Empirical power for Qn with significance level 0.05, n = 400 (dashed),
n = 600 (solid) and n = 800 (dotted) with k1 = n/2

Next we study the applicability of (3.66) in case of small and moderate sample
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Figure 3.3: Empirical power for Qn with significance level 0.05, n = 400 (dashed),
n = 600 (solid) and n = 800 (dotted) with k1 = n/4

sizes. We used h(n) = n1/2 as the window and the flat top kernel

ω(t) =


1 0 ≤ t ≤ .1
1.1− |t| .1 ≤ t ≤ 1.1
0 t ≥ 1.1

Figures 3.4 and 3.5 show the empirical power of the test for H0 against HA based

n 400 600 800 1000 ∞
1.57 1.52 1.50 1.49 1.36

Table 3.2: Simulated 95% percentiles of the distribution of Q̃n under H0

on the statistic Q̃n for a change at time k∗ = n/4 and n/2 and when the location

changes from 0 to c ∈ {−3,−2.9, ..., 2.9, 3} and the level of significance is 0.05. We

used the asymptotic critical value 1.36. Comparing Figures 3.4 and 3.5 we see that

we have again higher power when the change occurs in the middle of the data at
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k1 = n/2.

Figure 3.4: Empirical power for Q̃n with significance level 0.05, n = 400 (dashed),
n = 600 (solid) and n = 800 (dotted) with k1 = n/2

Figure 3.6 shows how the power of the test behaves depending on the value of

d = nε, ε ∈ {0.3, 0.35, 0.42, 0.45, 0.5} for n = 400. The bigger the d is, the better is

the power curve.

3.6 Ratio statistics

The statistics Q̂n as well as Q̃n are very sensitive to the behaviour of ŝn and s̃n.

As we pointed out, ŝn is the right norming only under H0. The sequence Q̃n works

under H0 and under the one change alternative, but it could break down if multiple

changes occur under the alternative. Even if the Bartlett type estimator is the

asymptotically correct norming factor, the rate of convergence can be slow. Also,
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Figure 3.5: Empirical power for Q̃n with significance level 0.05, n = 400 (dashed),
n = 600 (solid) and n = 800 (dotted) with k1 = n/4

these estimators are very sensitive to the choice of the window h = h(n). Following

the work of Kim ([61], 2000) (cf. also Kim, Belair-Franch and Amador ([62], 2002))

and Leybourne and Taylor ([69], 2006), Horváth, L., Horváth, Zs. and Huškova

([48], 2008) proposed ratio type statistics of functionals of CUSUM processes. We

adapt their approach to the trimmed CUSUM process. Let 0 < δ < 1 and define

Zn = max
nδ≤k≤n−nδ

Zn,1(k)

Zn,2(k)
,

where

Zn,1(k) = max
1≤i≤k

∣∣∣∣∣
i∑

j=1

(XjI{|Xj| ≤ ηn,d} − (1/k)
k∑
j=1

(XjI{|Xj| ≤ ηn,d)})

∣∣∣∣∣
and

Zn,2(k) = max
k<i≤n

∣∣∣∣∣
n∑
j=i

(XjI{|Xj| ≤ ηn,d} − (1/(n− k))
n∑

j=k+1

(XjI{|Xj| ≤ ηn,d)})

∣∣∣∣∣ .
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Figure 3.6: Empirical power curves for Q̃n with significance level 0.05 for d = nε,
ε = 0.35 (dash-dotted), ε = 0.42 (dashed), ε = 0.45 (solid), ε = 0.5 (dotted) with
n = 400, k1 = n/2

Roughly speaking, we split the data into two subsets at k, compute the maximum

of the CUSUM in both subsamples and compare these maxima. To state the limit

distribution of Zn under the null hypothesis, we need to introduce

z1(t) = sup
0≤s≤t

|W (s)− (s/t)W (t)|

and

z2(t) = sup
t≤s≤1

|W ∗(s)− ((1− s)/(1− t))W ∗(t)|,

where W ∗(t) = W (1)−W (t). The following result is an immediate consequence of

Theorem 31.

Theorem 36. If H0, (3.15)–(3.18) and (3.21)–(3.25) hold, then we have that

Zn
D−→ sup

δ≤t≤1−δ

z1(t)

z2(t)
. (3.67)
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We reject the no change null hypothesis if Zn is large. Using Monte Carlo

simulations, it is easy to obtain the distribution function of the limit in (3.67).

Selected critical values can be found in Horváth L., Horváth, Zs. and Huškova

([48], 2008), where some probabilistic properties of the limit are also discussed.

n 400 600 800 1000 5000
5.90 5.67 5.49 5.43 5.03

Table 3.3: Simulated 95% percentiles of the distribution of Zn under H0

Below we study the finite sample behaviour of Zn. Table 3.3 contains simulated

significance levels when δ = .2, n = 400, 600, 800, 1, 000 and n = 5, 000. (Since the

distribution function of the limit in (3.67) is unknown, we used n = 5, 000 for the

limit distribution.)

