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“The whole of life is just like watching a film. Only it’s as though you always get

in ten minutes after the big picture has started, and no-one will tell you the plot,

so you have to work it out all yourself from the clues.”

Terry Pratchett



Abstract

Microarray technologies have been widely used to provide data for research, partic-

ularly in life sciences research. These data need to be pre-processed before further

analysis is applied, because some steps in producing microarray data contribute

to noise. Two of the most advanced platforms in microarray technology are the

Affymetrix GeneChips and the Illumina BeadArrays.

We study and compare the performance of the existing convolution models for

background correction of the Illumina BeadArrays in the literatures and propose

the new approach to adjust the intensity value. Our study shows our model (with

the method of moments for the parameter estimation) to be the optimal model for

the benchmarking data set with the benchmarking criteria. In the public data sets

our proposed models have the best performance, showing only a moderate error

in the background correction and in the parametrization.

Further, we generalized the proposed model to the convolution based on the gen-

eralized beta distribution. The generalized model facilitates a user in finding a

suitable convolution model for the data at hand.

We propose two new tests to compare the mean of two independent samples. The

simulation results of the first proposed test show that, it has equal power to the t

test. The simulation results of the second proposed test show that, in general, it

has a better power than the t test even when the sample size is small. These two

proposed tests can be used as the alternative tests of determining the differentially

expressed genes under two conditions of investigation in microarray data analysis.
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Chapter 1

Introduction

1.1 Motivation

There are various processes in producing data from microarray experiments and

each process contributes noise to the data. The noise can be of two types, biological

and non-biological. Non-biological noise should be avoided or at least minimized.

Sources for the non-biological noises are, for example, the chip itself, the scan-

ner, or fluctuations in the electrical network. Therefore, it is very important to

implement the pre-processing, before further analysis of data is performed. Pre-

processing is applied in order to improve the accuracy of the conclusion from the

analysis.

Generally, the steps in the pre-processing are image processing, background cor-

rection, normalization, and summarization of the probes into a single value [37].

In this thesis, we study the background correction step of the pre-processing.

Some researchers ([4], [9], and [49]) believe that the background correction step is

the most important step in the pre-processing, because it adjusts ([37, 38]) and

provides the true intensity.

To compute the true intensity, researchers have proposed additive, multiplicative

and also additive-muliplicative error models, see e.g. Huber et al.[36]. In the case

of additive models, the underlying distribution is generally chosen as normal (log-

normal), exponential, or a gamma-t mixture in the parametric approach ( [1], [5],

[8], [33], [40–42], and [53, 54]).

1
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Figure 1.1: Pre-processing steps in general, adapted from [38].

Irizarry et al. [40–42] and Bolstad et al. [5], in the Affymetrix platform computed

the true intensity based on the convolution model in the background correction

step of their robust multi-array average (RMA) pre-processing method. They

assumed that the true intensity is exponentially distributed and the background

noise is normally distributed.

Plancade et al. [53, 54] showed that the RMA model (in [5] and [40–42]) does not

fit the Illumina BeadArrays: using the exponential-normal convolution leads to a

large distance between the observed and the modeled intensities. Instead, they

proposed the implementation of gamma distribution for the intensity value and

normal distribution for the noise.

The simulation study of Plancade et al. [53, 54] showed that the gamma-normal

model performs better than the existing exponential-normal convolution model,

giving a more accurate and correct fit for the observed intensities in the Illumina

BeadArrays.

Using gamma distribution for the intensity values in the Illumina BeadArrays was

first suggested by Xie et al. [68].

The studies of Baek et al. [3] (in the background correction of the image pro-

cessing) and Chen et al. [8] show that the noise distribution is usually skewed in

different degrees. Baek et al. [3], in their studies based on the simulated and real

data sets, conclude that the gamma distribution is well suited for the noise. It
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accounts for the intensities with a positive lower bound and is very flexible in its

shape, including asymmetric exponential type and symmetric normal type.

The proposed convolution of exponential-gamma distribution by Chen et al. [8] im-

proves the intensity estimation and the detection of differentially expressed genes

in cases where the intensity to noise ratio is large and the noise has a skewed

distribution.

In view of the remarks above, it is natural to model both the true intensity and

the background noise in the Illumina BeadArrays as gamma distributed. We

computed the true intensity value based on the gamma-gamma convolution model

of RMA. However, this model did not fit into the Illumina benchmarking data set.

Independently, Triche et al. [62] proposed and applied the gamma-gamma model

to pre-process the Illumina methylation arrays.

We introduce a new model for background correction in the Illumina BeadArrays

where the true intensity value is followed the exponential or gamma distribution

and the noise has lognormal distribution. As we will see, this model avoids the dif-

ficulties of the gamma-gamma model and has an overall satisfactory performance.

We note that a new method reducing the bias of the maximum likelihood estimator

of the shape parameter of the gamma distribution has been proposed by Zhang

[70]. Bias is not a problem in our studies, because our samples are very large.

1.2 An overview of gene expression and microar-

ray technology

1.2.1 Gene expression

Biology is the study of living organisms, which are made up of cells. Cells are

the fundamental working units of every living organism, where all the instructions

needed to direct their activities are contained within the chemical nucleic acid.

Nucleic acid is made up of nucleotides, that consist of a nitrogenous base, sugar

(pentose) and phosphate.

There are two kinds of nucleic acid, deoxyribose nucleic acid (DNA) and ribose

nucleic acid (RNA). There are five different types of base, namely, adenine (A),
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cytosine (C), guanine (G), thymine (T), and uracil (U). In nucleic acid, the pentose

sugars are deoxyribose and ribose.

DNA is a nucleic acid with a sugar component of deoxyribose and base components

of A, C, G and T. The deoxyribose sugar consists of 5 carbon atoms and an oxygen

atom in a ring, with the carbon atoms numbered as 5’, 4’, 3’, 2’, and 1’. The ’

is read as prime, a naming convention that specifies the carbon atoms in the

deoxyribose ring, not the carbons of the base.

DNA takes the form of a double helix with two nucleotide chains, containing a

linear backbone of sugar (S) and phosphate (P). In this form, the direction of the

nucleotides in one strand is the opposite to their direction in the other strand. The

ends of DNA strands are called the 5’ and 3’ ends. This refers to the locations of

carbon atoms on the pentose sugars. The structure of DNA can be seen in Figure

1.2.

The double helix is formed due to the hydrogen bonding between base pairs. The

bases on one strand are paired with the bases on another strand, according to

Watson-Crick base pairing rules, where A specifically pairs with T, and C pairs

with G ([2], [13], and [69]). It is repeated millions or billions of times throughout a

genome. The particular order of As, Ts, Cs, and Gs dictates whether an organism

is human or another species, for example yeast, rice, or fruit fly.

Figure 1.2: DNA structure, http://academic.brooklyn.cuny.edu/biology/

bio4fv/page/molecular%20biology/dna-structure.html, last retrieved May 6,
2014.

DNA in each human cell is packaged into 46 chromosomes and arranged into 23

pairs. Each chromosome is a physically separate molecule of DNA that ranges

in length from about 50 million to 250 million base pairs [2]. Each chromosome

http://academic.brooklyn.cuny.edu/biology/bio4fv/page/molecular%20biology/dna-structure.html
http://academic.brooklyn.cuny.edu/biology/bio4fv/page/molecular%20biology/dna-structure.html
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contains many genes, the basic physical and functional units of heredity for an

organism [43]. A structure at the end of a chromosome, where there is an area of

highly repetitive DNA sequencing is called telomere, see Figure 1.3 and 1.4.

Figure 1.3: Cell, Chromosome and DNA, http://www.ch.ic.ac.uk/local/

projects/burgoine/origins.txt.html, last retrieved May 6, 2014

Figure 1.4: Gene and DNA, http://www.ghr.nlm.nih.gov/handbook/basics?

show=all, last retrieved May 6, 2014.

http://www.ch.ic.ac.uk/local/projects/burgoine/origins.txt.html
http://www.ch.ic.ac.uk/local/projects/burgoine/origins.txt.html
http://www.ghr.nlm.nih.gov/handbook/basics?show=all
http://www.ghr.nlm.nih.gov/handbook/basics?show=all
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RNA is a nucleic acid with a sugar component of ribose (has an -OH at the 2’ C

position, whereas the DNA sugar has an -H at that position) and a base component

containing the base uracil instead of thymine. It is a single stranded.

Genes are specific sequences of bases that encode instructions on how to make

proteins or an RNA molecule ([2], [13], [43], and [69]). Gene expression is the

process whereby a gene transfers its genetic code information from DNA into

protein.

Firstly, the DNA double helix splits and develops a condition where one strand of

the DNA acts as a template of where the complementary of messenger ribonucleic

acid (mRNA) is formed. The mRNA strand then separates. The sequence bases

of mRNA are then converted into proteins through the translation step. All the

process are formulated in a central dogma of molecular biology [2].

1.2.2 DNA microarray technology

1.2.2.1 DNA microarray technology in general

A DNA microarray is a technology used in molecular biology to monitor gene

expression in parallel. Gabig and Wegrzyn [26] define the technology as high

density arrays of DNA or oligonucleotide sequences, known as probes, in thousands

of features. These probes hybridize the mRNA samples in Watson-Crick base

pairing. Because there are probes for each gene, we are able to measure the

activity level of genes in a particular sample.

The cells in a human body contain identical genetic material, but the same genes

are not active in every cell. To determine which genes are turned on and which are

turned off in a given cell, a researcher needs to conduct microarray experiments.

If a particular gene is very active in a given cell, it produces many molecules of

mRNA. Therefore, the hybridization process will generate very bright fluorescence.

Genes that are less active produce fewer mRNAs and less fluorescence. If there is

no fluorescence, none of the messenger molecules have hybridized to the target on

the microarray slide, indicating that the gene is inactive. The gene expression is

measured by the intensity value of the scanned image of the microarray slide after

the steps of hybridization, washing and staining.
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Amaratunga and Cabrera [2], Draghici [13], Lee [43], and Zhang [69] explain that

the application of microarray technology is related to the post-genomics era, since

a GeneChip contains tens of thousands of probes. Because of that, a microar-

ray experiment can monitor the expression pattern of many genes in parallel and

therefore researchers can simultaneously investigate many genes and their interac-

tion at once. Previously, this was not possible: the researcher could only monitor

a few genes in one experiment.

Figure 1.5: Illumina platforms, [23]

Figure 1.6: Pattern substrate of Illumina platform, [61].
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1.2.2.2 Illumina BeadArrays technology

Illumina technology is one of the most advanced technologies in analyzing gene

expression by microarrays. It can be used to profile partially degraded RNA

which is usually found in the FFPE samples, by the cDNA-mediated Annealing,

Selection, Extension, and Ligation (DASL) assay method.

The huge amount of available the formalin-fixed, paraffin-embedded (FFPE) data

make the Illumina platform very important because of the nature of the DASL

assay method, which can deal with the partially degraded RNA to profile the gene

expression of the samples.

The Illumina platform has a small feature size, dense features and the ability to

analyze multiple samples in parallel. Illumina provides two formats of microarrays

([22], [23], [51] and [61]), the Sentrix R© Array Matrix (SAM) and the Sentrix

BeadChip (SBC). See Figure 1.5. The pattern substrate can be seen in Figure 1.6.

The Array Matrix arranges fiber optic bundles, each containing 50,000 fibers within

a distance of 5-µm, into an Array of ArraysTM format of a 96-well microtiter plate.

On one end of the fiber optic bundles, the core of each fiber is etched to form a

nanowell for the 3-µm silica beads.

In the BeadChip format, one or more microarrays are arranged on silicon slides

that have been processed by micro-electromechanical systems (MEMS) technology

to also have nanowells that support the self assembly of beads.

Steemers and Gunderson [61] explain the three parts of the Illumina BeadArrays

manufacturing process (see Figure 1.8). The three parts are:

1. The first part is the creation of a master bead pool consisting of 1,536-

250,000 different bead types. For quality control, it includes the negative

control beads. Oligonucleotide capture probes are immobilized individually

by bead type in a bulk process. Each bead type in an array comes from a

single immobilization event, reducing array-to-array feature variability. The

design of the Illumina bead can be seen in Figure 1.7.

2. The second step is the random self assembly of the master pool of bead types

into etched wells on the array substrate, where each bead type is represented

on average 30 times - a strategy which provides the statistical accuracy of

multiple measurements.
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3. The third step is the identification of each bead on the array, through a de-

coding process. This process provides information of each bead and performs

a quality control of the feature in every array.

Figure 1.7: The design of an Illumina bead. In this figure, the bead is shown to
be coated by one oligonucleotide only. In the real bead, it is coated by hundreds
of thousands of copies of a specific oligonucleotide. http://bitesizebio.com/
articles/how-dna-microarrays-are-built/, last retrieved May 6, 2014.

Figure 1.8: Production process of Illumina, http://www.ipc.nxgenomics.

org/newsletter/no8.htm, last retrieved May 6, 2014.

http://bitesizebio.com/articles/how-dna-microarrays-are-built/
http://bitesizebio.com/articles/how-dna-microarrays-are-built/
http://www.ipc.nxgenomics.org/newsletter/no8.htm
http://www.ipc.nxgenomics.org/newsletter/no8.htm
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1.3 Some aspects on microarray data analysis

1.3.1 Benchmarking

The Illumina design provides two probe types: the regular and the control probes.

This design is very suitable for studying the probability distribution of both probe

types. Therefore, one can apply the convolution model to compute the true in-

tensity value. The availability of benchmarking data in the Illumina platform,

the Illumina spike-in, helps researchers to evaluate their proposed method for the

Illumina BeadArrays.

We compare performance of models on the Illumina spike-in data set, based on

various criteria: root and mean square error (RMSE), L1 error, Kullback-Leibler

(K-L) coefficient, and some adapted criteria from Affycomp [10]. These criteria

measure the reproducibility, accuracy, precision, specificity and sensitivity of the

expression measure of each model. We then provide a simulation to measure

the consistency of errors in background correction and the parametrization. The

description and details of these criteria and the simulation can be found in the

next sections.

1.3.1.1 Benchmarking data set

The Illumina platform has provided a benchmarking data set, the Illumina spike-

in [14]. These spike-in probes are targeting bacterial and viral genes absent from

the mouse genome. These were added at specific concentrations on each sample.

Therefore the change in expression level of a particular spike between samples is

known a priori. The expression levels of the non-spikes should not change between

samples.

There are twelve different concentrations of spike: 1000 picomolar (pM), 300 pM,

100 pM, 30 pM, 10 pM, 3 pM, 1 pM, 0.3 pM, 0.1 pM 0.03 pM, 0.01 pM and 0 pM.

It was replicated four times. Therefore, there are 48 samples with each sample

having regular and control bead-type level probes.

There are approximately 48,000 bead-type level probes for each sample into which

33 spike-in bead-type level probes are added. For the control, there are 1,616
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negative control bead-type level probes. These control experiments are the bench-

marking data sets of the Illumina platform and are used to compare low-level

analysis methods such as in the Affymetrix platform.

1.3.1.2 Benchmarking criteria

Cope et al [10] provides the Affycomp package for the benchmarking study. It

provides some criteria for the benchmarking study in the Affymetrix platform,

but has been used by [68], [8], and [53, 54] in the Illumina platform. We adopt

these criteria and the explanation is as follows.

The Affycomp [10] provides fourteen criteria and here we define different ranges

for each classification. Cope et al. [10] define the low,medium and high intensities

as a nominal concentration less than or equal to 2 pM, a nominal concentration

between 4 and 32 pMs, and a nominal concentration greater than or equal to 64

pM respectively.

In the Illumina spike-in data set, the high, medium and low concentrations are

defined as a nominal concentration less than or equal to 1 pM, a nominal concen-

tration between 3 and 30 pMs, and a nominal concentration greater than or equal

to 100 pM. Instead of using the slope, we used the R2, as it reflects the best fit for

the data: the quantity that measures what percentage of the observed expressions

is explained by nominal concentrations.

The criteria 1 to 9 below were computed by the author and criteria 10 to 14 were

computed by implementing the assessSpikeIn2 and the assessSpikeIn functions

from the Affycomp package, with some adjustments. The benchmarking criteria

are as follows:

1. Median SD. It is believed that the variance of an expression measure across

replicate arrays should be low, so the standard deviation (SD) is also low,

ideally zero. The median of standard deviations across replicate arrays is

chosen to be the measurement due to its robustness.

2. Null log-fc IQR. The non spike-in genes should not be differentially expressed

across arrays. Therefore, the Inter-quartile range (IQR) of the log-fold-

changes of the non spike-in genes is, ideally, zero.
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3. Null log-fc 99.9%. Same as above but using the 99.9% percentile.

4. Signal detects R2. The R-squared (R2) is obtained by regressing expression

values on nominal concentrations in the spike-in data. The ideal value of

R-squared is 1, because ideally an increment in the nominal concentration is

followed by an increment of the expression values, in the same scale.

5. Low.R2. This is obtained from the regression of observed log concentrations

on nominal log concentrations for genes with low intensities.

6. Med.R2. This is obtained from the regression of observed log concentrations

on nominal log concentrations for genes with medium intensities.

7. High.R2. Same as above but for genes with high intensities.

8. Obs-intended-fc R2. The R2 that is obtained by regressing observed log-fold-

changes against nominal log-fold-changes for the spike-in genes.

9. Obs-(low)int-fc R2. The R2 that is obtained by regressing observed log-

fold-changes against nominal log-fold-changes for the spike in genes with low

intensities.

10. Low AUC. This is computed as the area under the receiver operator charac-

teristic (ROC) curve (up to 100 false positives) for genes with low intensities,

and standardized. Therefore, the optimum value is 1.

11. Med AUC. Same as above but for genes with medium intensities.

12. High AUC. Same as above but for genes with high intensities.

13. Weighted avg AUC. A weighted average of the previous 3 ROC curves with

weights related to the amount of data in each classification (low, medium

and high).

14. All AUC. An AUC for all intensities, 12 arrays.

The criteria above measure

1. accuracy and precision using the squared correlation coefficient and the stan-

dard deviation across replicates

2. specificity and sensitivity using the AUC value and the inter-quartile range

of log fold-change
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1.3.1.3 Affycomp plot

The Affycomp contains some plots that are used as supplemental supports in the

process of benchmarking against the spike-in and the dilution data sets. Some of

them are as in [10] and http://affycomp.biostat.jhsph.edu.

For the Illumina BeadArrays a slightly different usage is explained as follows:

1. MA plot

This plot uses 12 arrays representing a single experiment of the Illumina

spike-in and the fold changes are generated by comparing the first arrays

in the set to each of the others. The spiked-in genes are symbolized by

numbers representing the nominal log2 fold-change for the gene. The non-

spike-in genes with observed absolute fold changes larger than 2 are plotted

in red. All other probe sets are represented in black.

2. Variance across replicates plot

Using the benchmarking data set, the variance of an expression measured

across replicate array should be low. For each non spiked-in gene in the

arrays used in the MA plot, the mean log expression and the observed stan-

dard deviation across the replicates are calculated. The resulting scatter

plot is smoothed to generate a single curve representing the mean standard

deviation as a function of the mean log expression. The standard deviation

should be low and independent of the expression level.

