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How can complex movements that take hundreds of milliseconds be gen-
erated by stereotypical neural microcircuits consisting of spiking neurons
with a much faster dynamics? We show that linear readouts from generic
neural microcircuit models can be trained to generate basic arm move-
ments. Such movement generation is independent of the arm model used
and the type of feedback that the circuit receives. We demonstrate this by
considering two different models of a two-jointed arm, a standard model
from robotics and a standard model from biology, that each generates dif-
ferent kinds of feedback. Feedback that arrives with biologically realistic
delays of 50 to 280 ms turns out to give rise to the best performance. If a
feedback with such desirable delay is not available, the neural microcir-
cuit model also achieves good performance if it uses internally generated
estimates of such feedback. Existing methods for movement generation
in robotics that take the particular dynamics of sensors and actuators into
account (embodiment of motor systems) are taken one step further with
this approach, which provides methods for also using the embodiment
of motion generation circuitry, that is, the inherent dynamics and spatial
structure of neural circuits, for the generation of movement.

1 Introduction

Using biologically realistic neural circuit models to generate movements is
not so easy, since these models are made of spiking neurons and dynamic
synapses, which exhibit a rich inherent dynamics on several temporal scales.
This tends to be in conflict with movement tasks that require sequences of
precise motor commands on a relatively slow timescale. However, we show
that without the construction of any particular circuit, training a linear read-
out to take a suitable weighted sum (with fixed weights after training) of the
output activity of a fairly large number of neurons in a generic neural micro-
circuit model provides a very general paradigm for movement generation.
It is obviously reminiscent of a number of experimental results (see, e.g.,

Neural Computation 17, 1715–1738 (2005) © 2005 Massachusetts Institute of Technology



1716 P. Joshi and W. Maass

Wessberg et al., 2000) that show that a suitable weighted sum of the activity
from a fairly large number of cortical neurons in monkeys predicts quite
well the trajectory of hand positions for a variety of arm movements. Obvi-
ously the neural microcircuit model assumes here a similar role as a kernel
for support vector machines in machine learning (for details, see Maass,
Legenstein, & Bertschinger, 2004, and Maass, Natschläger, & Markram,
2004).

This letter demonstrates that controllers made from generic neural micro-
circuits are functionally generic in the sense that readouts from such circuits
can learn to control the arm regardless of the model used to describe the
arm dynamics, the type of feedbacks used (visual or proprioceptive), and the
type of movements that are generated. This is shown here by teaching the
same generic neural circuit to generate reaching movements for two differ-
ent models with different kinds of feedbacks. The first model used (model 1)
is the standard model of a two-joint robot arm described in Slotine and Li
(1991). The other model (Todorov, 2000, 2003) comes from biology and re-
lates the activity of neurons in the cortical motor area M1 to the kinematics
of the arm (model 2).

It turns out that both the spatial organization of information streams, es-
pecially the population coding of slowly varying input variables, and the in-
herent dynamics of the generic neural microcircuit model have a significant
impact on its capability to generate movements. In particular, it is shown
that the inherent dynamics of neural microcircuits allows these circuits to
cope with rather large delays for proprioceptive and sensory feedback. In
fact, it turns out that the performance of this generic neurocontroller is op-
timal for feedback delays that lie in the biologically realistic range of 50 to
280 ms. Furthermore, it is shown that other readout neurons from the same
neural microcircuit model can be trained simultaneously to estimate results
of such feedback, and that in the absence of real feedback, the precision of
reaching movements can be improved significantly if the circuit gets access
to these estimated feedbacks.

This work complements preceding work where generic neural microcir-
cuit models were used in an open loop for a variety of sensory processing
tasks (Buonomano & Merzenich, 1995; Maass, Natschläger, & Markram,
2002; Maass, Natschläger, & Markram, 2004). It turns out that the demands
on the precision of real-time computations carried out by such circuit models
are substantially higher for closed-loop applications such as those consid-
ered in this article. The paradigm for movement generation discussed in
this letter is somewhat related to preceding work (Ijspeert, Nakanishi, &
Schaal, 2003), where a fixed parameterized system of differential equations
was used instead of neural circuits, and to the melody generation and pre-
diction of chaotic time series with artificial neural networks in discrete time
of Jäger (2002) and Jäger and Haas (2004). In these other models, no effort
is made to choose a movement generator whose inherent dynamics has a
similarity to that of biological neural circuits. It has not yet been sufficiently
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investigated whether feedback, especially feedback with a realistic delay,
can have similarly beneficial consequences in these other models.

No effort was made in this article to make the process by which the
neural circuit model (more specifically, the readouts from this circuit) learns
to generate specific movement primitives biologically realistic. Hence, the
results of this article provide evidence only that a generic neural microcircuit
can hold the information needed to generate certain movement primitives
and that it can generate a suitable slow dynamics with high precision.

The structure of this letter is as follows. Section 2 describes the neural mi-
crocircuit model. This is followed by the description of the robot arm model
(model 1) in section 3. Sections 4, 5, and 6 present results of computer sim-
ulations for model 1. Section 7 repeats the experiment described in section
4 for the biologically motivated arm model (model 2). Finally, we discuss
robustness issues related to our new paradigm for movement generation in
section 8.

A preliminary version of some results from this letter (for movements of
just one fixed temporal duration, and without model 2) was presented at a
conference (Joshi & Maass, 2004).

