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Abstract

Hash functions play an important role in many cryptographic applications and protocols.
In the last few years many cryptographic hash functions have been broken. Especially, the
differential attacks by Wang et al. on the collision resistance of the MD-family have attracted
a lot of attention. However, in all articles published by Wang et al., few details about their
methods are given. In particular, they do not describe how their differential paths can be

found.

In this thesis the MD4 hash function is attacked using the approach of Wang et al. At the
beginning the technical methods for the differential cryptanalysis of MD4 are defined. The
main part of this thesis describes the development of an algorithm to find differential paths
in an automated way. Many differential paths have been found so far and some are slightly
better than the path published by Wang et al. Finally, the message modification techniques

used by Wang et al. are analyzed and improved.

Keywords: hash function, cryptanalysis, MD4, collision resistance, differential path,

message modification



Kurzfassung

Hashfunktionen spielen eine bedeutende Rolle in vielen kryptographischen Anwendun-
gen und Protokollen. In den letzten Jahren wurden jedoch bereits mehrere kryptographische
Hashfunktionen gebrochen. Besonders die differentiellen Attacken von Wang et al. auf die
Kollisionsresistenz der MD-Familie haben viel Aufmerksamkeit auf sich gezogen. In ihren
Verdffentlichungen wurden jedoch nur wenige Details iiber ihre Methoden bekannt gegeben.

Im Speziellen wurde nie beschrieben, wie ein differentieller Pfad gefunden werden kann.

In dieser Magisterarbeit wird die Hashfunktion MD4 mit Hilfe der Methode von Wang
et al. attackiert. Zu Beginn werden die technischen Methoden definiert, welche fiir die dif-
ferentielle Kryptoanalyse benotigt werden. Der Hauptteil der Arbeit besteht darin, einen
Algorithmus zu entwickeln der automatisiert differentielle Pfade findet. Bei der Suche wurden
viele verschiedene differentielle Pfade gefunden, wobei einige zum Teil besser sind als jener
von Wang et al. AbschlieBend wird auf die ,,Message-Modification” Techniken von Wang et

al. eingegangen, welche analysiert und verbessert wurden.

Schliisselworter: Hashfunktion, Kryptoanalyse, MD4, kollisionsresistent, differentieller
Pfad, Message-Modification
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Chapter 1

Introduction

Cryptographic hash functions play an important role in modern cryptography. A hash func-
tion computes a short fingerprint (hash value, message digest) of a message and is used in
many cryptographic applications and protocols (cf. [MvOV97]). The cryptanalysis of hash

functions is of major interest, because their security is crucial for most applications.

1.1 Cryptanalysis of Hash Functions

During the last few years many important cryptographic hash functions have been broken.
The main target is the collision resistance of hash functions. Especially the results of Wang et

al. have drawn significant attention to the security problems of currently used hash functions.

The main target of these Chinese researchers has been the MD-family of (unkeyed) hash
functions because they share a common structure and are used in many standards. In the last
few years, Wang et al. have broken many members of this family. First, they have analyzed
MD4 and RIPEMD in [WLET05], and shortly after their attack strategy was successfully
applied to MD5 [WY05]. Finally, their techniques were adapted and extended to attack SHA-
0 and SHA-1 in [WYYO05d] and [WYYO05¢]. SHA-1 is currently the most used hash algorithm
and during the “NIST Cryptographic Hash Workshop 2005” [WYY05a], the attack complexity
was claimed to be 263, This complexity is close to being computable by supercomputers. The

first real collision of SHA-1 will be found soon.

However, in all articles published by Wang et al. so far only little details about their
methods are given. In particular no details on how a differential path can actually be found
was provided. It is assumed that their differential paths have been found by hand with
much intuition. Many details about message modification are omitted too. Some articles
have already discussed the techniques used by Wang et al. Magnus Daum [Dau05] and an
ECRYPT deliverable [ABBT05] have provided some high level discussion without going into
detail and Hawkes et al. [HPRO4] have analyzed the differential path used for MD5. The

1



CHAPTER 1. INTRODUCTION 2

different message modification techniques used by Wang et al. have been analyzed by Naito
et al. [NSKOO05], and Viktor Klima [KI1i05].

The goal of this thesis is to understand the methods used by Wang et al. It analyzes
the hash function MD4 because it is the simplest algorithm of the MD-family and the basis
for all other variants. New methods how to find differential paths in MD4 are developed in
this thesis. Using these methods, many paths can be found within minutes in an automated
way. Among them are paths which are slightly better than the path found by Wang et al.
In addition, the message modification techniques have been improved. This thesis is not

intended to hide information and thus, all methods are explained in detail.

1.2 Thesis Outline

This thesis is organized as follows. In Chapter [2| the basic properties and the iterated design
principle of unkeyed hash functions are presented. Then the most important general attacks

are discussed.

Chapter [3| describes the design of the MD-family of hash functions. Because MD4 is the
main target of this thesis, it is explained in more detail. In the last section of this chapter an

overview of the most important attacks and their complexity is given.

In Chapter [4] the attack approach by Wang et al. is considered. An overview and the
interconnection between the three main parts, deriving the message difference, searching for

a differential path, and the message modification techniques are provided.

Chapter 5| provides the different technical methods, which are used in the differential
analysis of MD4. Signed differences and differential operations on these differences are de-
fined first. Then the propagation of differences by carry expansion and through the Boolean

functions are discussed.

In Chapter [6] the first part of the attack approach by Wang et al. is analyzed. This part
explains the special differential behavior of the message difference in their attack. Other
message differences with a similar behavior, and the message differences used by Dobbertin

and Yu et al., are discussed as well.

The main part of this thesis is to find a differential path for the given message difference.
Chapter [7] presents an algorithm which successfully searches for differential paths in MDA4.

Subsequently, the experiments and results provided by this algorithm are discussed.

Finally, in Chapter [§] the message modification techniques used by Wang et al. are ana-
lyzed. Furthermore, new advanced message modification techniques are presented which are

used to fulfill all conditions in the first two rounds of the path of Wang et al.
The best differential path found is presented in Appendix [A] The complete differential

behavior of the path and its sufficient conditions are given.



Chapter 2
Cryptographic Hash Functions

There are two general types of cryptographic hash functions. Message detection codes (MDCs)
are unkeyed hash functions and message authentication codes (MAC) are hash functions that
use a secret key. This thesis discusses only unkeyed hash functions. In this chapter, their basic
properties are defined and the design principle of iterated hash functions is shown. Then, the

most important general attacks, which can be applied to all hash functions, are discussed.

2.1 Basic Properties

Definition 2.1. (Hash Function). A hash function is a function h : X — Y, where
X = {0,1}* and Y = {0,1}" for some n > 1. The image y = h(x) of some message
(preimage) = € X is called the hash value of x.

Hash functions are lossy compression functions, which compress messages of (almost)
arbitrary length to values with a fixed length. An important property of hash functions is

their efficient computation: h(z) can be efficiently computed for any preimage x.

For cryptographic hash functions more properties than just compression and efficient
computation are needed. The output of an ideal cryptographic hash function should behave
randomly and independent of the input message. This cannot be reached in practice. There-
fore, depending on the application a cryptographic hash function should fulfill some or all of
the following properties (cf. [MvOV97]):

Definition 2.2. (Preimage Resistance). A hash function h is preimage resistant, if for a

value y, it is computationally infeasible to find any message = with h(xz) = y.

Definition 2.3. (2nd-Preimage Resistance). A hash function A is 2nd-preimage resistant,
if for a message x, it is computationally infeasible to find any second message 2’ # z (2nd-

preimage) with h(z’) = h(x).
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Definition 2.4. (Collision Resistance). A hash function & is collision resistant, if it is
computationally infeasible to find any pair of two different messages = and x’ (collision), which
hash to the same value h(z) = h(z').

Because of the compression from arbitrary to fixed length, the ezistence of collisions and
preimages is unavoidable. The important fact about cryptographic hash functions is, that it

is difficult to construct a collision or to find a preimage.

2.2 Design of Iterated Hash Functions

To compress the input message, most hash functions use some sort of iteration. The input
message M is divided into k input blocks with equal block size and each block is processed
by a compression function f. If the message length is not a multiple of the block size, some

padding is used. Thus, almost every hash function can be described as follows:

Hy=1V
Hz :f<Mz‘,HZ‘_1) for i = 1,2,...,/‘&
h(M) = g(Hy).

1V is the abbreviation for initial value, which is a predefined starting value, and the H;’s
are called chaining variables. The final hash value is computed by the output transformation
g, which is often the identity function. An overview of an iterated hash function is given in

Figure 2.1

message block 0 message block 1 message block k-1

— f - f > f —»@—»
Ho=IV Hi H, Hy.1 H hash

k

Figure 2.1: Overview of an iterated hash function.

The choice of the IV and the used padding scheme have an important influence on the
security of a hash function. Hence, the IV should be part of the description of a hash function
and the padding scheme should be unambiguous. A common padding scheme is to include
the bitlength of the original message in some message block, which is referred to as MD-
strengthening. Merkle [Mer90] and Damgard [Dam&89] have proved, that if a compression

function f is collision resistant, then the resulting hash function is collision resistant as well:
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Theorem 2.1. (Merkle-Damgard). Let f be a collision resistant function mapping | to
n bits (with | —n > 1). If an unambiguous padding rule is used, the following construction

yields a collision-resistant hash function:

Hy = f(0"*ma)
HZ' = f(Hz—lHlez) fOT’i == 2,3, ,k

2.3 General Attacks

This section describes general attacks on hash functions. These attacks are independent of the
hash algorithm. It is assumed that the hash value is a uniformly distributed and independent

random variable. Otherwise, the following attacks would be even more successful (cf. [Pre93]).

2.3.1 Brute-Force Attack

Because of the compression property of a hash function, preimages, 2nd-preimages and col-
lisions always exist. Thus, an attacker can always try to select random preimages and 2nd-
preimages by brute-force until she succeeds. The success probability is 1/2™ and so the attack
complexity is O(2"), where n is the bit-length of the hash value. To make random brute-force

attacks computationally infeasible a hash value with at least n = 80 should be used nowadays.

2.3.2 Birthday Attack

The birthday attack is a brute-force attack on the collision resistance of a hash function. The
goal of a collision attack is to find a pair of messages which hash to the same hash value.
The birthday attack is based on the birthday paradoxon, which is not a paradoxon but rather
a counter-intuitive fact of statistics [Sti02]: In a group of 23 randomly chosen people, the

probability that at least two will share a common birthday is greater than 1/2.

Proposition 2.1. (Generalized Birthday Paradox). Given a set of t pair-wise distinct
elements (t > 10), the probability that, a sample of size k > 1.2y/t (drawn with repetition)

contains two equal elements, is greater than 1/2 [Dau0d].

Thus, the complexity of finding a collision in a hash function, with a probability of 1/2, is
0(2%). Note that this is the worst case for an attacker. The success probability will increase,
if some hash values are more likely than others. Because birthday attacks on the collision
resistance of hash functions always succeed, the hash size of a collision resistant hash function

should be at least n = 160 nowadays.
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Remark 2.1 (Academically Broken). A hash function with a hash value of length n is con-
sidered to be academically broken, if collisions can be found in less than 2%, or (second)

preimages can be found in less than 2" computations of the hash function.



Chapter 3

Hash Functions of the MD-Family

This chapter describes the MD-family of hash functions. MD is the abbreviation for Message
Digest. Some hash function of this family have been the most reliable hash algorithms in the
last decade and are used in many standards. Therefore, the next sections give an overview
of the general properties, which are common to all hash functions of this family. Because
this thesis concentrates on attacking MD4, this algorithm is described in more detail. Then
the remaining hash functions of the MD-family and their main differences regarding MD4 are

mentioned. The last section provides an overview of attacks on the MD-family.

