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Abstract: The simulation of moving parts in combustion engines and power trains by means of
flexible multi-body dynamics requires complex computation techniques for the contact areas.
Understanding surface interactions in detail is of great value for new products and can reduce
the development time and costs significantly.

Modelling of lubricated contacts, which exist in slider bearings (axial and radial) and in the
cylinder kit (piston, rings, and cylinder liner) are challenging tasks. Here, the simulation models
have rough discretizations of the body surfaces and fine oil-film discretizations. Although body
surfaces are usually given by finite element method (FEM) meshes, the non-linear reaction force
of the loaded oil-film is determined by integrating the lubricant pressure field on the hydrody-
namic mesh. The pressure is commonly calculated by solving a type of Reynolds equation in
the gap between the contacting surfaces. The combination of different types of meshes of the
body surfaces and the oil-film highly affects the quality of the results. Interpolation and integra-
tion approaches have to be capable of dealing with the high sensitivity of algorithms used for
elastohydrodynamic contacts.

This paper presents an analysis of numerically simulated contacts in axial slider bearings
for combustion engines. A surface contact algorithm with different numerical interpolation
approaches for the clearance gap and its time derivative is utilized to investigate the elasto-
hydrodynamic behaviour of axial thrust bearings. Thereby, the complete set of equations for
moving and elastic bodies and oil-film reaction forces have to be solved in time domain to obtain
the actual shape of the deformed clearance.

The numerical interpolation approaches comprise the Fritsch–Butland interpolation with the
Brodlie-derivative-formulation as well as generalized cubic spline functions. The investigations
consider effects of inclined crankshafts as they occur in axial thrust bearings of combustion
engines. Detailed results are shown applying linear and tetragonal FEM meshes for the surfaces
of the contacting bodies.

Keywords: flexible multi-body-dynamic system, elastohydrodynamic surface contact,
numerical interpolation, finite-element method meshes, axial thrust bearing

1 INTRODUCTION

In the different stages of a modern engine
development process, an increasing number of

∗Corresponding author: Advanced Simulation Technologies,

AVL List GmbH, Hans-List-Platz 1, Graz 8020, Austria. email:

guenter.offner@avl.com

decisions are based on results derived from the
simulation of virtual engines and power units under
fired conditions. The requirements are to predict
specific vibro-acoustic phenomena on one hand and
to provide conclusions for optimum design solutions
on the other with high precision and reliability.

These requirements lead to detailed models for all
moving and vibrating parts of the engine. Although
vibrating parts typically can be modelled with linear
behaviour, contact areas of the moving parts behave
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non-linear, in general. As the contact areas of the
moving parts change with the engine rotation and
the load distribution, very complex models have to
be generated and a high amount of computational
time is required for virtual results of high quality.Thus,
another challenge is to deliver the results with main-
tainable effort of computational and handling time for
a fully integrated simulation solution in the different
stages of the development process.

The simulation of lubricated contacts, as they exist
in engines at rotating parts (axial and radial slider
bearings) and oscillating parts (piston and piston
rings) has a long tradition. Nevertheless, reliable mod-
els for high prediction quality have been developed
in the last 10 years, only. On one hand, a number of
precise models for radial slider bearings have been
published, already, because of their importance for
the transfer of power in the engine. On the other
hand, quite a few papers for axial slider bearings exist,
although, the prediction of specific phenomena may
be very important for engine noise and durability.

Furthermore, higher complexity is required for the
hydrodynamic contact modelling in axial slider bear-
ings. Because of the geometry of the rotating and
contacting parts, structured models (beam, mass) as
often used for models of radial slider bearings are
not sufficient, anymore. The finite element method
(FEM) meshes of the contacting surfaces are com-
pletely different and have to simulate inclination of
shaft and block structure against one another as well
as and deformation effects along the circumferential
direction of the rotating bearing part. Thus the clear-
ance geometry for the discretization of the oil film in
between the contacting parts and the topology of the
parts becomes more complex than for radial slider
bearings. Accordingly, the integration and interpola-
tion of pressure and deformation, respectively, have
to be adapted for these requirements.