2 Generic Neural Microcircuit Models

In contrast to common artificial neural network models, neural microcircuits
in biological organisms consist of diverse components, such as different
types of spiking neurons and dynamic synapses, that are each endowed
with an inherently complex dynamics of its own. This makes it difficult to
construct neural circuits out of biologically realistic computational units that
solve specific computational problems, such as generating arm movements
to various given targets. In fact, the generation of a smooth arm movement
appears to be particularly difficult for a circuit of spiking neurons, since
the dynamics of arm movements takes place on a timescale of hundreds
of milliseconds, whereas the inherent dynamics of spiking neurons takes
place on a much faster timescale. We show that this problem can be solved,
even with a generic neural microcircuit model whose internal dynamics has
not been adjusted or specialized for the task of creating arm movements,
by taking as activation command for a muscle at any time t a weighted
sum w × z(t) of the vector z that describes the current firing activity of
all neurons in the circuit.1 The weight vector w, which remains fixed after
training, is the only part that needs to be specialized for the generation of a
particular movement task. Each component of z(t) models the impact that
a particular neuron v may have on the membrane potential of a generic
readout neuron. Thus, each spike of neuron v is replaced by a pulse of

1 As usual, a constant component is formally included in z(t) so that the term w × z(t)
may contain some fixed bias.
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unit amplitude 1 that decays exponentially with a time constant of 30 ms.
In other words, z(t) is obtained by applying a low-pass filter to the spike
trains emitted by the neurons in the generic neural microcircuit model. Note
that it is already known that hand trajectories of monkeys can be recovered
from the current firing activity z(t) of neurons in motor cortex through the
same types of weighted sums as considered in this article (Wessberg et al.,
2000).

In principle, one can also view various parameters within the circuit as
being subject to learning or adaptation, for example, in order to optimize
the dynamics of the circuit for a particular range of control tasks. However,
this has turned out to be not necessary for the applications described in
this article, although it remains an interesting open research problem how
unsupervised learning could optimize a circuit for motor control tasks. One
advantage of viewing the weight vector w as being plastic is that learning is
quite simple and robust, since it amounts to linear regression—in spite of the
highly nonlinear nature of the control tasks to which this setup is applied.
Another advantage is that the same neural microcircuit could potentially
be used for various other information processing tasks (e.g., prediction of
sensory feedback; see section 6) that may be desirable for the same or other
tasks.

The generic microcircuit models used for the closed-loop control tasks
described in this article were similar in structure to those used earlier
for various sensory processing tasks in an open loop. More precisely, we
considered circuits consisting of 600 leaky integrate-and-fire neurons ar-
ranged on the grid points of a 20 × 5 × 6 cube in 3D (see Figure 1).
Twenty percent of these neurons were randomly chosen to be inhibitory.
Synaptic connections were chosen according to a biologically realistic prob-
ability distribution that favored local connections but also allowed some
long-range connections. Biologically realistic models for dynamic synapses
were employed instead of the usual static synapses of artificial neural
network models. Parameters of neurons and synapses were chosen to
fit data from microcircuits in rat somatosensory cortex (based on Gupta,
Wang, & Markram, 2000, and Markram, Wang, & Tsodyks, 1998; see the
appendix).

In order to test the noise robustness of movement generation by the
neural microcircuit model, the initial condition of the circuit was randomly
drawn (initial membrane potential for each neuron drawn uniformly from
the interval [13.5 mV, 14.9 mV], where 15 mV was the firing threshold). In
addition a substantial amount of noise was added to the input current of
each neuron throughout the simulation at each time step; a new value for
the noise input current with mean 0 and SD of 1 nA was drawn for each
neuron and added (subtracted) to its input current.

In the case of the arm model that is considered in sections 3 through 6
(model 1), the neural circuit receives analog input streams from six sources
(from eight sources in the experiment with internal predictions discussed
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Figure 1: Spatial arrangement of neurons in the neural microcircuit models
considered in this letter. The neurons in the six layers on the left-hand side en-
code the values of the six input-feedback variables xdest, ydest, θ1(t − �), θ2(t − �),
τ1(t), τ2(t) in a standard population code. Connections from these six input lay-
ers (shown for a few selected neurons), as well as connections between neu-
rons in the subsequent six processing layers, are chosen randomly accord-
ing to a probability distribution discussed in the text (a typical example is
shown).

in Figures 8 and 9). A critical factor for the performance of these neurocon-
trollers is the way in which these time-varying analog input streams are fed
into the circuit. The outcomes of the experiments discussed in this article
would have been all negative if these analog input streams were fed into
the circuit as time-varying input currents. Apparently the variance of the re-
sulting spike trains was too large to make the information about the slowly
varying values of these input streams readily accessible to the circuit. There-
fore, we employed instead a standard form of population coding (Pouget
& Latham, 2003). Each of the six time-varying input variables was mapped
onto an array of 50 symbolic input neurons with bell-shaped tuning curves
(see the appendix). Thus, the value of each of the six input variables is en-
coded at any time by the output values of the associated 50 symbolic input
neurons (of which at least 43 neurons output at any time the value 0). The
neurons in each of these six input arrays are connected2 with one of the six
layers consisting of 100 neurons in the circuit of 100 × 6 ((20 × 5) × 6)
integrate-and-fire neurons, providing a time-varying input current to a
randomly selected subset of integrate-and-fire neurons on that layer (see
Figure 1).

