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Tandem Queues for Inventory Management
under Random Perturbations
Florian Sobieczky,a Gerhard Rappitschb∗† and Ernst Stadloberc

Using the theory of M/M/1 queues at stationarity, we provide criteria of stability (recurrence) for a stochastic inventory
model with an observed selling rate and an optimally chosen buying rate. Optimality is based on the maximum gain
under stability, where buying and selling prices, as well as shop- and stock-keeping costs are incorporated into the
model. An important aspect is to achieve robustness of the stocking process by minimizing the fluctuation of the
predicted gain. This robustness can be achieved by controlling intermediate transfer rates of the assumed stochastic
tandem network. Stochastic simulations demonstrate the applicability of the stability criteria under several scenarios
of differing intensities of perturbation. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

1.1. Motivation

In inventory science, the prediction of reordering points and optimal stock levels given an observed selling rate has always
been of central interest1. If prices concerning production, selling, and stock-keeping costs are constant and demand is
uncertain, then determining the optimal stock level is known as the Newsboy problem. The question of the influence on these

predictions concerning optimality if more than one decision-making party is involved has been modeled with so-called ‘echelon-
systems’2. For example, a serial two-echelon system may be given by a simple supply chain consisting of the manufacturer
and the retailer, who represent two independent parties with possibly different views of the market3. Optimal policies have
been given for models in which several retailers (representing different ‘parallel’ parties) are ordering at different frequencies
independently4, 5.

In queueing theory, the situation of several processes being active at the same time, independently, can be captured in
the case of purely Markovian queues if the service process is divided into independent Poisson processes. Queues have been
successfully applied to inventory models6. In particular, the theory of M/M/1-queues involving the stationary measure of the
underlying Markov chain could be used effectively7, 8. Our approach is a direct extension of this model wherein a tandem-series
of two M/M/1-queues is considered.

Recently, Huang et al.9 investigated the influence of the limited capacity of transport as an influencing factor for optimal
inventory policies. Similarly, we study changes of the system under unfavorable perturbations of the initial system parameters,
namely:

1. Changes of the probability to handle incoming goods as opposed to serve demanding customers (These changes will
correspond to changes of the transition probabilities of a Markov chain on the integers: 〈p, q〉 �→〈p′, q′〉 where p+q=p′+q′=1).

2. Changes of the customer’s disposition to buy (involving only changes of buying rates � �→�′, with �, �′>0).

Moreover, we use a tandem queueing network to differentiate between stock and shop. In this way, the influence of a cheaper
stock-keeping cost can be investigated.

Tandem queues have successfully been used for situations in which a succession of two processes has to be performed, such
that ‘in the long run’ the work gets done without an arrival pileup. Here, the combined process of buying, stocking, and selling
goods in a retailer’s and logistics environment is modeled by a tandem queueing network under the assumption of independence
between the events of single transactions, i.e. a series of two M/M/1-queues10. Selling goods, happening between exponentially
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Figure 1. Tandem queue with stock and shop level, showing buying rate �, selling rate � and transfer rate � between stock and shop. � is subject to a
perturbation: sometimes, it is replaced by �′<�

distributed periods of time, represents the service process, buying goods the arrival process in the queue (with exponentially
distributed interarrival times), whereas queue length processes characterize the amount of available goods in the storage room
and the shelf of the store. Markovian rates for buying, transferring (from stock to shop), and selling determine the simple tandem
queueing network, as any decrement of the stock due to good transfer is accompanied by an increment of the shop.

Figure 1 exhibits the applied stochastic network consisting of the stock and the shop level. Incoming goods arriving at an
arrival rate �, are transferred to the shop floor with transfer rate � and are sold to the customer at selling rate �. A typical
application in a retailer environment may be: goods are ordered by a distribution center and arrive at a specific buying rate
�. Upon request and depending on the availability in the shop those goods are transferred from the stock at an intermediate
transfer rate �. The consumer enters the shop and demands goods at a specific rate �.

We use At for the number of arrivals of goods up to time t, and Dt for the number of demands in the interval [0, t]. These are
Poisson processes with rates � and �, respectively. We presume the validity of a gain process gt depending on the size Mt and
the increase At of the stock inventory, as well as the size Nt and decrease Dt of the shop inventory. It determines the amount
earned by sales at price P, and losses due to buying-cost C, as well as the cost B1 for stock keeping, and maintaining goods
within the shop (B2). It is given by

gt(�)=P ·St(�)−B1

∫ t

0
Ms(�)ds−B2

∫ t

0
Ns(�)ds−C ·At(�), (1)

where St is the number of demands during availability of the goods in the shop.
Using this model, when given an observed density of demand �, an optimal buying (�) and stocking (�) strategy is sought

maximizing the asymptotic gain rate G=G(�,�), which is defined by

G= lim
t→∞

1

t
gt(�).