The paper presents a new approach to simulate
axial slider bearings. On one hand, equations for mov-
ing and vibrating parts are separated from contact
equations, to enable efficient numerical solutions in
time domain. On the other hand, efficient algorithms
for the numerical interpolation and integration in
the contacts have to be applied, to simulate these
contacts with maintainable effort.

2 MATHEMATICAL MODELLING OF BODIES

Because of the complexity of an elastic surface to
surface contact of a flange and a thrust in an axial
bearing, this mechanical system has to be broken
down into coupled subsystems. Components, like the
engine block and the crankshaft with linear elastic
structural properties [1], have to be considered. The
contacts of the components between each other e.g.

in lubricated regions of an axial bearing contact have
to be represented separately and will be investigated
in section 3.

2.1 Equations of motion of a discrete body

The mathematical modelling of each body is based
on Newton’s equation of momentum and Euler’s
equation of angular momentum. This basis is well
known in literature and can be found e.g. in refer-
ence [2]. With the fact given in reference [3], a ‘floating
frame of reference formulation’ has been introduced
for separating global (gross) motions and local vibra-
tion motions. This strategy introduces a moved ref-
erence coordinate system that moves in accordance
with the gross motions of the elastic body. Elastic
deformations are measured relative to this frame. The
resulting ordinary differential equation (ODE) sys-
tem [4], representing the dynamical properties of a
body reads

M · q̈ + D · q̇ + K · q = f ext + f gyros − f rbAcc︸ ︷︷ ︸
f

(1)

The matrices M, D, and K represent the structural
properties of the body and are named mass, damping,
and stiffness matrix. The vector of external forces and
moments f ext at the right-hand side of equation (1)
is a sum of exciting joint forces and moments and
external loads. External loads (e.g. gas force, valve
train forces, and output torque) are given functions
in time domain determined from given measurement
or precalculated data. The highly non-linear terms of
excitation loads are given by joints that connect one
body to another (e.g. contact forces acting between
a flange body and a thrust body of an axial bearing).
The vector f rbAcc contains the rigid body accelerations
and reads

f rbAcc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m1 · [ẍB + A�̇ · (xB + c1 + u1)]
I 1 · �̇

...
mN · [ẍB + A�̇ · (xB + cN + uN)]

I N · �̇

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2)

whereas the vector

f gyros = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1 · [2 · A� · (ẋB + u̇1)

+A2
� · (xB + c1 + u1)]

−I1 · Aω1 · � + (A� + Aω1)

· I 1 · (� + ω1)

...

mN · [2 · A� · (ẋB + u̇N)

+A2
� · (xB + cN + uN)]

−IN · AωN · � + (A� + AωN)

· IN · (� + ωN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)
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represents the gyroscopic terms considered for the
total elastic body.

From equation (1) both global (gross) motion quan-
tities and local deformation can be calculated. A
unique separation of these quantities needs to be
made sure. For this purpose, additional conditions
need to be stated that are discussed in reference [4].
According to this reference a projection strategy
approach has been chosen for this purpose.

2.2 Reduction of the number of degrees of
freedom

The total amount of computational time is sig-
nificantly influenced by the number of degrees of
freedom each body is represented with. Several
methods can be applied to reduce the number of
degrees of freedom significantly whereas the dynam-
ical behaviour is sufficiently described. The reduced
(condensed) number of degrees of freedom can be a
subset of all degrees of freedom (static reduction), a
set of linear combinations of all degrees of freedom
(modal reduction) or a combination of both variants
(mixed condensation). Details regarding these meth-
ods can be found in references [5] and [6]. According
to these references, the reduced set of degrees of free-
dom qa consists of physical degrees of freedom qt
of the uncondensed set as well as modal degrees of
freedom z that represent the amplitudes of the linear
combinations of the uncondensed system

qa =
[

qt

z

]
(4)

A transformation equation can be stated, that
describes the relation between the physical degrees
of freedom of the total system with the degrees of
freedom of the calculation system, reading

q = Gfa · qa (5)