2 With a value of 3.3 for λ in the formula for the connection probability given in the
appendix.
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Figure 2: Closed-loop application of a generic neural microcircuit. The weight
vectors of the linear readouts from this circuit that produce the next motor
commands τ1(t + 1), τ2(t + 1) are the only parameters that are adjusted during
training. After training, the neural circuit receives in this closed loop as inputs
a target position xdest, ydest for the tip of the robot arm (in Cartesian coordinates;
these inputs remain constant during the subsequent arm movement) as well
as feedback θ1(t − �), θ2(t − �) from the arm representing previous values of
joint angles delayed by an amount �, as well as “efferent copies” τ1(t), τ2(t)
of its preceding motor commands. All the dynamics needed to generate the
movement is then provided by the inherent dynamics of the neural circuit in
response to the switching on of the constant inputs (and in response to the
dynamics of the feedbacks). During training of the readouts from the generic
neural circuits, the proprioceptive feedbacks θ1(t − �), θ2(t − �) and the efferent
copies of previous motor commands τ1(t), τ2(t) are replaced by corresponding
values for a target movement, which are given as external inputs to the circuit
(“imitation learning”).

3 A Two-Joint Robot Arm as a Benchmark Nonlinear Control Task

We first trained a generic neural microcircuit model (see Figures 1 and 2) to
control a standard model for a two-joint robot arm (model 1; see Figure 3).
This model is used in Slotine and Li (1991) as a standard reference model
for a complex nonlinear control task (see in particular sections 6 and 9). It is
assumed that the arm is moving in a horizontal plane, so that gravitational
forces can be ignored.
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Figure 3: Standard model of a two-joint robot arm.

Using the well-known Lagrangian equation in classical dynamics, the
dynamic equations for this arm model are given by equation 3.1:

[
H11 H12

H21 H22

] [
θ̈1

θ̈2

]
+

[−hθ̇2 −h(θ̇1 + θ̇2)
hθ̇1 0

] [
θ̇1

θ̇2

]
=

[
τ1

τ2

]
, (3.1)

with θ = [θ1θ2]T being the two joint angles, τ = [τ1τ2]T being the joint input
torques to the two joints, and

H11 = m1l 2
c1

+ I1 + m2
[
l 2
1 + l 2

c2
+ 2l1lc2 cos θ2

] + I2

H12 = H21 = m2l1lc2 cos θ2 + m2l 2
c2

+ I2

H22 = m2l 2
c2

+ I2

h = m2l1lc2 sin θ2.

Equation 3.1 can be compactly written as

H(θ )θ̈ + C(θ, θ̇ )θ̇ = τ,

where H represents the inertia matrix and C represents the matrix of Coriolis
and centripetal terms. I1, I2 are the moments of inertia of the two joints. The
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values of the parameters that were used in our simulations were m1 = 1,
m2 = 1, lc1 = 0.25, lc2 = 0.25, I1 = 0.03, and I2 = 0.03.

The closed-loop control system that we used is shown in Figure 2. Dur-
ing training of the weights of the linear readouts from the generic neural
microcircuit model, the circuit was used in an open loop with target values
for the output torques provided by equation 3.1 (for a given target trajectory
{θ1(t), θ (t)}), and feedbacks from the plant replaced by the target values of
these feedbacks for the target trajectory. The delay � of the proprioceptive
or sensory feedback is assumed to have a fixed value of 200 ms, except
for section 6, where we study the impact of this value for the precision of
the movement. For each such target trajectory, 20 variations of the training
samples were generated, for which at each time step3 t a different noise
value of 10−5 × ρ was added to each of the input channels where ρ is a
random number drawn from a gaussian distribution with mean 0 and SD 1,
multiplied by the current value of that input channel. The purpose of this
extended training procedure was to make the readout robust with regard to
deviations from the target trajectory caused by faulty earlier torque outputs
given by the readouts from the neural circuit (see section 8). Each target
trajectory had a time duration of 500 ms.

4 Teaching a Generic Neural Microcircuit Model to Generate Basic
Movements

As a first task, the generic neural microcircuit model described in section 2
was taught to generate with the two-joint arm described in section 3 the four
movements indicated in Figure 4. In each case, the task was to move the tip of
the arm from point A to point B on a straight line, with a biologically realistic
bell-shaped velocity profile. The two readouts from the neural microcircuit
model were trained by linear regression to output the joint torques required
for each of these movements.4

3 All time steps were chosen to have a length of 2 ms, except for the experiment reported
in Figure 6, where a step size of 1 ms was used to achieve a higher precision.

4 Training data were generated as follows. For a given start point 〈xstart, ystart〉 and target
end point 〈xdest, ydest〉 of a movement (both given in Cartesian coordinates), an interpolating
trajectory of the tip of the arm was generated according to the following equation given
in Flash and Hogan (1965):

x(t) = xstart + (xstart − xdest) · (15τ 4 − 6τ 5 − 10τ 3)

y(t) = ystart + (ystart − ydest) · (15τ 4 − 6τ 5 − 10τ 3),

where τ = t/MT and MT is the target movement time (in this case, MT = 500 ms). From
this target trajectory for the end point of the robot arm, we had generated target trajectories
of the angles �1, �2 of the robot arm by applying standard equations from geometry
(see, e.g., Craig, 1955). From these, the target trajectories of the torques were generated
according to equation 3.1.
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Figure 4: Initial position A and end position B of the robot arm (model 1) for
four target movements, scaled in meters. The target trajectory of the tip of the
robot arm and of the elbow are indicated by dashed and dashed-dotted lines.
One sees clearly that even simple linear movements of the tip to the arm require
quite nonlinear movements of the elbow.