This strategy mainly consists of two parts:

(A) The first goal is to find the optimal buying rate �, and rate of good-transfer � between stock and shop, under the
dependence of the observed selling rate �.

(B) The second goal is to give stability criteria to the network, to make the above gain-optimization also realizable under
time-dependent perturbations of the parameter.

We define stability of the retail process by recurrence of the combined process of stock- and shop size (the two queue length
processes of the tandem network). While the question of recurrence of this Markov chain has been answered for fixed rates,
we will present the stability criteria for the situation, where one of the rates, namely the selling rate � will be perturbed. This
perturbation is time-inhomogeneous in nature, reflecting the real-life situation of fluctuations in the model-defining parameters.
We arrive at a combination of two conditions guaranteeing optimality and stability (recurrence).

Our model is a tandem queueing network, with arrival rate �, transfer rate �, and service rate �. It is well known that this
queueing system is positive recurrent if �<�, and �<�. Note that it is not essential that, �<�, a condition which ensures stability
of the second queue by itself11. Owing to Burke’s theorem12, the output process of the first queue in equilibrium (presuming
its existence) is a Poisson process of intensity �, the arrival rate, representing a discrete form of the continuity equation. Again,
in equilibrium, this rate is the arrival rate for the second queue, and therefore the condition for equilibrium is �<�. This also
follows from the work of Fayolle, Malyshev, and Menshikov on random walks on the quarter plane with a specific (unsymmetric)
set of generators. Although the model is non-reversible, the authors give geometric criteria13 of ergodicity (implying positive
recurrence) depending on the mean one-step displacement. These are equivalent to the conditions �<� and �<�.

1.2. What is new in our model?

The proposed model inherits three novelties not covered in Reference13:

• The problem of a random walk on the quarter plane with random conductances is currently unsolved13. We go one step
towards a solution by allowing one of the parameters (the selling rate �) to be different for each step of the random walk
in Z2+.
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• We consider a system in which goods are transferred independently to the stock, from the stock to the shop, and from
the shop to the consumer. Owing to this independence, the system may be considered a two-echelon system, in which
independent parties agitate each with its own rate in time.

• Since we also incorporate the effect of perturbations of the selling rate � by switching to �′, the system may also be
considered a parallel two-layer system, due to two independent types of consumers acting simultaneously.

Summarizing, we have a composition of a two-echelon system in series (stock and shop) with a two-layer system in parallel
(two different consumer types).

We organize the remainder of this paper in the following way: Section 2 contains a detailed definition of the model and proofs
of recurrence of an extension of the tandem queue. Section 3 offers a simulation analysis of a real-life application, assuming
random perturbations of the selling process.

As for notation, let N0 denote the non-negative integers, and R0+ := [0,∞). When we speak of tandem queues, we mean two
queues in series: We call the first queue the one in front, and the second one the rear queue, along the direction of the bypassing
goods (from left to right).

2. Criteria of stability

2.1. The unperturbed two-echelon

First, consider two M / M / 1-queues in tandem, the arrival process of the first queue, with length process Mt is Poisson with
parameter � and has exponentially distributed service with rate �; the second has a length process denoted by Nt and has an
exponentially distributed service process with rate �.

Each of these standard queues is a continuous-time Markov chain (birth–death process) with constant birth rate �, and constant
death rate � (independent of the state of the queue length). The tandem process is defined on the set of right continuous integer-
valued functions with the probability measure of a continuous time Markov process determined by an embedded discrete-time
process, with transition probabilities (Pkl), k, l ∈Z2+. This is done in the following way14: After picking an initial state according to
some initial distribution, let j=1 and proceed in the following way:

1. Wait a time Tj , which is an independent exponentially distributed variable with parameter equal to one.
2. Make a jump from the current state to one of its neighbors. Choose among the neighbors with probability distribution Pkl ,

where k ∈Z2+ is the current state and l ∈Z2+ is among the accessible neighbors of k.
3. Increase j and go to Step 1.