Substituting the transformation equation (5) into
equation (1) and multiplication with the transposed
transformation matrix from left results in the equation
of motion of the condensed system

(Gt
fa · M · Gfa)︸ ︷︷ ︸

M̄

· q̈a + (Gt
fa · D · Gfa)︸ ︷︷ ︸

D̄

· q̇a

+ (Gt
fa · K · Gfa)︸ ︷︷ ︸

K̄

· qa = Gt
fa · f︸ ︷︷ ︸

f̄

(6)

or

M̄ · q̈a + D̄ · q̇a + K̄ · qa = f̄ (7)

M̄, D, and K̄ denote the structural matrices of the con-
densed system. f̄ is the reduced vector of forces and

moments. The reduced matrices together with the
table of degrees of freedom and the geometry infor-
mation are taken from finite-element (FE) software
via an interface. Vibration analysis is performed on
the reduced system only.

The transformation equation is also used for data
recovery. Based on the solution of the reduced
displacements qa, the displacement vector of the
total body can be computed via the transformation
equation (5).

3 MATHEMATICAL MODELLING OF
LUBRICATED CONTACTS

3.1 Governing equations

The differential equation governing the generation
of hydrodynamic pressure in an axial thrust bear-
ing is derived from the conservation equation of
mass and momentum. Using the approximations and
assumptions commonly applied in the derivation of
the Reynolds’s equation yields

1
r

∂p
∂φ

= ∂

∂y

(
η
∂u
∂y

)
and

∂p
∂r

= ∂

∂y

(
η
∂w
∂y

)
(8)

Integrating equation (8) with respect to y and applying
the boundary conditions

u(φ, 0, z, t) = u1, u(φ, h, z, t) = u2, w(φ, 0, z, t)

= 0, w(φ, h, z, t) = 0 (9)

results in

u = u1 + (u2 − u1)
Y
h

+ 1
rη

∂p
∂φ

(
Y 2

2
− hY

2

)
and

w = 1
η

(
∂p
∂r

− ρrω2

) (
Y 2

2
− hY

2

)
(10)

A conformal mapping method is utilized to trans-
form the end surface of the thrust bearing from its
annular (physical) domain to a rectangular (compu-
tational) domain, taking into consideration the time
dependency of the physical domain. A logarithmic
function facilitates such domain transformation

x = φ ∈ 0 � x � 2π

ȳ = y/h̄(x, z̄, t) ∈ 0 � ȳ � 1

z̄ = z0(t) + ln
(

r
Rin

)
∈ z0(t) � z̄ � z0(t)

+ ln
(

Rout

Rin

)
(11)

where,

z0(t) = ln
(∫ t

0
u2(ζ )dζ/Rin

)
(12)
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and

h̄ = f (c, e, κ , d) (13)

The state variable f (φ, y, r, t) in the physical domain
can be expressed in terms of the coordinate system in
the computational domain by

f (φ, y, r, t) = f̄ (x, ȳ · h̄, z̄, t) (14)

Substituting equation (11) in equation (10) yields

ū(x, ȳ · h̄, z̄, t) = u1 + (u2 − u1)Ȳ

+ h̄2

ηr
∂p̄
∂x

(
Ȳ 2

2
− Ȳ

2

)
(15)

and

w̄(x, ȳ · h̄, z̄, t) = h̄2

η

(
1
r

∂p̄
∂ z̄

) (
Ȳ 2

2
− Ȳ

2

)
(16)

In order do be able to study the bearing performance
even under cavitation, a fill ratio θ̄ , 0 < θ̄ < 1, and
effective density ρ̄e = θ̄ · ρ̄ are introduce. In such case
(for θ̄ = 1 and ρ̄e = ρ̄) a flooded region is defined
as well as a cavitation region is given for θ̄ < 1 and
ρ̄e = θ̄ · ρ̄.