3. Observed expression versus nominal expression plot

In this plot the log observed intensity of spike-in gene is plotted against

the log nominal concentration. The average values of observed intensities in

each nominal concentration are used to produce a mean curve. Ideally, if the

nominal concentration is doubled, the observed intensity as well. Therefore,

ideally the observed intensity should be linear in true concentrations with a

slope of 1.

4. ROC curve

Identification of genes which are differentially expressed can be done by

filtering the genes using a fold change exceeding a given threshold. An ROC

curve offers a graphical representation of both specificity and sensitivity

for such a rule. It is constructed by plotting the true positive (TP) rate

(sensitivity) against the false positive (FP) rate (1- specificity).

http://affycomp.biostat.jhsph.edu
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5. Observed fold-change versus nominal fold-change

The plotting of log fold-change observation and nominal is used for validation

of differentially expressed genes.

1.3.1.4 Reproducibility

To assess which models reproduce the best the benchmarking data, two measure-

ments are applied for each jth array (see e.g. Shamilov [57]):

1. Root Mean Square Errors (RMSE), RMSEj =

 I∑
i=1

(Pij−Ŝij)2

I


1
2

2. Kullback-Leibler (K-L), K-Lj =
I∑
i=1

Pij log

(
Pij

Ŝij

)
,

where Ŝij is the background corrected intensity and Pij is the observed in-

tensity.

1.3.2 Differentially expressed genes

Research in the microarray field, although remarkably has solved the problem in

life sciences research by providing the huge data of genes which can be investi-

gated at the same time; however, there are still some limitations. For example

the replication in the experiments. The rather low sample replications make the

decision from the samples not quite conclusive, because the samples are considered

not representative enough.

In the beginning, researchers applied one simple assessment, the log-fold-change.

This assessment is no longer used, since it does not take into account the variance

among samples. Other options implement the nonparametric methods, t test,

moderate t test, analysis of variance, or regression test.

In this thesis we propose a new approach to determining the differentially expressed

genes, by implementing the cross variance concept.
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1.4 Thesis contribution

Although microarray technology has been used to generate accurate, precise and

reliable gene expression data [13], there are some outstanding issues relating to

data from microarray experiment. Firstly, there are some noise and variation con-

tributions from each step of the microarray fabrication. Secondly, some researchers

(e.g. [2], [13], [34], [50], [43], and [69]) believe that once the microarray data are

available, the storage, analysis and interpretation of these data present a major

challenge due to the massive amount of data generated.

The overall objective of the thesis is to improve the quality of the intensity val-

ues of the Illumina BeadArrays and to propose the measurement of differentially

expressed genes. The contributions, can be summarized as follows:

1. introducing a new convolution-based model in the background correction

step of the Illumina BeadArrays. These results are presented in Chapter 3.

2. providing guidance for users in choosing the best background correction

methods for the data at hand. This is presented in Chapter 4.

3. proposing a new approach to determining the differentially expressed genes

in microarray experiments by proposing the alternative to the two indepen-

dent samples t test, which is implementing the cross variance concept. See

Chapter 5 for a detailed discussion.

1.5 Structure of the thesis

This thesis has been organized into 6 chapters as follow:

In Chapter 2, the existing background correction methods under the convolution

model for the Illumina BeadArrays are explained.

In Chapter 3, the new proposed model and its generalization under the convolution

model is introduced.

In Chapter 4, the performance comparison of all models on the benchmarking and

the public data sets are described and explained.
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In Chapter 5, the proposed alternative to the two independent samples t test (to

determine the differentially expressed genes) and its simulation study (to compare

its rejection rate and power to the t test) are introduced and explained.

In Chapter 6, the conclusions of the research, the suggestions to the users of pre-

processing methods and the future works related to current research are presented.

1.6 Summary of the chapter

In this chapter, the basic concepts of gene expression, microarray technology, and

microarray data analysis, the concept of pre-processing steps and differentially

expressed genes have been described. The contributions and structure of this

thesis have also been outlined. In the next chapter, some background correction

convolution-based models will be described.



Chapter 2

The existing background

correction under convolution

model

2.1 Introduction

The Affymetrix GeneChip is the pioneering and most widely used platform for

microarray gene expression experiments. The tools and algorithms used to han-

dle the data are numerous, both free and commercial. Some methods for pre-

processing are available. Examples for the pre-processing methods are: MAS5.0

by Affymetrix, multiplicative model based expression index (MMBE) by Li and

Wong [45], RMA in Irizarry et al. [40–42] and Bolstad et al. [5], GC-RMA by Wu

et al. [67] and maximum likelihood estimation based on the normal-exponential

convolution model by Silver et al. [59].

The increasingly popular Illumina BeadArrays is one of the alternative platforms.

A few statistical methods have been developed for the BeadArrays data however,

there is as of yet, no consensus regarding the pre-processing steps [58].

Ding et al. [12] extended the RMA model by proposing the model-based back-

ground correction method (MBCB) and showed that their model leads to a more

precise determination of the gene expression and to a better biological interpreta-

tion of the Illumina BeadArrays data.

17
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Xie et al. [68] mention that for the background correction step, the Illumina bead

studio gives two options (no background correction and background substraction)

and the packages for the BeadArrays in R provide three options (no background

correction, background substraction and RMA background correction).

The studies of Chen et al. [8] and Plancade et al. [53, 54] show that their back-

ground correction models are made by adapting the RMA Affymetrix model. As

Forcheh et al. [24], pointed out, most preprocessing methods for the Illumina

BeadArrays are taken from the Affymetrix microarray platform.

We studied the existing convolution models for background correction of the Illu-

mina BeadArrays in the literature and they are presented in the following sections.

In general, the background correction is applied toward each array, in which there

are probes, probesets and genes (terminology for the Affymetrix platform) or bead

and bead-type level probes (terminology for the Illumina platform).

In the Illumina platform, each gene is only targeted by one bead-type, which has

been represented by about 30 time replications. If we can have a raw benchmarking

data set, then it is possible to have all bead-type level probes of the raw data

intensities.

The current publicly available benchmarking data set for the Illumina platform

is the raw data from the bead studio, which is the average of the bead-type level

probes, not background corrected and of unnormalized intensity. Therefore, the

background correction in this thesis is applied to the gene intensity in each array.

Suppose we have J arrays and for each array there are I regular genes and M

negative control genes. Throughout the thesis, the convolution model is applied

for each array j and is represented as follows:

Pi = Si +Bi, (2.1)

where Pi, Si, and Bi are the regular (observed), the true and the noise intensities

respectively, i = 1, ..., I, j = 1, ..., J . For a negative control gene m at array j, m =

1, 2, ...,M , the observed intensity denoted by P0m is assumed to be P0m = B0m,

where B0m is the noise intensity. The Pi and P0m are assumed to be independent.
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2.2 Basic concepts

Definition 2.1. Let X and Y be two continuous random variables with density

functions f1(x) and f2(y) respectively. Assume that both f1(x) and f2(y) are

defined for all real numbers. Then the convolution f1 ∗ f2 of f1 and f2 is the

function given by

(f1 ∗ f2)(z) =

+∞∫
−∞

f1(z − y)f2(y)dy

=

+∞∫
−∞

f2(z − x)f1(x)dx. (2.2)

Theorem 2.2. Let X and Y be two independent random variables with density

functions fX(x) and fY (y) respectively defined for all x and y. Then the sum

Z = X + Y is a random variable with a density function of fZ(z), where fZ is the

convolution of fX and fY .

Definition 2.3. McDonald and Xu [47] define the generalized beta distribution

by the probability density function

GBX(x; a, g, c, u, v) =
| a | xau−1(1− (1− c)(x

g
)a)v−1

gauB(u, v)(1 + c(x
g
)a)u+v

; 0 < xa <
ga

1− c
, (2.3)

and zero otherwise, with B (u, v) as the beta function, 0 ≤ c ≤ 1, a, g, u and v

positive.

Definition 2.4. Let X be a random variable gamma distribution with parameter

α and β. The probability density function of X is

fX(x;α, β) =
βαxα−1 exp{−βx}

Γ(α)
; α, β, x > 0. (2.4)

Definition 2.5. Let X be a random variable exponential distribution with pa-

rameter θ. The probability density function of X is

fX(x; θ) = θ exp{−θx}; θ, x > 0. (2.5)
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Definition 2.6. Let X be a random variable normal distribution with parameter

µ and σ2. The probability density function of X is

fX(x;µ, σ2) =
1√
2πσ

exp{− 1

2σ2
(x− µ)2}; µj, x ∈ R, σ2 > 0. (2.6)

Definition 2.7. Let X be a random variable lognormal distribution with param-

eter µ and σ2. The probability density function of X is

fX(x;µ, σ2) =
1

xσ
√

2π
exp{− 1

2σ2
(lnx− µ)2}; µj, x ∈ R, σ2 > 0. (2.7)

Definition 2.8. A random variable X is confluent hypergeometric distribution

CH(p, q, s) if the probability density function is defined as follows [29]:

CH(p, q, s) =
xp−1(1− x)q−1 exp{−sx}
B(p, q)1F1(p, p+ q,−s)

; b, p > 0, s ∈ R, 0 < x < 1, (2.8)

where B(p, q) is the beta function, B(p, q) = Γ(p)Γ(q)
Γ(p+q)

= (p−1)!(q−1)!
(p+q−1)!

,1 F1(p, p +

q,−s) =
∞∑
n=0

(p)n
(p+q)nn!

(−s)n and (p)n = p(p+ 1)...(p+ n− 1), and (p)0 = 1

2.3 RMA method

The RMA, since its introduction in 2003 [40–42], has gained popularity among

bioinformaticians. It has evolved from the exponential-normal convolution to the

gamma-normal convolution, from single to two channels and from the Affymetrix

to the Illumina platform.

The RMA method was developed for the Affymetrix platform, where the design

of arrays differs from the Illumina platform. The Affimetrix paltform has perfect

match and mismatch probe design. The RMA uses only the perfect match probe,

which is the targeted probe of the intended gene. For those not familiar with the

Affymetrix platform, refer to [4], [5], and [40–42] for further information.

In modelling the intensity values, the RMA model ([5], and [40–42]) assumes that

the intensity values are affected by the noise of the chip. According to Equation

(2.1), in the RMA model Pi = PMi is the observed probe level intensity of perfect

match probes of the ith gene, Si is the true intensity of the ith gene, with Si ∼
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f1(si; θj) = Exp(θj), θj, si > 0, and Bi as the background noise of the ith gene with

Bi ∼ f2(bi;µj, σ
2
j ) = N

(
µj, σ

2
j

)
, µj ∈ R, σ2

j , bi > 0.

Assuming independence, the joint density of the two-dimensional random variables

(Si, Bi) is

fSi,Bi(si, bi;µj, σ
2
j , θj) = θj exp{−siθj}f2

(
bi;µj, σ

2
j

)
; si, bi > 0. (2.9)

Furthermore, the transformation formula for two-dimensional densities that gives

the joint density of Si and Pi is

fSi,Pi(si, pi)

= fSi,Bi(si, pi − si;µj, σ2
j , θj)|J |

= f1(Si = si | θj)f2(Pi − Si = pi − si | µj, σ2
j )

= θj exp{−θjsi}
1√

2πσj
exp

{
− 1

2σ2
j

(
(pi − si)− µj

)2

}

=
θj√
2πσj

exp

{
− 1

2σ2
j

(
(pi − si)− µj

)2 − θjsi

}

=
θj√
2πσj

exp

{
− 1

2σ2
j

(
p2
i − 2sipi + s2

i − 2(pi − si)µj + µ2
j + 2θjσ

2
j si

)}

=
θj√
2πσj

exp

{
− 1

2σ2
j

(
s2
i − 2sipi + 2siµj + p2

i − 2piµj + µ2
j + 2θjσ

2
j si

)}

=
θj√
2πσj

exp

{
− 1

2σ2
j

(
s2
i − 2si

(
pi − µj − θjσ2

j

)
+ p2

i − 2piµj + µ2
j

)}

=
θj√
2πσj

exp

{
− 1

2σ2
j

((
si −

(
pi − µj − θjσ2

j

))2

−

(
pi − µj − θjσ2

j

)2

+ p2
i − 2piµj + µ2

j

)}

=
θj√
2πσj

exp

{
− 1

2σ2
j

((
si −

(
pi − µj − θjσ2

j

))2

−

(
pi − µj − θjσ2

j

)2

+ (pi − µj)2

)}

=
θj√
2πσj

exp

{
− 1

2σ2
j

((
si −

(
pi − µj − θjσ2

j

))2

−
(
−2(pi − µj)θjσ2

j + θ2
jσ

4
j

))}
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= θj exp

{
θ2
jσ

2
j

2
− θj(pi − µj)

} exp

{
− 1

2σ2
j

(
si −

(
pi − µj − θjσ2

j

))2
}

√
2πσj

= θj exp

{
θ2
jσ

2
j

2
− θj(pi − µj)

}
f2

(
si; pi − µj − θjσ2

j , σ
2
j

)
. (2.10)

Therefore,

fSi,Pi(si, pi;µj, σ
2
j , θj)

= θj exp

{
θ2
jσ

2
j

2
− θj(pi − µj)

}
f2

(
si; pi − µj − θjσ2

j , σ
2
j

)
. (2.11)

The marginal density of Pi is

fPi(pi;µj, σ
2
j , θj)

=

∞∫
0

fSi,Pi(si, pi;µj, σj, θj)dsi

=

∞∫
0

θj exp

{
θ2
jσ

2
j

2
− θj(pi − µj)

}
f2

(
si; pi − µj − θjσ2

j , σ
2
j

)
dsi

=

∞∫
0

θj exp

{
θ2
jσ

2
j

2
− θj(pi − µj)

} exp

{
− 1

2σ2
j

(
si −

(
pi − µj − θjσ2

j

))2
}

√
2πσj

dsi

= θj exp

{
θ2
jσ

2
j

2
− θj(pi − µj)

} ∞∫
0

exp

{
− 1

2σ2

(
si −

(
pi − µj − θjσ2

j

))2
}

√
2πσj

dsi

= θj exp

{
θ2
jσ

2
j

2
− θj(pi − µj)

}1−
0∫

−∞

exp

{
− 1

2σ2
j

(
si −

(
pi − µj − θjσ2

j

))2
}

√
2πσj

dsi


= θj exp

{
θ2
jσ

2
j

2
− θj(pi − µj)

}(
1− F2

(
0; pi − µj − θjσ2

j , σ
2
j

))
. (2.12)
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By taking µS.P,j = pi − µj − θjσ2
j , then

fP (pi;µj, σ
2
j , θj) = θj exp

{θ2
jσ

2
j

2
− θj(pi − µj)

}(
1− F2

(
0;µS.P,j, σ

2
j

))
, (2.13)

where F2 is a Gaussian distribution function. Moreover the conditional density of

Si given Pi is

fSi|Pi(si | pi;µj, σ2
j , θj) =

fSi,Pi(si, pi;µj, σ
2
j , θj)

fPi(pi;µj, σ
2
j , θj)

=

θj exp

{
θ2jσ

2
j

2
− θj(pi − µj)

}
f2

(
si;µS.P,j, σ

2
j

)
θj exp

{
θ2jσ

2
j

2
− θj(pi − µj)

}(
1− F2(0;µS.P,j, σ2

j )
)

=
f2

(
si;µS.P,j, σ

2
j

)
(

1− F2(0;µS.P,j, σ2
j )
) . (2.14)

The background adjusted intensity is computed by the estimated signal given the

observed intensity. It is the conditional expectation E(Si | Pi = pi).

E(Si | Pi = pi)

=

∞∫
0

si
f2

(
si;µS.P,j, σ

2
j

)
(

1− F2

(
0;µS.P,j, σ2

j

))dsi
=

1(
1− F2

(
0;µS.P,j, σ2

j

)) ∞∫
0

sif2

(
si;µS.P,j, σ

2
j

)
dsi

=
1(

1− F2

(
0;µS.P,j, σ2

j

))

∞∫

0

si

exp

{
−1

2

(
si−µS.P,j

σj

)2
}

√
2πσj

 dsi. (2.15)
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By taking
si−µS.P,j

σj
= xi the Equation (2.15) becomes

=
1(

1− F2

(
0;µS.P,j, σ2

j

))


∞∫
−
µS.P,j
σj

(σjxi + µS.P,j) exp
{
−x2i

2

}
√

2π
dxi



=
1(

1− F2

(
0;µS.P,j, σ2

j

))
 σj√

2π

∞∫
−
µS.P,j
σj

xi exp

{
−x

2
i

2

}
dxi+

µS.P,j√
2π

∞∫
−
µS.P,j
σj

exp

{
−x

2
i

2

}
dxi



=
1(

1− F2

(
0;µS.P,j, σ2

j

))
 σj√

2π

exp

{
−x

2
i

2

}∣∣∣∣∣
∞

−
µS.P,j
σj

+

µS.P,j

∞∫
0

exp

{
−1

2

(
sij−µS.P,j

σj

)2
}

√
2πσj

dsi


=

1(
1− F2

(
0;µS.P,j, σ2

j

))
 σj√

2π
exp

−1

2

(
µS.P,j
σj

)2
+

µS.P,j

1−
0∫

−∞

exp

{
−1

2

(
sij−µS.P,j

σj

)2
}

√
2πσj

dsi




=
1(

1− F2

(
0;µS.P,j, σ2

j

))
σ2

j

1√
2πσj

exp

−1

2

(
µS.P,j
σj

)2
+

µS.P,j

(
1− F2

(
0;µS.P,j, σ

2
j

)))
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=

(
σ2
j f2

(
0;µS.P,j, σ

2
j

)
+ µS.P,j

(
1− F2

(
0;µS.P,j, σ

2
j

)))
(

1− F2

(
0;µS.P,j, σ2

j

))

= µS.P,j +
σ2
j f2

(
0;µS.P,j, σ

2
j

)
1− F2

(
0;µS.P,j, σ2

j

) . (2.16)

The background adjusted intensity is computed by using Equation (2.16). The

parameters are estimated by ad-hoc method. We summarize the ad-hoc method

from Bolstad [4], McGee and Chen [48] and Xie et al. [68] as follows:

1. First, for each array, a non-parametric density function is fitted from the

observed intensities, and compute the mode m0,j of this density.

2. Second compute the local mode m1,j from the lower tail of the density (to

the left of m0,j) and assign m1,j as µj. Compute σj from the left tail of the

density (to the left of m1,j) and compute θj from the right tail ( to the right

of m1,j).

Note that modelling the noise as a truncated normal variable means that the

noise equals 0 with a positive probability p0, a rather unpleasant feature of the

model. As pointed out in [68], however, in practical cases p0 is rather small, so this

problem can be disregarded. To avoid this difficulty, one can model the noise as

the absolute value of an N (µj, σ
2
j ) variable, which changes the calculations above.

2.4 Exponential-normal MBCB

Xie et al. [68] use the same underlying distributions as the RMA for the back-

ground correction. The differences from the RMA ([5] and [40–42]) are as follows

:

1. Xie et al. [68] take the +∞ as the upper bound of the integral to compute

the marginal density function and the conditional expectation of the true
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intensity value. On the other hand, the RMA puts p as the upper bound of

the integration.