This is repeated, and since all the waiting times are independent, the process is Markovian. Being at state k =〈k1, k2〉 means
that the stock inventory fulfills Mt =k1 and Nt =k2. Possible neighbors of k =〈Mt, Nt〉 include those that allow a transition to
either increase Mt , decrease Nt , or simultaneously decrease Mt and increase Nt . To these three transitions, we assign the transition
probabilities � / (�+�+�), � / (�+�+�), and � / (�+�+�), respectively (see Figure 2).

Remark
Usually the process is defined with waiting times which obey an exponential distribution with parameter equal to �+�+� (instead
of one), corresponding to the first of the three exponentially distributed waiting times belonging to the three possible transitions.
However, since the sum of these rates is equal at every state, we can scale the time by a factor �+�+� to obtain exactly the
process defined above.

2.2. Two different types of perturbations

As an alternative to the ‘unperturbed’ standard tandem queueing network defined above, consider now a modification of the
second (rear) M/M/1-queue. Note first that Nt can be ‘lifted’ to a random walk Xt on the fence-graph with vertices S=N0 ×{0, 1}.
For any given step of a path of Nt , the Markov chain Xt just performs—with probability 1

2 —an additional switch between the
upper and lower rails of the fence. As the fence-graph is a covering of the non-negative integers with nearest neighbors, the
projection of Xt onto its first coordinate is just Nt .

Consider now the following modification Yt of the continuous-time process. Replace Step 2 of the above protocol by

2.’ Make a jump from the current state to one of its neighbors. With probability 1
2 , use the transition probabilities as already

defined. Otherwise, use the probabilities � / (�+�′+�), �′ / (�+�′+�), and � / (�+�′+�), i.e. the same probabilities as above,
only with �′ instead of �.

k l

λ / (λ + μ + α) α / (λ + μ + α)

k

l

k

l

μ / (λ + μ + α)

Figure 2. The three possible transitions on the tandem queue and their probabilities Pkl
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Figure 3. (Upper) The M/M/1 Queue Nt . (Lower) The state space of the lifted random walk and its perturbation in the lazy customers model with different
values for � and �′ . (For the shy staff model, the same graph results as the state space of the extended process, but the switching of the layers is performed

with probability 1
2 .) The projection of this process onto Z+ is the perturbed rear queue Ñt

As another possibility, consider a modification of the tandem process, in which the alternate set of transition probabilities is not
chosen with equal probabilities. Instead, the range of possible transitions is doubled (from three to six), and the corresponding
transition probabilities are chosen proportional to the corresponding rate parameters. To this end, define the process to run on
the state space Z2+×{0, 1}. Thus, for every state k ∈Z2+, there is an additional state variable k3 ∈{0, 1}:

2.” Make a jump from the current state to one of its neighbors, i.e. perform one of the transitions by adding to the state variable
one of (1, 0, 0), (0,−1, 0), (−1, 1, 0), (1, 0, 1), (0,−1, 1), and (−1, 1, 1). With R= (�+�+�+�+�+�′), choose these transitions
with probabilities � / R, � / R, � / R, �, �′ / R, and � / R, respectively.

Thus, either modification is an extension (=: Yt) of the birth–death process belonging to the tandem queue as a process with
state space Z2+×{0, 1}: An additional layer is introduced. One belongs to set �, �, �, and the other to �, �, �′. In perturbation

2.′, the layer is switched with probability equal to 1
2 in each step. In 2.′′, the switching is performed with a probability which is

determined by the quotient of � and �′.
Looking at the rear queueing process Nt , separately, the modification may be described as in Figure 3. Instead of performing

steps between nearest neighbors on the positive integers, an additional layer switching is allowed. The only new parameter is �′,
the modified selling rate. If �′<�, the interpretation of model 2.′ is an inventory model, in which the tendency to receive goods
from the stock as opposed to serve the demanding customer is increased. Model 2.”, on the other hand, represents an exchange of
half of the customers with ones that arrive at the shop with reduced rate �′.

→ We call 2.′ the shy staff model and 2.′′ the lazy customers model.
We now define the perturbation Zt of the initial tandem process on Z+ to be the projection of the extended process Yt onto

the positive integers, i.e. Zt is Yt with the third (layer-) coordinate suppressed. The perturbed rear queue, considered separately
as in Figure 3 will be denoted by Ñt .