Substituting the fill ratio and the effective density
into the continuity equation and rearranging yields

∂

∂x

(
ρθh3

12η̄

∂p̄
∂x

− 1
2
((u1 + u2)r − 2u2r2)(ρθh)

)

+ ∂

∂ z̄

(
ρθh3

12η̄

∂p̄
∂ z̄

)
= r2 ∂(ρθh)

∂t
(17)

3.2 Macro – hydrodynamics on rough surface
(average Reynolds equation)

In order to consider rough contact surfaces, a high
resolution in both spatial and time domain would
be needed. Despite enhanced solver techniques, like
e.g. multi-grid methods, an application in a dynamic
simulation becomes inefficient. As a consequence the
averaged method according to Patir and Cheng [7, 8]
is applied to solve the hydrodynamics problem on
a macroscopic scale considering rough surfaces by
stochastically evaluated flow factors or flow tensors.
Using this technique, the average Reynolds equation
for lubrication between two rough surfaces can be

Fig. 1 Discretization stencil and control volume
definition

written as follows

∂

∂x

(
1
2
(ρθσc(u1 − u2)�s

+ ((u1 + u2)r − 2u2r2)(ρθhT)) − ρθh3

12η̄
�x

∂p̄
∂x

)

+ ∂

∂ z̄

(
−ρθh3

12η̄
�z̄

∂p̄
∂ z̄

)
= −r2 ∂(ρθhT)

∂t

(18)

where

σ =
√

σ 2
1 + σ 2

2 (19)

and

hT = h̄ + δ1 + δ2 (20)

As control volume approach is used to discritize
equation (18), the domain of interest is unrolled and
divided into n cells in x-direction and m cells in
z-direction as shown in Fig. 1.

An enhanced method of ‘successive over relaxation’,
[9, 10] is applied to solve the discretized Reynolds
equation (18). The method considers adaptive over
or under relaxation and has the advantage of taking
the results of the previous time step as start values
when computing the results of the current time step.

4 SURFACE CONTACT ALGORITHM

The right-hand side of the equations of motion
that were introduced in section 2.1 considers non-
linear inertia terms as well as non-linear forces and
moments that result from contacts to other bodies.
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Fig. 2 Flow chart of a surface contact algorithm

Because of these non-linearities in addition to the
large amount of degrees of freedom the integration in
frequency domain cannot be done. Thus, an efficient
integration in time domain needs to be performed.
In order to minimize the numerical error, a direct
implicit integration method (Newark’s method) con-
sidering adjusted time step size is used for time
integration. In each time step both the equilibrium
in the equations of motion of the two bodies of the
multi-body system and the equilibrium in the con-
tact equations have to be satisfied. Figure 2 shows a
flow chart of these steps.

The main focus of the contact algorithm is put on
different numerical interpolation approaches for the

evaluation of the clearance gap and its first deriva-
tion in time. In the result section it can be seen that
the type of using interpolation approach affects the
performance of the simulation process.

4.1 Solution of the equations of motion

The discrete condensed equations of motion of body 1
(21) and of body 2 (22) have to be solved in time
domain by numerical time integration.

M̄1 · q̈1,a + D̄1 · q̇1,a + K̄1 · q1,a = f̄ 1 (21)

M̄2 · q̈2,a + D̄2 · q̇2,a + K̄2 · q2,a = f̄ 2 (22)
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The solution of equations (21) and (22) considers
predicted forces and moments for both bodies f̄ 1

and f̄ 2. From the solution of the condensed equa-
tions of motion, the shape of the clearance gap and
its first time derivative are interpolated. Based on
the interpolated functions h̄ and ∂h̄/∂t the contact
pressure is evaluated and integrated to new nodal
forces. A fixed point iteration scheme predicts new
forces and moments based on the integrated nodal
forces. If the convergence is not reached after a pre-
defined number of iterations, the current time step
size has to be reduced (if this is possible) or new
Jacobean matrices for the surface contact evaluation
need to be computed. A comprehensive description
concerning the different numerical time integra-
tion methods can be found in references [11, 12],
and [13].

4.2 Definition of the joint coordinate system and
the coordinate transformation

A new coordinate system for the contact evalua-
tion, which is called joint coordinate system, has to
be defined. The interpolation of the clearance gap
and its first derivative in time, the solution of the
hydrodynamics as well as the integration of the pres-
sure distribution has to be done in this coordinate
system. For the definition of this cylindrical coor-
dinate system the origin and the orientation needs
to be computed from the positions of the coupled
nodes.