3.1 General Properties

Hash functions of the MD-family are iterated hash functions and follow the MD-design prin-
ciple (see Section . Further, these hash functions share a common structure of the com-
pression function, which is shown in Figure The compression function consists of two
major parts which are the message expansion and the consecutive evaluation of a number of
similar operations, called steps. These steps are usually grouped together into 3-5 rounds.
After the last step of the compression function, the input chaining variables are added to the

output, which complicates the inversion of the compression function.

The Message Expansion ensures, that each message block is used more than once
during one iteration of the compression function. There are two different types of message
expansions: the roundwise permutation and the recursive message expansion. In roundwise
permutation the message words are not changed, but rather used in a different order in each
round. The recursive message expansion was designed to increase the diffusion of the message
words. Nearly all inputs of each step depend on all message words. Thus, a small change
in one message word immediately effects many steps. See [Dau05] for more details on the

message expansions.

In each Step of the compression function, a number of registers (4-8, depending on the

7
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Figure 3.1: The common structure of the MD compression function.

algorithm) are updated by compressing one word of the expanded message. The operations
of one step are very similar in every specific hash function and consist of the following basic

operations:

e Bitwise Boolean functions
o Integer addition modulo 2%

e Bit shifts and rotations

These operations have been chosen, because they can be efficiently evaluated and it is assumed
that their combination is cryptographically strong. Each step of the compression function
differs only in the use of different parameters or a different Boolean function. The hash

functions of the MD-family use the following Boolean functions in their step:
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Definition 3.1. (Bitwise Boolean Functions).

XOR(z,y,2) =x®yd=z
MAJ(z,y,2) =xy ®rzdyz

IF(z,y,2) =2cy®Tz=2y®azdz
ONX(z,y,z) = (xVy) bz=zydydzad1

These functions are considered to have strong cryptographic properties. See [Pre93] and
[Dau05] for a detailed analysis of these Boolean functions. A differential analysis of the

Boolean functions used for the attack in this theses is given in section

3.2 MD4

MD4 was designed by Ron Rivest in 1990 and is described in [Riv90b] and [Riv90al. It is
the basis of all other hash functions of the MD-family. Because it is the main target of this

thesis, this hash algorithm is explained in more detail.

3.2.1 Notation

The following notation is used to describe MD4 in this thesis:

Input Messages: One 512-bit input message block is denoted by M = (mg, mq, ..., m15).
Each message word my, consists of 32 bits, which are denoted by my, ;, where 0 < j < 31.

Register Words: The 32-bit register words (or state variables) are denoted by a; where
i is the number of the compression step with 0 < ¢ < 47 and the register bits are
indexed with a;;, 0 < 7 < 31. Each register word a; is computed according to the

update rule of Equation The four output registers after each step ¢ are grouped to

(@i—3,ai,Qi—1,a;—2).

Boolean Functions: The bitwise Boolean functions used in step i is denoted by f;(z,y, 2)
(or short f;). The variables x,y, z are 32-bit words and the Boolean functions IF, MAJ
and XOR are applied bitwise to these words.

3.2.2 Description

The MD4 algorithm compresses an input with a maximum length of 264 to a 128-bit hash
value. The size of one message block in MD4 is 512 bit. The input message is padded to
fit this message block size (see [Riv90a]). First, the padding scheme always appends a single
“1” bit to the end of the message. Then, “0” bits are appended until the message length is
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congruent 448 modulo 512. Finally, the 64-bit representation of the message length before
the padding was applied is appended.

Each 512-bit message block of the padded message is compressed by the compression
function which consists of three rounds having 16 steps each. In each round a different
Boolean function f; is used. The IF function is used for the first, the MAJ function for the
second and the XOR function for the third round (Table [3.1). Each message word my, with
0 < k < 15 of a message block M is added exactly once in each round. Figure gives an

overview of MD4 and shows one step in detail.

Table 3.1: The Boolean functions f; and the constants ¢; in each step of MDA4.

1 fi Ci
0...15 IF(x,y,z) | 0200000000
16...31 | MAJ(z,y,2) | 0x5a827999
21...47 | XOR(x,y,z) | Ox6ed9ebal

In every step of MD4, a 32-bit register value (or often called state variable) a; is computed

according to the following recursive update rule:
a; = (a¢,4 + fi(aifl, a;i—9, az;g) + My, + Ci) K 85 0<q<47. (3.1)

The operator + denotes the addition modulo 232 and the operator << s; denotes a circular
left shift (rotation) by s; positions. The variable m,,, specifies the message word to compress.
The variable ¢; defines a round constant, which is the same for each step in one round
(see Table [3.1). The permutation of the message words is determined by the index w; (see

Table .

Table 3.2: The permutation of the message block words in MD4.

) wj
0...15| 0,1, 2, 3,4, 5,6, 7, 8, 910,11,12,13,14,15
16...31 | 0, 4, 8,12, 1, 5, 9,13, 2, 6,10,14, 3, 7,11,15
21...47 | 0, 8, 4,12, 2,10, 6,14, 1, 9, 5,13, 3,11, 7,15

The number of bit positions s; in a rotation is changed for each step but repeated four times
in every round (see Table [3.3)). For each message block, the update rule of the compression
function is initialized by the chaining variables (A, B,C, D) = (a—1,a—4,a_3,a_2). The initial

values for MD4 are:

(A, B,C, D) = (0x67452301, Oxefcdab89, 0x98badcfe, 0x10325476)
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Table 3.3: The size of the rotation s; in each step of MD4.

7 Si
0...15 | 3, 7,11,19, 3, 7,11,19, 3, 7,11,19, 3, 7,11,19
16...31 3, 9, 9,13, 3, 5, 9,13, 3, 5, 9,13, 3, 5, 9,13
21...47 | 3,9,11,15, 3, 9,11,15, 3, 9,11,15, 3, 9,11,15

After the processing of all 48 steps, the last four register values are added to the chaining vari-
ables: (A, B,C,D) = (A,B,C, D) + (a47, a44, a45, as6). If no message block is processed any-

more, the resulting hash value is the concatenation of the four chaining variables (A, B, C, D).

(A,B,C,D) (-4,8-1,8i-2,8i-3)
— ' Loy
> a4 g | ap | as |
Round 1 g
- , -
> \
M : Round 2 \
: Round 3
: \ al-a | i—i | ai—l [ &, |

(A,B,C,D)$ (ai.3,8,81,8i2)

Figure 3.2: The structure of the MD4 hash function.

3.3 Other Hash Functions of the MD-Family

This section gives a short overview of the most important remaining hash functions of the
MD-family.

3.3.1 MD5

MD5 is the successor of MD4 and was also designed by Ron Rivest in 1992. It is an improved
version of MD4. MD5 uses the same message block (512 bits) and hash value size (128 bits)
as MD4. The improvements in MD5 are:



CHAPTER 3. HASH FUNCTIONS OF THE MD-FAMILY 12

e An additional round with the Boolean function ON X (z, z,y) is used. Thus, each mes-

sage word is used four times as an input for a step.

e To reduce the symmetry of the Boolean function used in the second round M AJ(z,y, z)

it is replaced by I F'(z,z,y) with swapped parameters.
e A unique additive constant is used for each step.
e The permutations of the message words were changed.

e The rotation values for each round are unique and have been optimized to maximize

the avalanche effect.

e After the rotation, the register value of the previous step is added, which provides a

faster avalanche effect.

3.3.2 RIPEMD and RIPEMD-160

The most important difference between MD4 and the RIPEMD variants is, that in the com-
pression function the message words are processed in two parallel lines. RIPEMD uses four
32-bit register values and the result is a 128-bit hash value, RIPEMD-160 uses five 32-bit
register values to generate a 160-bit hash value. The steps of RIPEMD are the same as in
MD4 (with different parameters) and RIPEMD-160 uses a similar update rule.

3.3.3 The SHA-Family

The SHA-family (SHA-0, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512), designed by the
National Security Agency (NSA) descends from the MD-family of hash functions. All these
hash functions use a recursive message expansion. SHA-0 and SHA-1 use the same Boolean
functions in their step as the MD-functions. The difference is that their hash value is 160 bit
and thus five registers are used in each step. They have further constant rotation values for
each step and the four rounds have 20 steps each. SHA-1 has an improved message expansion

compared to SHA-0. SHA-1 is currently used in many standards.
SHA-224, SHA-256, SHA-384 and SHA-512 use even more register values in each step.

To increase the complexity of the step more than one register value is updated in each step

and additional auxiliary functions are used to provide stronger inter-bit diffusion.

3.4 Attacks

This section gives a short overview of the main attacks on the MD-family of hash functions.

A more detailed analysis of these attacks is given in [Dau05]. The first attempts to break the
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MD-family have targeted the round functions of MD4 and MD5 and were done by Merkle
(unpublished), den Boer and Bosselaers [dBB91l, [dBB94] and by Vaudenay [Vau94].

An overview of collision attacks on members of the MD-family is given in Table and
a short describtion of the three most important attack approaches is given in the following

sections.

Table 3.4: In this table the three most important attack approaches on the MD-family are shown.

Name hash function complexity
Dobbertin [Dob96al, [Dob98] MD4 220
Dobbertin [Dob96bl, Dob96c] MD5 ~10 hours
Dobbertin [Dob97] RIPEMD ?
Chabaud, Joux [CJ98] SHA-0 261
Biham, Chen [BC04] SHA-0 256
Rijmen, Oswald [RO05] 53-round SHA-1 271
Biham/Joux et al. [BCJT05] | SHA-0/58-round SHA-1 | 251/27
Wang et al. [WLFT05] MD4/RIPEMD 26 /216
Wang,Yu [WYO05] MD5 239
Wang,Yin,Yu [WYY05d] SHA-0 239
Wang,Yin,Yu [WYY05] SHA-1 269
Wang, Yao,Yao [WYYO05b] SHA-1 263

3.4.1 Dobbertin

Dobbertin has developed a technique to attack the collision resistance of hash functions
using differential cryptanalysis. Using a small difference in two messages, he constructs
and efficiently solves an under-determined non-linear system of equations. He has applied
this technique to the hash functions MD4 [Dob96al [Dob9§|, RIPEMD [Dob97] and MD5

[Dob96b), Dob96¢].

3.4.2 Chabaud and Joux

Chabaud and Joux have replaced the non-linear operations of SHA-0 to find a linear approx-
imation of the hash function. Following this approach, they have been able to show, that
SHA-0 can be broken in theory [CJ98]. This approach has been extended by Biham and
Chen. Using the neutral bits technique, they have produced near-collisions of SHA-0 [BC04].
Rijmen and Oswald have found a way to attack a reduced version of SHA-1 with 53 rounds
in theory. They skip the first 20 rounds, where the IF function is used [RO05]. Biham et
al. and Joux et al. have applied the neutral-bit technique to produce real collisions of SHA-0
[BCJT05].
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3.4.3 Wang et al.

Inspired by the MD5 collisions of Dobbertin, Wang et al. have developed another successful
technique to attack the MD-family using differential cryptanalysis. Their approach is to first
search for a differential path with a low probability, but then greatly increase this probability
by message modification. They have first attacked MD4 [WLET05] and have extended their
attack to efficiently find collisions in RIPEMD and MD5 [WY05]. Within one year more ad-
vanced attacks on SHA-0 and SHA-1 have been published by Wang, Yin and Yu in [WYY05d]
and [WYYO05¢]. Yu et al. have improved the ideas of Wang et al. to construct a 2nd-preimage
attack for chosen messages [YWZWO05].

In all articles published by Wang et al. so far, only little insight in the details of their
attack is given. Except for some small improvements and musings on their attacks, it is not
possible to reproduce the full attacks yet. Therefore, the remainder of this thesis concentrates
on reconstructing and improving the attack approach by Wang et al., based on the MD4 hash

function.