The background corrected intensity value of Xie et al. [68] is

E(Si | Pi = pi) = µS.P,j + σj
φ(

µS.P,j
σj

)

Φ(
µS.P,j
σj

)
. (2.17)

2. Under the convolution model (2.1), where the true intensity value is assumed

to be exponentially distributed and the noise is normally distributed, we then

need to estimate the parameters θj, µj, and σ2
j . Xie et al. [68] offer three

parameters estimation methods: method of moments, maximum likelihood,

and Bayesian. On the other hand, the RMA applies the ad-hoc method.

Ding et al. [12] use the exponential-normal convolution model to correct the

background of the Illumina platform by using the Markov chain Monte Carlo

simulation.

2.5 Gamma-normal convolution

Plancade et al. [53, 54] introduced gamma-normal convolution to model the back-

ground correction of the Illumina BeadArrays. The model is based on the RMA

background correction of the Affymetrix GeneChips. Plancade et al. [53, 54]

assume that the intensity value is gamma distributed and the noise is normally

distributed.

Under the model background correction in (2.1), fPi is the convolution of fSi and

fBi . The background corrected intensity S̃i(pi) is computed as the conditional

expectation of Si given Pi = pi:

S̃i(pi) =

∫
sif

gam
αj ,βj

(si)f
norm
µj ,σj

(pi − si)dsi∫
f gam
αj ,βj

(si)fnorm
µj ,σj

(pi − si)dsi
, (2.18)

where

f gam
αj ,βj

(xi;αj, βj) =
β
αj
j x

αj−1
i exp{−βjx}

Γ(αj)
; αj, βj, xi > 0

is the gamma density. When Si is gamma distributed and Bi is normally dis-

tributed, the Equation (2.18) does not have analytic expression as it does in
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Equations (2.16) and (2.17). Therefore, Plancade et al. [53, 54] implemented

the Fast Fourier Transform to estimate the parameters and to correct the back-

ground. For the background correction with Fast Fourier Transform, the Equation

(2.18) is rewritten as

S̃i(pi | Θj) =
αjβj

∫
f gam
αj+1,βj

(si)f
norm
µj ,σj

(pi − si)dsi∫
f gam
αj ,βj

(si)fnorm
µj ,σj

(pi − si)dsij
, (2.19)

where Θj = (µj, σj, αj, βj), and sif
gam
αj ,βj

(si) = αjβjf
gam
αj+1,βj

(si) is valid for every

si > 0.

2.6 Exponential-gamma convolution

Chen et al. [8] proposed in favor of the distribution of the true intensity and

its noise, under the convolution model of Equation (2.1), the exponential and

gamma distributions respectively. Therefore, Si ∼ f1(si; θj) = Exp(θj) and Bi ∼
f(bij;αj, βj) = GAM(αj, βj), where si, bi, θj, αj, βj > 0.

The corrected background intensity for the proposed model ([8]) is :

Ŝi = pi −

pi∫
0

b
αj
i exp

{
− (βj − θj)bi

}
dbi

pi∫
0

b
αj−1
i exp

{
− (βj − θj)bi

}
dbi

. (2.20)

Chen et al. [8] use the method of moment and the maximum likelihood estimation

in estimating the parameters in this model. However in the MBCB package only

the maximum likelihood is applied. In this thesis, the method of moment is also

applied in the computation of the background correction.

2.7 Gamma-gamma convolution

The intensity value is modeled similarly to Equation (2.1), where the true intensity,

Si, is gamma distributed, Si ∼ f1(si;α1,j, β1,j) = GAM(α1,j, β1,j), si, α1,j, β1,j > 0

and the background, Bi, is gamma distributed, Bi ∼ f2(bi;α2, β2,j) = GAM(α2,j, β2,j),

where bi, α2,j, β2,j > 0.
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The joint density function of (Si, Bi) is

fSi,Bi(si, bi;α1,j, β1,j, α2,j, β2,j)

=
β
α1,j

1,j s
α1,j−1
i exp{−β1,jsi}

Γ(α1,j)

β
α2,j

2,j b
α2,j−1
i exp{−β2,jbi}

Γ(α2,j)
; si, bi > 0. (2.21)

The corrected background intensity is derived by determining the joint distribution

of Si and Pi. The joint distribution function of Si and Pi is

fSi,Pi(si, pi)

= fSi,Bi(si, pi − si;α1,j, α2,j, β1,j, β2,j)|J |

= f1(Si = si;α1,j, β1,j)f2(Pi − Si = pi − si;α2,j, β2,j)

=
β
α1,j

1,j s
α1,j−1
i exp{−β1,jsi}

Γ(α1,j)

β
α2,j

2,j (pi − si)α2,j−1 exp{−β2,j(pi − si)}
Γ(α2,j)

. (2.22)

The marginal density function of Pi is

fPi(pi;α1,j, α2,j, β1,j, β2,j)

=

pi∫
0

fSi,Pi(si, pi;α1,j, α2,j, β1,j, β2,j)dsi

=

pi∫
0

β
α1,j

1,j s
α1,j−1
i exp{−β1,jsi}

Γ(α1,j)

β
α2,j

2,j (pi − si)α2,j−1 exp{−β2,j(pi − si)}
Γ(α2,j)

dsi

=
β
α1,j

1,j

Γ(α1,j)

β
α2,j

2,j exp{−β2,jpi}
Γ(α2)

pi∫
0

s
(α1,j−1)
i (pi − si)(α2,j−1) exp{−(β1,j − β2,j)si}dsi

=
β
α1,j

1,j

Γ(α1,j)

β
α2,j

2,j exp{−β2,jpi}
Γ(α2,j)

p
α1,j+α2,j−1
i ×

1∫
0

u
α1,j−1
i (1− ui)α2,j−1 exp{−pi(β1,j − β2,j)ui}dui

=
β
α1,j

1,j β
α2,j

2,j exp{−β2,jpi}p
α1,j+α2,j−1
i

Γ(α1,j + α2,j)

∞∑
n=0

(α1,j)n(−pi(β1,j − β2,j))
n

(α1,j + α2,j)nn!
. (2.23)
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The conditional density function of Si given Pi is

fSi|Pi(si | pi;α1,j, α2,j, β1,j, β2,j)

=
fSi,Pi(si, pi;α1,j, α2,j, β1,j, β2,j)

fP (pi;α1,j, α2,j, β1,j, β2,j)

=

β
α1,j
1,j s

α1,j−1

i exp{−β1,jsi}
Γ(α1,j)

β
α2,j
2,j (pi−si)α2,j−1 exp{−β2,j(pi−si)}

Γ(α2,j)

β
α1,j
1,j β

α2,j
2,j exp{−β2,jpi}p

α1,j+α2,j−1

i

Γ(α1,j+α2,j)

∞∑
n=0

(α1,j)n(−pi(β1,j−β2,j))n
(α1,j+α2,j)nn!

=
s
α1,j−1
i (pi − si)α2,j−1 exp{−(β1,j − β2,j)si}

B(α1,j, α2,j)p
α1,j+α2,j−1
i

∞∑
n=0

(α1,j)n(−pi(β1,j−β2,j))n
(α1,j+α2,j)nn!

. (2.24)

The corrected background intensity given the observed intensities is the conditional

expectation E(Si | Pi = pi). This is computed as follows:

E(Si | Pi = pi) =

pi∫
0

si
s
α1,j−1
i (pi − si)α2,j−1 exp{−(β1,j − β2,j)si}

B(α1,j, α2,j)p
α1,j+α2,j−1
i

∞∑
n=0

(α1,j)n(−pi(β1,j−β2,j))n
(α1,j+α2,j)nn!

dsi

=
1

B(α1,j, α2,j)p
α1,j+α2,j−1
i

∞∑
n=0

(α1,j)n(−pi(β1,j−β2,j))n
(α1,j+α2,j)nn!

×

pi∫
0

s
α1,j

i (pi − si)α2,j−1 exp{−(β1,j − β2,j)si}dsi

=
pi

B(α1,j, α2,j)
∞∑
n=0

(α1,j)n(−pi(β1,j−β2,j))n
(α1,j+α2,j)nn!

×

1∫
0

u
α1,j

i (1− ui)α2,j−1 exp{−pi(β1,j − β2,j)ui}dui

=
pi

B(α1,j, α2,j)
∞∑
n=0

(α1,j)n(−pi(β1,j−β2,j))n
(α1,j+α2,j)nn!

×

B(α1,j + 1, α2,j)
∞∑
n=0

(α1,j + 1)n(−pi(β1,j − β2,j))
n

(α1,j + α2,j + 1)nn!

=

piB(α1,j + 1, α2,j)
∞∑
n=0

(α1,j+1)n(−pi(β1,j−β2,j))n
(α1,j+α2,j+1)nn!

B(α1,j, α2,j)
∞∑
n=0

(α1,j)n(−pi(β1,j−β2,j))n
(α1,j+α2,j)nn!
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=

piα1,j

∞∑
n=0

(α1,j+1)n(−pi(β1,j−β2,j))n
(α1,j+α2,j+1)nn!

(α1,j + α2,j)
∞∑
n=0

(α1,j)n(−pi(β1,j−β2,j))n
(α1,j+α2,j)nn!

. (2.25)

In the case that αj values are differents, where the values of β1,j = β2,j = βj, then

the background adjusted intensity is computed by using the Equation (2.26).

=
piα1,j

α1,j + α2,j

. (2.26)

If βj values are differents, where the values of α1,j = α2,j = αj, then the background

adjusted intensity is as follows

=

pi
∞∑
n=0

(αj+1)n(−pi(β1,j−β2,j))n
(2αj+1)nn!

2
∞∑
n=0

(αj)n(−pi(β1,j−β2,j))n
(2αj)nn!

. (2.27)

In extreme cases, where the values of α1,j = α2,j and β1,j = β2,j, then the back-

ground adjusted intensity is

=
pi
2
. (2.28)

This gamma-gamma convolution model does not fit to the benchmarking data set

therefore, we do not use this model in the comparison. We describe the model

here, as it was independently proposed and successfully used by Triche et al. [62]

for the Illumina methylation arrays.

2.8 Summary of the chapter

In this chapter, the existing background correction convolution-based methods

to adjust the intensity value are described in detail and they are including a

gamma-gamma convolution model. The next chapter will introduce the proposed

convolution model and its generalization.



Chapter 3

The Proposed models

3.1 Introduction

In this chapter, we present the results of the two proposed models of convolution

(the exponential-lognormal and the gamma-lognormal) and their generalization

by considering two possible types of noise distribution: symmetrical or skewed.

The description of the exponential-lognormal convolution is in Section 3.2 and the

gamma-lognormal convolution is in Section 3.3. In Section 3.4 we describe the

generalized models of convolution for the background correction of the Illumina

BeadArrays: the generalized beta (Section 3.4.2) and the generalized beta-normal

distribution convolution (Section 3.4.3).

In each section, the formula to estimate the true intensity value is derived and the

methods to estimate the parameters are explained.

3.2 Exponential-lognormal convolution, [19]

3.2.1 Background correction

Consider the model (2.1), when the true intensity Si is exponentially distributed,

i.e. Si ∼ f1(si; θj) = θj exp{−θjsi}; θj, si > 0, and the background noise Bi is

lognormally distributed, Bi ∼ f2(bi;µj, σ
2
j ) =

exp

{
−

(ln bi−µj)
2

2σ2
j

}
biσj
√

2π
;µj ∈ R, σ2

j , bi > 0.

31
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The joint density function of Si and Bi equals

fSi,Bi(si; bi) = θj exp
{
− θjsi

}exp
{
− (ln bi−µj)2

2σ2
j

}
biσj
√

2π
, (3.1)

and thus the joint density function of Si and Pi is

fSi,Pi(si; pi) = θj exp
{
− θjsi

}exp
{
− (ln(pi−si)−µj)2

2σ2
j

}
(pi − si)σj

√
2π

; si < pi. (3.2)

Consequently, the marginal density function of Pi equals

fPi(pi; θj, µj, σ
2
j ) =

pi∫
0

fSi,Pi(si; pi)dsi

=

pi∫
0

θje
−θjsi

exp
{
− (ln(pi−si)−µj)2

2σ2
j

}
(pi − si)σj

√
2π

dsi. (3.3)

Using the substitution ln(pi − si) = zi then the equation (3.3) can be written as

follows:

fPi(pi) =

lnpi∫
−∞

θj exp
{
− θj(pi − exp{zi})

}
exp

{
− (zi−µj)2

2σ2
j

}
σj
√

2π
dzi

=
θj exp

{
− θjpi

}
σj
√

2π

ln pi∫
−∞

exp
{
− (zi − µj)2

2σ2
j

} ∞∑
k=0

θkj exp
{
kzi

}
k!

dzi

=
θj exp

{
− θjpi

}
σj
√

2π

∞∑
k=0

θkj
k!

ln pi∫
−∞

exp
{
− (zi − µj)2

2σ2
j

+ kzi

}
dzi

=
θje
−θjpi

σj
√

2π

∞∑
k=0

θkj exp
{
k(µj +

kσ2
j

2
)
}

k!

ln pi∫
−∞

exp
{
−

(zi − (µj + kσ2
j ))

2

2σ2
j

}
dzi

= θj exp
{
− θjpi

} ∞∑
k=0

θkj
k!

exp
{
k(µj +

k

2
σ2
j )
}

Φ

(
ln pi − (µj + kσ2

j )

σj

)
= θj exp

{
− θjpi

}
C1,j, (3.4)

where

C1,j =
∞∑
k=0

θkj
k!

exp
{
k(µj +

k

2
σ2
j )}Φ

( ln pi − (µj + kσ2
j )

σj

)
.
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The conditional density function of Si given Pi = pi is now obtained as

fSi|Pi(si | pi) =
fSi,Pi(si, pi)

fPi(pi)

=
θj exp

{
− θjsi

} exp

{
−

(ln(pi−si)−µj)
2

2σ2
j

}
(pi−si)σj

√
2π

θj exp
{
− θjpi

}
C1,j

=
exp

{
θj(pi − si)

}
exp

{
− (ln(pi−si)−µj)2

2σ2
j

}
C1,j(pi − si)σj

√
2π

. (3.5)

The true intensity value is computed by the expectation of the conditional density

function in (3.5). It is computed as follows:

E(Si | Pi = pi) =

pi∫
0

sif(si | pi)dsi

=
exp

{
θjpi

}
C1,j

pi∫
0

si exp
{
− θjsi

}
exp

{
− (ln(pi−si)−µj)2

2σ2
j

}
(pi − si)σj

√
2π

dsi.

(3.6)

Using the substitution ln(pi − si) = zi, we see that the conditional mean in (3.6)

equals

=
pi
C1,j

ln pi∫
−∞

(1− exp{zi}
pi

) exp
{
θj exp{zi}

}
exp

{
− (zi−µj)2

2σ2
j

}
σj
√

2π
dzi

=
pi
C1,j

[ ln pi∫
−∞

exp
{
− (zi−µj)2

2σ2
j

}
σj
√

2π
exp

{
θj exp{zi}

}
dzi−

ln pi∫
−∞

exp
{
− (zi−µj)2

2σ2
j

}
σj
√

2π

exp{zi}
pi

exp
{
θj exp{zi}

}
dzi

]

=
pi
C1,j

[
C1,j −

ln pi∫
−∞

exp
{
− (zi−µj)2

2σ2
j

}
σj
√

2π

exp{zi}
pi

exp
{
θj exp{zi}

}
dzi

]

= pi −
eµj+

σ2j
2

C1,j

ln pi∫
−∞

e
−

(zi−(µj+σ
2
j ))

2

2σ2
j eθje

zi

σj
√

2π
dzi
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= pi −
exp

{
µj +

σ2
j

2

}
C1,j

∞∑
k=0

θkj
k!

exp
{
k(µj +

k + 2

2
σ2
j )
}
×

ln pi∫
−∞

exp
{
− (zi−(µj+(k+1)σ2

j ))2

2σ2
j

}
σj
√

2π
dzi

= pi −
exp

{
µj +

σ2
j

2

}
C1,j

∞∑
k=0

θkj
k!

exp
{
k(µj +

k + 2

2
σ2
j )
}

Φ
( ln pi − (µj + (k + 1)σ2

j )

σj

)

= pi −
exp

{
µj +

σ2
j

2

}
C2,j

C1,j

, (3.7)

where

C2,j =
∞∑
k=0

θkj
k!

exp
{
k(µj +

k + 2

2
σ2
j )
}

Φ
( ln pij − (µj + (k + 1)σ2

j )

σj

)
.

3.2.2 Parameter estimation

To estimate the parameters θj, µj, and σj, j = 1, 2, .., J in our exponential-

lognormal model we can use various methods.

1. Maximum likelihood estimation (MLE)

This is implemented by applying the optim function in R to maximize the

log-likelihood function of jth array

=
I∑
i=1

{
ln(θj)− θjpi + ln(C1,j)

}
+

M∑
m=1

{
− (log b0m − µj)2

2σ2
j

− log(b0m)

− log(σj)−
log(2π)

2

}
(3.8)

where pi and b0m are the observed values of Pi and B0m. Note that C1,j in the

log likelihood function is defined by the infinite series at the end of the pre-

vious section. However, the terms of this infinite series decrease very rapidly

and thus we can cut off the series at a proper index K, making it suitable for

R computation. K is chosen by using the criteria
∣∣C1,j,K+1 − C1,j,K < 0.001

∣∣
2. Method of moments

The implementation of this method at the jth array is applied by recalling

that the first two moment estimators of the exponential distribution are
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1
I

I∑
i=1

Si = mean(Sj) = θj and 1
I

I∑
i=1

S2
i = θj + θ2

j . On the other hand, the first

two moment estimators of the lognormal distribution are 1
M

M∑
m=1

log(B0mj) =

mean(log(B0j)) = µj and 1
M

M∑
m=1

log(B0mj)
2 = σ2

j + µ2
j . Therefore, when

considering Equation (2.1)

(a) θj is estimated by mean(Sj) = mean(Pj)−mean(B0j)

(b) µj and σj are estimated by mean(log B0j) and
√

var(log(B0j))

3. Plug-in

The plug-in estimate is implemented by estimating

(a) θj from the regular bead-type level probes intensities at the jth array

Pj through MLE, and

(b) µj and σj from the negative control bead-type level probes intensities

at the jth array B0j through MLE

3.3 Gamma-lognormal convolution, [19]

3.3.1 Background correction

Consider now model (2.1), when the true intensity Si is assumed to be gamma

distributed, Si ∼ f1(si;αj, βj) =
β
αj
j s

αj−1

i exp

{
−siβj

}
Γ(αj)

;αj, βj, si > 0, and the back-

ground noiseBi is lognormally distributed, i.e.Bi ∼ f2(bi;µ, σ
2) =

exp

{
−

(ln bi−µj)
2

2σ2
j

}
biσj
√

2π
;

µj ∈ R, σ2
j > 0. The joint density function of Si and Bi is

fSi,Bi(si, bi) =
β
αj
j s

αj−1
i exp

{
− siβj

}
Γ(αj)

exp
{
− (ln bi−µj)2

2σ2
j

}
biσj
√

2π
, (3.9)

and therefore, the joint density function of Si and Pi is

fSi,Pi(si, pi) =
β
αj
j s

αj−1
i exp

{
− siβj

}
Γ(αj)

exp
{
− (ln(pi−si)−µj)2

2σ2
j

}
(pi − si)σj

√
2π

. (3.10)
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Hence the marginal density function of Pi is obtained as

fPi(pi) =

pi∫
0

fSi,Pi(si, pi)dsi

=

pi∫
0

β
αj
j s

αj−1
i exp

{
− siβj

}
Γ(αj)

exp
{
− (ln(pi−si)−µj)2

2σ2
j

}
(pi − si)σj

√
2π

dsi. (3.11)

Using the substitution ln(pi − si) = zi, we get

fPi(pi)

=

ln pi∫
∞

β
αj
j p

αj−1
i (1− exp{zi}

pi
)αj−1 exp

{
− piβj

}
exp

{
exp{ziβj}

}
exp

{
− (zi−µj)2

2σ2
j

}
Γ(αj)σj

√
2π

dzi

=
β
αj
j p

αj−1
i exp

{
− piβj

}
Γ(αj)σj

√
2π

×

ln pi∫
∞

exp
{
− (zi − µj)2

2σ2
j

}
(1− exp{zi}

pi
)αj−1 exp

{
exp{ziβj}

}
dzi

=
β
αj
j p

αj−1
i exp

{
− piβj

}
Γ(αj)

[
∞∑
k=0

(−1)k
(
αj−1
k

)
pki

×

[
∞∑
n=0

βnj exp
{

(k + n)(µj + (k + n)
σ2
j

2
)
}

Φ
(

ln pi−(µj+(k+n)σ2
j )

σj

)
n!