After the definition of the joint coordinate system,
all positions and velocities of the connected nodes of
both bodies have to be transformed from the Carte-
sian body coordinate systems into the cylindrical joint
coordinate system.

4.3 Determination of the clearance gap and its
first derivative in time

In order to solve the lubricated contact equation of a
surface contact, the clearance gap and its first deriva-
tive in time have to be evaluated from the discrete
node positions and velocities of the contacting body
surfaces by numerical interpolation. For this purpose,
a two-dimensional numerical interpolation has to be
performed in the previous defined cylindrical joint
coordinate system (section 4.2). For an axial thrust
bearing, a numerical interpolation of the axial posi-
tions over the radial and circumferential coordinates
has to be evaluated. During a simulation process the
numerical interpolation has to be executed many
times. Thus, the use of a highly efficient interpolation
algorithm must be utilized.

With respect to the FE-discretization of the contact-
ing surfaces, two different interpolation strategies can
be distinguished.

If a regular FE-topology (only regular linear
FE-elements) is used (Fig. 3 – left side), a special inter-
polation strategy can be applied. As the figure shows, a
regular and rectangular distribution of the data points
is given, for the FE-nodes and for the HD-nodes.
Thus, the two-dimensional interpolation can be per-
formed by applying a one-dimensional interpolation
approach twice. For the one-dimensional interpola-
tion two different approaches are discussed. On the
one hand a high efficient method (Fritsch–Butland-
interpolation) and on the other hand an accurate
approach (generalized cubic spline interpolation) is
utilized.

For irregular distributed data points (Fig. 3 – right
side) a multiple application of a one-dimensional
interpolation cannot be applied. In this case an
efficient two-dimensional interpolation approach
needs to be used, such as the modified Shepard

Fig. 3 Regular versus general FE – discretization
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interpolation by Renka [14, 15]. Compared with the
multiple one-dimensional approach, these methods
are more expensive in terms of CPU time. Considering
the complex iteration and time integration scheme
that is applied during one simulation run (Fig. 2),
the simulation time is dominated by the interpo-
lation of the FE-nodes and by the integration of
the computed pressure to nodal forces. As a con-
sequence, the whole dynamic simulation of these
models becomes inefficient. Furthermore, the need
of regular FE topologies of the contacting surfaces can
easily be considered, when modelling the contacting
surfaces in the preprocessing step. Thus, the usage of
general FE-topologies is not discussed in this paper.

4.3.1 Fritsch–Butland-interpolation

The Fritsch–Butland-interpolation proposed a mod-
ified technique to simplify the Fritsch–Carlson
algorithm [16]. In this method, the first derivatives
at the nodes are calculated using Brodlie’s formula.
The Fritsch–Butland algorithm is local, C 1 continu-
ous and very efficient. A rather complete analysis is
given in references [17] and [18].

f (x) is a function on the partition x0 < x1 < · · · <

xn−1 for which f (xk) = yk . It is a piecewise polynomial
function that consists of n − 1 cubic polynomials fk

defined on the range [xk , xk+1]. Furthermore, each fk is
joined at xk , for k = 1, . . . , n − 2, such that y ′

k = f ′(xk)

and y ′′
k = f ′′(xk) are continuous.

The kth polynomial curve, fk , is defined over the
fixed interval [xk , xk+1] and has the cubic form

fk(x) = ak · (x − xk)
3 + bk · (x − xk)

2

+ ck · (x − xk) + dk (23)

where

ak = 1
�x2

k

·
(

−2 · �yk

�xk
+ y ′

k + y ′
k+1

)
(24)

bk = 1
�xk

·
(

3 · �yk

�xk
− 2 · y ′

k − y ′
k+1

)
(25)

ck = y ′
k (26)

dk = yk (27)

In the expression for ak and bk , �x and �y are given by

�xk = xk+1 − xk

�yk = yk+1 − yk

(28)

for k = 0, . . . , n − 2.
The expressions for the cubic polynomial coeffi-

cients are given in terms of position data and deriva-
tives. The first derivatives at the nodes are calculated

by using Brodlie’s formula with

f ′(xk) = mk−1 · mk

α · mk + (1 − α) · mk−1
(29)

mk = �yk

�xk
(30)

α = �xk−1 + 2 · �xk

3 · (�xk−1 + �xk)
(31)

The Fritsch–Butland interpolation is a special type
of a cubic spline interpolation. The algorithm is
rather efficient and leads nevertheless to sufficiently
accurate results.