Twenty noisy variations of each of the four target movements were used
for the training of the two readouts by linear regression, as specified in
section 3. Note that each readout is simply modeled as a linear gate with
weight vector w applied to the liquid state x(t) of the neural circuit. This
weight vector is fixed after training, and during validation all four move-
ments are generated with this fixed-weight vector at the readout.

The performance of the trained neural microcircuit model during valida-
tion in the closed loop (see Figure 2) is demonstrated in Figure 5. When the
circuit receives as input the coordinates 〈xdest, ydest〉 of the end point B of one
of the target movements shown in Figure 4, the circuit autonomously gen-
erates in a closed loop the torques needed to move the tip of the two-joint
arm from the corresponding initial point A to this end point B.5

5 In these experiments, no effort was made to stabilize the end point of the arm at
or near the target position. Rather, the movement was externally halted at the end of
the allotted time period of 500 ms. Hence, the neural circuit model acts as a movement
generator rather than as a controller. However, we are not aware of a fundamental obstacle
that would make it impossible to teach a circuit to stabilize the arm once it has reached
the target position (which the circuit receives as an extra input).
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Figure 5: Target trajectories of the tip of the robot arm as in Figure 4 (solid)
and resulting trajectories of the tip of the robot arm in a closed loop for one
of the test runs (dashed line). The dots around the target end points show the
end points of the tip of the robot arm for 10 test runs for each of the movements
(enlarged inserts show a 20 cm × 20 cm area with target end point B marked by a
black open triangle). Differences are due to varying initial conditions and simu-
lated inherent noise of the neural circuit. Nevertheless, all movement trajectories
converged to the target, with an average deviation from the target end point of
4.72 cm and the SD of 0.85 cm (scale of figures in m).

Obviously temporal integration capabilities of the controller are needed
for the control of many types of movements. The next experiment was
designed to test explicitly this capability of neurocontrollers constructed
from generic circuits of spiking neurons. Figure 6 shows results for the case
where the readouts from the neural microcircuit have been trained to gener-
ate an arm movement with an intermediate stop of all movement from 225
to 275 ms (see the velocity profile at the bottom of Figure 6). The initiation of
the continuation of the movement at time t = 275 ms has to take place with-
out any external cue, just on the basis of the inherent temporal integration
capability of the neural circuit. For demonstration purposes, we chose for
the experiment reported in Figure 6 a feedback delay of just 1 ms, so that all
circuit inputs are constant during 49 ms of the 50 ms while the controller has
to wait, forcing the readouts to decide only on the basis of the inherent cir-
cuit dynamics when to move on. Nevertheless, the average deviation of the
tip of the robot arm for 20 test runs (with noisy initial conditions and noise
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Figure 6: Demonstration of the temporal integration capability of the neural
controller. The data shown are for a validation run for a circuit that has been
trained to generate a movement that requires an intermediate stop and then
autonomous continuation of the movement after 50 ms. (A) Spike raster of the
600 neurons on the right-hand side of Figure 1. Note that the readout neurons
receive at time t only information about the last few spikes before time t (more
precisely, they receive at time t the liquid state x(t) of the circuit as their only
input). (B) Target time courses of the joint angles θ1, θ2, joint torques τ1, τ2, and
the velocity of the tip of the robot arm are shown as a solid line; actual time
courses of these variables during a validation run in closed loop are shown as
dashed lines.

on feedbacks as before) was just 6.86 cm, and the bottom part of Figure 6
shows (for a sample test run) that the tip of the robot arm came to a halt
during the period from 225 to 275 ms, and then autonomously continued
to move.
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Figure 7: Generation of reaching movements to new target end points that lie
between end points used for training. (A) Generalization of movement gen-
eration to five target end points (small circles) that were not among the eight
target end points (small squares) that occurred during training. Movement to a
new target end point was initiated by giving its Cartesian coordinates as con-
stant inputs to the circuit. Average deviation for 15 runs with new target end
points: 10.3 cm (4.8 cm for target end points that occurred during training).
(B) The velocity profile for one of the movements to a new target end point the
solid line is the ideal bell-shaped velocity profile; the actual profile is a dashed
line.

5 Generalization Capabilities

The trained neurocontroller (with the weights of the linear readouts being
the only parameters that were adjusted during training) had some limited
capabilities to generate arm-reaching movements to new targets. For the
experiment reported in Figure 7, the circuit was trained to generate from a
common initial position reaching movements to eight different target po-
sitions, given in terms of their Cartesian coordinates as constant inputs
〈xdest, ydest〉 to the circuit. After training, the circuit was able to generate with
fairly high-precision reaching movements to other target points never used
during training, provided that they were located between target points used
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for training. The autonomously generated reaching movements moved the
tip of the robot arm on a rather straight line with a bell-shaped velocity
profile, just as for those reaching movements to targets that were used for
training.