]]

=
β
αj
j p

αj−1
i exp

{
− piβj

}
C3,j

Γ(αj)
, (3.12)

where

C3,j =
∞∑
k=0

∞∑
n=0

(−1)k
(
αj−1
k

)
pki

βnj exp
{

(k + n)(µj + (k + n)
σ2
j

2
)
}

Φ
(

ln pi−(µj+(k+n)σ2
j )

σj

)
n!

.
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The conditional density function of Si under Pi = pi is now obtained as

fSi|Pi(si | pi) =
fSi,Pi(si, pi)

fPi(pi)

=

β
αj
j s

αj−1

i exp

{
−βjsi

}
Γ(αj)

exp

{
−

(ln(pi−si)−µj)
2

2σ2
j

}
(pi−si)σj

√
2π

β
αj
j p

αj−1

i exp

{
−piβj

}
C3,j

Γ(αj)

=
exp

{
piβj

}
C3,jp

αj−1
i

s
αj−1
i exp

{
− siβj

}
exp

{
− (ln(pi−si)−µj)2

2σ2
j

}
(pi − si)σj

√
2π

. (3.13)

The true intensity value is computed by the expectation of the conditional density

function in (3.13) It is computed as follows:

E(Si | Pi = pi)

=

∫ pi

0

sif(si | pi)dsi

=
exp

{
piβj

}
C3,jp

αj−1
i

∫ pi

0

s
αj
i exp

{
− siβj

}
exp

{
− (ln(pi−si)−µj)2

2σ2
j

}
(pi − si)σj

√
2π

dsi. (3.14)

Substituting ln(pi − si) = zi the equation (3.14) becomes

=
pi
C3,j

∫ ln pi

−∞

exp
{
− (zi−µj)2

2σ2
j

}
σj
√

2π
(1− exp{zi}

pi
)α exp

{
exp

{
ziβ

i

}}dzi
=

pi
C3,j

∞∑
k=0

(−1)k
(
αj
k

)
pki

[
∞∑
n=0

βnj exp
{

(k + n)(µj + (k + n)
σ2
j

2
)
}

Φ
(

ln pi−(µj+(k+n)σ2
j )

σj

)
n!

]

=
piC4,j

C3,j

, (3.15)

where

C4,j =
∞∑
k=0

∞∑
n=0

(−1)k
(
αj
k

)
pki

βnj exp
{

(k + n)(µj + (k + n)
σ2
j

2
)
}

Φ
(

ln pi−(µj+(k+n)σ2
j )

σj

)
n!

.
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3.3.2 Parameter estimation

To estimate the parameters αj, βj, µj, and σj in (3.14), jth array, we can use one

of the following methods.

1. Maximum likelihood (MLE)

This is implemented by applying the optim function in R to maximize the

log-likelihood function of jth array

=
I∑
i=1

{
log(C3,j + (αj − 1) log(pi)− piβj − αj log(βj)− log(Γ(αj))

}
+

M∑
m=1

{
− (log b0m − µj)2

2σ2
j

− log(b0m)− log(σj)−
log(2π)

2

}
(3.16)

Similar to exponential-lognormal model, in the computation of C3,j K is

chosen by using the criteria | C3,j,K+1 − C3,j,K |< 0.002

2. Method of moments

The implementation of this method at the jth array is applied by recalling

that the first two moment estimators of gamma distribution are 1
I

I∑
i=1

Si =

mean(Sj) =
αj
βj

and 1
I

I∑
i=1

S2
i =

αj
β2
j

+
α2
j

β2
j
. On the other hand, the first

two moment estimators of lognormal distribution are 1
K

M∑
m=1

log(B0mj) =

mean(log(B0j)) = µj and 1
K

M∑
m=1

log(B0m)2 = σ2
j + µ2

j . Therefore, by con-

sidering Equation (2.1)

(a) βj and αj are estimated by β̂j =
mean(Sj)

var(Sj)
=

mean(Pj)−mean(B0j)

var(Pj)−var(B0j)
and

mean(Sj)β̂j = (mean(Pj)−mean(B0j))β̂j.

(b) µj and σj are estimated by mean(log B0j) and
√

var(log(B0j))

3. Plug-in

From Equation (2.1), it is known that Pj and B0j are the observed intensities.

Therefore, the plug-in estimation is implemented by

(a) computing αj and βj from the regular bead-type level probes intensities

at the jth array Pj through MLE, and

(b) computing µj and σj from the negative control bead-type level probes

intensities at the jth array B0j through MLE
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3.4 Generalized convolution models, [20]

3.4.1 Motivation

Microarray data come from many steps of production and have been known to

contain noise. Pre-processing is implemented to reduce the noise, wherein the

background is corrected. Many Illumina BeadArrays users had applied the convo-

lution model, a model which had been adapted from when it was first developed

on the Affymetrix platform, to adjust the intensity which provides the corrected

background intensity value.

There are a few models currently available to adjust the intensity values of the Il-

lumina platform, for instance: the model-based background correction method

(MBCB) from Ding et al. [12] and Xie et al. [68], the exponential-gamma

from Chen et al. [8], the gamma-normal from Plancade et al. [54] and the

exponential(gamma)-lognormal from Fajriyah [19].

The study of Posekany et al. [55] by using the Affymetrix and Invitrogen platforms,

show that the noises in microarray data are not Gaussian but far more heavy-

tailed. In the case of the Illumina platform, Chen et al. [8] show that the noise

distribution in the Illumina platform is usually skewed in different degrees.

Therefore, while the intensity values are widely accepted as skewed-distributed,

the noise distribution could actually be symmetrically or skewed-distributed. Note

that in this thesis, noise and intensity mean the negative control probes and the

observed probes intensity values respectively.

McDonald and Xu [47] have introduced a distribution tree of generalized beta dis-

tributions, which is used to model the income distribution. It is similar in nature

to the microarray data where the random variable is a non-negative value. This

distribution tree helps us to understand the relationship among the available distri-

butions. Moreover, quite recently, Leemis and McQueston [44] have explained the

relationships among the univariate distributions in statistics. See the distribution

tree from McDonald and Xu [47] in Figure 3.1.

We aim to present the true intensity value, the corrected background intensity, for

both symmetrically distributed noise and skewed-distributed noise. If the noise

is a skewed distribution, the underlying distributions of the proposed convolution
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Figure 3.1: Distribution tree, [47]

model are the generalized beta distributions, a generalized model of the existing

ones. If the noise is a symmetrically distributed, the proposed model is a general-

ized beta-normal convolution, which is a generalized model of the Plancade et al.

model [53, 54].

This section is organized as follows: Section 3.4.2 describes the generalized beta

convolution. Section 3.4.3 explains the results of the generalized beta-normal

convolution and Section 3.5 provides discussion and remarks.

3.4.2 Generalized beta distribution convolution

3.4.2.1 The joint density function

Under the convolution model of Equation (2.1), where Pi is the observed intensity

of regular probes of the ith gene, Si is the true intensity of the ith gene, with

Si ∼ f1

(
si; a1,j, c1,j, g1,j, u1,j, v1,j

)
=

∣∣a1,j

∣∣ sa1,ju1,j−1
i

(
1−

(
1− c1,j

) (
si
g1,j

)a1,j)v1,j−1

g
a1,ju1,j
1,j B

(
u1,j, v1,j

)(
1 + c1,j

(
si
g1,j

)a1,j)u1,j+v1,j ; (3.17)
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0 ≤ c1,j ≤ 1, a1,j, g1,j, u1,j and v1,j positive, si > 0,

and Bi is the background noise with

Bi ∼ f2

(
bi; a2,j, c2,j, g2,j, u2,j, v2,j

)
=

∣∣a2,j

∣∣ ba2,ju2,j−1
i

(
1−

(
1− c2,j

) (
bi
g2,j

)a2,j)v2,j−1

g
a2,ju2,j
2,j B

(
u2,j, v2,j

)(
1 + c2,j

(
bi
g2,j

)a2,j)u2,j+v2,j ; (3.18)

0 ≤ c2,j ≤ 1, a2,j, g2,j, u2,j and v2,j positive, bi > 0.

The joint density function of Si and Bi is

fSi,Bi (si, bi) =

|a1| s
a1,ju1,j−1
i

(
1−

(
1− c1,j

) (
si
g1,j

)a1,j)v1,j−1

g
a1,ju1,j
1,j B

(
u1,j, v1,j

)(
1 + c1,j

(
si
g1,j

)a1,j)u1,j+v1,j×
∣∣a2,j

∣∣ ba2,ju2,j−1
i

(
1−

(
1− c2,j

) (
bi
g2,j

)a2,j)v2,j−1

g
a2,ju2,j
2,j B

(
u2,j, v2,j

)(
1 + c2,j

(
bi
g2,j

)a2,j)u2,j+v2,j . (3.19)

The joint density function of Si and Pi is

fSi,Pi (si, pi)

=

|a1| s
a1,ju1,j−1
i

(
1−

(
1− c1,j

) (
si
g1,j

)a1,j)v1,j−1

g
a1,ju1,j
1,j B

(
u1,j, v1,j

)(
1 + c1,j

(
si
g1,j

)a1,j)u1,j+v1,j×
∣∣a2,j

∣∣ (pi − si)a2,ju2,j−1

(
1−

(
1− c2,j

) ( (pi−si)
g2,j

)a2,j)v2,j−1

g
a2,ju2,j
2,j B

(
u2,j, v2,j

)(
1 + c2,j

(
(pi−si)
g2,j

)a2,j)u2,j+v2,j . (3.20)



Chapter 3. The Proposed models 42

3.4.2.2 The marginal density function

The marginal density function of Pi is

fPi (pi) =

pi∫
0

fSi,Pi (si, pi) dsi

= K
∞∑
l=0

∞∑
w=0

∞∑
n=0

∞∑
r=0

{
(−1)l+w+n+r

(
1− c1,j

)l (
1− c2,j

)w
cn1,jc

r
2,j

g
a1,j(l+n)
1,j g

a2,j(w+r)
2,j

×(
v1,j − 1

l

)(
v2,j − 1

w

)(
u1 + v1 + n− 1

n

)(
u2,j + v2,j + r − 1

r

)
×

pi∫
0

s
a1,j(u1,j+l+n)−1
i (pi − si)

a2,j(u2,j+w+r)−1 dsi

}
. (3.21)

Let si
pi

= zi, therefore, the equation (3.21) becomes

K1p
a1,ju1+a2,ju2,j−1
i C5,j, (3.22)

where

K1 =

∣∣a1,j

∣∣∣∣a2,j

∣∣
g
a1,ju1,j
1,j g

a2,ju2,j
2,j B(u1,j , v1,j)B(u2,j , v2,j)

C5,j =
∞∑
l=0

∞∑
w=0

∞∑
n=0

∞∑
r=0

{(−1)l+w+n+r
(
1− c1,j

)l (
1− c2,j

)w
cn1,jc

r
2,j

(
v1,j − 1

l

)
g
a1,j(l+n)
1,j g

a2,j(w+r)
2,j

×(
v2,j − 1

w

)(
u1,j + v1,j + n− 1

n

)(
u2,j + v2,j + r − 1

r

)
p
a1,j(l+n)+a2,j(w+r)
i ×

B
(
a1,j

(
u1,j + l + n

)
− 1, a2,j

(
u2,j + w + r

)
− 1
)}

.

3.4.2.3 The conditional density function

The conditional density function of Si where it is known that Pi = pi is

fSi|Pi
(
si | pi

)
=
fSi,Pi (si, pi)

fPi (pi)
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=

s
a1,ju1,j−1
i

(
1−

(
1− c1,j

) (
si
g1,j

)a1,j)v1,j−1

p
a1,ju1,j+a2,ju2,j−1
i C5,j

(
1 + c1,j

(
si
g1,j

)a1,j)u1,j+v1,j×
(pi − si)a2,ju2,j−1

(
1−

(
1− c2,j

) ( (pi−si)
g2,j

)a2,j)v2,j−1

(
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3.4.2.4 The corrected background intensity

The corrected background intensity under this generalized beta convolution is

E
(
Si | Pi = pi

)
=

pi∫
0

sif
(
si | pi

)
dsi = pi

C6,j

C5,j

, (3.24)

where

C6,j =

∞∑
l=0

∞∑
w=0

∞∑
n=0

∞∑
r=0

{(−1)l+w+n+r
(
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)w
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r
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1,j g
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B
(
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(
u1,j + l + n

)
, a2,j

(
u2,j + w + r

)
− 1
)}

.

3.4.2.5 The likelihood function

The likelihood function (L) to estimate a1,j, c1,j, g1,j, u1,j, v1,j, a2,j, c2,j, g2,j, u2,j, and

v2,j is

=
I∏
i=1

∣∣a1,j

∣∣∣∣a2,j

∣∣ pa1,ju1,j+a2,ju2,j−1
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b0m
g2,j

)a2,j)v2,j−1

g
a2,ju2,j
2 B

(
u2,j, v2,j

)(
1 + c2,j

(
b0m
g2,j

)a2,j)u2,j+v2,j . (3.25)
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The log-likelihood function l is

=
I∑
i=1

{
ln
(∣∣a1,j
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}. (3.26)

3.4.3 Generalized beta-normal convolution

Although Figure 3.1 covers normal distribution, we can not derive the formula of

the true intensity value when the noise is normal from Equation (2.1). The normal

distribution in Figure 3.1 is the normal distribution with one parameter. There-

fore, in this section, we derive the formula to compute the corrected background

intensity when the noise is symmetrically distributed, i.e. a normal distribution.

3.4.3.1 The joint density function

Under the convolution model in Equation (2.1), where Pi is the observed intensity

of the regular ith gene, Si is the true intensity of the ith, with

Si ∼ f1

(
si; aj, cj, gj, uj, vj

)
=

∣∣aj∣∣ sajuj−1
i

(
1−

(
1− cj

) (
si
gj

)aj)vj−1

g
ajuj
j B

(
uj, vj

)(
1 + cj

(
si
gj

)aj)uj+vj ; (3.27)

0 ≤ cj ≤ 1; aj, gj, uj, vj, si > 0,
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and Bi is the background noise with

Bi ∼ f2

(
bi;µj, σ

2
j

)
=
e
− 1

2σ2
j
(bi−µj)

2

√
2πσj

;µj ∈ R, σ2
j > 0, bi > 0. (3.28)

The joint density function of Si and Bm is

fSi,Bi (si, bi) =

∣∣aj∣∣ sajuj−1
i

(
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(
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) (
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2

√
2πσj

, (3.29)

and the joint density function of Si and Pi is

fSi,Pi (si, pi) =

∣∣aj∣∣ sajuj−1
i

(
1−

(
1− cj

) (
si
gj

)aj)vj−1

g
ajuj
j B

(
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)(
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(
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)aj)uj+vj e
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2

2σ2
j

√
2πσj

. (3.30)

3.4.3.2 The marginal density function

The marginal density function of Pi is

fPi (pi) =

∣∣aj∣∣
g
ajuj
j B (u, v)

√
2πσj

∞∑
l=0

∞∑
w=0
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w

) pi∫
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s
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i e
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2

2σ2
j dsi

}
. (3.31)
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Let

(
si−(pi−µj)

)
σj

= zi and the equation (3.31) becomes
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Let
z2i
2

= xi, then the equation (3.32) becomes

=K2C7,j. (3.33)

where
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∣∣aj∣∣ pajuj−1
i
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)}, and

γ (�, �) is the lower incomplete gamma function

3.4.3.3 The conditional density function

The conditional density function of Si where it is known that Pi = pi is

fSi|Pi
(
si | pi

)
=

√
2p

1−ajuj
i

C7,jσj

s
ajuj−1
i
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1−

(
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2

2σ2
j(

1 + cj

(
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)aj)uj+vj (3.34)
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3.4.3.4 The corrected background intensity

The corrected background intensity under this generalized beta convolution is

E
(
Si | Pi = pi

)
= pi

C8,j

C7,j

, (3.35)

where

C8,j =
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γ (�, �) is the lower incomplete gamma function.

3.4.3.5 The likelihood function

The likelihood function (L) to estimate aj, cj, gj, uj, vj, µj and σ2
j is

=
I∏
i=1

∣∣aj∣∣ pajuj−1
i C7,j

2
√
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The log-likelihood function l is

=
I∑
i=1

{
ln
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)
ln (pi) + ln(C7,j)− ln(2)− 1

2
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 . (3.37)

3.5 Discussion and remarks

We have studied the additive models of the background correction for BeadArrays

and proposed the generalized model where the true intensity and the noise are
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assumed to be skewed distributions and where the true intensity is a skewed but

the noise is symmetrically distribution. In this thesis we have shown the corrected

background intensity value of the proposed models.

This proposed model is a generalization of the available convolution models found

in [5], [40–42], [8], [19], [40–42], [53, 54] and [68]. The generalization comes from

the property of the tree-generalized beta distribution [47] and is explained in [46]

and [47]. The parameters of the generalized beta distribution are a, g, c, u and

v. The gamma, exponential and lognormal distributions are special cases of the

generalized beta distribution.

The gamma distribution is the generalized beta distribution when c = 1, v →
∞, g = βv

1
a and a = 1; the exponential distribution is the generalized beta dis-

tribution when c = 1, v → ∞, g = βv
1
a and a = 1, p = 1; and the lognormal

distribution is the generalized beta distribution when c = 1, v →∞, g = βv
1
a and

β = (σ2a2)
1
2 , u = (aµ+1)

σ2a2
and a→ 0.

There are some aspects to be considered while implementing these models:

1. parameters estimation

In parameters estimation, there are a few methods that have been suggested

by researchers. Mc Donald and Xu [47] used and suggested the method of

maximum likelihood (also used by Fajriyah [15–17]), the method of moments

and the maximum product spacing estimation.