Chapter 4
The Approach by Wang et al.

This chapter outlines the approach of the attacks by Wang et al. They have first applied
their approach to attack MD4 and have then extended it to the whole MD-family of hash
functions. Because MD4 is the main target of this thesis, their approach is outlined using
MD4 in this chapter as well. Their attack is a differential attack on the collision resistance
of a hash function, which can be extended to chosen message 2nd-preimage attacks too. In
a collision attack, two different messages M and M’ need to be found, which hash to the
same value. A differential attack does not use these two messages M and M’ directly but is
rather applied on their difference AM = M’ — M. This difference in the message words first
propagates through the hash function and then results in state variable differences for each
step (denoted with Aa; = a; — a}). A (global) collision is found, if the difference in the state
variables after the last step is zero. Thus, the two messages M and M’ will hash to the same

value.
In differential cryptanalysis, the terms zero difference, differential path (or differential

characteristic) and inner collision are used. The meaning of these terms vary slightly in the

literature, this thesis makes use of the following definitions:

Definition 4.1 (Zero Difference). A zero difference in step i contains zero differences in all
four registers of the step 7. Thus, the two different messages M and M’ produce the same

register values in this step:
(Aa;—3,Aa;, Aa;_1,Aa;—3) = (0,0,0,0)

Definition 4.2 (Inner Collision). An inner collision is a range of steps (i1, ..., i, ), with a zero
difference in the step prior to the first (i; — 1) and a zero difference in the last (i,) step, but

with nonzero differences in the intermediate steps.

Definition 4.3 (Differential Path). A differential path is a specific sequence of differences in

the state variables, over a given number of steps. In the remainder of this thesis a differential

15
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path is supposed to have a zero difference in its first and last step, unless otherwise stated.
The differential attack of Wang et al. consists of the following three major parts:

1. Find a message difference, which result in a collision with a high probability.

2. Derive a differential path for the given message difference. The results of this step are

conditions on the state variables.

3. Reduce the complexity of finding messages, which fulfill all state variable conditions, by

message modification techniques.

The following sections provide an overview of these three parts, while the remaining chapters

of this thesis give a more detailed insight.

4.1 Deriving the Message Difference

In the first step the message difference AM = M’ — M between two arbitrary input messages
M and M’ is determined. To produce collisions with high probability, message differences
with a nice differential behavior in some parts of the hash function need to be found. There

are several possibilities to find a suitable message difference.

In [WLET05] the whole message difference has been found by producing an inner collision
with high probability in the third and last round of MD4. This message difference makes a
second inner collision over the first two rounds (Figure necessary. The message difference
is fully determined by the third round. Therefore, no freedom in choosing a message difference
is left to find a differential path for the second inner collision. Thus, the probability for
this inner collision in round one and two is generally very low (Wang et al: 27122). As
message modification techniques can improve the probability for low rounds more easily (see
Section , the overall message search complexity can be greatly reduced (Wang et al.: 272
to 27%). Note that message modification is only possible for collision attacks because the

original messages is changed too.

To find inner collisions with high probability the number of steps and the Hamming weight
of the differences should be kept small in general (see Chapter |5/ for details). However, to find
short inner collisions in the third round, Wang et al. uses message differences in more than
one message word. Hence, it is possible to find message differences which lead to an inner
collision in the third round with a high probability (272). The advantage of the method by
Wang et al. is, that their inner collisions are found directly for the actual steps and not for a

linear approximation. The message difference presented by Wang et al. is:

Aml = 231, ATTLQ = 231 — 228, Amlg = *216
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m; \Y} step
0 —» 0
1 —» 1
2 —» :
15— 15
0 —>» 16
4 —» 17
8 . .
15—» 31
0 —» 32
8 —» 33
4 . .
15— 47

Figure 4.1: The message difference, determined by the inner collision in round three. Note, that this
message difference causes a second inner collision over round one and two.

Chapter [6] shows how to derive this and other message differences in detail.

4.2 Finding a Differential Path

After the message difference has been determined, a differential path for this message differ-
ence needs to be found. This is the most difficult part and Wang et al. do not provide much
details on how to find such a path. It is assumed that their path has been found by an ad
hoc approach. Finding a differential path is the main task of this thesis and an algorithm is

given in chapter

The message difference used by Wang et al. has differences in the message words m1, mao,
and my2. These message words are used in steps 1, 2, and 12 of round one and in steps 19, 20,
and 24 of round two. Thus, the differences introduced by the message words in these steps

have to cancel out mutually, which then results in a differential path between step 1 and 24.

The complexity of a brute-force search through all possible paths is too high. Therefore,
the approach of Wang et al. is to prevent uncontrolled propagation of differences and to allow
the controlled propagation of differences in certain steps. The difficulty is to "know” where

to allow these additional propagations.
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4.2.1 Avoid Uncontrolled Propagation of Differences

To reduce the avalanche effect and thus, the search space, any uncontrolled propagation of
differences through the f-function (see Section [5.4) or by carry propagation (see Section [5.3)

is avoided.

Since the message difference is determined by round three, the message differences cannot
be used to control the differential behavior of the f-function or the carry propagation anymore.
But their differential behavior can be influenced by imposing certain conditions on the state
variables. Then their differential behavior holds for all messages that fulfill these conditions.
The resulting number of conditions determines the complexity of finding a suitable message.
In order to reduce the resulting message search complexity low weight differences are used by
default (see Chapter [7)).

To find a differential path, the message difference propagation through the first two rounds
of MD4 is controlled. The modular message differences used by Wang et al. suit the modular
addition. Nevertheless, for the bitwise defined step operations of the MD hash functions,
bitwise defined differences are more accurate. Therefore, Wang et al. mainly use signed
bitwise defined differences but always keeps the modular differences in contrast. A detailed

introduction of signed differences is given in Chapter

4.2.2 Control Differences to Cancel Mutually

After avoiding uncontrolled propagation of differences, the next task is to control the re-
maining differences to cancel out mutually. Therefore, additional differences are introduced,
which in turn will cancel unwanted differences. These additional differences are introduced
by controlling the differential behavior of the f-function and the carry expansion (see Chap-
ter . The main difficulty is, to determine in which step these additional differences should
be introduced to result in a differential path with a high probability.

However, Wang et al. have never provided any details about where to introduce these
additional differences. Therefore, Chapter [7| gives a successful method for introducing and

controlling differences to find many differential paths.

4.3 Message Modification

The result of the second part is a differential path with conditions on the state variables,
which are needed for the path to hold. If a randomly chosen message fulfills all conditions,
this message leads to a collision. One condition is fulfilled with probability of 1/2. Therefore,
the overall message search complexity is 2#¢onditions ynder the assumption that the condi-

tions are independent. The path published by Wang et al. has 125 conditions and thus the
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complexity is 225, which is worse than the birthday attack (264). But Wang et al. have
provided some methods to reduce this complexity. Instead of trying one message after the
other, a randomly chosen messages is adjusted to fulfill as many conditions as possible. This
technique is called message modification. There are different types of message modification

techniques, depending in which round and step the message is changed.

The single-step message modification technique allows to fulfill all conditions that occur in
the first round. For the second round, multi-step message modification techniques are needed,
because the message words of round one have to be adjusted again. The important difference
between single- and multi-step message modification is, that the latter may not always succeed
because contradictions can occur. Wang et al. have further used advanced multi-step message
modification techniques to bypass some contradictions. Thus, most conditions of the second
round can be fulfilled and the overall complexity reduced to 275. [NSKO05] have extended
this idea and have been able to almost fulfill all conditions. They claimed, that a random
message can be modified to produce a collision with probability 7/8. A detailed treatment of
message modification techniques is given by Chapter

Note that in general it gets harder to fulfill conditions for higher steps. Therefore, it
is desirable for a path search algorithm to find differential paths, having the majority of

conditions in the first round or at the beginning of the second round.



Chapter 5

Technical Methods

This chapter provides some technical methods, which are used in the following chapters to
attack MD4. Because signed differences are used in the attack, these differences are defined
first. Their behavior in the addition and rotation is considered in the following section. Then
the propagation of signed differences by carry expansion, and the differential behavior of the

Boolean function f; is analyzed.

5.1 Signed Differences

In differential cryptanalysis of hash functions, differences in the message and register words
are used. There are many types of differences, the most common are modular differences and
bitwise (XOR) differences. In the differential attack of Wang et al., modular differences are
used for the message words and signed differences for the register values. As stated in the
previous chapter, modular differences cannot be used easily to control the behavior of the
(bitwise defined) Boolean functions. Therefore, in the following chapters signed differences
that are defined bitwise are used. Because mainly signed differences are used in this thesis,

they are often referred to as differences:

Definition 5.1 (Signed Difference). The signed difference Az between two 32-bit words z
and 2’ is defined bitwise by

Azr =12’ —x = (dz31,...,0x0) with dz; :x;- —xj €{-1,0,1}, 0 < j <31,

where dx; is the value of the difference at position j and called single bit difference.

Definition 5.2 (Hamming Weight). The Hamming weight wy(Az) = Z;ﬂ:o |0z;| is the

number of non-zero elements in the signed difference Azx.
In many cases the Hamming weight wy (Ax) of a signed difference Az is small and thus,

20
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most of its elements dx; are zero. Therefore, a short notation is defined which contains only

non-zero single bit differences:

Definition 5.3 (Short Notation). To abbreviate the representation of Az with Hamming

weight w = wy (Ax) we use the following short notation:

—j if (S.Ij =-1

joif by =1

and ox; =0 if j & {|di],|da],...,|dw|}

Az = Aldy, dy, ...,dy] where di:{

where |d;| is the bit position j and sign(d;) € {-1,0, 1} the sign of the difference dz;.

In this notation the zero difference Az = 0 can be represented as A[] and has the Hamming
weight wi (A[]) = 0. A single bit difference at the least significant bit z¢ is denoted by A[-0]
if dxg = —1 or A[0] if dzg = 1.

Note, that the representation of a modular difference with these signed differences is

redundant because
20 = Ali] = Ali + 1,-4] = 211 — 21,

but every signed difference Ax can be converted into a unique modular difference by the

following equation (see [Dau05]):

Az = Aldy, dy, ...,dy) =Y sign(d;) - 2/%! mod 22 (5.1)
i=1

An important fact about signed differences is, that non-zero differences dz; of Az = 2’ —x

already determine some values of the corresponding bits in z and z:

0 if sign(d;) =1
A$=A[d1,d2,...,dw] = T|g;| =
1 if sign(d;) =-1.

and

$1d'| _ 1 if sign(d;) =1
' 0 if sign(d;) =-1.

Thus it is impossible to have a single bit difference of d0x; =1 if z; = 1 (or to have dz; = -1

if z; = 0). Hence, a signed difference Az imposes conditions on the value z. In some cases

not these conditions, but the probability for a signed difference Az to occur is needed:

Lemma 5.1 (Probability of a Signed Difference). We assume that the conditions for a signed
difference Ax with Hamming weight w = wg(Ax), are independent. Then, the probability for
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Az to occur is (see [Dau0d]):

Pr(Az) = Pr(Aldy, da, ..., dy]) =27%
Example 5.1. The following difference Az can be represented in different ways:

Ar =1’ —2=-2% 4215 23 = A[-27,15,-3] =
= (0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0)

This difference implies that zo7 = 1, 215 = 0, 23 = 1 and 2%, = 0, 2}; = 1, 24 = 0. The
probability of this difference is therefore Pr(A[-27,15,-3]) = 273.

5.2 Basic Operations on Signed Differences

Signed differences are used throughout the whole differential analysis of this thesis. Thus, a
detailed analysis of the basic step operations (addition and rotation) for signed differences is
given in this section. [Dau05] gives a definition and analysis of these step operations for some

other types of differences too.