6 On the Role of Feedback Delays and Autonomously Generated
Feedback Estimates

Our model assumes that the neural circuit receives as inputs, in addition to
the constant target end points and efferent copies τ1(t), τ2(t) of its movement
commands with very little delay, proprioceptive or visual feedback that pro-
vides at time t information about the values of the angles of the joints at
time t − �. Whereas it is quite difficult to construct circuits or other artifi-
cial controllers for imitating movements that can benefit significantly from
feedback (e.g., with the approach of Ijspeert et al., 2003), especially if this
feedback is significantly delayed, we show in Figure 8 that neurocontrollers
built from generic neural microcircuit models are able to generate and
control movements for feedback with a wide range of delays. In fact, Figure 8
shows that the smallest deviation between the target end point 〈xdest, ydest〉
and the actual end point of the tip of the robot arm is not achieved when this
delay � has a value of 0, but for a range of delays between 50 and 280 ms.
In order to make sure that this surprising result is not an artifact of some
particular randomly drawn neural microcircuit model or a particular arm
movement, it has been tested on each of 10 randomly drawn neural micro-
circuits with 12 different movements (four trajectories as shown in Figure 4,
each created at three different speeds, resulting in movement times of 300,
500, and 700 ms). The results of these statistical experiments are reported in
Figure 8. The right-most point on each of the three curves shows the per-
formance achieved without any feedback (since for this point, the delay of
the feedback is as large as the duration of the whole movement). Compared
with that, feedback with a suitable delay reduces the imprecision of the
movement by at least 50%. Altogether, these data show that the best values
for the feedback delay lie in the range of 50 to 280 ms. The upper bound for
this interval depends somewhat on the duration of the movement. A pos-
sible explanation for the fact that feedback with a delay of less than 50 ms
is less helpful is that in this case, the current target circuit output is very
similar to the currently arriving feedback, and hence it is more difficult for
the circuit to learn the map from current feedback to current target output in
a noise-robust fashion. In addition, a delayed feedback complements the in-
herent temporal integration property of the neural microcircuit model (see
Maass, Natschläger, & Markram, 2004), and therefore tends to enlarge the
time constant for the fading of memory in the closed-loop system. Hence
these neurocontrollers perform best for a range of feedback delays that con-
tain typical values of actual delays for proprioceptive and visual feedback
measured in a variety of species (e.g., 120 ms for proprioceptive feedback
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Figure 8: Influence of feedback delay � on movement error. Error is defined as
the difference of the desired and observed end point of movement. The delay �

is for proprioceptive feedbacks θ1(t − �), θ2(t − �). The curves show the aver-
ages, and the vertical bars show the SD of the data achieved for 400 movements
for each value of � (four different movements as shown in Figure 4 repeated
10 different times with different random initial conditions of the circuit and
different online noise for each of 10 randomly drawn generic neural microcir-
cuit models). (A–C) Data for three movement durations: 300, 500, and 700 ms.
(D) In the upper curve, results for a slightly larger neural circuit (consisting of
800 instead of 600 early integrate-and-fire neurons). The lower (dashed) curve
in D shows the performance of the same circuits when internally generated es-
timates of proprioceptive feedbacks (for a delay of 200 ms) were fed back as
additional inputs to the neural circuit. Note that the use of such internally es-
timated feedbacks not only improves the movement precision for all values of
the actual feedback delay � expected for � = 200 ms, but also reduces the SD
of the precision achieved for different circuits considerably.

and 200 ms for visual feedback is reported in van Beers, Baraduc, & Wolpert,
2002).

In another computer experiment, we examined the potential benefit of
using estimated feedback for the neurocontroller under consideration. Esti-
mation of feedback is very easy for such neural architecture, since the generic
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Figure 9: Information flow for the case of autonomously generated estimates
θ̂ (t − 200 ms) of delayed feedback θ (t − 200 ms). The rest of the circuit is as in
Figure 2.

neural microcircuit model that generates (via suitable readouts) the move-
ment commands has not been specialized in any way for this movement
generation task and can simultaneously be used as information reservoir for
estimating feedback. More precisely, two additional readouts were added
and trained to estimate at any time t the values of the joint angles θ1 and θ2

at time t − 200 ms, or 200 ms earlier. These delayed values were chosen as
targets for these two additional readouts during training, since the previ-
ously reported results (see, in particular, Figure 8B) show that feedback of
the actual values of θ1 and θ2 with a delay of 200 ms is quite beneficial for the
precision of the movement that is generated. After training, the weights of
these two additional readouts were frozen (for the first two readouts, which
produce the movement commands).6 The outputs of these two additional
readouts were also fed back into the circuit (without delay; see Figure 9).
Compared with the architecture shown in Figure 2, the neural circuit now
receives two additional time-varying inputs. These were fed into the circuit
in the same way as the other six inputs (described in section 2). Thus, two
additional arrays consisting of 50 neurons each were used for a population
coding of these time-varying input variables, and 2 “columns” consisting of

6 Since neither the training of the readouts for movement commands nor the training
of the readouts for retrodiction of sensory feedback changes the neural circuit itself, it
does not matter whether these readouts are trained sequentially or in parallel. In our
experiments both types of readouts were trained simultaneously, while the target values of
both θ1(t − �), θ2(t − �) and θ1(t − 200), θ2(t − 200) were given to the circuits as additional
inputs during training (where � is the assumed actual feedback delay plotted on the x-axis
in Figure 8D).
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100 neurons each were added of the neural circuit that received the outputs
of these two additional input arrays.