When c = 1, the generalized beta distribution is a generalized beta of the

second kind. Graf and Nedyalkova [30] and Graf et al. [31] have observed

that the pseudo maximum likelihood (Huber [35], Freedman [25] and Pfef-

fermann et al. [52]), the nonlinear least squares on the quantile function

(Dagum [11]), and the nonlinear fit for indicator can be implemented to

estimate the parameters of the generalized beta of the second kind. The

available VGAM package in R is one of the ways to estimate the parameters

of this distribution.

The existing convolution models use various methods :

(a) the ad-hoc method which is implemented by the RMA method, more

details can be found in [40–42], [48] and [68]

(b) Markov chain Monte Carlo simulations, more details can be found in

[12]
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(c) Maximum likelihood, nonparametrics and the method of moments, more

details can be found in [8], [19] and [68]

(d) Plug-in method, more details can be found in [19]

(e) Fast Fourier transform, more details can be found in [53, 54]

In general, we first need to provide the initial parameters to optimize the

log-likelihood function in Equations (3.26) and (3.37). The initial parame-

ters of the noise are easily provided since the benchmarking data set of the

negative control probes is available publicly. The initial parameters of the

true intensity can be estimated from the observed intensity data substracted

by the mean (or median) of the negative control probes intensity.

Secondly, once the initial parameters are available, they can then be used to

optimize the likelihood function by implementing the optimization method.

There are some packages in R which can be used to compute the parameters

of the model, for example the optim or optimx packages. These parameters

are then used to compute the corrected background intensity based on the

formula of the choosen model. Remember that the background correction is

implemented for each array.

2. the corrected background intensity computation

The corrected background intensity computation includes computations of

the infinite summations: C5,j, C6,j, C7,j and C8,j. In the author’s experience

(in [19]) these infinite summations become close to being constant after cer-

tain terms. As a consequence, the ratios of
C6,j

C5,j
and

C8,j

C7,j
are able to be

computed. Therefore, the difficulty in computing the summations used to

compute the corrected background intensity can be eliminated. A sophisti-

cated programming skill in R, C, Python and the parallelisation, could be

a great help to speed up the computation.

3. the benchmarking data set

During the implementation of this generalized estimator, Illumina users need

to be aware of the availability of the Illumina spike-in data set. Once the

model is fitted into this data set, the model can then be used to adjust the

intensity value.

Apart from the benchmarking criteria for the Affymetrix GeneChips, in the

author’s knowledge, the benchmarking criteria for the Illumina BeadArrays

have not yet been formalized. Some researchers, e.g. [8], [53, 54], [57] and [68]
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have developed the criteria to assess which background correction methods

perform better than the others for the Illumina BeadArrays. These criteria

together with the criteria in the Affycomp package ([10] and [39]) can be

used as the benchmarking criteria for the Illumina BeadArrays. These have

been implemented by Fajriyah [19]. The method which has been used by

Shi et al. [58] could also be used to assess the performance of background

correction methods.

4. the negative control data set

It is possible that the negative control probes data set is unavailable. In

this case, we can adapt the proposed model to the convolution model for the

background correction without the negative control probes intensities, as in

the RMA model.

Considering these statements, clearly the application of this generalized model

towards other platforms is possible.

3.6 Summary of the chapter

In this chapter, the proposed convolution model for the background correction

has been described, for both of symmetric and asymmetric noise distribution.

The next chapter will compare the performance of the existing and the proposed

models (except the generalized one) based in the Illumina benchmarking and in

the public data sets.
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Performance comparison

4.1 Benchmarking

We compare all convolution models: Irizarry et al. [40–42] and Bolstad et al.

[5]: RMA (Exponential-Normal), Plancade et al. [53, 54]: Gamma-Normal, Chen

et al. [8]: Exponential-Gamma, Xie et al. [68]: Exponential-Normal adjusted

for Illumina BeadArrays with maximum likelihood estimation (MLE) for the pa-

rameters, Bayesian approach and the moment method, and the proposed models:

exponential-lognormal and gamma-lognormal.

We will call the methods above, respectively, as follows: ENr, GN, EG, ENm,

ENmc, ENn, ELNn, ELNm, ELNp, GLNn, GLNm, and GLNp. We use the MBCB

package ([1] and [68]) to adjust the intensity values of models ENr, ENm, ENmc

and ENn. Except that, the GN uses the NormalGamma package [53].

Table 4.1 shows that the GLNn reproduces the Illumina concentration better than

others. The ENr performs most comparably to the GLNn. Note that the compu-

tation of Kullback-Leibler is implemented in each array j, based on the nominal

concentrations (O) in Table 4.1 and observed intensities (P ) in Table 4.2, and the

value in each table is the median Kullback-Leibler of J = 42 arrays.

The Kullback-Leibler coefficient of each array is computed as K-Lj =
I∑
i=1

Xij log
(
Xij
Sij

)
for arbitrary positive sequences (X1j, ..., XIj), (S1j, ..., SIj) when it can be negative

if Sij > Xij for all or for most i. This is a sign that the S is overestimating X,

where X could be O (Table 4.1) or P (Table 4.2). In this case, we should not use

51
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the model. Therefore we exclude the GLNp model from further comparisons. The

behavior of GLNp is different from other models, also shown in the supplemental

plots.

Table 4.1: Reproducibility of each method relating to the Illumina spike-in
concentration

Model RMSE K-L
ENr 1.346 51,310
ENn 1.407 41,010
ENm 1.483 23,170
ENmc 1.483 23,170
EG 1.470 20,660
GN 1.521 58,480
ELNn 1.411 41,200
ELNm 1.489 21,280
ELNp 1.423 37,800
GLNn 1.323 4,333
GLNm 1.510 29,630
GLNp 10.700 -115,400

Table 4.2: Reproducibility of each method relating to the Illumina spike-in
based on the experiment data

Model RMSE K-L
ENr 7.251 1,141,000
ENn 7.127 1,062,000
ENm 6.927 926,500
ENmc 6.927 926,200
EG 6.919 907,900
GN 7.100 1,183,000
ELNn 7.124 1,062,000
ELNm 6.904 911,600
ELNp 7.092 1,035,000
GLNn 6.825 793,400
GLNm 6.937 968,400

Table 4.2 shows how each method reproduces the data from the experiment. We

see that GLNn reproduces data better than others, based on the RMSE, and the

Kullback-Leibler coefficient.

Tables 4.1 and 4.2 provide insight on how the performance comparison among the

models can be conducted further.

In the first part, we compute the adopted Affycomp benchmarking criteria, based

on the corrected background data and their log transformation.
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Secondly, in the simulation, the MSEbc and the L1 error is computed based on

the log transformation of the experiment and the nominal concentration data.

The log transformation that we use in this paper, respectively, for the benchmark-

ing and the FFPE data sets are as follows:

y = log2(x+
√

(x2 + 1)) and y = log2(x+ 1 +
√

(x2 + 1)) (4.1)

where x is the nominal concentration (O) or the observed intensity value (P ).

4.1.1 Non-simulation

In Table 4.3 it is shown that the ENr provides the smallest variation and IQR. On

the other hand, the GLNn model provides the smallest 99.9% percentiles of log

fold change for the non spike-in between replicates. The largest variation, IQR,

and 99.9% percentiles, respectively are the GLNm, the ELNm and the GN.

Table 4.3: Median SD, IQR and 99.9% percentiles of log fold-change for non
spike-in between replicates for each model.

Model Median SD IQR 99.90%
ENr 0.027 0.062 0.415
ENn 0.043 0.089 0.441
ENm 0.069 0.139 0.486
ENmc 0.069 0.139 0.486
EG 0.065 0.134 0.477
GN 0.051 0.098 0.520
ELNn 0.045 0.093 0.442
ELNm 0.071 0.145 0.489
ELNp 0.049 0.100 0.449
GLNn 0.038 0.075 0.398
GLNm 0.076 0.080 0.507

In Table 4.4 it is shown that, in general, all methods perform similarly to each

other. The GLNn models have the highest signal detect R2. The GN model has

the highest R2 at low concentration but has the lowest R2 at high concentration.

This means that the GN model works better at low concentration. On the other

hand, the ENr proves to work better at medium and high concentrations, which

is followed closely by the GLNn model.

If we divide the concentrations into two categories, where high concentration means

that the nominal concentration is at least 3pM and low concentration means that
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Table 4.4: The signal detect R2 by regressing the Nominal and observed value
for each model for the Illumina spike-in.

Model Signal detect R2 Low.R2 Med.R2 High.R2

ENr 0.959 0.618 0.698 0.559
ENn 0.958 0.622 0.695 0.557
ENm 0.957 0.635 0.695 0.558
ENmc 0.957 0.635 0.695 0.558
EG 0.957 0.633 0.695 0.558
GN 0.956 0.650 0.697 0.555
ELNn 0.958 0.624 0.695 0.557
ELNm 0.957 0.636 0.694 0.558
ELNp 0.958 0.627 0.695 0.557
GLNn 0.960 0.609 0.696 0.558
GLNm 0.956 0.637 0.694 0.558

the nominal concentration is at most 1pM, the GLNn model has the highest R2

(the data is not shown here). It means, in general and at high concentrations, the

GLNn offers a better fit than other models.

As in Table 4.4, Table 4.5 shows that all models have similar performance, although

the GLNn model has the highest R2 of nominal concentration against observed

log-fold-change.

Table 4.5: The R2 observed log-fold-change against nominal log-fold-changes
for the spike in genes.

Model Obs-intended-fc.R2 Obs-(low) int-fc.R2

ENr 0.976 0.989
ENn 0.974 0.990
ENm 0.972 0.985
ENmc 0.972 0.985
EG 0.972 0.986
GN 0.970 0.987
ELNn 0.974 0.990
ELNm 0.972 0.985
ELNp 0.973 0.990
GLNn 0.978 0.991
GLNm 0.971 0.984

Table 4.6 provides the results from the computation of the AUC value. The table

shows that all models have better accuracy at medium concentrations than at low

and high concentrations. The ENr performs very poorly at low concentrations and

the GLNm performs best. At high concentrations, the ENr performs the best and

is followed by the GLNn. In general, the highest AUC is achieved by all models

with the MLE parameter estimation method: GLNm, ELNm, and ENm.
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Table 4.6: The AUC value for each model.

Model Low concentration Medium concentrations High concentration Average All
AUC AUC AUC AUC

ENr 0.450 0.987 0.785 0.585 0.886
ENn 0.518 0.987 0.764 0.631 0.899
ENm 0.573 0.987 0.741 0.667 0.911
ENmc 0.573 0.987 0.741 0.667 0.911
EG 0.567 0.987 0.746 0.664 0.910
GN 0.552 0.987 0.723 0.651 0.904
ELNn 0.524 0.987 0.763 0.635 0.900
ELNm 0.574 0.987 0.741 0.668 0.912
ELNp 0.534 0.987 0.761 0.642 0.902
GLNn 0.498 0.987 0.784 0.619 0.896
GLNm 0.579 0.987 0.730 0.671 0.913

The computation, which is based on the 12 and all arrays, provides the results

where all models have an AUC greater than 0.9. According to Zhu et al. [71],

an AUC between 0.9 and 1.0 is classified as excellent in measuring the accuracy.

Therefore, based on Table 4.7, we can identify thos models which accurately pre-

dict the gene expression.

In the Appendix Sections A, B and C, we prsent graphics supplementation. The

MA plots A.1, A.2 and A.3 show that all models perform similarly, except the

GLNp model. In variance across replicates (Figures B.1 and B.2), the GLNn model

performs better than other models at low and medium concentrations. At high

concentrations the EGm and the GN models perform not at best. The computation

(not shown) also results in the GN model producing more differentially expressed

non spike-in genes.

A slight over-estimation is shown in figures C.1 and C.2, where all models are

above the ideal line at low and medium concentrations, particularly the GN and

GLNm models, and then gradually go under the ideal line at high concentrations.

4.1.2 Simulation

We run simulations (N = 100) to assess the performance of each model. The

bias of the background correction is assessed by the MSEbc, and the bias of the

parameterization is assessed by L1 error. For further details on the simulations

see Appendix F.1.

in Table 4.7 we can see that simulation results of the EG model are not available,

because the MBCB package did not work in the log transformation that we have
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Table 4.7: The simulation results on spike-in data set.

Model MSEbc
L1 error

α β µ σ
ENr 0.045 0.664 46.580 11.440
ENn 0.049 0.625 41.610 2.806
ENm 0.038 0.610 58.920 2.040
ENmc 0.036 0.610 62.770 2.039
GN 0.030 0.000 0.007 0.013 0.015
ELNn 0.048 0.009 0.000 0.018
ELNm 0.039 0.840 0.000 0.018
ELNp 0.061 0.472 0.000 0.018
GLNn 0.216 0.052 0.055 0.000 0.018
GLNm 84.370 38.860 0.851 0.000 0.017

chosen. The GN model performs best, by providing the smallest bias for the

background correction and the parameters. Similar performance is achieved by

the ELN, particularly ELNn. The GLNn does not have an optimal performance

on the MSEbc, but we still can consider its performance to be good, considering

that the bias of the parameters is similar to the other proposed models and GN.

One of the proposed models, GLNm has the highest bias on the MSEbc and the

parameter α. In our view this happens because we use an approximation in esti-

mating the true intensity value. The EN models (ENr, ENm, ENn and ENmc) have

considerably better performance at MSEbc, but are not good at the parametriza-

tion. The bias on the parametrization of the noise is higher than in other models.

4.2 The public data sets

Based on the results from Section 4.3, we compare performance of these models on

some public data sets. We would like to know how well these models perform in

real data samples. Here, we choose to use the FFPE data sets from Waldron et al.

[66]: the FFPE of tumors from colorectal cancer patients (GSE32651, 1003 sam-

ples), breast cancer metastases of the lymph node and autopsy tissues (GSE32490:

GSE32489, 120 samples). Each sample has 24,526 bead-type level probes.

Links for the data set are http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE32651 and http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32490.

Currently, the FFPE archival samples are available by the millions and are a

great source of information in medical studies about some diseases, for example

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32651
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32651
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32490
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cancer. This data type is suffering from RNA degradation, which leads to poor

performance in array-based studies. However, the Illumina’s DASL assays could

provide high-quality data from these degraded RNA samples.

Comparing the performance of these background correction models would certainly

help researchers to choose the appropriate background correction for their data,

particularly if their data is of the FFPE type.

The background correction for the FFPE data set is implemented in three steps:

step 1 Apply the quality control (QC) to the raw FFPE data. This study uses

the ffpe package in R [65].

step 2 Apply the data transformation (log2((Pij + 1 +
√

(P 2
ij + 1)))) to the raw

FFPE data after QC and estimate the background correction parameters

based on its result. The estimators of true intensity value and the background

correction are based on the regular and negative control probes intensity data

respectively.

step 3 Compute the true intensity value (the adjusted intensity estimator) based

on the background correction parameters in step 2.

The results of our computation are presented in Tables 4.8 and 4.9. From these

tables, we can see that there are no EG and GN models. Neither of these models

can work for these data sets. For some samples in the data set, both models fail to

compute the parameters which consequently, that the true intensity value cannot

be provided.

We decided to remove the EG and GN models from further comparisons in both

FFPE data sets. Hereafter we provide the results of the rest of the models only.

Tables 4.8 and 4.9 consistently show the biases of the noise’s parameters in the

EN models are higher than the proposed models. For the parameter β, the ELNn

has the smallest bias and is followed by the ELNp and the GLNn. With regard

to the bias of the background correction, the EN models show the smallest bias in

both FFPE data sets.

The proposed model GLNm continues to show the highest bias in the background

correction and the parameter α. As previously mentioned, this is a consequence

of the approximate computation of the true intensity value, where we make the
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Table 4.8: Simulation results of the GSE32651 data set.

Model MSEbc
L1 error

α β µ σ
ENr 0.058 0.657 297.671 22.609
ENn 0.281 0.572 1.984 2.627
ENm 0.086 0.591 28.049 1.715
ENmc 0.036 0.610 62.770 2.039
ELNn 0.275 0.025 0.001 0.018
ELNm 0.059 0.826 0.000 0.018
ELNp 0.672 0.487 0.001 0.018
GLNn 0.838 0.340 0.527 0.001 0.018
GLNm 84.150 71.870 0.887 0.001 0.018

Table 4.9: Simulation results of the GSE32489 data set.

Model MSEbc
L1 error

α β µ σ
ENr 0.093 0.665 67.170 9.511
ENn 0.863 0.509 0.936 2.039
ENm 0.182 0.558 14.197 1.712
ENmc 0.184 0.556 14.179 1.049
ELNn 1.055 0.857 0.002 0.018
ELNm 0.116 0.781 0.001 0.0178
ELNp 1.247 0.461 0.002 0.018
GLNn 1.348 0.332 0.497 0.002 0.018
GLNm 164.980 22.239 0.805 0.000 0.018

approximation until k = 10. It ispossible to apply different numerical approxima-

tions for both the ELN and GLN models.

4.3 The risk ratio comparison

4.3.1 Motivation

Background correction plays an important role in microarray data processing, since

some steps in producing microarray data contribute the noise. Since Irizarry et al.

[40] introduced the convolution model for the Affymetrix platform single channel,

it has also been impelemnted in other platforms, such as two-colours/channels and

BeadArrays, where for each platform the adaptive models have been developed.

We have developed the exponential and gamma-lognormal convolution models [19]

and compared their performances to the existing models. Here, we study the mean
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absolute deviation of the BC of all existing convolution models and compare their

risk ratio.

4.3.2 Measuring the risk ratio

The excess risk ratio, of using particular model i where the true model j is known,

is defined as follows:

R(i) =
MAD(Ŝi)

MAD(Ŝj)
, (4.2)

where

MAD(Ŝ) =
1

N

N∑
l=1

 1

nr

nr∑
k=1

∣∣∣Ŝ(X l
k | Θ̂l)− Slk

∣∣∣
 , (4.3)

X is the intensity value of regular probes, Θ̂l is the estimated parameters from the

simulated array l, and S is the true intensity value.

We compare the excess risk ratio of the existing models through the simulation

based on the Illumina benchmarking data set. The simulation is conducted as

follows:

1. Select a particular model as the true model.

2. Generate the samples: regular and negative control, based on the parameters

of this true model, for each model.

3. Estimate the parameters and the true intensity value for each model.

4. Compute the MAD value.

5. Compute the risk ratio.

Respectivley, the sample size of the regular probes is 25000(nr), the negative

control probes is 1000 and the simulation is run N = 100 times.
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4.3.3 Results

Table 4.10 shows that thenGN model produce a NaN value when it is assumed

that the true model is ENr. This result is quite surprising, since the parameters are

based on the benchmarking data set. By excluding this value from the computation

and computing the average of the risk ratio for each model we discover that the

GN model produces the lowest risk ratio. It is followed by the ENn, ELNn, ELNp,

ENm, ENmc, GLNm, GLNp, and ENr.

This unexpected NaN value shows that the GN model needs to be carefully im-

plemented. As described in Section 4.2, this model and the EG model could not

be used in the FFPE public data set.