5.2.1 Addition

Every step of the MD4 hash function consists of three modular additions. In a signed differen-
tial analysis, the inputs for each addition are signed differences. As the representation of these
differences is redundant the result of an addition is redundant as well. The following algorithm
provides a straight forward addition of signed differences, whereas other representations can

be found by carry expansion, which will be discussed in detail in Section [5.3

Algorithm 5.1 (Addition of Signed Differences). The addition of the two signed differences
Az and Ay is defined signed and bitwise for each bit j = 0, ..., 31, where s; denotes the sum

and c; the carry after each bit addition:

Az =Azx + Ay = (031, ..., 0z0) + (6y31, ..., 0Y0) = (831, ..., S0)
-1 if Sz + dy; + ¢ € {-3,-1}
where s; = ¢ 0 if dx; + dy; +¢; € {-2,0,2}
1 if 0z + dy; +¢j € {1,3}
-1 if 0z + dy; +¢j € {-3,-2}
where ¢g = 0,¢j41 = 0 if dx; +dy; +¢; € {-1,0,1}
1 if oz + dy; +¢; € {2,3}
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Throughout the remainder of this thesis mainly the abbreviated notation (see Defini-
tion will be used. The addition can be performed using this short notation as well. In
the following an algorithm for adding two signed differences with Hamming weight w = 1 is

presented.

Algorithm 5.2 (Addition of Signed Differences in Short Notation). When adding two signed
differences Az = Aldzi] and Ay = Aldy;] with Hamming weight wy(Az) = wy(Ay) = 1

one of the following four cases occurs:

Al
Aldx; +1

| if dx; =-dy;

| if dx; =dy; and sign(dzy) =1
Al-(|dz1] +1)] if dzy =dy; and sign(dz) =-1
Aldzy, dy]

otherwise,

A signed bit difference at position 32 is always discarded because the addition is performed

modulo 232.

Ezample 5.2. The following example illustrates the four different cases in the addition of two

signed differences with Hamming weight w = 1:

A[24] + A[-24] = A

A[24] + A[24] = A[25]
A[-24] + A[-24] = A[-25]
A[-24] + A[25] = A[25,-24]

Ezample 5.3. In this example two differences with Hamming weight w > 1 are added in the

short notation of signed differences. In the addition of
A[31,-27,15,-0] + A[31,27,16,15,4] = A[17,4,-0]

carries at position 15,16 and 31 occur. The carry at position 31 is discarded. The addition

performed in power notation yields:

231 _227 +215 _20

carry

= 217 2t 20
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5.2.2 Rotation

Because each step contains a rotation, signed differences need to be rotated as well. The

result after an addition is redundant, whereas this is not true for rotating a signed difference.

Algorithm 5.3 (Rotation of Signed Differences). To rotate the 32-bit signed difference Az by

s bits, each element dx; is rotated as:
(S.Z'j K s = 5$(j+s)mod32

A rotation can be performed in the short notation using the following algorithm:

Algorithm 5.4 (Rotation of Signed Differences in Short Notation). The signed difference Ax =

Aldy,da, ..., d,] is rotated in the short notation element-wise by s bits with:

- d; + s mod 32 if sign(d;) =1
Ald;] << s = Ald;] where d; =
-(|d;| + s mod 32) if sign(d;) =-1

Ezample 5.4. The signed difference Az = A[31,-27,-3] is rotated by 9 bits. The result is

again sorted by descending bit position:

Ar <« s =A[31,-27,-3] << 9
=A[(31+9 mod 32),-(27 4+ 9 mod 32),-(3 + 9 mod 32)] =
=A[9,-4,-12] = A[-12,9,-4]

5.3 Carry Expansion

Because the representation of signed differences is redundant, every (non-zero) element d; of
a signed difference can be expanded as described in the following. Note that differences at

position 32 are discarded.

Aldy, oo=diy oy o] it |d;| = 31
Aldy, ooy dsy ooy dy] = (5.2)
A[dl, veey =y, ...,dw] + A[dz] <« 1 if |d1| 75 31

To get all possible representations for a signed difference Ax, Equation [5.2] needs to be
applied recursively on each element d;. The maximum number of expansion steps to allow

and thus the recursion depth is called additional carries.

Ezample 5.5. In this example the difference Az = A[-11,9] is expanded. The maximum

number of expansion steps performed in every recursion branch, and thus the number of



CHAPTER 5. TECHNICAL METHODS 25

additional carries, is 2. The expanded element is marked with (d_z
,10,-9] — A[-10,-9]
,-9] — A[-12,11, 10,-9]
[-13,12,11,9]

[-12,11,10,-9]

—_
o

|—A
A
Hence, all representations for Az with a maximum carry expansion of two, sorted by their

hamming weight, are:

Az = A[-11,9] = A[-10,-9]
= A[-11,10,-9] = A[-12,11,9]
= A[-12,11,10,-9] = A[-13,12,11,9]

An expanded signed difference can be reduced to an equivalent difference with less weight
again. However, usually a unique reduced signed difference with minimum weight does not

exist because:

Remark 5.1. (Expand-Rotate-Reduce) If a signed difference Az with w = wy(Az) is rotated
after the expansion, it cannot always be reduced to a difference with weight w again. In
general, this reduction is not possible, if some expanded part of a single bit difference |d;| is

rotated over position 31. For a detailed analysis of carry expansion with rotations see [Dau05].

Ezample 5.6. This example shows that the difference A[12] cannot be reduced to a difference

with weight w = 1, if the expanded part is rotated over position 31:

A[12] << 19 = A[13,-12] << 19 = A[-31,0] # A[31] = A[12] <« 19.

5.4 f-Propagation

In this section the propagation of signed differences through the Boolean functions I'F, M AJ
and XOR is discussed. Wang et al. give only some basic signed properties about these
functions in [WLET05] and Magnus Daum provides an analysis based on probabilities for
xor and signed difference in his thesis [Dau05]. However, for the attack in this thesis, the
complete differential behavior which can be influenced by conditions is needed.

The propagation of differences through the Boolean functions can be controlled by impos-

ing certain conditions on the input values. In order to completely control this propagation,
the signed differential behavior for all cases is provided by Table[5.1} In this table, all possible
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combinations of input and output differences with their respective conditions are shown. In

the following, some useful properties of the Boolean functions are listed as well.

5.4.1 IF

The output difference of the I'F' function can be manipulated for the majority of all input
cases. However, if a zero output difference is desired, consecutive ones in the input differences
should be avoided. Note, that IF' is the only Boolean function, which can flip a single input
difference at the first input ox of IF(z,y, z). The disadvantage of this behavior is, that two

conditions are needed to control the propagation of the single input difference dx.

5.4.2 MAJ

The output difference of the M AJ function can only be influenced by imposing conditions,
if the number of input differences is exactly one (cf. Table [5.1). However, another trick
to influence the differential behavior of M A.J, is to control the number of input differences
and their sign. Thus, to achieve a zero difference at the output, exactly two differences with

opposite sign can be used as the input:

IMAJ(6z,-0x,0) = IMAJ(0,0x,-0x) = SMAJ(6x,0,-6x) =0

5.4.3 XOR

The XOR function has a differential behavior similar to that of the M AJ function. The
output can only be influenced by imposing conditions, if exactly one input difference is not
zero. Note, that it is never possible to achieve a zero output difference by imposing conditions.
A zero difference at the output of XOR occurs if and only if exactly two (or none) of the

input differences are not zero:

IXOR(|6z|,|0z],0) = s XOR(|dx|,0, |0x]) = 6 XOR(0,|dz|, |0z]) =0



27

CHAPTER 5. TECHNICAL METHODS

1 - - 1 - - 1 - - I-1-1-

T - - - ! - - - T T 11

1 - - - ! - - - 1 I-T1

! 3 3 - ! - - ! 3 I 1T

- T - T - - T - - I-1-1

1 - 1 - - - - 1 T I-1-

! - ! - - - - ! -1 1

! : : ! - - 1 : T TT1

- 1 1 - - 1 - - I-1-0

- ! - ! - - ! - T TO0

- ! - - 1 1=z 0=z - T 1-0

: ! 3 3 ! 0=z 1=z 3 I-T 0

- ! ! - - 0=~ - I== 0 1-1-

- 1 - 1 - - 0==% 1=z 0T1TT

- ! - - T - == 0==2 071 1I-

: ! : : 1 1=z : 0==* 0 1-1

- T T - - 1="1h - 0="1 -0 I-

- I - I - - =1 0= 10T

- I - - I - 0=~ =4 |T0 I

- I - - I 0=" - T=f J|1-01

== fi£x - fi£x - == o==< - I== I-0 0

N+ n=u - - fi£x = . 0o=x I=2 100

2= fi£x - Z#£T - 2= I=x - 0o== 0 I-0

24T Z2= - - Z#£T Z=2 - = 0o=2 0T O

z=1"M fi£x - z2#M - z=1"M =z'1="A =z‘0=" z=1 00 I-

Z2 £ z=1f - - z2#£M z2 ="M =z‘0=" =z'1="H z=1f 00T

_ I - - 1 - - ! 000

I-=40X¢ | T=H0X¢ | 0=90X¢ || I-=(VIN¢ | T=VIN¢ | 0=rVINe || T-=d1¢ I=d1¢ | 0=d10 | zefigze
‘mdino o[qssodwir ue 10y -, 10 T L11qeqold ‘SUOTIIPUOD ATRSS900U M *f JO IOIARYL( [RIJUSISHID POUSIS :1°G djqel



Chapter 6
Finding a Message Difference

The differential attacks that are discussed in this thesis start by defining the message difference
first. Therefore, the choice of this difference is crucial for the success of the attack. The
message difference determines, how difficult it is to find a differential path for the hash
function. It further influences the probability, that a random message leads to a collision

using this message difference.

To increase the success probability of an attack the overall number of conditions and thus,
the number of conditions on each state variable, should be kept small. This can be achieved
by using low weight differences for each state variable. Because message differences become

state variable differences, message differences with a low weight are used in many attacks too.

Prior to choosing a message difference its impact on the register values is analyzed. The

following lemma is an immediate consequence of the update rule of Equation (Wi = my,,):

Lemma 6.1 (Message Difference and Step Difference). If the step difference in some step i
(Aa;—3,Aa;, Aa;—1,Aa;—2) = (0,0,0,0), then the following two statements hold (cf. [Dau05]):

Aaiﬂ =0« AWH_l =0 and
Aai_4 = 0 <= AW; = 0.

Hence, an inner collision (see Definition 4.2|) can only begin or end in a step, where a
message difference is introduced:

Proposition 6.1 (Message Difference and Inner Collision). For every inner collision over
the successive range of steps (i1, ...,in), AW;, # 0 and AW;, # 0 holds.

Note, that an inner collision cannot end in the same step i, where another inner collision
begins. Otherwise, a zero difference would occur in step ¢—1 and in step . Because a message

difference is introduced in step i, this contradicts Lemma [6.1

28
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Finally, to find a collision in the MD4-compression function, the differences in the registers

before the first and after the last step must be zero:

(Aa-g, Aa-1, Aa-g, Aa-3) = (Aags, Aagr, Aags, Aays) = (0,0,0,0)

6.1 Single Bit Message Difference

Dobbertin [Dob96a] and Yu et al. [YWZWO05] use a one bit message difference in their at-
tack. Because this is the lowest possible message difference, it is assumed that only a few

disturbances are caused.

In MD4 a one bit message difference in message word my, is introduced exactly three times.
Exactly one inner collision occurs between the first and the last introduction of my. Hence, a
differential path for this inner collision can be found (see Figure b). Note, that the search
cannot be divided by producing two separate inner collisions (Figure a). The reason is

that the first inner collision would have to end where the second inner collision begins.