The top solid line in Figure 8D shows the result, computed in the same
way as in the other panels of Figure 8 for the case when the values of
the estimates of θ1(t − 200 ms) and θ2(t − 200 ms) produced by the two
additional readouts were not fed back into the circuit. The bottom dashed
line shows the result when these estimates were available to the circuit
via feedback. Although this additional feedback does not provide any new
information to the circuit, but only collects and redistributes information
within the neural circuit, it significantly improved the performance of the
neurocontroller for all values of the actual delay � of feedback about the
values of θ1 and θ2 (except for � = 200 ms). The value on the right-most point
of the lower curve for � = 500 ms shows the improvement achieved by
using estimated sensory feedback when no feedback arrives at all, since the
total movements lasted 500 ms. Altogether, the use of internally estimated
feedback improved the precision of the movement by almost 50% for most
values of the delay of the actual feedback.

7 Application to a Biological Model for Arm Control

Whereas in the preceding section we focused on a model for a robot arm
as a standard example for a highly nonlinear control task, we demonstrate
in this section that the same paradigm for movement generation can also
be applied to a well-known model for cortical control of arm movements in
primates (Todorov, 2000, 2003). This model proposes a direct relationship
between the firing rate c j of individual neuron j in primary motor cortex
M1 (relative to some baseline firing rate C) and the kinematics (in cartesian
coordinates) and end point force fext of the hand, which is viewed here
simply as the tip of a two-joint arm:

c j (t − d) = uT
j

2
(F −1fext(t) + mẍ(t) + kx(t)) + b

⌊
uT

j ẋ(t)
⌋
. (7.1)

The vector u j denotes the direction in which the end point force is gener-
ated due to activation of muscles by neuron j (assuming cosine tuning of
neurons). In our simulations we simply took four unit vectors u j pointing
up, down, left, and right. fext(t) is the end point force that the hand applies
against external objects. x, ẋ, and ẍ are the position, velocity, and accelera-
tion of the hand, respectively (we usually write 〈x, y〉 for the hand position
x in a two-dimensional space).

Although the precise relationship between the activity of neurons in mo-
tor cortex and the activation of individual muscles is extremely complicated
and highly nonlinear, a derivation given in in Todorov (2000) suggested that
equation 7.1 provides a quite good (almost linear) local approximation to
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multijoint kinematics over a small work space. As a consequence, we have
applied this model only for arm movements when the hand moves on the
boundaries of a 28.28 cm × 28,28 cm square.

Since we are concerned only with the movement of the hand in its work
space and do not require the hand to exert an end point force on external
world objects, fext(t) can be set to 0.

For simplicity, we have also set the transmission delay d from cortex to
muscles to 0 (but our model would work just as well for other values of d).
This simplifies the model to

c j (t) = uT
j

2
(mẍ(t) + kx(t)) + b

⌊
uT

j ẋ(t)
⌋
. (7.2)

In our computer experiments, we applied this model with the parameter
values b = 10 Ns/m, k = 50 N/m, and m = 1 kg, suggested in Todorov
(2000).

In order to produce a paradigm for arm control by cortical circuits, we
took a generic cortical microcircuit model consisting of 800 neurons as de-
scribed in section 2. Four readouts that received inputs from all neurons
in this microcircuit model were trained by linear regression to assume the
role of these four neurons in motor cortex that directly control arm muscles
resulting in hand movements according to equation 7.2.7 We trained these
readout neurons to produce four different hand movements along the edges
of a 28.28 cm × 28.28 cm square whose diagonals were parallel to the x- and
y-axis, respectively.

The inputs to the neural microcircuit were the coordinates 〈xdest, ydest〉 of
the desired target end point of the hand, efferent copies of the outputs
c1(t), . . . , c4(t) of motor neurons 1, . . . , 4, and feedback x(t − 200) ms,
y(t − 200) ms about preceding hand positions with a delay of 200 ms that
is biologically realistic for visual feedback into motor cortex. The values of
these eight inputs were fed into the 800 neuron microcircuit model in the
same way as for the eight-input circuit discussed at the end of the preceding
section. The results for this experiment are shown in Figure 10. The average
deviation over 40 runs of the tip of the arm from the desired end point was
0.13 cm with a SD of 7.2295 × 102 cm.

It is interesting to note that the generic neural microcircuit can also learn
to generate movements for this quite different arm model. Another point of
interest is that the control performance of the generic neural microcircuit is
independent of the kind of feedback that it is receiving (cf. the angles in the
earlier model and position coordinates in this model).

7 Target trajectories of the end point of the arm were generated for training as described
in note 4. Target outputs c j (t) for the readouts were generated from these trajectories by
equation 7.2.
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Figure 10: Generation of an arm movement for biological model for cortical
control of muscle activations. (A) Spike raster analogous to Figure 6. (B) Solid
lines denote target values, and dashed lines show the performance of simulated
readouts c1, . . . , c4 from a simulated microcircuit in motor cortex that receives
significantly delayed information about earlier hand positions as feedback (sim-
ulating visual feedback to motor cortex). Scales for c1, . . . , c4 in N, for x, y in m,
for the velocity of the hand in m/s.
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8 How to Make the Movement Generation Noise Robust

Mathematical results from approximation theory (see the appendix of Maass
et al., 2002, and Maass & Markram, 2004, for details) imply that a suffi-
ciently large neural microcircuit model (which contains sufficiently diverse
dynamic components to satisfy the separation property) can in principle (if
combined with suitable static readouts) uniformly approximate any given
time-invariant fading memory filter F .