Table 4.10: Comparison of the risk ratio for each model

True | Applied ENr ENn ENm ENb GN ELNn ELNm ELNp GLNn GLNm
ENr 1.000 0.638 0.638 0.638 NaN 0.824 46.497 0.961 2.796 1.434
ENn 2.871 1.000 1.000 1.000 1.000 1.003 42.762 1.040 1.091 1.098
ENm 3.199 1.0005 1.000 1.000 1.000 1.000 47.832 1.015 1.020 1.060
ENmc 3.204 1.000 1.000 1.000 1.000 1.001 47.347 1.015 1.019 1.059
GN 1.836 1.232 1.903 1.903 1.000 1.237 56.436 1.296 3.294 1.819
ELNn 2.809 0.998 0.997 0.998 0.998 1.000 42.931 1.034 1.086 1.092
ELNm 0.071 0.022 0.0228 0.022 0.022 0.022 1.000 0.022 0.022 0.023
ELNp 4.484 1.000 1.000 1.000 1.000 1.000 38.481 1.000 1.000 1.002
GLNn 0.614 0.410 0.590 0.590 0.341 0.413 16.082 0.438 1.000 1.357
GLNm 3.525 0.922 0.943 0.943 0.923 0.922 41.740 0.927 0.938 1.000

4.4 Discussion

We have compared the performance of all models, based on the benchmarking and

public data sets. In the benchmarking data set we adopted the criteria from the

Affycomp [10] and for the simulation study we used the criteria which had been

used in [68], [8] and [53, 54]. For the public data sets, we only used the criteria

for the simulation study.

We have seen in Sections 4.1.1 and 4.1.2 that EN, EG, GN and GLN perform

rather similarly. However, the GLNn model provides the highest reproducibility

in comparison to other models. From the Affycomp criteria we can provide the

following points:

1. the ENr and GLNn provide the lowest variation between replicates and all

models using the MLE estimation method have a higher variation than others
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2. the GLNn model has the highest signal detect R2, in general and in high

concentration. This means the GLNn model is the best fitted for the gene

expression.

3. the GLNn model, based on the MvA plot, produces the least number of

genes which should not be expressed but are nevertheless expressed. On the

other hand, the GN model provides the largest number of such genes.

4. all models with the MLE estimation method have a higher average AUC

value, which means that they provide better accuracy in predicting the gene

expression.

5. the ENr and GLNn have the lowest IQR of log fold-change between replicates

6. Points 1 and 2 show that the GLNn and ENr are more accurate and precise

in modelling the gene expression and points 3 and 5 show that the specificity

and sensitivity of the GLNn and ENr model are better than others.

In the simulation study, the best performance in estimating the signal by measuring

its background correction and parametrization errors is achieved by the GN model.

It is followed by our proposed ELN models. It has been shown that the GLNn

does not perform optimally for the MSEbc criterion, but for the parametrization

this model still can be considered good.

In the FFPE public data set, the GN and EG models cannot be implemented. This

is in strong contrast to the fact that in the simulation study of the benchmarking

data sets, the GN model has the best performance.

The EN models show both the highest bias in parametrization of public data sets

and the lowest bias in background correction. Our proposed models, except the

GLNm, show the lowest bias in parametrization in both data sets and a moderate

bias in background correction.

Based on the results from the benchmarking data and the public data sets, we

would make the following suggestions to researchers:

1. if the GN model works properly for the data set at hand (i.e. the estimated

signals in all arrays can be computed by this model and the simulation

criteria for this data with this model are low) then use the GN model to

correct the background.
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2. if the GN model fails, then use our proposed models, particularly the GLNn

model. The reason for not choosing the ELN models is that the value of

the parameter α from the benchmarking data set is less than 1, around 0.2.

Therefore, the gamma model is more appropriate to model the true intensity

distribution than the exponential model. We believe that the right approxi-

mative computation of the GLN models will lead to better performance than

the current approximation.

The ELN models perform better than the original EN models, due to the

fact that not only the regular probes, but also the control probes are skew-

distributed [8]. Therefore, these models could be an alternative to the GLN,

when the GN model does not work.

3. With regard to the computation time, for the benchmarking data set the EN

models work faster than the others. They are followed by the ELNp, ELNn,

and EGm. The GLNn and the ENmc are the third fastest, then come the

GN and the ELNm, which are followed by the GLNm, which is the slowest.

In measuring the risk based on the simulation study, we conclude that:

1. The risk ratio of the Exponential-Normal models, except ENr is always lower

than 1.

2. The Gamma-Normal model behaves unpredictably in regard to measuring

the risk ratio. There is a situation where this model can not be implemented,

because it produces a NaN value. This behaviour is similar to the previous

result of Fajriyah [18].

3. The proposed models provide the best performance by showing a consistently

moderate risk ratio, particulalry the ELNn and ELNp models where the risk

ratio is lower than 1.

4. In general the choice of background correction method is up to the user, who

must compromise between low risk ratio, low bias in parametrization, and

low bias in background correction.
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4.5 Summary of the chapter

In this chapter we have described the performance comparison of all existing and

proposed models in the benchmarking and public data sets. We also compute and

compare the risk of all models. Our study shows that the proposed models, except

the GLNp, are moderately good in both benchmarking and simulation, and are

work well with the FFPE public data sets, [19].

According to analysis, in general the GN provides the smallest risk, but it has to

be carefully implemented, because there is a possibility that the risk can not be

computed. The proposed models (except the ELNm) and the EN models (except

the ENr) provide a moderate risk [18].

The next chapter will introduce the proposed test to determine the differentially

expressed genes under two conditions, which proposes an alternative test to the

two independent samples t test.



Chapter 5

Cross variance and its application

In microarray data analysis, sometimes we deal with raw data which need to be

adjusted to clean them of noise. This can be achieved by pre-processing. Once the

raw microarray data have been pre-processed, they are ready for further analysis,

such as the determination genes which are differentially expressed.

Typical examples of differentially expressed genes are found when investigating

genes related to the effect of drugs on cancer tissue versus normal tissue, or on

two different types of tissues, or during two different stages of disease. Such in-

vestigations require parametric and non-parametric statistical tests for comparing

two independent samples.

One of the parametric tests widely used in bioinformatics research is the t test.

This test requires representative samples be taken to measure variability, which

microarray experiments sometimes fail to provide. The results are, however, in-

conclusive, because the sample size is not large enough to accurately measure the

difference.

In the study of Bryant et al. [7], it is concluded that most of the genes expressions

from microarray experiments have both low technical and low biological variations,

although the technical variation is higher than the biological. Furthermore, prior

to statistical analysis, after the pre-processing, many researchers applied filtering,

as described for example in Bourgon et al. [6], Hackstadt and Hess [32], Iterson

et al [63], Smyth [60] and von Heydebreck et al. [64].

In the filtering which is applied to the Affymetrix platform, the low variation genes

expressions are filtered out (Bourgon et al. [6], Hackstadt and Hess [32], Iterson

64
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et al [63] and von Heydebreck et al. [64]), which is not a suitable choice for those

expressions which come from other platforms, such as Illumina.

This chapter describes a new approach, based on variation, to determining the

differentially expressed genes under two conditions, leading to the problem of

testing for the equality of the mean of two populations. It is constructed based on

the cross variance concept.

5.1 Introduction of cross variance

Definition 5.1. Suppose we have two independent samples, Xi and Yj; i =

1, 2, ...,m and j = 1, 2, ..., n. Their sample mean and variance are denoted by

X,Y and Vx, Vy. Let

V ∗x =

m∑
i=1

(Xi − Y )2

m− 1
and V ∗y =

n∑
i=1

(Yi −X)2

n− 1
,

be the cross variance for each sample X and Y respectively. The cross variance of

samples X and Y is defined as

T =
V a
x + V a

y

2
, (5.1)

where V a
x = Vx

V ∗
x
, V a

y = Vy
V ∗
y
.

Clearly

V ∗x =

m∑
i=1

(Xi − Y )2

m− 1
= Vx +

m(Y −X)2

m− 1
,

and

V ∗y =

n∑
i=1

(Yi −X)2

n− 1
= Vy +

n(Y −X)2

n− 1
.
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Thus T =
V ax +V ay

2
can be re-written as

T =
1

2

 Vx

Vx + m(Y−X)2

m−1

+
Vy

Vy + n(Y−X)2

n−1


=

Vx

2Vx + 2m(Y−X)2

m−1

+
Vy

2Vy + 2n(Y−X)2

n−1

(5.2)

In what follows, we assume that

1. the sample sizes are equal

2. Xi and Yi are i.i.d. normally distributed with unknown means and known

variances σ2
x, σ

2
y .

It follows that

(n− 1)Vx
σ2
x

v χ2
(n−1),

(n− 1)Vy
σ2
y

v χ2
(n−1), and

n(Y −X)2

σ2
y + σ2

x

v χ2
(1)

Therefore Equation (5.2) can be written as follows

T =

(n−1)Vx
σ2
x

2 (n−1)Vx
σ2
x

+ 2
(σ2
x+σ2

y)

σ2
x

n
(σ2
x+σ2

y)
(Y −X)2

+

(n−1)Vy
σ2
y

2 (n−1)Vy
σ2
y

+ 2
(σ2
x+σ2

y)

σ2
y

n
(σ2
x+σ2

y)
(Y −X)2

, (5.3)

where

Z1 =

(n−1)Vx
σ2
x

2(n−1)Vx
σ2
x

+
2(σ2

x+σ2
y)

σ2
x

n
(σ2
x+σ2

y)
(Y −X)2

=
U

2U + 2abV
,

and

Z2 =

(n−1)Vy
σ2
y

2(n−1)Vy
σ2
y

+
2(σ2

x+σ2
y)

σ2
y

n
(σ2
x+σ2

y)
(Y −X)2

=
S

2S + 2bcV

with

U =
(n− 1)Vx

σ2
x

, S =
(n− 1)Vy

σ2
y

, V =
n(Y −X)2

(σ2
x + σ2

y)
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and

a =
1

σ2
x

, b = σ2
x + σ2

y , c =
1

σ2
y

.

Hence Equation (5.3) can be written as

T =Z1 + Z2 =
U

2U + 2abV
+

S

2S + 2bcV
(5.4)

To compute the distribution of T in Equation (5.5), consider that

1. U, V and S are independent

2. Z1 and Z2 are dependent

In this chapter we will describe both considerations, respectively at sections 5.2

and 5.3.

5.2 The first proposed test: an alternative to the

t test

Under normality asumption of X and Y then U, V and S are independent, where

V is χ2
(1) distributed and U, S are χ2

(n−1) distributed. From Equation (2.5), suppose

V = Z3 from here it follows that U = 2abZ1Z3

1−2Z1
and S = 2bcZ2Z3

1−2Z2
. The Jacobian of

this transformation is

|J | =

∣∣∣∣∣∣∣∣
dU
dZ1

dU
dZ2

dU
dZ3

dS
dZ1

dS
dZ2

dS
dZ3

dV
dZ1

dV
dZ2

dV
dZ3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
2abZ3

(1−2Z1)2
0 2abZ1

(1−2Z1)

0 2bcZ3

(1−2Z2)2
2bcZ2

(1−2Z2)

0 0 1

∣∣∣∣∣∣∣∣∣ =
4ab2cZ2

3(
(1− 2Z1)(1− 2Z2)

)2 .

(5.5)

The joint probability density function of Z1, Z2, Z3 is

fZ1,Z2,Z3(z1, z2, z3)

= fU

(
u =

2abz1z3

1− 2z1

)
fS

(
s =

2bcz2z3

1− 2z2

)
fV (v = z3)|J |

=

(
4ab2c

)n−1
2

2n−
1
2 Γ
(

1
2

)
Γ
(
n−1

2

)2

z
n−1
2
−1

1 z
n−1
2
−1

2 z
2n−1

2
−1

3 e
−z3

(
1
2

+
abz1
1−2z1

+
cbz2

1−2z2

)
(1− 2z1)

n+1
2 (1− 2z2)

n+1
2

. (5.6)
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The joint density function of Z1, Z2 is the marginal probability function of Z1, Z2

from Equation (5.6) above. It is computed as follows:

fZ1,Z2(z1, z2)

=

∞∫
0

fZ1,Z2,Z3(z1, z2, z3)dz3

=

(
4ab2c

)n−1
2

2n−
1
2 Γ
(

1
2

)
Γ
(
n−1

2

)2

z
n−1
2
−1

1 z
n−1
2
−1

2

(1− 2z1)
n+1
2 (1− 2z2)

n+1
2

∞∫
0

z
2n−1

2
−1

3 e
−z3

(
1
2

+
abz1
1−2z1

+
bcz2

1−2z2

)
dz3

=

(
4ab2c

)n−1
2 Γ

(
n− 1

2

)
z
n−1
2
−1

1 z
n−1
2
−1

2

2n−
1
2 Γ
(

1
2

)
Γ
(
n−1

2

)2
(1− 2z1)

n+1
2 (1− 2z2)

n+1
2

(
1
2

+ abz1
(1−2z1)

+ bcz2
(1−2z2)

)n− 1
2

.

(5.7)

Therefore the cumulative distribution function (cdf) of T ≤ t is computed as

follows:

FT (t)

= P (T ≤ t)

=

∞∫
−∞

t−z1∫
−∞

fZ1,Z2(z1, z2)dz2dz1

=

t∫
0

t−z1∫
0

(
4ab2c

)n−1
2 Γ

(
n− 1

2

)
z
n−1
2
−1

1 z
n−1
2
−1

2 dz2dz1

2n−
1
2 Γ
(

1
2

)
Γ
(
n−1

2

)2 (
(1− 2z1)(1− 2z2)

)n+1
2

(
1
2

+ abz1
(1−2z1)

+ bcz2
(1−2z2)

)n− 1
2

=

t∫
0

(
4ab2c

)n−1
2 Γ

(
n− 1

2

)
z
n−1
2
−1

1

2n−
1
2 Γ
(

1
2

)
Γ
(
n−1

2

)2
(1− 2z1)

n+1
2

Bdz1 (5.8)

where

B =

t−z1∫
0

z
n−1
2
−1

2 (1− 2z2)
n+1
2 dz2(

1
2

+ abz1
(1−2z1)

+ bcz2
(1−2z2)

)n− 1
2

. (5.9)

To compute the integral Equation (5.9), first we simplify this
(

1
2

+ abz1
(1−2z1)

+ bcz2
(1−2z2)

)n− 1
2

as
(

1 + 2(bc−(1−2(1−ab−bc)z1))
1−2(1−ab)z1 z2

)(
1−2(1−ab)z1

2(1−2z1)

)
. Therefore Equation (5.9) becomes
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=

(
2(1− 2z1)

)n− 1
2(

1− 2(1− ab)z1

)n− 1
2

t−z1∫
0

z
n−1
2
−1

2 (1− 2z2)
n+1
2 dz2(

1 + 2(bc−(1−2(1−ab−bc)z1))
1−2(1−ab)z1 z2

)n− 1
2

. (5.10)

The integral
t−z1∫
0

z
n−1
2 −1

2 (1−2z2)
n+1
2 dz2(

1+
2(bc−(1−2(1−ab−bc)z1))

1−2(1−ab)z1
z2
)n− 1

2
is written as

t−z1∫
0

z
n−1
2
−1

2 (1− 2z2)
n+1
2

(
1 +

2(bc− (1− 2(1− ab− bc)z1))

1− 2(1− ab)z1

z2

)−(n− 1
2)
dz2.

(5.11)

By considering the binomial expansion then Equation (5.11) can be represented

as

=
∞∑
k=0

∞∑
l=0

[2k+l(−1)k+l

(
n+1

2

k

)(
n− 3

2
+ l

l

)
(bc− 1 + 2(1− ab− bc)z1)l(

1− 2(1− ab)z1

)l ×

t−z1∫
0

z
n−1
2

+k+l

2 dz2

]

=
∞∑
k=0

∞∑
l=0

[2k+l(−1)k+l

(
n+1

2

k

)(
n− 3

2
+ l

l

)
(bc− 1 + 2(1− ab− bc)z1)l(

1− 2(1− ab)z1

)l ×

(t− z1)
n+1
2

+k+l

n+1
2

+ k + l

]
. (5.12)

Therefore,

B =

(
2(1− 2z1)

)n− 1
2(

1− 2(1− ab)z1

)n− 1
2

×

[
∞∑
k=0

∞∑
l=0

[2k+l(−1)k+l

(
n+1

2

k

)(
n− 3

2
+ l

l

)
(bc− 1 + 2(1− ab− bc)z1)l(

1− 2(1− ab)z1

)l ×

(t− z1)
n+1
2

+k+l

n+1
2

+ k + l

]]
, (5.13)
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and

FT (t) =

(
4ab2c

)n−1
2 Γ

(
n− 1

2

)
Γ
(

1
2

)
Γ
(
n−1

2

)2 ×

[
∞∑
k=0

∞∑
l=0

(−2)k
(
n+1

2

k

)(
n− 3

2
+ l

l

)
(−2(bc− 1))lt

n+1
2

+k+l

n+1
2

+ k + l
G

]
, (5.14)

where

G =

t∫
0

[
z
n−1
2
−1

1

(
1− z1

t

)n+1
2

+k+l

(1− 2z1)
n
2
−1
(
1− 2(1− ab)z1

)−(n+l− 1
2

)×

(
1 +

2(1− ab− bc)z1

bc− 1

)l
dz1

]
. (5.15)

Again, by considering the binomial expansion then Equation (5.15) can be written

as follows

G =
∞∑
w=0

∞∑
p=0

∞∑
q=0

[(
n
2

w

)(
l

p

)(
n+ l + q − 3

2

q

)
(−2)w

(
2(1− ab− bc)

bc− 1

)p
×

(−2(1− ab))q
t∫

0

z
n−1

2+w+p+q
−1

1

(
1− z1

t

)n−1
2

+k+l

dz1

]

=
∞∑
w=0

∞∑
p=0

∞∑
q=0

[(
n
2

w

)(
l

p

)(
n+ l + q − 3

2

q

)
(−2)w

(
2(1− ab− bc)

bc− 1

)p
×

(−2(1− ab))qB
(
n−1

2
+ w + p+ q, n+1

2
+ k + l

)
t
n−1
2

+w+p+q

]
. (5.16)

Therefore FT (t) is

FT (t) =

(
4ab2c

)n−1
2 Γ

(
n− 1

2

)
Γ
(

1
2

)
Γ
(
n−1

2

)2 ×

[
∞∑
k=0

∞∑
l=0

∞∑
w=0

∞∑
p=0

∞∑
q=0

[2k
(
n−1

2
+ k

k

)(
n− 3

2
+ l

l

)
(−2(bc− 1))lt

n−1
2

+k+l

n−1
2

+ k + l
×
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(
n
2

w

)(
l

p

)(
n+ l + q − 3

2

q

)
(−2)w

(
2(1−ab−bc)

bc−1

)p
(−2(1− ab))q

t
n−1
2

+w+p+q
×

B

(
n− 1

2
+ w + p+ q,

n+ 1

2
+ k + l

)]]

=

(
4ab2c

)n−1
2 Γ

(
n− 1

2

)
Γ
(

1
2

)
Γ
(
n−1

2

)2 ×

[
∞∑
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∞∑
l=0

∞∑
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∞∑
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2
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2
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l
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w

)(
l
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)(
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2
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)p
(−2(1− ab))q×

B

(
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2
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2
+ k + l
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. (5.17)

Furthermore, from Equation (5.17) it follows that the probability density function

(pdf) of T is

fT (t) =

(
4ab2c

)n−1
2 Γ

(
n− 1

2

)
Γ
(

1
2

)
Γ
(
n−1

2

)2

∞∑
k=0

∞∑
l=0

∞∑
w=0

∞∑
p=0

∞∑
q=0

[2k
(
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2
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k

)(
n− 3

2
+ l

l

)
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2
+ k + l

×

(k + l − w − p− q)tk+l−w−p−q(−2(bc− 1))l
(
n
2

w

)(
l

p

)
×(

n+ l + q − 3
2

q

)
(−2)w

(
2(1− ab− bc)

bc− 1

)p
(−2(1− ab))q×

B

(
n− 1

2
+ w + p+ q,

n+ 1

2
+ k + l

)]
(5.18)

The pdf of T can also be computed as follows:

fT (t) =

t∫
−∞

fZ1,Z2(z1, t− z1)dz1 =

t∫
−∞

fZ1,Z2(t− z2, z2)dz2 (5.19)

We already have the pdf and cdf of T from which we can compute the statistical

value of T in order to test the hypothesis. The null hypothesis regarding the

equality of the mean of two independent samples is therefore rejected if T ≤ t0 or

P (T ≤ t0) = FT (t0) ≤ α.
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The computation of FT (t0) using Equation (5.17) involves the five summation and

therefore rather difficult. The computation gets easier in the case where σ2
x = σ2

y.