4.3.2 Generalized cubic spline interpolation

The generalized cubic spline interpolation, especially
the usage of a rational spline is discussed in this
section. The goal of rational spline interpolation is
to get an interpolation formula that is smooth in the
first derivative and continuous in the second deriva-
tive, both within an interval and at its boundaries.
A detailed analysis is given in references [19] and [20].

Given is a tabulated function of nodes (xk , yk) with
x1 < · · · < xn for k = 1, . . . , n, where xk represents the
data site and yk the data values at site xk · f k is a
smooth, piecewise C 2 continuous function and is
restricted on the subinterval [xk , xk+1]

fk(x) = Ak · u + Bk · t + Ck · u3

p · t + 1

+ Dk · t 3

p · u + 1
(32)

The variables t , u, �x, Ak , Bk , and Ck are given by

t = x − xk

�xk
(33)

u = 1 − t (34)

�xk = xk+1 − xk (35)

Ak = yk − Ck (36)

Bk = yk − Dk (37)

Ck =
(3 + p) · �yk − (2 + p) · �xk · �y ′

k−�xk · y ′
k+1

(2 + p)2 − 1
(38)

Dk =
−(3 + p) · �yk + �xk · �y ′

k+(2 + pk) · �xk · �y ′
k+1

(2 + p)2 − 1
(39)

The expressions of the coefficients Ak , Bk , Ck , and
Dk are given in terms of the parameter p as well
as the position data and its derivatives. The param-
eter p controls the smoothness of the interpolated
function fk and is defined in the range p ∈ (−1, ∞).
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The smoothness of the interpolated function can
be handled directly by adjusting the parameter p –
increasing p leads to increased smoothness. Because
of the fact that only positions are given, the derivative
values have to be determined by solving the following
system

1
�xk−1

· y ′
k−1 + (2 + p) ·

(
1

�xk−1
+ 1

�xk

)
· y ′

k

+ 1
�xk

· y ′
k+1 = (3 + p) ·

[
�yk+1

�x2
k−1

+ �yk

�x2
k

]
(40)

Thus, a tri-diagonal system of equations (interpola-
tion in circumferential direction) as well as a cyclical
tri-diagonal system of equations (interpolation in
radial or axial direction) that relate the unknown
derivatives to the position data needs to be solved by
using an LU decomposition [19].

Interpolation with rational cubic spline functions
leads to smooth and accurate interpolation results.

4.4 Integration of the pressure distribution

In order to apply the forces to the coupled FE-
nodes, the hydrodynamic pressure distributions have
to be integrated. Therefore a two-dimensional space
integration, which is based on the isoparametric
coordinate transformation, is used. Analogous to
the numerical interpolation and the solution of the
contact equation, the integration is done in the
cylindrical joint coordinate system. For the investiga-
tions detailed results are shown applying linear and
tetragonal FEM meshes of the contacting surfaces.

The integration is done in two steps. First, the pres-
sure distribution on the calculation grid (Fig. 1) has to
be integrated by multiplication of the discrete pres-
sure values with the corresponding surface areas.
Afterwards the calculated forces need to be trans-
formed from the calculation grid to the coupled FEM
grids of the two bodies. Therefore an isoparametric
transformation is used, as it is defined in refer-
ence [21] for linear and tetragonal FEM topologies.

x(ξ , η) =
4∑

k=1

xk · Nk(ξ , η)

y(ξ , η) =
4∑

k=1

yk · Nk(ξ , η)

(41)

where the corresponding linear shape functions are
given by

N1(ξ , η) = 1
4

· (1 + ξ) · (1 + η)

N2(ξ , η) = 1
4

· (1 − ξ) · (1 + η)

N3(ξ , η) = 1
4

· (1 − ξ) · (1 − η)

N4(ξ , η) = 1
4

· (1 + ξ) · (1 − η) (42)

In equation (41), the vector (xk , yk) contains the
coordinates of the FE-node with index k. After inte-
gration of the pressure to forces, the forces have to
be divided on the four FE-nodes of the corresponding
FE-element by using the shape functions N1, N2, N3,
and N4 from the isoparametric transformation (42).