Figure 3.7: Empirical power curves for Zn with significance level 0.05, n = 400
(dashed), n = 600 (solid) and n = 800 (dotted) with k1 = n/2
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Figure 3.8: Empirical power curves for Zn with significance level 0.05, n = 400
(dashed), n = 600 (solid) and n = 800 (dotted) with k1 = n/4

Figures 3.7 and 3.8 contain the empirical power curves of the test for H0 against

HA based on the statistic Zn for a change at time k∗ = n/4 and n/2 and when the

location changes from 0 to c ∈ {−5,−4.9, ..., 4.9, 5} and the level of significance is

0.05. We used critical values from Table 3.3. Figure 3.9 shows how the power of

the test behaves depending on the value of d = nε, ε ∈ {0.3, 0.35, 0.42, 0.45, 0.5}

for n = 400. The bigger the d is, the better is the power curve.
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Figure 3.9: Empirical power curves for Zn with significance level 0.05 for d = nε,
ε = 0.35 (dash-dotted), ε = 0.42 (dashed), ε = 0.45 (solid), ε = 0.5 (dotted) with
n = 400, k1 = n/2
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[4] Aue, A., Berkes, I. and Horváth, L.: Selection from a stable box. Bernoulli
14(2008), 125–139.
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[16] Berkes, I., Horváth, L. and Schauer, J., 2011. Asymptotics of trimmed CUSUM
statistics. Bernoulli 17, 1344–1367.

[17] Bickel, P. J. and Wichura, M. J.: Convergence criteria for multiparameter
stochastic processes and some applications. Ann. Math. Statist. 42 (1971),
1656–1670.

[18] Billingsley, P.: Ergodic theory and information. Wiley, 1965.

[19] Billingsley, P.: Convergence of Probability Measures. Wiley, New York 1968.

[20] Bingham, N.H., Goldie, C. M., Teugels, J.L., 1987. Regular variation. Cam-
bridge University Press.

[21] Bradley, R.: Introduction to strong mixing conditions, Vol I. Kendrick Press,
2007.

[22] Chan, N.H.: Inference for near–integrated time series with infinite variance.
Journal of the American Statistical Association 85(1990), 1069–1074.

[23] Chan, N.H. and Tran, L.T.: On the first–order autoregressive processes with
infinite variance. Econometric Theory 5(1989), 354–362.



104

[24] Cline, D.: Estimations and Linear Prediction for Regression, Autoregression
and ARMA with Infinite Variance Data. PhD Thesis, Colorado State Univer-
sity, Fort Collins, 1983.
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Math. Ann. 181 (1969), 152–156.

[81] Phillip, W. and Stout, W. : Almost sure invariance principles for partial sums
of weakly dependent random variables. Mem. Amer. Math. Soc. (161) 1–140.

[82] Phillips, P.C.B. and Solo, V.: Asymptotics for linear processes. Annals of
Statistics 20(1992), 971–1001.

[83] Petrov, V.V.: Limit Theormes of Probability Theory. Clarendon Press, Oxford.

[84] Resnick, S. and Greenwood, P.: A bivariate stable characterization and do-
mains of attraction. J. Multivariate Analysis 9(1979), 206–221.

[85] Samur, J.: Convergence of sums of mixing triangular arrays of random vectors
with stationary rows. The Annals of Probability 12(1984), 390–426.

[86] Samur, J.: On some limit theorems for continued fractions. Trans. Amer. Math.
Soc. 316 (1989), 53–79.

[87] Samur, J.: Some remarks on a probability limit theorem for continued frac-
tions. Trans. Amer. Math. Soc. 348 (1996), 1411–1428.

[88] Skorokhod, A.V.: Limit theorems for stochastic processes. Theory of Probabil-
ity and Its Applications 1(1956), 261–290

[89] Stackelberg, O.P.: On the law of the iterated logarithm for continued fractions.
Duke Math. J. 33(1966), 801–819.

[90] Stigler, S.M.: The asymptotic distribution of the trimmed mean. The Annals
of Statistics 1(1973), 472–477.

[91] Stigler, S.M.: Linear functions of order statistics with smooth weight functions.
University of Wisconsin Mathematical Research Center T. R. # 1211(1972)

[92] Szewczak, Z.S.: On limit theorems for continued fractions. J. Theor. Probab.
22(2009), 239–255.



3.Trimmed stable AR(1) processes 109

[93] Taniguchi, M. and Kakizawa, Y.: Asymptotic Theory of Statistical Inference
for Time Series. Springer, 2000.

[94] Teugels, J.L.: Limit theorems on order statistics. Annals of Probability 9(1981),
868–880.
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