Dobbertin uses the message difference Amjs = AJ0] to find an inner collision. The idea
of Dobbertin is to subdivide the work further, by first finding an inner almost collision in
step 19, at the second introduction of my (Figure ¢). An inner almost collision, is a step
difference with low Hamming weight and the state variable differences of this inner almost

collision are carefully chosen to be:
(Aalﬁ, Aalg, Aalg, Aa17) = (AH, A[25], A[—5], AH)

This difference propagates to step 35 and cancels the message difference Amqo in this step
with high probability. Then, Dobbertin constructs and solves a nonlinear system of equations
for the first part of the inner collision (steps 12—19). He finds messages that lead to a collision
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of the compression function with a complexity of about evaluations of MD4.

Yu et al. have found a one bit message difference and an according differential path for this
inner collision too. (see Figure b). They do not provide any details on how the path was
found. Yu et al. have selected the one bit message difference Amy = A[£d] with 0 < d < 31.
Note, that their differential path can be rotated and holds for most values of d because very
short carry expansions are used (cf. Remark . For all remaining values of d, Yu et al.
stated that they found a similar path. The complexity of finding a message which suits that
path is stated to be 256,

The advantage of a single bit message difference is, that a differential path with low
complexity can be found more easily because less differences need to be considered. The
disadvantage is, that the conditions for this differential path are spread over all three rounds

and message modification techniques cannot easily fulfill conditions of higher rounds.
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Figure 6.1: All inner collisions with a message difference in exactly one message bit. The first case
(a) with two inner collisions is not possible, case (b) was used by Yu et al. and Dobbertin divided the
work by producing an inner almost collision (c).

6.2 Multiple Message Difference

To improve the impact of the message modification, Wang et al. have derived a different
message difference. The resulting differential path has most of its conditions at the beginning
and only a few conditions at the end of MD4. The idea is to use differences in more than one

message word. Hence, it is possible to produce more than one inner collision.

6.2.1 Possible Inner Collisions

Figure shows all types of inner collisions in MD4 with a message difference in exactly two
message words. The best choice is probably to find differential paths for three inner collisions
(Figure a) because these paths are short and may contain less conditions. Because different
Boolean functions, different rotation values and a different order of message words are used

in each round, it is difficult to find a message difference that behaves nicely in every round.

Therefore, Wang et al. concentrated on the third case (Figure ¢). The advantage
of this case is that most conditions are expected in the first two rounds and only a few in
the last. This is suited best for message modification, because conditions in lower rounds

can be eliminated more easily. To increase the probability of the inner collision in the third
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Figure 6.2: All possible inner collisions with a difference in exactly two message words.

round, Wang et al. have used a third difference in another message word. Further, they have
utilized some special differential behavior of the XOR-function and the modular addition.
The message difference is completely determined by the inner collision of the third round.
Thus, the difference suits the parameters of this round best. However, a differential path for

the larger inner collision of round one and two is harder to find (see Chapter [7)).

6.2.2 An Inner Collision with High Probability in the third Round

Two simple observations are exploited in order, to produce an inner collision with a high
probability in the third round. The first observation is that the unsigned differential behavior
of the XOR function cannot be influenced. In other words: no conditions are needed to
control the XOR function. However, no output difference occurs at the XOR function if and
only if two (or zero) input values of the XOR function have a difference. An output difference
always occurs, if and only if one or three input differences are nonzero (cf. Section [5.4.3)).
Second, when adding two differences at position 31 the result is always the zero difference,

independent of the differences’ sign because the addition is performed modulo 232:

A[31] + A[31] = A[-31] + A[-31] = A[31] + A[31] = A[]
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Table 6.1: Propagation of the differences in the third round of MD4 according to the update rule
ai = (aj-1 + XOR(ai-3, @i-2, @j-1) + My, + ¢;) <K 85

Step Aai Z Amwi AXOR Aai_l Aai_g Aai_g Aai_4
i—1 0 0 0 0 0 0 0 0

i | A1) A[3l-s] A[31-5;] 0 0 0 0 0
i+1 A[31] A[31—8i+1] A[31,31—SZ‘+1} A[31] A[?)l] 0 0 0
i+2 | 0 0 0 0 A1 | A[B1]| O 0
i+3 | 0 0 0 0 0 |A[B1]|ABL] o
i+4 | 0 0 0 0 0 0 | A[B1] | A[31]
i+5 | 0 0 A[31] AJ31] 0 0 0 | A1
i+6 0 0 0 0 0 0 0 0

Therefore, in the following analysis only absolute values need to be considered, because each

sign can be chosen arbitrarily.

In the following, the differential propagation in each step is analyzed. Suppose, that the
first difference of round three is introduced in step ¢ by the message word m,,,. Thus, there is
a zero difference in step ¢ — 1. The difference Am,,, is chosen, such that after the rotation of
si steps, the state variable difference is Aa; = A[31]. Therefore, the message difference should
be Am,,, = A[31-s;]. The probability that a carry occurs during the addition is 1/2. However,
by predetermining the sign of the message difference and setting an according condition on

the resulting state variable, a carry can be avoided.

In the following step (i + 1), the difference of Aa; = A[31] propagates through the XOR
function. In order to cancel it, the difference of m,, , is chosen to be A[31]. To exploit
the first observation of the previous paragraph, another difference at position 31-s;41 in the
message word m,,,,, is used. Thus, a second input difference of A[31] for the XOR function
is obtained after the rotation by s;11 positions. The probability of a carry to occur is again
1/2. By imposing a condition on a;;1 the sign of the message difference at position 31-s;41 is

fixed. Note, that no carry occurs at position 31 and thus, a further condition is avoided.

In the (i + 2)-nd step, two input differences of the XOR function are set at position 31
which cancel each other. Hence, the difference in a;19 is zero. The same holds for step ¢ + 3.
In step i + 4, only one input difference of the XOR function (Aa;y; = A[31]) is not zero and
the difference propagates through XOR, but gets cancelled by Aa; = A[31].

Consequently, in the (i + 5)-th step, the difference A[31] of the register a;11 needs to
be cancelled. This is done by inserting a difference at the same position using the message
word my,, ;. The differential behavior of this inner collision is summarized in Table No
condition is needed for the XOR function and only two conditions are needed to avoid the
carry propagations in step ¢ and in step ¢ + 1. Thus the probability for this differential path

to hold is /4. The signs of all message differences can be chosen independently and the
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conditions must be set accordingly.

The first step 4 of this inner collision can be chosen freely, as long as the collision remains
in the third round. The choice of i determines in which message words the differences are
introduced. The used message words influence the length and the position of the inner collision

over the first two rounds.

Choosing for instance 7 = 32 determines that the differences are introduced by the message
words mg, mg and m1g. Message word myg is used in the 0-th and the 16-th step, mg is used in
the 8-th and the 18-th step and mqg is used in step 10 and 26. The number of steps between
the first and the last introduction of a message difference, and thus the length of this inner
collision would be 27. The choice ¢+ = 35 leads to an inner collision between step 1 and 24.
This message difference is used by Wang et al. because it ends in the lowest possible step.
Thus, most conditions are supposed to occur in low steps too. This message difference is used

in this thesis as well and the signs of the differences are:

Aml = 231, Amg = 231 — 228, Amlg = —216



Chapter 7
Searching for Differential Paths

The main part of this thesis has been to determine a differential path for the message difference
of Wang et al. (see Section . This is the most difficult part because no insight in their
methods was provided. However, it has been possible to find an algorithm, that finds many
differential paths within a couple of minutes on an ordinary PC. The methods in this algorithm
can be extended to search for differential paths for many other message differences as well.
Further, the algorithm is able to search for paths with nonzero differences at the beginning
and at the end too.

In the first section of this chapter, the algorithm is described in detail. Then some
experiments and results are discussed and finally, the best differential path which has been

found is presented.

7.1 An Algorithm for Searching Differential Paths
In Section the message difference AM has been selected as:
Aml = 231, Amg = 231 — 228, Amlg = —216

These message differences are introduced in steps 1, 2, and 12 of round one and in steps 19,
20, and 24 of round two. Thus, in order to derive a differential path for MD4, the differences
between step 0 and 24 have to cancel mutually. The complexity of a brute-force search through

all possible paths is extremely high and the number of paths is estimated by:

19932
2522

)

because any combination of carry expansions and f; propagations is possible in each of the 25

steps. The f;-function can block or propagate each bit position independently, which yields

34
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232 possibilities, and the average number of possible representations of a signed difference Aa;

is estimated as:
#signed differences 332

— 2 _ 9219
#modular differences 232

To reduce the search space of an algorithm, any uncontrolled propagation of differences
through the f; function and by carry propagation is avoided (see section . Further, low-
weight signed differences are used by default which reduces the resulting number of conditions

and thus, the final message search complexity (see Chapter .

The algorithm consists of three major parts which are called deriving the target differ-
ences (see Section [7.1.1), cancellation search (see Section [7.1.2)), and correction step (see

Section [7.1.3). An overview is given by Figure

A J A J A J
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Figure 7.1: An overview of the differential path search algorithm. Trapezoids represent expansions
and restrictions of the search space.

In the first part the target differences are derived, which are target output differences of
the f;-function. The message differences are computed backward and forward to derive the
so-called correction and disturbance differences, which are then combined to build the target

differences.

During the cancellation search of each step 4, all variations of the elements of the target
difference are considered. The variations of the target differences need to be cancelled by
the function f;. To achieve an output difference of f; at a specific bit position, the input

differences Aa;_1, Aa;_ and Aa;_3 need to be expanded. To reduce the complexity, only
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possible cancellations for each input difference are considered. Finally, the conditions for each

step are derived.

In the correction step, conditions which contradict are resolved without searching for a new
differential path. If some contradictions cannot be corrected, so-called dispersion differences
are added to the target differences. These dispersion differences distribute the conditions,

such that a new differential path with no contradicting conditions can be found.

7.1.1 Deriving the Target Differences

The goal of an algorithm for finding a differential path is to cancel out all differences that are
introduced by the message words. Differences in MD4 can only be cancelled or introduced by
a message word difference or by a difference of the f;-function. Because the message difference
has already been determined, the only possibility to cancel a difference is by using the f;-
function. One state variable is updated in each step (cf. Equation . Thus, a message
difference can only be cancelled every fourth step. A message difference introduced in step
can be cancelled by introducing an opposite difference prior or after step ¢, in particular in all
steps (i &+ 4k). To distinguish between differences which should be cancelled and differences
that are introduced to cancel a subsequent difference, the terms disturbance differences (Ad;)

and correction differences (Ac;) are used in the remainder of this chapter.

correction
&Ks. difference Ac; s, ‘
2
V' V‘ Y
| s | &g | a, [ aa | | 4 | &g | 2 | aa |
- Ad; F<—<
message Do f | AC $ Aajo
difference - ' L:
Am;
&S KKSi
3
N
[ a3z | Pl oas [ oap | [ a3 | | oag | 2 |
disturbance <+
difference Ad; fi fie y

Figure 7.2: Left: Forward and backward computation of the message differences to get a target
difference for each step. Right: Fulfilling the target difference using the input differences of the f-
function.
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7.1.1.1 Disturbance Differences

Disturbance differences Ad; are simply derived by forward propagating the message dif-
ferences. The output difference of the f;-function is required to be zero. This is done
for all steps 0 < ¢ < 24 and the differences in the initial values are assumed to be zero
(Ad-y = Ad_3 = Ad-9 = Ad_1 = 0):

Ad; = Adj—y K sj—4 + Afi(Adi—1, Ad;—2, Ad;i—3) + Amy,,
= Adi—4 K Si—4 + 0+ Amy,,.