5 SIMULATION MODEL

For the investigations of the surface contact
algorithm, referring to sections 2, 3, and 4, two
axial thrust bearings of a four cylinder combustion
engine with a constant engine running condition of
1800 r/min is utilized. The crankshaft and the power
unit are modelled on the basis of three-dimensional
solid FEM models (Fig. 4) and the connecting rods
(conrods), the pistons as well as the piston-pins are
given by beam mass models. The five main bear-
ings as well as the small end and big end bearings

Fig. 4 FEM-bodies of the power unit (cross-section)
and the crankshaft
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Fig. 5 FE-grid of the power unit and the hydrodynamic calculation grids: cross-sectional view of
the power unit and of the two investigated axial bearings (left), detailed view of axial bearing
2 (right)

of the four conrods are represented by non-linear
spring-damper functions.

The focus of the investigation is put on the sur-
face contacts of the axial thrust bearings between the
crankshaft and the engine block. Figure 5 shows the
surface contact areas of the two axial thrust bearings.
Although the body surfaces are given by rough FEM
meshes, the lubricated contact is determined on the
fine calculation grid.

Therefore, only linear and tetragonal FEM topolo-
gies of the contacting bodies are used. Each axial
slider bearing is coupled with two radial node sec-
tions at the power unit and with three radial node
sections at the crankshaft. Furthermore, each radial
section contains 48 nodes in circumferential direc-
tion. The corresponding calculation domain for the
surface contact evaluation is defined with 11 radial
sections and 120 circumferential nodes persection.

Figure 6 depicts the cylinder pressure curves that
are obtained by measurement data. The combustion

Fig. 6 Pressure curves of the four cylinder

Fig. 7 Axial force characteristic due to disengage of the
clutch

pressures (maximum: 8.6 MPa) have to be applied to
the small end bearings of the corresponding conrods.

In addition to the cylinder pressures, a mean out-
put torque of 231 000 N mm has to be applied to the
crankshaft, in order to ensure the balance of forces
and moments.

Furthermore, an axial force characteristic (Fig. 7),
which represents the axial force function concerning
disengaging of a clutch, is applied to the crankshaft.

For the investigations, a flexible multi-body
dynamics-simulation-program [22] is used. There-
fore, five cycles, equivalent to 0.3 s are calculated
using an adaptive control of the time step size.

6 RESULTS AND DISCUSSION

The calculated results are presented and discussed in
this section. Figure 8 shows the five engine cycles of
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Fig. 8 Crankshaft displacement in axial direction of the
five engine cycle

the global axial crankshaft displacement (x-direction)
for the simulation model introduced in section 5.

In order to guarantee that the simulation model
is steady state, the differences of the axial displace-
ment of the crankshaft between the fourth and the
fifth engine cycle is depicted in Fig. 9. Because of the
maximum amplitude of just 0.0064, the simulation
model is initialized to 96.4 per cent in the fifth cycle.
Thus, the next results will only be displayed for the
fifth cycle.

Fig. 9 Difference of the crankshaft displacements
between the fourth and the fifth cycle in axial
direction

Fig. 10 Differences of crankshaft displacements
according to the Fritsch–Butland interpolation
and the generalized cubic spline interpolation

For the investigations of the surface contact eval-
uation different numerical interpolation approaches
(referring to section 4.3) for the determination of
the clearance gap and its first derivative in time
are utilized. Figure 10 shows the differences of
the crankshaft displacements in axial direction of
the fifth engine cycle according to the used inter-
polation methods. It can be seen that the differ-
ences of the crankshaft displacements between the
Fritsch–Butland-interpolation and the generalized
cubic spline approach are negligible small, but a
comparison of CPU times for the different interpo-
lation approaches reflects a significant difference. By
the usage of the more costly approach (generalized
cubic spline) the convergence of the entire simulation
process is getting better and consequently the CPU
time decreases. It can be recognized that for the
generalized cubic spline interpolation, the simulation
process requires 8 per cent less CPU time than for the
Fritsch–Butland approach (Table 1).