Additional conditions have to be met for successful applications of neu-
ral microcircuit models in closed-loop movement generation tasks, such as
those considered in this article. First, one has to assume that the approxi-
mation target for the neural microcircuit, some movement generator F for
a plant P , is a time-invariant fading memory filter (if considered in an open
loop). But without additional constraints on the plant or target movement
generator F , one cannot guarantee that neural microcircuits L that uni-
formly approximate F in an open loop can successfully generate similar
movements of the plant P . Assume that F can be uniformly approximated
by neural microcircuit models L , that is, there exists for every ε > 0 some
neural microcircuit model L so that ||(F u)(t) − (Lu)(t)|| ≤ ε for all times t
and all input functions u(·) that may enter the movement generator. Note
that the feedback f from the plant has to be subsumed by these functions
u(·), so that u(t) is in general of the form u(t) = 〈u0(t), f (t)〉, where u0(t) are
external movement commands8 and f (t) is the feedback (both u0(t) and f (t)
are in general multidimensional). Assume that such microcircuit model L
has been chosen for some extremely small ε > 0. Even if the plant P has the
common bounded input–bounded output (BIBO) property, it may magnify
the differences ≤ε between outputs from F and outputs from L (which may
occur even if F and L receive initially the same input u) and produce for these
two cases feedback functions fF (s), fL (s) whose difference is fairly large.
The difference between the outputs of F and L for these different feedbacks
fF (s), fL (s) as inputs may become much larger than ε, and hence the outputs
of F and L with plant P may eventually diverge in this closed loop. This
situation does in fact occur in the case of a two-joint arm as plant P . Hence,
the assumption that L approximates F uniformly within ε cannot guar-
antee that ||(F uF )(t) − (LuL )(t)|| ≤ ε for all t (where uF (t) := 〈u0(t), fF (t)〉
and uL (t) := 〈u0(t), fL (t)〉), since even ||(F uF )(t) − (F uL )(t)|| may already
become much larger than ε for sufficiently large t.

This instability problem can be solved by training the readout from the
neural circuit L to create an “attractor” around the trajectory generated
by F in the noise-free case. This is possible because the current liquid

8 In our experiments u0(t) was a very simple two-dimensional function with value
〈0, 0〉 for t < 0 and value 〈xdest, ydest〉 for t ≥ 0. All other external inputs to the circuit were
given only during training.
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state of the circuit depends not just on the most recent feedback to the
circuit, but also on the preceding stream of feedbacks (therefore, the liquid
state also contains information about which particular part of the move-
ment has to be currently carried out) as well as on the target end position
〈xdest, ydest〉. If one trains the readout from circuit L to ensure that ||(LuF )(t) −
(LuL )(t)|| stays small when uF (·) and uL (·) did not differ too much at pre-
ceding time steps, one can bound ||(F uF )(t) − (LuL )(t)|| by ||(F uF )(t) −
(LuF )(t)|| + ||(LuF )(t) − (LuL )(t)|| ≤ ε + ||(LuF )(t) − (LuL )(t)|| and thereby
avoid divergence of the trajectories caused by F and L in the closed-loop
system.

This makes clear why it was necessary to train the readouts of the neural
microcircuit models L to produce the desired trajectory not just for the
ideal feedback uF (t) but also for noisy variations of uF (t) = 〈u0(t), fF (t)〉 that
represent possible functions uL (t) that arise if the approximating circuit L
is used in the closed loop.

9 Discussion

Whereas traditional models for neural computation focused on construc-
tions of neural implementations of Turing machines or other off-line com-
putational models, more recent results have demonstrated that biologically
more realistic neural microcircuit models consisting of spiking neurons
and dynamic synapses are well suited for real-time computational tasks
(Buonomano & Merzenich, 1995; Maass et al., 2002; Maass, Natschläger,
& Markram, 2004; Natschläger & Maass, 2004). Previously, only sensory
processing tasks such as speech recognition or visual movement analysis
(Buonomano & Merzenich, 1995; Maass et al., 2002; Legenstein, Martram, &
Maass, 2003) were considered in this context as benchmark tests for real-time
computing. In this letter, we have applied such generic neural microcircuit
models for the first time in a biologically more realistic closed-loop set-
ting, where the output of the neural microcircuit model directly influences
its future inputs. Obviously closed-loop applications of neural microcircuit
models provide a harder computational challenge than open-loop sensory
processing, since small imprecisions in their output are likely to be amplified
by the plant to yield even larger deviations in the feedback, which is likely to
increase even further the imprecision of subsequent movement commands.
This problem can be solved by teaching the readout from the neural mi-
crocircuit during training to ignore smaller recent deviations reported by
feedback, thereby making the target trajectory of output torques an attractor
in the resulting closed-loop dynamical system. After training, the learned
reaching movements are generated completely autonomously by the neural
circuit once it is given the target end position of the tip of the robot arm as
(static) input.

We have demonstrated that the capability of the neural circuit to generate
reaching movements generalizes to novel target end positions of the tip of
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the arm that lie between those that occurred during training (see Figure 7).
The velocity profile for these autonomously generated new reaching move-
ments exhibits a bell-shaped velocity profile, as for the previously taught
movements. We propose to view the basic arm movements that are gen-
erated in this way as possible implementations of muscle synergies, that
is, of rather stereotypical movement templates (d’Avella, Saltiel, & Bizzi,
2003). In this interpretation, the learning of a larger variety of arm move-
ments requires superposition of time-shifted versions of several different
basic movement templates of the type as are considered in this letter. Such
learning on a higher level is a topic of currrent research.