If the differences Ads1, Adso, Adeg and Adsy are zero, an inner collision for the first 25 steps
of MD4 is found.

7.1.1.2 Correction Differences

The correction differences Ac; need to be backward propagated and the f;-function output
difference should be zero in each step. Using the correction differences it can be determined
where to introduce a difference, which in turn can cancel a message difference in a subsequent

step:

Aci—g = (Aci + Afi(Aci—1, Aci—2, Aci—3) + Amy,,) >> s,
= (Ac; + 0+ Amy,) >> s;
with 7 := {24, 23, ,4} and A024 = ACQ:} = ACQQ = ACQl =0

7.1.1.3 Target Differences

The correction and disturbance differences are merged and called target differences. Thus, a
target difference At; in step i is the target output difference of the f;-function. This difference
is known to cancel a message difference in a previous or later step. This can be considered
as if the target differences At; has to be cancelled by the function f; in step i. The target
differences are built by the sum of the disturbance and correction differences (Equation .
The target differences of steps 0 — 24 are shown in Table

Ezample 7.1. Forward propagation of the message and disturbance differences in step ¢ = 3:

Ads = Ad_1 K s; + A f3(Adg, Ady, Ady) + Am;
=0« 11+ AIF(A[6],0,0) + AJ-31, 28] = A[-31, 28]
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Table 7.1: Deriving the target differences At; by forward propagation of the disturbance Ad; and
backward propagation of the correction differences Ac; for all message differences of step 0 — 24.

step Amy,, S; Ad; Ac; At;
0 3 A[16,13,-10,-7] | A[-16,-13,10,7]
1 AP | 7 A[31] A[-31]
2 | A[31,-28] | 11 A[31,-28] A[-31, 28]
3 19 Al-4] Al4]
4 3 A[19,16,-13,-10] | A[-19,-16,13, 10]
5 7 A[6] Al-6]
6 11 A[10,-7] A[-10,7]
7 19 A[-23] A[23]
8 3 A[22,19,-16,-13] | A[-22,-19, 16, 13]
9 7 A[13] A[-13]
10 11 A21,-18] A[-21,18]
11 19 A[-10] A[10]
12 | A[16] | 3 A[-16] A[25,22,-19] | A[-25,-22, 19, 16]
13 7 A[20] A[-20]
14 11 A[-29, 0] A29,-0]
15 19 A[-29)] A[29]
16 3 A[-19] A[28,25,-22] A[-28,-25,22,19]
17 5 A[27] A[-27]
18 9 A[l1,-8] A[-11, 8]
19 | A[16] |13 A[-16] A[16]
20 A[31] 3 A[31,-22] A[28,-25] A[-31,-28, 25, 22]
21 5 A0] AJ-0]
22 9 A[20,-17] A[-20,17]
23 11 A[-29] A[29]
24 | A[31,-28] | 3 | A[31,-28,-25,2] A[-31,28,25,-2]

7.1.2 Cancellation Search

The cancellation search tries to cancel the target differences in each step. It is not known in
advance, which target difference should be cancelled in which step. Therefore, the search is
performed recursively for all steps i = {0, ...,24}. If no difference is left after the last step, a

differential path with a zero difference in step 24 has been found.

7.1.2.1 Variation of Target Difference Elements

To find a differential path with most conditions at the beginning, the first idea is to fulfill
all target differences as early as possible. Unfortunately, in this case, less differences will be
left to achieve the target differences in later steps. Indeed, it is hard to find any differential
path at all. Thus, all possibilities to cancel the target differences are considered. If the

signed difference At; has Hamming weight w then there are 2" possible variations to cancel
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its elements (see Example and Table . All possible variations of the elements of At;

need to be examined.

7.1.2.2 Carry Expansion

The elements of the target difference are cancelled by the f;-function (see Figure right).
A specific output difference of the f;-function is only possible if an input difference at the
same bit position is present. This is usually not the case. Therefore, the input differences
of the f;-function often need to be expanded. Note, that there are again many possibilities
to achieve a specific bit position. Each element of the target can be cancelled by any carry
expansion of any input difference of f;. To limit the complexity of the search algorithm,
a predefined maximum length for each of the carry expansions (usually 3) is used. Beside

limiting the search space, the low weight differences reduce the number of conditions too.

Ezample 7.2. Table shows all variations of the elements of the target difference At; =
A[-29,20,-17] in the first column. FEach target variation may be cancelled by any carry
expansion of the inputs of f;(a;—1,a;-2,a;—3). The carry expansions with two expansion
steps of Aa;—1 = A[19,-17], Aa;—2 = A[16] and Aa,;_3 = A[14,-7] are shown in columns 2-4

respectively.

Table 7.2: All target variations and all carry expansions of Example

At; Aa;_1 Aai_o Aa;_3
A[29,20,-17] A[19,-17] A[16] A[14,-7]
A[-29,20 ] A[18, 17] A[17,-16] A[l5, 147 7]
A[29,  -17] A[20,-19,-17] | A[18,-17,-16] A[14, -8, 7]
A[-29 ] A[19,-18, 17] A[15, 14 8 7]
Al 20,-17] | A[20,-19,-18, 17] A[16,-15,-14,-7]
Al 20 ]| A[21,-20,-19,-17) A[l4, -9, 8, 7]
Al -17]

Al ]

7.1.2.3 Cancel Possibilities

To achieve one specific target variation, all combinations of the inputs Aa;_1, Aa;_2 and
Aa;_3 of f; could be tried. However, most inputs of f; cannot fulfill a specific target variation
anyway. In Table the difference at position 29 of At; cannot be achieved by any input
difference listed. Thus, the search space can be significantly reduced by considering only

combinations of target and input differences, which share the same bit positions.

Ezxample 7.3. This example shows all cancel possibilities for all variations of the target dif-

ference At; = A[-29,20,-17]. In this example the expansions of the input difference a;_; are
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considered:

Aa;_1 = A[19,-17] = A[18,17] = A[20,-19,-17] = A[19,-18, 17]
= A[21,-20,-19,-17] = A[20,-19,-18, 17]

At; = A[-29,20,-17] => not possible
= A[-29,20 ] => not possible
= A[-29 -17] => not possible
= A[-29 ] => not possible
= A 20,-17] = A[20,-19,-17]
—A[ 20 ] —  A[20,-19,-17], A[20,-19,-18,17]
— A 17] —  A[19,-17], A[20,-19,-17], A[21,-20,-19, -17]
=A| ] = all expansions of Aa;_1

7.1.2.4 Cancellation Step

In every step ¢, the cancellation search starts with the first difference Aa;_1 of f; and tries
to meet all target combinations by carry expanding Aa;_1. Some targets will not be met at
all, whereas others can be met with several expansions of Aa;_1. The expanded difference
of Aa;_1 with the lowest Hamming weight is used first. All target variations that cannot be
fulfilled are discarded. Differences, which have been cancelled by a;_1 are removed from the

target difference.

For the remaining target differences the same procedure is applied with Aa; 2 and Aa;_s.
All possible target difference variations are examined recursively. Thus, each element of the
target difference is tested if it can be cancelled by any of the three input differences during
the recursion. Note, that carry expansions of Aa;_s and Aa;_3 can only be used, if they do
not contradict with an expandion of a previous step. This means, that if the difference at
position 18 of Aa;_; = A[18,17] has been used to cancel a target difference, then the carry

expansion Aa;—1 = A[20,-19,-17] is not allowed anymore in this branch of the recursion.

Already cancelled target differences are removed from At; in each cancellation step. Thus,
two carry expansions at the same bit positions of two or more inputs of f; are avoided as this
would potentially lead to contradicting conditions (see section [7.1.3]). Furthermore, shorter

carry expansions keep the number of conditions small as well.
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7.1.2.5 Deriving the Conditions

Only after all three input differences of the f; function are fixed, it is possible to determine
the conditions. If a certain output difference of the f; function is not possible, this path
is marked as an impossible path, even if it has a zero difference in its last step. Further,
in many cases where a certain output difference of f; is possible, a previously set condition
can contradict a newly set condition. Then, this path is also marked as an impossible path.
However, Example shows that there can be several possibilities for a difference to cancel
a target variation. Consequently, it can be checked whether a contradicting condition can be

resolved with a different carry expansion.

The result of the cancellation search are paths from step 0 to step 24 that have a zero
difference after step 24. In addition, the conditions for this differential path to hold are
derived. However, quite often all found paths have at least one contradicting condition and

are thus, impossible paths.

7.1.3 Correction Step

In the correction step, contradicting conditions or impossible output differences of impossible
paths are tried to be corrected. In such impossible paths a specific target difference cannot be
met in some step or a zero output difference of the f; function cannot be achieved. As a con-
sequence, these additional (disturbance) differences induced by the contradicting conditions

need to be cancelled in some other step.

7.1.3.1 Correction by Solving Contradictions

To cancel the additional disturbances, they can be computed forward and backward through
the already determined differential path. As there are only a few disturbances (caused by
contradictions) to correct, longer carry expansions can be allowed. This does not increase
the search space because no recursion is used. However, in many cases this does not work
because further contradictions may occur. The reason is, that the conditions and differences
stick together throughout the differential path (see Figure .

7.1.3.2 Correction by Dispersion Differences

Typically, differences propagate from the least significant bit in the first few steps to the most
significant bit in the last steps (see Figure . The reason for this propagation is, that the
rotation values s; are very similar for most differences. In order to spread the differences and
thus the conditions, dispersion differences are introduced in steps with a high rotation value,
i.e. s = 11 or s3 = 19. This high rotation allows the dispersion differences to spread within

only a few steps. These dispersion differences are then used in the following steps to cancel
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Figure 7.3: This figure shows that most differences are rotated with low values and thus differences
and conditions do not spread. Hence, contradicting condition are more likely to occur although the
number of conditions, which is 119, is small. A value of ¢ = 0 or ¢ = 1 requires a; ; = ¢ for a specific
bit j and step i. A negative value c or ¢ requires the respective bit to be a; ; = a;_|.| ; or a; j # a;_[g| ;-
The entry marked by # denotes a contradicting condition.

differences in areas with a low condition density. The dispersion difference Ads = A[6] leads
to a differential path with spread conditions and no contradictions (see Figure|7.4). The same

difference was used by Wang et al. too.

7.2 Experiments and Results

The search algorithm is written in C and it takes less than a minute to find many differential
paths. During the development of this path-search algorithm different experiments have been
made. The main difficulty was, that either the complexity of searching differential paths is
too high, or no differential path could be found. A small adjustment in the cancellation search
might lead to a huge change in the complexity. Therefore, the main task was not to reduce

the overall complexity of the path search, but to consider the right differential paths, which
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Figure 7.4: In this path, differences are spread by introducing a dispersion difference (blue) in a step
(¢ = 3) with a high rotation value of s3 = 19. Because of introducing a new difference, the number of
conditions is higher (146) but nevertheless no contradicting conditions appear.

are likely to have a zero difference in their last step but contain no contradicting conditions.

In the experiments thousands of impossible paths with 1-3 unsolvable contradicting con-
ditions have been produced. Many experiments with carry expansions of different lengths
have been made as well. It turned out that at least in one step, a carry expansion of length
three is needed. Otherwise, a zero difference is not possible in the last step of the differential
path. Further, increasing the maximum length of the carry expansions to 10-15 does not lead
to less contradicting conditions in the found paths. Moreover, the number of contradicting
conditions increases when using long carry expansions, whereas no additional path with zero

or one contradiction was found.