In the case of σ2
x = σ2

y , we replace the Vx and Vy with Vx+Vy
2

, therefore Equations

(5.3) and (5.5) become

T ∗ =
Vx+Vy

2[
Vx+Vy

2
+ n(Y−X)2

n−1

] (5.20a)

=
U∗

U∗ + 4V ∗
(5.20b)

where U∗ =
(n−1)(Vx+Vy)

σ2
x

and V ∗ = n(Y−X)2

2σ2
x

.

The pdf of T ∗ is derived from the ratio of linear combination of chi-square random

variables [56]. First, let Y = 1 + 4V
∗

U∗ , where V ∗ is distributed χ2
(1) and U∗ is

distributed χ2
2(n−1). Second, the pdf of T ∗ is computed by taking T ∗ = 1

Y
.

In the following computation, the chi-square distribution is represented as the

Gamma distribution. Therefore, we have V ∗ as Gamma distributed with param-

eters α1 = 1
2

and β1 = 2. U∗ is Gamma distributed with parameters α2 = (n− 1)

and β2 = 2. U∗ and V ∗ are independents.

Suppose G = V ∗

U∗ and if we take U∗ = H, then we get V ∗ = GH. Furthermore we

have the Jacobian of this transformation random variable is h. Because V ∗ and

U∗ are independents, then the joint probability function of G and H is

fG,H(g, h) =fV ∗,U∗(gh, h).h, (5.21)

where

fV ∗,U∗(gh, h) = fV ∗(gh).fU∗(h), fV ∗(gh) =
(gh)α1−1e

− gh
β1

βα1
1 Γ(α1)

, and fU∗(h) =
(h)α2−1e

− h
β2

βα2
2 Γ(α2)

Therefore

fG,H(g, h) =
(gh)α1−1e

− gh
β1

βα1
1 Γ(α1)

.
(h)α2−1e

− h
β2

βα2
2 Γ(α2)

h

=
gα1−1hα1+α2−1e(− (1+g)

β
h)

βα1+α2Γ(α1)Γ(α2)
, β1 = β2 = β. (5.22)
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To determine the pdf of g, then

fG(g) =

∞∫
0

fG,H(g, h)dh

=
gα1−1

B(α1, α2)(1 + g)α1+α2

=
g

1
2
−1

B(1
2
, n− 1)(1 + g)n−

1
2

, (5.23)

G is a beta of the second kind distribution.

The next step is determining the distribution of Y . We define Y= 1 + 4G and

by using the transformation random variable, where G = Y−1
4

, the pdf of Y is

computed as follows:

fY =

(
y−1

4

) 1
2
−1

B(1
2
, n− 1)

(
1 +

(
y−1

4

))n− 1
2

1

4

=
4n−1(y − 1)

1
2
−1

B(1
2
, n− 1)(3 + y)n−

1
2

, 1 ≤ y ≤ ∞. (5.24)

The pdf of T ∗ = 1
Y

is obtained from the following equations:

fT ∗(t∗) =
4n−1( 1

t∗
− 1)

1
2
−1

B(1
2
, n− 1)(3 + 1

t∗
)n−

1
2

1

t∗2

=
4n−1tn−2(1− t∗) 1

2
−1

B(1
2
, n− 1)(1 + 3t∗)n−

1
2

, 0 ≤ t∗ ≤ 1. (5.25)

Furthermore the cdf of T ∗ analytically is computed as

FT ∗(t∗0) =

t∗0∫
0

fT ∗(t∗)dt∗

=
4n−1

B(1
2
, n− 1)

t∗0∫
0

t∗(n−2)(1− t) 1
2
−1

(1 + 3t∗)n−
1
2

dt∗
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=
4n−1

B(1
2
, n− 1)

∞∑
k=0

(−1)k
(
n− 1

2
+ k − 1

k

) t∗0∫
0

t∗(n−1+k−1)(1− t∗)
1
2
−1dt∗

=
4n−1

B(1
2
, n− 1)

[
∞∑
k=0

(−1)k
(
n+ k − 3

2

k

)
B

(
t∗0, n− 1 + k,

1

2

)]
, (5.26)

where B
(
t∗0, n− 1 + k, 1

2

)
=

t∗0∫
0

t∗(n−1+k−1)(1− t∗) 1
2
−1dt∗.

We will reject the null hypothesis of the equality of the mean of two independent

samples if T ∗ < t∗0,α or P (t∗ < T ∗0 ) = FT ∗(T ∗0 ) = p-value ≤ P
(
t∗ < t∗0,α

)
=

FT ∗(t∗0,α) = α.

Observing that (2(n− 1))
(
V ∗

U∗

)
is the square of a random variable having t2(n−1)

distribution, a simple calculation shows that the same holds for the random vari-

able

J =

√
(n− 1)

(
1

T ∗
− 1

)
(5.27)

This statistic J can also be used to test the hypothesis µx = µy and the critical

values can be computed from the t table. It also follows that J has a limiting

normal distribution as n→∞

5.3 The second proposed test

Consider that the distribution of T in Equation (5.5) is a sum of the dependent

random variables Z1 and Z2. Because Z1 and Z2 are dependent then we need to

compute the copula CZ1,Z2 . Calculating their functional copula are not easy, hence

we approximate it by its empirical copula. For this, instead of using Equation (5.3),

we use and rewrite Equation (2.3) as follows:

T =
1

2

 Vx

Vx + n(Y−X)2

n−1

+
Vy

Vy + n(Y−X)2

n−1


=

 Vx

2Vx + 2n(Y−X)2

n−1

+

 Vy

2Vy + 2n(Y−X)2

n−1


=Z1 + Z2. (5.28)
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Deheuvels (1979), in Genest and Favre [27] and Genest et al. [28], defines the

empirical copula as follows:

Definition 5.2. Let {(Z1i, Z2i), i = 1, . . . , n} denote n independent observations

of the vector (Z1, Z2). The empirical copula Cn is given by

Cn(u1, u2) =
1

n

n∑
i=1

1(Ũ i
1 ≤ u1, Ũ

i
2 ≤ u2), (5.29)

where Ũ i
k =

Rik
n+1

, k = 1, 2 are the components of the pseudo copula samples and

Ri
k =

n∑
j=1

1(Zj
k ≤ Zi

k) is the rank of the observation Zi
k.

We simulate pseudo copula samples and observe that under the null hypothesis H0

of equal means, the scatterplots show a linear dependence of the copula compo-

nents and under the alternative hypothesis Ha the scatterplots show uncorrelated

variables. See Figures 5.1, 5.2, and 5.3.

Figure 5.1: Supporting graphical plots in which the mean of two independent samples
are different
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Figure 5.2: Supporting graphical plots in which the mean of two independent samples
are equal

Figure 5.3: Supporting graphical plots, intermediate case
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Thus it is natural to use the R2 statistics to construct the test. We reject H0 if

R2 < c where c is an αth quantile of R2
0 and R2

0 is the R2 under the null hypothesis.

Definition 5.3. Suppose we have n observations of two random variables, U1 and

U2. The linear relationship between U1 and U2 is measured by the R2, as follows:

R2 =1−

n∑
i=1

(U2i−Û2i)
2

n−2
n∑
i=1

(U2i−U2)2

n−1

, (5.30)

where Û2i = a+ bU1i.

5.4 Simulation study

5.4.1 Simulation study the first proposed test, [21]

In this section we describe the results from the two simulation studies of the

proposed test under the homogeneity of variance and the t test. First a simulation

is conducted to measure the power of the proposed and the t tests, which is

conducted at N = 1000 times and α = 0.01. The results are presented in Section

5.4.1.1. In this simulation, we consider various possibilities regarding the sample

sizes and variances. The results of the simulation are divided into groups according

to

1. variance: low (S = 0.2), medium (S = 1.2) and high (S = 7),

2. sample size: low (5 and 25), medium (100) and high (500)

Section 5.4.1.2 describes the results of the second simulation measuring the re-

jection’s rate under the null hypothesis of the proposed and the t tests, based

on the N = 500 times simulation and α = 0.01. In the simulation, we use

µX = µY = µ = 9.2 and σX = σY = σ is chosen from these values of variances:

1.25, 3.5 and 10 which represent the low, medium and high variance respectively.

Further details of both simulations are in Appendix F Section F.2.
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5.4.1.1 Power of the test

Figure 5.4: Graphical power of the t and proposed tests, n=5

Figure 5.5: Graphical power of the t and proposed tests, n=25

Figure 5.6: Graphical power of the t and proposed tests, n=100

Figure 5.7: Graphical power of the t and proposed tests, n=500
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Figures 5.4, 5.5, 5.6 and 5.7 present the power of the proposed and t tests, based

on the simulation study.They show that the proposed and the t tests have an equal

power. In the computation, the power of the proposed test is calculated using the

empirical approach, therefore the result is not as smooth as the t test.

Table 5.1: Error type I rate under 500 simulation for the proposed and t tests

Sample size Variance
proposed test t test
0.05 0.01 0.05 0.01

low 0.056 0.012 0.056 0.012
5 medium 0.062 0.016 0.062 0.016

high 0.056 0.020 0.056 0.020
low 0.046 0.010 0.046 0.010

25 medium 0.044 0.012 0.044 0.012
high 0.038 0.010 0.038 0.010
low 0.058 0.006 0.058 0.006

100 medium 0.050 0.010 0.050 0.010
high 0.062 0.012 0.062 0.012
low 0.038 0.004 0.038 0.004

500 medium 0.038 0.002 0.038 0.002
high 0.050 0.010 0.050 0.010

5.4.1.2 Error type I

The simulation results of error type I are are shown in Table 5.1. It shows that

the error type I rate of the t and the proposed tests are equal. This equality is

also shown by the distribution of p-values in the proposed and t tests in Figures

5.8, 5.9 and 5.10.

(a) n=5 (b) n=500

Figure 5.8: P-values distribution of the proposed and t tests, small variance

(a) n=5 (b) n=500

Figure 5.9: P-values distribution of the proposed and t tests, medium variance
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(a) n=5 (b) n=500

Figure 5.10: P-values distribution of the proposed and t tests, high variance

The next section provides some examples of comparison data analysis of the pro-

posed and t tests. We used 14 artificial data sets of which the first 10 were taken

randomly from the internet. The data can be seen in Table 5.2.

Table 5.2: Data sets, their mean and variance

Data Data Mean Variance
1 X=(5,7,5,3,5,3,3,9) 5.000 4.571

Y=(8,1,4,6,6,4,1,2) 4.000 6.571
2 X=(0.72,0.68,0.69,0.66,0.57,0.66,0.70,0.63,0.71,0.73) 0.675 0.002

Y=(0.71,0.83,0.89,0.57,0.68,0.74,0.75,0.67,0.80,0.78) 0.742 0.008
3 X=(42,45,40,37,41,41,48,50,45,46) 43.500 15.833

Y=(43,51,56,40,32,54,51,55,50,48) 48.000 57.330
4 X=(33,31,34,38,32,28) 32.667 11.067

Y=(35,42,43,41) 40.250 12.917
5 X=(35,40,12,15,21,14,46,10,28,48,16,30,32,48,31,

22,12,39,19,25)
27.150 156.450

Y=(2,27,38,31,1,19,1,34,3,1,2,3,2,1,2,1,3,29,37,2) 11.950 213.524
6 X=(26 21,22,26,19,22,26,25,24,21,23,23,18,29,22) 23.133 8.552

Y=(18, 23, 21,20,20,29,20,16,20,26,21,25,17,18,19) 20.867 12.552
7 X=(520,460,500,470) 487.500 758.333

Y=(230,270,250,280) 257.500 491.667
8 X=(3,0,6,7,4,3,2,1,4) 3.333 5.000

Y=(5,1,5,7,10,9,7,11,8) 7.000 9.250
9 X=(16,20,21,22,23,22,27,25,27,28) 23.100 13.878

Y=(19,22,24,24,25,25,26,26,28,32) 25.100 11.878
10 X=(91,87,99,77,88,91) 88.833 51.367

Y=(101,110,103,93,99,104) 101.667 31.867
11 X=(10.11,7.36,6.34,11.83,8.61) 8.850 4.761

Y=(3.28, 6.52,2.28,6.66,4.55) 4.658 3.760
12 X=(4.79,4.95,2.52,4.98,4.99) 4.446 1.166

Y=(7.90,7.51,6.62,7.57,7.49) 7.418 0.227
13 X=(3.99,3.98,4.03,4.06, 3.84) 3.980 0.007

Y=(6.68,6.25,6.97,5.75,4.01)) 5.932 1.366
14 X=(10.16,8.26,16.23,1.44,0.66) 7.350 41.816

Y=c(28.06,8.52,25.39,15.45,16.03) 18.690 63.422
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Table 5.3: F.test decision

Samples Decision Samples Decision
Data 1 equal variance Data 8 equal variance
Data 2 equal variance Data 9 equal variance
Data 3 equal variance Data 10 equal variance
Data 4 equal variance Data 11 equal variance
Data 5 equal variance Data 12 equal variance
Data 6 equal variance Data 13 not equal variance
Data 7 equal variance Data 14 equal variance

Table 5.4: P-values and decisions from the proposed and t tests

Sample
t test proposed test

p-value Decision p-value Decision
Data 1 0.411 Accept 0.411 Accept
Data 2 0.054 Accept 0.054 Accept
Data 3 0.114 Accept 0.113 Accept
Data 4 0.009 Reject
Data 5 0.001 Reject 0.001 Reject
Data 6 0.067 Accept 0.066 Accept
Data 7 0.000 Reject 0.000 Reject
Data 8 0.010 Accept 0.010 Accept
Data 9 0.229 Accept 0.229 Accept
Data 10 0.006 Reject 0.006 Reject
Data 11 0.012 Accept 0.012 Accept
Data 12 0.000 Reject 0.000 Reject
Data 14 0.039 Accept 0.039 Accept

Table 5.5: P-values and decision from the proposed test, Data set 4

Choice of n
Least Square

p-value Decision
Min 0.021 Accept
Max 0.004 Reject
Average 0.009 Reject

5.4.1.3 Some examples

In this section, some example data sets are provided and used as an example of

how to make the decision by using the special case of the cross variance test T ∗

(= the T test when σX = σY ). For this T ∗ test, the first step is making sure the

variances of the samples are equal. There are some tests for this purpose, here we

use the F.test in R.

In the proposed test, the null hypothesis is rejected if t∗o < t∗α or if the p-value of

the special case of the cross variance test is less than α, where t∗o is the t∗ statistic
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from the observed sample and p-value = P (t∗o < t∗α). In the computation we use

α = 0.01.

The data sets are shown in Table 5.2 and the computation results for the F.test

are shown in Table 5.3. Tables 5.4 and 5.5 provide the results of the decision for

both tests. Table 5.3 shows that data set 13 has unequal variances, therefore it

will be excluded from further computation.

From Table 5.4 we can see that the p-values and decisions from the proposed and

the t tests are equal, except for data set 4. It is the only data set with a different

sample size. When the sample size of two samples is different, we provide two

options of n: the max(n1, n2) or the average of (n1, n2). The example is shown in

Table 5.5.

Based on the results of this section, we can suggest that the proposed test could

be used as an alternative to detect whether or not there is difference between the

means of two independent normal populations, where the variance between two

populations is assumed to be equal.

5.4.2 Simulation study the second proposed test

In this section we describe the results from the simulation studies of the proposed

and the t tests. The simulation is conducted to measure the power of both tests,

with M1 = 1000, M2 = 500 and α = 0.05.

In the simulation, we consider various possibilities regarding the sample sizes and

variances. The results of the simulation are divided into groups according to

1. variance: low (0.1 ≤ S ≤ 1.57), medium (3.5 ≤ S ≤ 5.3) and high (S ≥
6.97),

2. sample size (n): small (5 ≤ n ≤ 10), medium (15 ≤ n ≤ 25), large (30 ≤
n ≤ 80) and very large (n ≥ 80)

Further details of the simulation are provided in Appendix F Section F.3.
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5.4.2.1 Power of the test

5.4.2.1.1 Homogeneous variance

When the variances are homogeneous and the variances are very small (the stan-

dard deviation = 0.1), then the proposed and the t tests have the same power,

even when the sample size is as small as 5, see Figures 5.11 until 5.14. But when

the standard deviation is more than 0.5, the power of the proposed test is better

than the t test, unless the sample size is ≥ 50. This is shown at Figure 5.13.
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Figure 5.11: Graphical power of the proposed and the t tests, low homogeneity
of variance (1)
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Figure 5.12: Graphical power of the proposed and the t tests, low homogeneity
of variance (2)
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When both of the variances are medium or high, in general the proposed test

performs much better than the t test. Unless the sample size is really large, for

example 500 as is shown in Figure 5.16. These are shown from Figures 5.15 to

5.18.
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Figure 5.13: Graphical power of the proposed and the t tests, low homogeneity
of variance (3)
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Figure 5.14: Graphical power of the proposed and the t tests, low homogeneity
of variance (4)
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Figure 5.15: Graphical power of the proposed and the t tests, medium homo-
geneity of variance (1)
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Figure 5.16: Graphical power of the proposed and the t tests, medium homo-
geneity of variance (2)
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Figure 5.17: Graphical power of the proposed and the t tests, high homogene-
ity of variance (1)
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Figure 5.18: Graphical power of the proposed and the t tests, high homogene-
ity of variance (2)
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5.4.2.1.2 Heterogeneous variance

When the variances are heterogeneous, the results are shown from Figures 5.19 to

5.25. Respectively, they describe the power when the variance of the two samples

has a low, medium and high heterogeneity.