2.3. Stability of the time-inhomogeneous birth–death process

We now present the essential theorem belonging to part (B) of our agenda: We give the stability criteria of the inventory model
where stability is understood as recurrence of the Markov chain belonging to the tandem queue. First, we give the recurrence
criteria for the queues, separately. Then we use Burke’s theorem of the asymptotic independence of the queues involved in a
tandem to formulate the condition for recurrence of the whole tandem network.

Theorem 1
The following are sufficient criteria for the inventory defined by the perturbed tandem queue to be stable.

1. For the ‘shy staff’ model,

�2 +��≤��′+�(�+�′) / 2

2. In the ‘lazy customers’ model

�≤ 1
2 (�+�′).

Remark
The smaller the �, the more the geometrical mean is the relevant measure for comparison of � with � and �′. Since the geometrical
mean is always smaller or equal to the arithmetic mean, the theorem states that it is more likely that ‘shy customers’ destabilize
the inventory than ‘lazy customers’.

First, we show that our definition of the perturbation Zt of the tandem queue is in fact a Markov process.
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Lemma 2
The perturbed process Zt is Markovian for the shy staff model and the lazy customers model.

Proof
Shy staff model: Note, that during one step of the discrete-time chain, the probability to change the layer is always equal to
1
2 . Therefore, all possible sequences of level switchings or maintaining the level have the same probability. Hence, there is no

possibility to extract information from the past on top of the information given by the initial Markov chain on Z2+, while the

latter, however, is Markovian. Hence, since the Markov chain Yt defined on Z2+×{0, 1} is Markovian, there is no loss of information

when the projection onto Z2+ is performed.
Lazy customers model: At equilibrium, there is independence of the front queue from the rear queue. By Burke’s theorem, the

output process of the front queue is Poisson-distributed with parameter �. Therefore, the arrival process of the rear queue also
has rate �. Now, the perturbed rear queue is a birth-death process with a Poisson-distributed arrival process having (�+�) as its
rate, and a Poisson service process with rate �+�′, scaled in time by the factor 1 / (�+�+�+�′). Therefore, it is a time-scaled
M / M / 1-queueing process with parameters 2� and �+�′. �

Lemma 3
At stationarity for the shy staff model, the perturbed rear queue is recurrent if �2 +��≤��′+�(�+�′) / 2, whereas for the lazy
customers model, it is recurrent if 2�≤�+�′.

Proof
Shy staff model: As noted in the previous proof, at stationarity, the front and rear queue are independent. Ñt , the rear process
projected onto Z+ is Markovian and has transition rates probabilities, which are mixtures of the corresponding parameters
involving 〈�,�〉 and 〈�,�′〉. Thus, it is a birth–death chain, which is recurrent if

1

2

�

�+�+�
+ 1

2

�

�+�+�′ ≤ 1

2

�

�+�+�
+ 1

2

�′
�+�+�′

This is equivalent with the inequality stated.
Lazy customers model: At stationarity, due to Lemma 2, the rear process projected onto Z+ of the lazy customers model is

a birth–death chain with transition probabilities (�+�) / (�+�+�+�′) and (�+�′) / (�+�+�+�′). The process is recurrent if the
forward conductances are smaller than the backward conductances15, which is equivalent to

(�+�) / (�+�+�+�′)≤ (�+�′) / (�+�+�+�′).

�

Theorem 4
The perturbed tandem queue Zt is positive recurrent if �<�, and

• for the shy staff model: �(�+�)<
√

��′+�(�+�′) / 2 and
• for the lazy customers: �< 1

2 (�+�′).

Proof
By Burke’s theorem, at equilibrium, the first queue has an output process which is the same as the arrival process, namely a
Poisson process with parameter �. If �<�, the positive recurrent queue is exponentially ergodic. Therefore, the image of the initial
distribution under the semi-group of the first queue is the stationary distribution plus an exponentially fast decaying measure.
The arrival process of the rear part of the tandem network is therefore the sum of the Poisson distribution with parameter � and
an exponentially fast decaying measure. Therefore, by the assumption and Lemma 3, the rear perturbed queue Ñt with arrival rate
� is positively recurrent. Since under stationarity, the front queue and the rear queue are independent, the limit measure is the
convex combination of the product measure of the two invariant measures belonging to the two queues, and an exponentially
decaying finite measure. Hence, the perturbed tandem network Zt is positive recurrent. �

2.4. The optimal gain

In this section we present results concerning part (A) of our intended goals.
Owing to ergodicity of the Markov chain with stationary measure �=�M ⊗�N (product measure of stationary measures of

stock and shop), the asymptotic gain per unit time G := limt→∞ 1
t

∫ t
0 gs(�)ds with (1) is given by

G=E�[gt]=P ·�−B1 · �

�+�
−B2 · �

�+�
−C ·�. (2)

The fact that E�[St]=� can be seen from Burke’s theorem, which says that the output of an M/M/1-queue with arrival rate �
at stationarity is a Poisson process with parameter �. (Note that B1, B2 are cost-rates, whereas P, C are price and cost of goods’
sale and purchase.)