However, over 400 paths without contradicting conditions have been found after the cor-
rection by a dispersion difference. All of these paths can be found within only a couple of
minutes. However, with respect to the message modification, the conditions of the best path

is shown in Figure [7.4 It was chosen, because it has the smallest number of conditions in
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the second round. Remember that all conditions in the first round can be easily fulfilled
by single-step message modification (see Section . Furthermore, most differences occur
in the first few steps of the second round and are thus also easily fulfilled (see Section .
The path has 146 conditions with only 22 conditions in round two and 2 conditions in round
three. In contrast, the path of Wang et al. has 12242 conditions where 25 conditions occur in

round two and 2 conditions occur in round three. The two additional conditions were found
by [NSKOO05].

The complete differential behavior of the best path found in this thesis is given in Ap-
pendix [A] Further, the list of conditions, as well as an overview of the conditions in matrix

form is provided.

Some experiments with other message differences have been made as well. It turned out,
that with other message differences it is harder to find a differential path. The reason is, that
most differences do not have similar bit positions when propagating through the first two
rounds (see Figure . Hence, it is not possible to cancel differences without short carry
expansions. Therefore, it is suggested to introduce so called convergence differences, which

bring the spread differences together.
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Figure 7.5: When starting the inner collision of the third round at i = 33, the message differences
Amy = A[31,20], Amg = A[31], Amg = A[23] are used. Because the differences marked by “x” in the
first two rounds do not meet (the maximum carry expansion is 3), convergence differences are needed.



Chapter 8
Message Modification Techniques

In the previous chapter, a differential path together with conditions on the state variables has
been found. A differential path does only lead to a collision if all conditions are fulfilled. To
find a sequence of state variables which fulfill all conditions, random messages are examined.
One condition is fulfilled with probability of 1/2 under the assumption that the conditions are
independent. Thus, a random message fulfills all conditions of the differential path with a
probability of 2#conditions Tf only one of the conditions in the state variables is not fulfilled,

a zero difference does not occur at the output of the hash function.

In this chapter, the conditions of the path published by Wang et al. are considered. This
path has 125 conditions and thus, the complexity of randomly searching adequate messages is
2125 This is worse than the birthday attack (264). Therefore, Wang et al. introduced so-called
the message modification techniques to reduce this complexity. The message modification
techniques modify a random message to fulfill as many conditions as possible. The single-step
message modification is used to correct the conditions in the first round. To correct conditions
in the second round, more sophisticated multi-step message modification and advanced multi-

step message modification are needed.

8.1 Single-Step Message Modification

The single-step message modification can modify any message, such that all conditions which
occur in the first round are fulfilled. These conditions can be fulfilled by inverting each step

of the first round or by flipping single message bits.

8.1.1 Inverting the Step Operation

First a random message is chosen. Then, the conditions in each step ¢ = 0, ..., 15 of the first

round are corrected by applying the following procedure:
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1. Compute the register value a; using the update rule of Equation (3.1
a; = (ai—4 + fi(ai-1,ai—2,ai—3) + My, +¢;) K s;
2. For every condition on a; at bit position j which is not fulfilled, correct it by flipping
the j-th bit. The new state variable is called a;.

3. Get the new message word m; by inverting the update rule:

m; = (a; >> ;) —aj—a — f(ai—1,ai_2,a;_3)

Every changed state variable a; and thus, every changed message word m;, produces different
values in the following steps and thus, a different hash value. Using this simple method, all

conditions in the first round are fulfilled by computing new message words.

8.1.2 Flipping the Message Bits

If conditions in the second round have to be corrected later on by a multi-step message
modification, a slightly changed single-step message modification, which changes less message
bits should be applied (see Section [8.2)):

1. Compute the register value a; using the update rule of Equation [3.1

a; = (ai—a + fi(ai—1,0;-2,a;-3) + My, + ¢;) <K 5;

2. For every bit position j = 0, ..., 31 flip the message bit m; ;, if the corresponding condi-

tion of a; at position (j — ;) is not fulfilled.

Note, that the message has to be changed starting at the least significant bit (LSB) of the
message word (see Figure8.1)) and not at the LSB of the state variable, because the addition
is performed prior to the rotation. Otherwise, a carry in the addition may occur and change

a previously corrected condition.

mog||||||||-|||||||-||/.|||||||||‘__

ao [ | [ [ [] ] e e |||||||||-i<<<3
Figure 8.1: To correct the conditions of ag flip the corresponding bits of mg. Start at the (LSB) of
mo because a carry may occur in the addition (horizontal arrays).
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8.2 Multi-Step Message Modification

To fulfill the conditions in the second round the message words, which have been used to
correct conditions of the first round, are used again. Therefore, every modification of these

message words influences the state variables in both rounds, e.g. for message word my:

ag = (a-4 + [ F(a-1,a-2,a-3) + mgy + cp) <K o
aig = (a12 + M AJ(a1s, a14, a13) + mo + c16) << 516

Hence, all modifications of the message word in the second round have to be corrected in the

first round.

8.2.1 Flipping the Message Bits Interleavingly

To correct the conditions of aig, the corresponding bits of mg are flipped. For every changed
bit in mg a carry in the addition of step 16 and step 0 may occur. The conditions have to be
corrected interleavingly, starting at the LSB of mg. If a condition in ag is not fulfilled anymore

because of a carry, its corresponding bit in mg has to be flipped again (see Figure [8.2)).

L[ [1]]«s

ao [T TTTTT R TTTTT] [T T 18 ]«3

Figure 8.2: The conditions of ag and a4 are corrected interleavingly starting at the LSB of my.

The state variable ap might be referenced by a condition of a following step, i.e. a1 =
agp,6. These condition can become false if ag is changed. To correct these conditions, the

corresponding bits in mg need to be interleavingly flipped too (see Figure |8.3)).

rno[.lllll.l.lll/!lll I/!

|
aw [ [ [ [ [ W 1] AT/ [ ]]]«s

Figure 8.3: The conditions of ag, a1 and the bits in ag which are referenced by a; are corrected
interleavingly starting at the LSB of my.
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8.2.2 Correcting the Modifications in the First Round

The changes made to ag need to be corrected. Otherwise, all state variables in the first round
and finally a1¢ will change too. The changes of ag are corrected by inverting all steps in which
ap is used as an input (steps 1 —4). This results in new message words my, mg, ms and my.

Thus, a1, a2, ag and a4 and all following state variables remain the same:

ap > 7) —a-3 — f(ag, a-1,a-2)
az > 11) — a2 — f(a1,ap,a-1)

my = (
ma = ( (8.1)
ms3 = (CL3 > 19) —a-1 — f(a27a1aa8)

(

my = (ag >>3) — ag — f(az,az,a1)

This multi-step message modification can be used in step 16 and 17. In step 17 the
message word my is introduced. Therefore, the conditions of the state variable a4 have to be

interleavingly corrected with the conditions of a17 and as, starting at the LSB of my.

However, it is not possible to correct all conditions of step 18 using the same technique,
because there are already conditions at the corresponding bit positions of mg (see Figure|8.4)).
Another technique called advanced multi-step message modification technique needs to be

applied instead.

8.3 Advanced Multi-Step Message Modification

In step 18 the conditions of ajg at the bit positions j = {25, 26,28,29,31} need to be met.
This can be achieved by flipping the corresponding message word bits of mg {16, 17,19, 20,22}
(s18 = 9). The changed bits of mg influence the state variable ag at the bit positions
{19,20,22,23,25} (sg = 3). However, there are conditions on ag 19, ag20, ag22 and ag s
which become false, if the corresponding message bit is flipped. The message bit mg ; can
only correct one of the conditions of a1g j1+9 and ag j43 but not both. Figure shows the cor-
responding conditions of step 16, 17 and 18. Only the condition a1g29 = -1 can be corrected

without tampering a condition of ag.

8.3.1 Correcting using a Previous Step

To preserve the conditions on the state variable ag, the corresponding bits should not be
changed. Note, that a flip of the message word bit m; ; is the same as a difference in m;
at position j thus, Am; = A[£j]. To prevent the message word difference A[+j]| from
propagating to ag, an additional difference with opposite sign (A[Fj]) is used to cancel it.

This difference needs to be introduced in a previous step using the state variable a4, as, ag
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«— bit position —

a;[m] s[31 30292827 26 2524 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 O0]stp
a,| 03 e e x 0
a[1(7(. . . . . ox . .. .. .. . .. .10 1
a,| 2 |11] . 0 1 1 2
as| 319 . .X 0 0 1 3
as| 4|3 B | 1 1 4
as| 5|71 . X X 5
ag| 611 . Lo 10 1 6
a;| 7|19 . LoxX . 0 1 7
Slag|8(3]. . S 10 1 8
‘?a997x.-1 T 0 1 1 9
9 [ao] 10| 11| -1 1 .. 0 . 0 10
8 lan|11]19] 0 0 x . x 1 . 0 11
glag12[3|0 . 11 . 10 . 0 12
Slag13| 7|1 . 0 1 10 . 0 X .13
1 |a1d14]11| x 00 01 . 1 -1 .14
a5 15|19 0 1 11 . 0 . . |15
agd 0[3 : 16
a7 415 I : 17
ag 819 . 18
asg 121 19
ax 113 . 120
a| 5[5 |21
a| 99 22
a3 13| 1 23

Figure 8.4: This figure highlights the corresponding conditions of the first and the second round. The
arrows show the rotation values s; and referenced bits are marked by “x”. The conditions at position
25, 26, 28 and 31 of a;g contradict with the conditions at 19, 20, 22 and 25 of ag.

or ay (see Figure left). In Figure the steps and bit positions where these differences

can be introduced are marked by a (red) box.

8.3.2 Controlling the Propagation

The propagation of these additional differences needs to be controlled. Assume, that the
difference Amy = A[+j — si] is introduced in step k = {i-1,4-2,:-3,4-4}. To avoid the carry
propagation, an additional condition on ay, ; is needed in the first round (see Figure right):

Aak’j = A[_]] — ag.j = 0

Aak’j = A[—j] — A5 = 1

To avoid the propagation of this difference in the following steps, it can be blocked by the I F-
function. This requires further conditions in the first round. In the step i, where the difference
should cancel the message difference m;, the I F-function has to forward the difference ay.

See Tabel for the required conditions of each case. Because there are usually already
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Figure 8.5: Left: To cancel the difference introduced by msg, a difference in ay, a5, ag or a7 can be used.
Right: This difference needs to be introduced in a previous step k and its propagation accordingly
controlled.

conditions in the first round, the newly set conditions may contradict. In this case, the

message difference my can be introduced in a different step.

However, instead of conditions which block the IF-function, the difference can be can-
celled by introducing another message difference too (see Figure right). Note, that the

propagation of the difference my needs to be stopped after four steps.

8.3.3 Correction Possibilities

The possible steps to introduce a difference and the possibilities to control the propagation
are listed in Table Every combination is allowed, as long as it does not contradict
with already set conditions. Therefore, in areas with many conditions in the first round the
propagation needs to be stopped mainly using the message difference. However, to prevent
the carry propagation and to forward the difference through the IF-function a condition is
always needed (see Table [8.1)).

In Table @ the message difference to be cancelled in step ¢ is denoted by ém;. In the
first four cases, the negative message difference has to be inserted to cancel dm;. Note, that
the I F-function is able to forward the negated difference of its first input (see Section [5.4.1).

Thus, it is possible to introduce a message difference with the same sign and flip the sign
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using the I F-function (case 5). The last case is the same as the regular multi-step message
modification but without inverting the following steps to correct the changes of a;; (see
Equation . Instead, the propagation of the difference caused by dm; j_s, is controlled
using additional conditions or by a message differences at position j. Note, that there are

further possible cases which have not been used here, e.g. using intended carry propagations.