Surprisingly, the performance of the neural microcircuit model for gen-
erating movements not only deteriorates if the (simulated) proprioceptive
feedback is delayed by more than 280 ms or if no feedback is given at all, but
also if this feedback arrives without any delay. Our computer simulations
suggest that the best performance of such neurocontrollers is achieved if
the feedback arrives with a biologically realistic delay in the range of 50 to
280 ms. If the delay assumes other values or is missing altogether, a signif-
icant improvement in the precision of the generated reaching movements
can be achieved if additional readouts from the same neural microcircuit
models that generate the movements are taught to estimate the values of
the feedback with an optimal delay of 200 ms, and if the results of these
internally generated feedback estimates are provided as additional inputs
to the circuit (see Figure 8D).

Apart from these effects resulting from the interaction of the inherent
circuit dynamics with the dynamics of externally or internally generated
feedbacks, also the spatial organization of information streams in the sim-
ulated neural microcircuit plays a significant role. The capability of such
a circuit to generate movement is quite poor if information about slowly
varying input variables (such as externally or internally generated feed-
back) is provided to the circuit in the form of a firing rate of a single
neuron (not shown) rather than through population coding (see the de-
scription in section 2) as implemented for the experiments reported in this
article.

Another interesting point is that our model for motor control can learn to
control the arm movement regardless of the model that is used to describe
the dynamics of the arm movement and the types of feedback that the circuit
is receiving. One of the two arm models that was tested (see section 7) is
a model for cortical control of muscle activation. Hence, our model also
provides a new hypothesis for the computational function of neural circuits
in the motor cortex.

The results presented in this letter may be viewed as a first step toward
an exploration of the role of the embodiment of motion generation circuitry,
that is, of concrete spatial neural circuits and their inherent temporal dy-
namics, in motor control. This complements existing work on the relevance
of the embodiment of actuators to motor control (Pfeifer, 2002).
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Appendix: Specification of Generic Neural Microcircuit Models

Neuron parameters: Membrane time constant 30 ms, absolute refrac-
tory period 3 ms (excitatory neurons), 2 ms (inhibitory neurons), threshold
15 mV (for a resting membrane potential assumed to be 0), reset voltage
drawn uniformly from the interval [13.8, 14.5 mV] for each neuron, con-
stant nonspecific background current Ib uniformly drawn from the interval
[13.5 nA, 14.5 nA] for each neuron, noise at each time-step Inoise drawn from
a gaussian distribution with mean 0 and SD of 1nA, input resistance 1 M�.

For each simulation, the initial conditions of each integrate-and-fire neu-
ron, that is, the membrane voltage at time t = 0, were drawn randomly (uni-
form distribution) from the interval [13.5 mV, 14.9 mV]. The probability of a
synaptic connection from neuron a to neuron b (as well as that of a synaptic
connection from neuron b to neuron a ) was defined as C · exp(−D2(a , b)/λ2),
where D(a , b) is the Euclidean distance between neurons a and b and λ is
a parameter that controls both the average number of connections and the
average distance between neurons that are synaptically connected (we set
λ = 1.2). Depending on whether the pre- or postsynaptic neurons were ex-
citatory (E) or inhibitory (I ), the value of C was set according to Gupta
et al. (2000) to 0.3 (E E), 0.2 (E I ), 0.4 (I E), 0.1 (I I ).

We modeled the (short-term) dynamics of synapses according to the
model proposed in Markram et al. (1998), with the synaptic parameters
U (use), D (time constant for depression), and F (time constant for facilita-
tion) randomly chosen from gaussian distributions that model empirically
found data for such connections.

Depending on whether a and b were excitatory (E) or inhibitory
(I ), the mean values of these three parameters (with D, F expressed in
seconds, s) were chosen according to Gupta et al. (2000) to be .5, 1.1, .05
(E E), .05, .125, 1.2 (E I ), .25, .7, .02 (I E), .32, .144, .06 (II ). The SD of each
parameter was chosen to be 50% of its mean. The mean of the scaling pa-
rameter A(in nA) was chosen to be 70 (EE), 150 (EI), −47 (IE), −47 (II). In the
case of input synapses, the parameter A had a value of 70 nA if projecting
onto a excitatory neuron and −47 nA if projecting onto an inhibitory neu-
ron. The SD of the A parameter was chosen to be 70% of its mean and was
drawn from a gamma distribution. The postsynaptic current was modeled
as an exponential decay exp (−t/τs) with τs = 3 ms (τs = 6 ms) for excita-
tory (inhibitory) synapses. The transmission delays between neurons were
chosen uniformly to be 1.5 ms (E E) and 0.8 ms for the other connections.

We applied the following input convention. Each input variable is first
scaled into the range [0, 1]. This range is linearly mapped onto an array of
50 symbolic input neurons. At each time step, one of these 50 neurons, whose
number n(t) ∈ {1, . . . , 50}, reflects the current value in(t) ∈ [0, 1], which is the
normalized value of input variable i(t) (e.g., n(t) = 1 if in(t) = 0, n(t) = 50
if in(t) = 1). The neuron n(t) then outputs at time t the value of i(t). In
addition, the three closest neighbors on both sides of neuron n(t) in this
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linear array get activated at time t by a scaled-down amount according to
a gaussian function (the neuron number n outputs at time step t the value
i(t) · 1

σ
√

2π
e

−(n−n(t))2

2π2 , where σ = 0.8).
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