When the variance of the two samples is low and the heterogeneity between two

variances is also low, then the power of the test could be equal if the sample size at

least 15, otherwise the proposed test has higher power than the t test. See Figures

5.19 to 5.21.
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Figure 5.19: Graphical power of the proposed and the t tests, low heterogene-
ity of variance (1)
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Figure 5.20: Graphical power of the proposed and the t tests, low heterogene-
ity of variance (2)
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Figure 5.21: Graphical power of the proposed and the t tests, low heterogene-
ity of variance (3)
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Figure 5.22: Graphical power of the proposed and the t tests, medium het-
erogeneity of variance (1)
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In cases where the variances of the two samples are medium or high and the

heterogeneity between two variances is also medium or high then Figures 5.22 to

5.27 show that the proposed test has higher power than the t test.

-6 -4 -2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

alpha=0.05, n=25, S1=4.3 and S2=5

Difference in Population Means

P
o

w
e

r 
o

f 
th

e
 t
e

s
t

proposed test
t test

-6 -4 -2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

alpha=0.05, n=30, S1=4.3 and S2=5

Difference in Population Means

P
o

w
e

r 
o

f 
th

e
 t
e

s
t

proposed test
t test

-6 -4 -2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

alpha=0.05, n=50, S1=4.3 and S2=5

Difference in Population Means

P
o

w
e

r 
o

f 
th

e
 t
e

s
t

proposed test
t test

-6 -4 -2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

alpha=0.05, n=80, S1=4.3 and S2=5

Difference in Population Means

P
o

w
e

r 
o

f 
th

e
 t
e

s
t

proposed test
t test

Figure 5.23: Graphical power of the proposed and the t tests, medium het-
erogeneity of variance (2)
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Figure 5.24: Graphical power of the proposed and the t tests, high hetero-
geneity of variance (1)
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Figure 5.25: Graphical power of the proposed and the t tests, high hetero-
geneity of variance (2)
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Figure 5.26: Graphical power of the proposed and the t tests, high hetero-
geneity of variance (3)
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Figure 5.27: Graphical power of the proposed and the t tests, high hetero-
geneity of variance (4)

Some examples of data analysis concerning the proposed test and the comparison

results with the t test will be described in the following section. The data sets are

the same as in Table 5.2.

5.4.2.2 Some examples

In this section, some example data sets are provided and used to describe how

to make the decision in the proposed test. The computation results are shown in

Tables 5.6 and 5.7. We provided two options in rejecting or accepting the null

hypothesis:

1. Use the graphs or plots

2. Use the A-value.

Recall that the proposed test computation is based on generating M2 of the

empirical copula component samples and then compute the R2 value. Before

determining the R2 distribution, we approximated the distribution under the

null hypothesis by generating M1 of the R2 values.

The proposed test provides M1 of R2
0 and R2

1 values, for the null and the al-

ternative hypotheses respectively. The A-value is computed as
#(R2

0<max(R2
1))

M1
.



Chapter 5. Cross variance 92

In the computation we choose M1 = 1000 for the graphics of the empirical copula

components sample and M1 = 1000 and M2 = 500 for the A value.

Table 5.6: Decision based on graphical assessment

Samples Decision Explanation
Data 1 Accept H0 The scatter plot or copula components are lying near a straight line and the plot

of T shows left-skewed distribution
Data 2 Accept/Reject H0 The scatter plot or copula components are lying near a straight line but some

of them quite far from the ideal line. The plot of T shows almost right-skewed
distribution although it is quite symmetric. One can accept or reject the null
hypothesis.

Data 3 Accept/Reject H0 equal to data set 2.
Data 4 Reject H0 The scatter plot or copula components are lying randomly, far from a straight line

and the plot of T shows right-skewed distribution
Data 5 Reject H0 The scatter plot or copula components are lying randomly and the plot of T is

right-skewed distribution are close to 0.4. In comparison, the data set 2 performs
similary but the plot of T shows that the values are close to 1

Data 6 Accept/Reject H0 equal to data set 2 and 3
Data 7 Reject H0 The scatter plot or copula components are lying randomly, far from a straight line

and the plot of T shows right-skewed distribution
Data 8 Reject H0 The scatter plot or copula components are lying randomly, far from a straight line.

The plot of T is right-slewed distribution.
Data 9 Accept H0 The scatter plot or copula components are lying around a straight line and the

plot of T shows left-skewed distribution
Data 10 Reject H0 The scatter plot or copula components are lying randomly, far from a straight line

and the plot of T is right-skewed distribution
Data 11 Reject H0 The scatter plot or copula components are lying randomly, far from a straight line

and the plot of T is right-skewed distribution
Data 12 Reject H0 The scatter plot or copula components are lying randomly, far from a straight line

and the plot of T is right-skewed distribution
Data 13 Reject H0 The scatter plot or copula components are lying randomly, far from a straight line

and the plot of T is right-skewed distribution
Data 14 Reject H0 The scatter plot or copula components are lying randomly, far from a straight line

and the plot of T is right-skewed distribution

5.4.2.2.1 The graphical assessment

All graphics for the data sets are in the Appendix Section G.2. The first option

is implemented in 1000 simulations. Deciding that two means are equal means we

are focusing on Plot T and Plot U1 and U2, which are at the top right and the

bottom left in each graph respectively. The results are summarized in Table 5.6.

5.4.2.2.2 The A-value based assessment

In this computation, we need to reject the null hypothesis if A-value ≤ α = 0.05.

All results from the computation are in Table 5.7.

From Table 5.7 we can see that the decisions from the proposed and the t tests

are the same, except for the decision of data sets 2, 3 and 6. However, if we used

α = 0.01 then the different decisions occur at the data sets 2, 3, 4, 6, 8, 11, 13 and

14.



Chapter 5. Cross variance 93

Table 5.7: p and A -values and decision from the t and the proposed tests

Sample
t test proposed test

p-value Decision A-value Decision
Data 1 0.412 Accept H0 0.990 Accept H0

Data 2 0.059 Accept H0 0.000 Reject H0

Data 3 0.119 Accept H0 0.004 Reject H0

Data 4 0.014 Reject H0 0.000 Reject H0

Data 5 0.001 Reject H0 0.000 Reject H0

Data 6 0.067 Accept H0 0.000 Reject H0

Data 7 0.000 Reject H0 0.000 Reject H0

Data 8 0.011 Reject H0 0.000 Reject H0

Data 9 0.229 Accept H0 0.772 Accept H0

Data 10 0.007 Reject H0 0.000 Reject H0

Data 11 0.013 Reject H0 0.000 Reject H0

Data 12 0.002 Reject H0 0.000 Reject H0

Data 13 0.020 Reject H0 0.000 Reject H0

Data 14 0.040 Reject H0 0.000 Reject H0

5.5 Remarks

The simulation study of the power of these tests shows that the first proposed and

the t tests have the same power. Furthermore the p-value and the error type I

rate under the null hypothesis of the proposed and t tests are exactly equal. These

results suggest that the proposed model could be used as an alternative test for

testing equality of mean of the two independent samples where the variance and

sample sizes are equal.

The case studies of the example data sets show that the proposed test provides

only one different decision from the t test, which happened when the sample sizes

unequal. In this case, it is suggested to choose max(n1, n2) for the computation.

We also introduce the new probability density functions which accompany the first

proposed test.

The simulation study of the power of these tests shows that in some cases the

second proposed and the t tests have equal power, although in general the proposed

test has higher power than the t test.

The case studies of the example data sets show that the second proposed test

provides some different decisions from the t test.

In view of the author, the second proposed method is suitable for data where repli-

cations of the samples are not many, such as in the bioinformatics field. However,
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further investigation to compare the performance of this proposed test to other

tests which are used in the bioinformatics, such as moderated t test [60], needs

to be done to see which method leads to more experiment-wide power after false

discovery rate control.

5.6 Chapter summary

In this chapter we introduced a cross-variance concept, two new tests based on

the cross-variance to detect the difference in mean of two populations, and new

probability density functions. A simulation study has been conducted to compute

the power and the error type 1 rate of the proposed and the t tests.

The simulation study shows that the first proposed test performs equally to the t

test. On the other hand the second proposed test performs better than the t test,

proving that the second proposed test is more powerful than the t test. We believe

that both of the the proposed tests could be used as an alternative to the t test.



Chapter 6

Conclusions and indication of

future work

6.1 Conclusions

We have studied the additive models of background correction for the Illumina

BeadArrays and proposed some new models where the true intensity is assumed to

have exponential or gamma distribution and the noise is lognormally distributed.

We have derived the formula of the true intensity value of the proposed models.

Furthermore, we compared the performance of all models, based on the bench-

marking and public data sets. It has been shown that the proposed models per-

form moderately better than the existing models. We also proposed a generalized

model where the true intensity is skewed-distributed and the noise can be skewed

or symmetrical. In all proposed models we derived the formula for the true inten-

sity value.

We introduced and developed alternative tests to detect difference of mean between

two independent samples. The tests are based on the cross variance concept,

pseudo copula samples, R2 and bootstrapping. Although our tests offer some

advantages, there are things that should be addressed in future work.

95
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6.2 Future work

In the future we will address the following issues:

1. the generalized model of the background correction of the Illumina BeadAr-

rays has not yet been fully implemented and applied

2. the implementation of the empirical copula as a dependence measure has not

yet been explored

3. the theoretical part of the second proposed test needs to be investigated

further
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MA plots

Figure A.1: MA plots. (cont.)
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Figure A.2: MA plots. (cont.)

Figure A.3: MA plots.
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Variance across replicates
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Figure B.1: Variance across replicates plots, all models
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Figure B.2: Variance across replicates plots, without GLNp.
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Nominal vs observed intensity
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Figure C.1: Nominal vs observed plots, all models
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Figure C.2: Nominal vs observed plots, without GLNp.

100



Appendix D

Nominal vs observed fold-change
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Figure D.1: Nominal vs observed fold-change plots, all arrays
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Figure D.2: Nominal vs observed fold-change plots, 24 arrays.
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ROC curves
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Figure E.1: ROC plots, all models
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Figure E.2: ROC plots without GLNp
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Simulation study
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F.1 Benchmarking study

Let N be the number of simulations, n1 the sample size of regular probes, n2 the

sample size of negative probes, Θ the original parameter vector of the underlying

distribution in each model from the data set and Θ̂ the parameter vector of the un-

derlying distribution in each model from the simulation data. In this dissertation

we chose N = 100, n1 = 25000 and n2 = 1000.

The simulation is conducted by referring to the convolution in Equation (2.1),

based on the underlying distribution. Once we have chosen the model, then

1. choose the parameters for the simulation. The parameters for the simulation

are a combination of the minimum, median and maximum values of the

original parameters. The original parameters are estimated from the data

set based on the chosen model.

2. generate a sample for the true intensity (S), negative probes (B) and regular

probes (S +B)

3. estimate the parameters of the underlying distribution based on the gener-

ated sample (Θ) and save

4. compute the true intensity value (Ŝ) and save

5. repeat the steps above N times, then

6. compute the simulation criteria, to measure the bias of the background cor-

rection and the parameters:

(a) MSEbc is defined as

MSEbc = 1
N

N∑
l=1

 1

n1

n1∑
j=1

(
Ŝ(P l

j |Θ̂l)− Slj
)2


(b) L1 error is defined as

L1 = 1
N

N∑
l=1

| Θ− Θ̂l |
Θ

The lower these MSEbc and L1 errors are, the better the signal can be estimated

under such a model.
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F.2 First proposed test

F.2.1 Simulation to compute the rejection rate under the

null hypothesis between the proposed and the t tests

The simulation study is conducted as follows:

1. Choose the n,M1, α, µX = µY = µ and σX = σY = σ of the two-groups

independent samples

2. Repeat M1 times

(a) Compute p-value of t∗o test

(b) Compute p-value of t test

3. Compute the proportion of t test p-value ¡ α in M1 results

4. Compute the proportion of the proposed test p-value ¡ α in M1 results

5. Compare the result of steps 3 and 4

F.2.2 Simulation to compute the power of the t and the

proposed tests 2

The simulation study is conducted to show the power of the second proposed test.

It is implemented as follows:

1. Choose the µX , µY , σX = σY = σ of the two-groups independent samples

2. The simulation under null hypothesis

(a) Generate n random samples normally distributed with mean and stan-

dard deviation, µX0 and σ

(b) Generate n random samples normally distributed with mean and stan-

dard deviation, µY0 and σ

(c) Compute their mean and variance samples

(d) Compute t∗0 values, based on the equation (5.20a).
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3. The simulation under alternative hypothesis

(a) Generate n random samples normally distributed with mean and stan-

dard deviation, µX1 and σ

(b) Generate n random samples normally distributed with mean and stan-

dard deviation, µY1 and σ

(c) Compute their mean and variance samples

(d) Compute t∗1 values, based on the equation (5.20a).

4. Repeat steps (2) - (3), M times

5. Compute t∗0,α, the α quantile of t∗0. Note that t∗0,α can also be computed by

using the αth quantile of pdf of T ∗ in the Equation (5.25).

6. Compute the power of the proposed test = 1− sum(t∗1≥t∗0,α)

M

7. Compute the power of t test from samples X1 and Y1

8. Compare the results from steps (6) and (7)

9. Do steps (1)-(8), for different values of mean and variance

F.3 Second proposed test

Simulation to compute the power of the proposed and the t tests 2

The simulation study is conducted to show the power of the proposed and the t

tests. It is implemented as follows:

1. Choose the µX , µY , σX and σY of the two-groups independent samples

2. The simulation under null hypothesis

(a) Generate n random samples normally distributed with mean and stan-

dard deviation, µX0 and σX0

(b) Generate n random samples normally distributed with mean and stan-

dard deviation, µY0 and σY0

(c) Compute their mean and variance samples
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(d) Compute Z01 and Z02 values, based on the equation (5.27).

3. The simulation under alternative hypothesis

(a) Generate n random samples normally distributed with mean and stan-

dard deviation, µX1 and σX1

(b) Generate n random samples normally distributed with mean and stan-

dard deviation, µY1 and σY1

(c) Compute their mean and variance samples

(d) Compute Z11 and Z12 values, based on the equation (5.27).

4. Repeat steps (2) - (3), M2 times

5. Rank the values of Z01, Z02, Z11 and Z12 and divide by M1 + 1

6. Compute the R2
0 and R2

1

7. Repeat steps (2) - (5), M1 times

8. Compute R0, the α quantile of R2
0

9. Compute the power of the proposed test = 1− sum(R2
1≥R0)

M1

10. Compute the power of t test from samples X1 and Y1

11. Compare the results from steps (9) and (10)

12. Do steps (1)-(11), for different mean and variance
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G.1 First proposed test: P-values distribution

(a) n=5 (b) n=500

Figure G.1: P-values distribution of the proposed and t tests, small variance

(a) n=5 (b) n=500

Figure G.2: P-values distribution of the proposed and t tests, medium variance

(a) n=5 (b) n=500

Figure G.3: P-values distribution of the proposed and t tests, high variance
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G.2 Second proposed test: Graphics of example
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Figure G.4: Graphics of data set 1
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Figure G.5: Graphics of data set 2
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Figure G.6: Graphics of data set 3
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Figure G.7: Graphics of data set 4
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Figure G.8: Graphics of data set 5
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Figure G.9: Graphics of data set 6
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Figure G.10: Graphics of data set 7
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Figure G.11: Graphics of data set 8
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Figure G.12: Graphics of data set 9

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

Z1

Z
2

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Density plot of T

N = 1000   Bandwidth = 0.02281

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

U1

U
2

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

Density plot of U1+U2

N = 1000   Bandwidth = 0.1106

D
en
si
ty

Figure G.13: Graphics of data set 10
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Figure G.14: Graphics of data set 11
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Figure G.15: Graphics of data set 12
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Figure G.16: Graphics of data set 13
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and Matthew E. Ritchie. Statistical issues in the analysis of Illumina data.

BMC Bioinformatics, 9(85), 2008a.

[15] Rohmatul Fajriyah. Statistical analysis of the economic performance in In-

donesia, Part I - Simplex method. 55th ISI Session Conference, April 2005a.

[16] Rohmatul Fajriyah. Statistical analysis of the economic performance in In-

donesia, Part II - Grad method. ICREM 2 Conference, INSPEM, University

Putra Malaysia, May 2005b.

[17] Rohmatul Fajriyah. The pdf’s estimation by grad method and its Gini index.

Karya Asli Lorekan Ahli Matematik, 1(2):021 – 027, 2008.

[18] Rohmatul Fajriyah. Comparison of the risk ratio of background correction

models for the Illumina BeadArrays. Poster Paper EMS 2013, July 2013.

[19] Rohmatul Fajriyah. A study of convolution models for background correction

of BeadArrays. accepted paper at Austrian Journal of Statistics, 2014a.



Bibliography 119

[20] Rohmatul Fajriyah. Generalized beta convolution model of the true intensity

for the Illumina BeadArrays. To appear at Thailand Statistician Association

Journal, 2014b.

[21] Rohmatul Fajriyah. The power and error rate of the special case of the cross

variance test. Submitted paper, 2014e.

[22] Jian-Bing Fan, Sean X. Hu, William C. Craumer, and David L. Barker.

BeadarrayTM-based solutions for enabling the promise of pharmacogenomics.

Bio Techniques, 39:583–588, 2005.

[23] Jian-Bing Fan, Kevin L. Gunderson, Marina Bibikova, Joanne M. Yeakley,

Jing Chen, Eliza Wickham Garcia, Lori L. Lebruska, Marc Laurent, Richard

Shen, and David Barker. [3] illumina Universal Bead Arrays. Methods in

Enzymology, 410:57–73, 2006.

[24] Anyiawung Chiara Forcheh, Geert Verbeke, Adetayo Kasim, Dan Lin, Ziv

Shkedy, Willem Talloen, Hinrich WH Gohlmann, and Lieven Clement. Gene

Filtering in the Analysis of Illumina Microarrays Experiments. Statistical

Applications in Genetics and Molecular Biology, 11(2), 2012.

[25] D. A. Freedman. On the so-called ”Huber sandwich estimator” and ”robust

standard errors”. The American Statistician, 60:299 – 302, 2006.

[26] Magdalena Gabig and Grzegorz Wegrzyn. An introduction to DNA Chips:

principles, technology, applications and analysis. Acta Biochimica Polonica,

48(3):615 – 622, 2001.

[27] Christian Genest and Anne-Catherine Favre. Everything you always wanted

to know about copula modeling but were afraid to ask. Journal of Hydrologic

Engineering, 12(4):347–368, 2007.

[28] Christian Genest, Bruno Rémillard, and David Beaudoin. Goodness-of-fit

tests for copulas: A review and a power study. Insurance: Mathematics and

Economics, 44:199–213, 2009.

[29] Michael B. Gordy. A Generalization of the Generalized Beta Distribution.

Technical report, Board of Governors of the Federal Reserve System, Wash-

ington, 1998.



Bibliography 120

[30] Monique Graf and Desislava Nedyalkova. Fitting the Generalized Beta Dis-

tribution of the Second Kind to the Empirical Income Distribution from the

Aggregate Laeken Indicators, February 2010. URL http://www.statistik.

tuwien.ac.at/ameli/presentations/Fri1/GrafNedyalkova1.pdf.pdf.

[31] Monique Graf, Desislava Nedyalkova, Ralf Münnich, Jan Seger, and Ste-
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