Table 8.1: The 6 possible cases for the advanced multi-step message modification. The message
difference dm; to cancel in step ¢ is marked red. The green message differences at the beginning and
the end are needed in every case. Always needed conditions for carry propagation are marked blue
and conditions to forward the difference are marked green. In all other cases (black) it can be chosen
for each step, whether to stop the propagation using a message difference or a condition.

case 1 case 2 case 3
step Amy; ‘ conditions Am; ‘ conditions Amy; ‘ conditions
i—4 || -0mj-g, ai-4 = 1/0
1—3 iémj Q-5 = -1 —5m,j_s, ;-3 = 1/0
i—2 || xom; a3 =10 +ém; Qg = -1 -0mj-s, | ai-2 =1/0
1—1 iémj A4-9 = 1 :|:5mj A3-9 — 0 iémj -3 — -1
) 5mj (5m] a;-1 = 0 (ST/L]‘ ;-1 = 1
1+ 1 om; +dm; a; =1
142 om;
case 4 case H case 6
i—1 || -0mj-s, ai-1 =1/0 dmyj-s, ai-1 =0/1
) om; a9 = 1,a;-3 =10 om; ai-2 = 0,a;3 =1 | dmj-s, a; =1/0
1+ 1 iémj a; =0 :|:5mj a; =0 idmj a;-1 =-1
1+ 2 :tém] Aj4+1 = 1 :t5mj Qi+ = 1 iém] ai+1 = 0
1+ 3 om; -0my; +dm; ajyo =1
1+4 -0m;

The steps to introduce the differences for the advanced multi-step message modification
of step 18 are highlighted in Figure However, the condition on aig 29 cannot be fulfilled in
the first round using any of these cases. Therefore, this condition is corrected using advanced
multi-step message modification in the second round. This results in additional conditions of

the second round which can be corrected by the multi-step message modification.

8.3.4 Avoid Message Word Permutation

For the correction of the conditions in step 19, the message word mis needs to be modified.
If the modifications in the first round are corrected by inverting the steps (see Section |8.2.2)),
the message word mg is modified again. As this message word is used in step 0 and 16, many

changes would occur. Therefore, to correct the conditions in step 19, only the cases 1-5 can
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«— bit position —
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a| 0] 3 e x A 0
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a,| 2111] . 0 11 2
as| 3119 . . 0 .0 1 3
4|3 X 1 1 4
as| 5|7 -1 5
ag| 6111 . 0 6
a;| 7119 . 0 7
alag|8]3|. . 1 8
‘ga997x .- 1 0 1 9
S lao| 10|11 -1 1 ) 0 00 10
8 lan|11[19] 0 0 x . x 1 0110 11
glag12(3|0 . 11 . 10 0 12
Slayg13[ 7|1 . 0 1 10 0 X 113
1} lasf14[11] x 00 0 1 1 -1 -1 |14
ad 15 0 1 11 0 . |15
ag 0 16
a4 17
aqgl 8 18
ag 12 .19
Aol 1 . 120
ay| 5 .21
az| 9 22
ay3| 13 . 123

Figure 8.6: An additional difference is introduced in the highlighted bit positions of the red boxes.
The condition a;g 2g is corrected by advanced multi-step message modification in the 2nd round.

be used. Similar problems occur for the following steps (20, 21, 22), because my4, mg and
m1o have already been used in the second round too. For these steps, the propagation of the
message difference in the first round is controlled by the I F-function and thus, my4, mg, and
mi2 do not get changed (see Figure . By applying these advanced multi-step message

modification cases, all conditions of the first two rounds can be fulfilled with probability 1.
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«— bit position —
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a,l4]3]. . ..) X X X X < (R 4 m } 4
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a;| 7019 . . . . . x 0000 . -1 0 1 7
glas|8|3] . - x ..-1 .[o 1 1 8
Glaglo|7|x . -1 .. 0110 .10 1 1 9
Sla10[11]-1 . 1 ) ) . . 0000 Nk 10
8lan|11[19/0 . 0 x . x .. 0110 11
Elag12[3|0 . 1 -1 . ) .o.. 12
8law13| 7|1 . 0 1 . 1 .. 0m . 13
llag1411x . 0 0 . 0 .. 1m . 14
ai15(19[-1 . 0 1 . 1 m . 15
a 0] 3 m . 16
a 4|5 17
ag 8(9 18
a9 12[13 — . 19
ax| 1[3[1 01—[ } 20
a| 55| x x 1 .21
32299-T a1 . 122
2,5 13[13] . 23

Figure 8.7: To correct the conditions in step 19 only the cases 1-5 can be used. Otherwise the message
word mg in step 16 is changed. The changes of the message word m; cannot be corrected using my
because my is already used in the second round too. m; is corrected using conditions (case 6).



Chapter 9

Conclusions

In the first chapters of this thesis, cryptographic hash functions and in particular hash func-
tions of the MD-family have been defined and discussed. The most important attacks on
the collision resistance have been mentioned and their complexity was given. This thesis has
concentrated on the attack approach by Wang et al., which is a differential attack on the

collision resistance of a hash function. The idea of this strategy has been explained in detail.

To apply new ideas, methods for differential cryptanalysis of the MD-family of hash func-
tions have been defined and used in the attack on MD4. The main part of this attack is
to search for differential paths which lead to a collision of the compression function. An
algorithm has been developed which is able to find many differential paths for the message
difference chosen by Wang et al. More than 400 differential paths have been found so far.
Some paths are slightly better than the path found by Wang et al. because less conditions
are needed in the second round. This is an advantage regarding the message modification
techniques. The different types of message modification techniques have been analyzed and
improved too. The techniques applied in this thesis are not very specific for MD4 and can be

extended to the use in other hash functions.

In future work, the algorithm for searching differential paths can be enhanced to find paths
with less conditions. With the use of dispersion and convergence differences, other message
differences can be tackled. The path search can be applied to different types of attacks as well.
With minor modifications, the algorithm can search for differential paths of chosen message
2nd-preimage attacks, multi-collision attacks, multi-block collision attacks, herding attacks
or collision attacks with different IVs. With more changes and improvements the differential

path search presented in this thesis can be applied to MD5 as well.
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Appendix A

The Differential Path

« compression step

« bit position —

3130292827 262524 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
0 . A

1 . -1 10

2 -1 0 11

3 0 . S 0 0 1

4 0 .0 . R I QO 1 1

5 1 .1 -1 A4 .01 1 1 o

6 .0 1 1 o1 0000-1 .-

7 . 4419 .110 .10 .01110 .0

8 0 01 .111-101 0 .0

9 0 00 .01110 1 1 .
10| -1 1 11 .000 0 1 -1
11 1 01 . .-1.1011-1 0
1210 . 01 . . 1 0 10 0
13| 1 .0 .0 0 .00 . 1
14 11 1 1 11 -1 .

15| -1 -1 -1 0 1 0

16| 0 1 0 22 .2

17| -2 2 -2 A A

18| -1 -1 -1

19| 0 -1

20| 1 0

21| . 2

22| -1 -1

23

24

Figure A.1: The 146 conditions of the differential path with no contradicting conditions.
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Table A.1: Differential characteristic of the differential path with 146 conditions.

Step | a; | si | My, Amy, Af; Aa;
0 ap 3 mo
1 al 7 ma A[31] A[6]
2 | ap | 11| mo | A[31,-28] A[10,-7]
3 as 19 ms A[G] A[25]
4 agq 3 may
5 | as | 7 | ms A[16,-15,-14,-13]
6 | ag | 11 | mg A[23,-22,-21,-18]
7 | ar |19 my A[23] A[12,10]
8 | as | 3| ms A[23,-22,16] A[26,-25,19]
9 |ag | 7] mo A[23,-22,-21,-20]
10 aio 11 mio A[—Ql] A[—29]
11 ail 19 mi1 A[—gl, 29, 0]
12 [ann | 3 | mw | A[16] A[-22] A[29,-28,-25,22,-20, 19]
13 ai3 7 mis A[—20]
14 [ay | 11| my AJ29]
15 ais 19 mis A[lg, —18, 16]
16 | ag | 3 | mo A[19] A[31,-28, 25]
17 aiy 5! my
18 aig 9 ms
19 aig 13 mi9 A[—16] A[?)l]
20 a0 3 ma A[?)l] A[—31, 28]
21 asi 5 ms
22 a2 9 mog
23 | ags | 13 | mi3 A[-31]
24 | ags | 3 | mg | A[31,-28]
35 ass 15 mi9 A[—IG] A[-?)l]
36 ase 3 mo A[31, —28] A[—?)l] A[—31]
37 asy 9 mio
38 ass 11 me
39 asg 15 miq
40 a40 3 mq A[31]

o7
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Table A.2: The list of 146 conditions for the differential path with no contradiction.

Step | Conditions for a;

0 | ape=a-1p

1 | a16=0,a17=a07,01,10 = 40,10

2 ase = 1,a27 =1,a210 = 0,a22;5 = ai25

3 |a3ze=1,a37=0,a310=0,a325 =0

4 | ag7=1,a4,10 = 1,a4,13 = a3,13, 04,14 = a3,14,A4,15 = 03,15, 04,16 = 03,16,
ag23 = 0,a425 =0

5 |asi3=1,a514=1,a515 = 1,a516 = 0,a5,18 = a4,18, 0521 = G421, 4522 = A4,22,
as23 = 1,a525 =1

6 ag,10 = 05,10, 46,12 = 05,12, 06,13 = 0,a614 = 0,a6,15 = 0,a6,16 = 0,a6,18 = 1,
ag21 = 1,a622 = 1,a623 =0

7 | ario=0,a712 =0,a713 =1,a714 = 1,a715 = 1,a716 = 0,a7,18 = 0,a7,19 = ag 19,
a721 = 0,a72 = 1,a723 = 1,a795 = ag,25, 07,26 = 06,26

8 | ag10 =0,ag12 = 0,a818 = 1,a819 = 0,a820 = ar20,a821 = 1,ag22 = 1,ag23 = 1,
ag 25 = 1,ag26 = 0,ag29 =0

9 | ag10=1,a912 =1,a919 =0,a920 = 1,a921 = 1,a920 = 1,a923 = 0,a925 =0,
ag 26 = 0,a929 =0

10 | a10,0 = a9,0,a10,19 = 1,a10,20 = 0, a10,21 = 0,410,220 = 0,a10,23 = 0,a10,25 = 1,
a10,26 = 1,a10,29 = 1,a10,31 = a9 31

11 | a11,0 = 0,a11,19 = a10,19, @11,20 = 1, a1121 = 1,a11,22 = 0,a1123 = 1,a11,25 = a10,25,
a11,28 = 10,28, a11,29 = 0,a1131 = 1

12 | a120 = 0,a12,19 = 0,a1220 = 1,a1222 = 0,a1225 = 1,a12.28 = 1,a1229 = 0,a12.31 =0

13 | a13,0 = 1,a1319 = 0,a13,20 = 0,a13 22 = 0,a1325 = 0,a1328 = 0,a1331 = 1

14 | a1a,16 = a13,16, A14,18 = 13,18, 014,19 = 1,a1420 = 1, 01422 = 1, 01425 = 1,
a1428 = 1,a1429 = 1

15 | a1516 = 0,a15,18 = 1,a15,19 = 0, a1525 = a14,25, a15 28 = 414,28, 41531 = (14,31

16 | a16,16 = a14,16, A16,18 = A14,18, 416,19 = A14,19, 416,25 = 0, a1628 = 1,a16,31 = 0

17 | ai7,16 = a16,16, 17,18 = 016,18, 417,19 = 16,19, 417,25 = (15,25, 417,28 = (15,28,
ai17,31 = 1531

18 | a1825 = a17,25, a18,28 = a17,98,A18,31 = 417,31

19 | a19.98 = a18.28,a1931 =0

20 | agp28 = 0,a2031 =1

21 | a21,28 = a19,28

22 | a29,28 = (21,28, 022,31 = G1831
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