Copyright © 2010 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 899--907
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Burke’s theorem also implies that at stationarity, the two queues of the tandem are independent. From this it follows directly
that the optimal value of � given � and � is the solution of the quartic equation

(P−C) ·(�−�)2 ·(�−�)2 =B1�(�−�)2 + B2�(�−�)2. (3)

Little’s theorem, which says that the expected queue length � is the expected total waiting time w (time it takes to pass
through whole queue) times the arrival rate (�=�w). The above, therefore, yields formulas for gain and optimal prices in terms
of the mean total waiting times for stock (wM) and shop (wN), and expected sizes of stock (�M =E�[Mt]) and shop (�N =E�[Nt]):

G=� ·(P−C−B1wM −B2wN), (4)

and at optimality (highest expected gain G∗): P−C =B1�MwM +B2�NwN , hence

G∗ =�∗ ·((�M −1)B1�M +(�N −1)B2�N), (5)

where �∗ is the solution of (3). (Note, wM =1 / (�−�) and wN =1 / (�−�).)
Owing to the asymptotic independence of the stock- and shop size (queue-length processes) and the arrival and demand

processes, the variance Var�(gt)=E�[g2
t ]−E�[gt]2 becomes

Var�(gt)=�(P2 +C2)+B2
1

��

(�−�)2
+B2

2
��

(�−�)2
. (6)

We discuss these results by studying Tables I and II, and the following examples:

Example 1
If �=�, the optimal solution is given by

�∗ =�−√
�

√
B1 +B2

P−C
. (7)

This gives a criterion for the value of the difference P−C of price and buying cost has to be, to make positive gain. From �∗>0
it follows that

P−C>
(B1 +B2)

�
.

This is the optimal solution in case of only one single queue. Thus �=� ignores the possibility to optimize further by making
use of the tandem queue. From the simulations below, it becomes clear that the optimal value of � is smaller than that of �, in
case B1>B2.

Example 2
Suppose that it is intended to make a gain of at least Go, and to do this at a variance of at most Vo, then formulas (4)–(6) allow
to give the following necessary condition for this goal to be met:

V0

G0
≥ P2 +C2 +�B2

1w2
M +�B2

2w2
N

B1(�M −1)wM +B2(�N −1)wN
.

The characteristic parameters wM, wN , �M, �M are easily measurable in real situations. Thus, this criterion provides a practical
method to check for the feasability of a specific inventory realization.

Table I. Gain under varying �: The selling rate is �=5, the transfer rate �=5, the selling price is P=20,
the buying cost is C =15, B1 =1 per day, and B2 =1 per day

. �=2.5 �=3.0 �∗ =3.27 �=3.5 �=4.0 �=4.25 �=4.5

Comp.(1) 9.5 10.5 10.67 10.5 8.0 4.25 −4.5
Simul. m/std 10.3±2.8 12.7±1.5 12.8±1.9 11.5±2.5 9.15±5.1 5.1±7.5 1.3±10.6

Table II. Gain under varying stock-keeping cost-parameter B1: The buying rate is �=3, the transfer
rate �=5, the selling rate is �=5, the selling-price is P=20, the buying-cost is C =15, B2 =2 per day

B1 =0.01 B1 =0.1 B1 =0.5 B1 =1.0 B1 =1.5 B1 =2.0 B1 =2.5

Comp.(1) 11.985 11.85 11.25 10.5 9.75 9.0 8.25
Simul.m/std 14.2±1.2 13.8±1.4 12.8±1.9 12.8±1.6 11.8±1.9 11.2±1.6 10.3±2.0
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Figure 4. Lazy customers: Simulation of gain in Euro over a time span of 3 months (75 days) without perturbation for selling rate �=1.0, transfer rate �=1.0,

and optimal (Example 1) buying rate �=0.97, when P=€20, C =€15, and B1 =B2 =€1 / month
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Figure 5. (Left) Family of trajectories for gain (in Euro) under choice of rate parameters �=3.0, �=4.0, and �=5.0 without perturbation (n=200 runs). (Right)

Family of trajectories for gain under choice of rate parameters �=3.0, �=4.0, and �=5.0 with perturbation of amplitude �=1.0 (n=200 runs). As � lies well

within the allowed range (�<2(�−�)) for stability, the perturbation causes no significant decrease in the gain

3. Applications

We present some simulations involving the perturbed inventory process for the lazy customers model (see Section 2.2). We cover
the complete range of perturbation amplitudes and exhibit the behavior of mean and variance in each regime.

3.1. Constant selling rate without perturbation

The first application is performed to predict the gain over a period of 75 days (1800 h). Under the assumption of a tandem
network with the parameters: empiric selling rate �=1.0 items/hour and transfer rate �=1.0 items/h, the optimum gain rate
under stability is calculated as �=0.79 items/h. We assume a selling price of €20 per item, a stock-keeping cost of €1 per month
as well as a shop-keeping cost of €1 per month.

The development of the gain as a function of time is shown in Figure 4 (straight line). The analytical solution is compared
with a stochastic simulation of the underlying buying/stocking/selling process. The figure shows one specific simulated trajectory
of the stochastic process.

3.2. Constant selling rates with perturbation

The simulation of the lazy customers model is shown in Figure 5 (Left). Assuming the parameters of the tandem network
parameters �=5.0, transfer rate �=4.0 and buying rate �=3.0 we show the development of the gain during 120 days for 200
trajectories, as well as the histogram at the end of the period. First, no random perturbation of the selling process is assumed.
The histogram shows an empirical mean value m= €648 and a standard deviation s=€75 at the end of the observation period.

We call � the amplitude of the perturbation, i.e. in the simulation, we modify the selling rate �′ by the following rule: �′ =�−�.
In Table III we have �=3, and �=5.

Assuming the same values for the selling rate, intermediate transfer rate, and mean buying rate, Figure 5 (Right) shows the
distribution of the gain assuming a moderate perturbation � of the buying rate �. The histogram of the gain at the end of the
observation period shows a mean value m=€679 and an increased standard deviation s=€102.

The criterion of stability (Theorem 1) is supplemented by experimental results by showing that approximately near the critical
value of �c =4=2|�−�|, the observed standard deviation for the first time exceeds half of the empirical mean. This observation
is confirmed in the final pair of histograms with values of � close to �c (see Figure 6).

Copyright © 2010 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 899--907
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Table III. Gain after 5 days: mean±std (Lazy Customer Model)

� �=3.1 �=3.5 �=4 �=5 �=6 �=8

0.0 30.0±21.9 47.5±12.8 45.4±9.2 64.6±6.0 68.1±5.7 74.8±6.8
1.0 27.2±22.4 42.2±11.4 57.2±7.2 63.0±7.3 66.2±6.2 72.1±6.7
2.0 24.8±21.2 45.8±14.7 54.7±11.2 60.1±8.8 64.8±10.0 71.7±8.2
3.0 18.5±23.4 37.9±17.3 47.8±14.1 57.4±11.6 64.3±12.1 70.1±8.7
3.5 9.8±27.9 30.4±21.7 45.4±17.2 55.5±12.9 61.6±15.2 68.2±10.3
4.0 1.3±32.1 12.1±27.0 37.6±24.6 53.1±15.5 62.5±14.5 66.5±11.3

Figure 6. (Left) Simulation with �=3.8 (critical value �c =4.0); �=3, �=8, �=5 over a period of 10 days and B1 =10, B2 =20 Euros/month. (Right) Same as

Left, except for perturbation amplitude, which is now �=4.2. The catastrophe becomes visible by positive losses occurring with ‘high probability’

4. Conclusion

We developed two stochastic models for buying/stocking/selling processes assuming perturbations of the instantaneous step
rates. We compare the two models by giving the criteria for stability for each. The underlying process consists of a tandem
network imitating the stock and the shelf in a retailer’s environment. We derived analytical solutions for the stability, the optimal
gain, and its variance. Further investigations have been performed studying the robustness of the queues assuming random
perturbations. In this case, we focused on the Lazy Customers model due to the stability threshold, which is independent of
the transfer rate. These applications show the suitability of the derived models for various inventory environments. The analysis
guarantees the stability (recurrence) of the tandem queue. The criteria given allow for optimizing the buying rate and transfer
rate between stock and shop, having knowledge of the selling rate.
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