The same tendency can be observed for running
conditions of 1600 and 2000 r/min as in the previous
table depicted. This behaviour is caused by the high
sensitivity of the elastohydrodynamic contact evalu-
ation in terms of the clearance gap and the first time
derivative. A more accurate and smooth interpolated
gap between the contacting surfaces leads to a better
convergence of the surface contact evaluation.

The resultant forces that are obtained by the axial
contact evaluations are depicted in Fig. 11 for the fifth
engine cycle. The resultant contact force in the axial
thrust bearing 1 can be seen to be negligible because
of the defined axial force characteristic (Fig. 7).

Table 1 Comparison of the CPU times taken by
using different interpolation approaches

CPU time for Running
CPU time for generalized condition
Fritsch–Butland (s) cubic spline (s) (r/min)

96 093.75 91 268.10 1600
70 717.28 65 446.29 1800
89 934.45 84 245.53 2000

Fig. 11 Resultant forces of the axial thrust bearings that
act on the crankshaft
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Fig. 12 Crankshaft angular position 1 (CAP1) and
crankshaft angular position 2 (CAP2)

Fig. 13 Large-scaled crankshaft deformations at CAP1
and CAP2

For the results of the axial thrust bearings, two
crankshaft angular positions of the fifth engine cycle
are selected, as shown in Fig. 12. The first crankshaft
position (CAP1) is selected at 557◦ crank angle (CRA)
(maximum combustion pressure of 8.6 MPa) and the
second at 660◦ CRA (0.7 MPa).

Figure 13 depicts large-scaled crankshaft defor-
mations at the corresponding crankshaft angular
positions CAP1 and CAP2. By comparing the two
deformed crankshafts, a significant difference of

Table 2 Comparison of the CPU times taken by
using different interpolation approaches
for a simulation without combustion
loads and output torque

CPU time for Running
CPU time for generalized condition
Fritsch–Butland (s) cubic spline (s) (r/min)

60 594.34 60 837.23 1600
57 678.28 57 704.29 1800

deformation shapes at the contact surfaces in the axial
thrust bearings can be observed.

The corresponding hydrodynamic pressure distri-
bution at the two different crankshaft deformations
CAP1 and CAP2 are displayed in Fig. 14. The figure
shows the hydrodynamic pressure shapes at the
flange of the power unit for the axial thrust bearing 2.
The left part of the figure depicts the pressure shape
at CAP1 and the right part displays the shape at CAP2.

At the flange surface a contour profile with six
symmetrical grooves is defined. They are equally dis-
tributed over the circumference. Thereby, each groove
is designed with 25◦ width angle and the pressure
distributions in the grooves are set zero as shown
clearly in Fig. 14. By comparing the hydrodynamic
pressure distributions for the two crankshaft posi-
tions (CAP1, CAP2), the different local maxima can
be observed with reference to the corresponding
crankshaft deformations (Fig. 13).

Further investigations have shown that the CPU
times (Table 2) taken by using different interpolation
approaches are almost equal. For these calculations,
the simulation model, which is described in section 5

Fig. 14 Pressure distribution enlarged in axial direction of the flange of the axial bearing 2 at CAP1 and CAP2
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is utilized, but without using the combustion loads
and the output torque. Because of this configuration,
the crankshaft deformation is almost equal allover
simulation time and looks similar to the left picture
of Fig. 13.

The investigation results represent, that the usage
of an accurate interpolation approach instead of an
efficient method leads to a better convergence of the
contact evaluation and consequently the CPU time for
the simulation process decreases, but this behaviour
can only be observed for simulations with significant
deformations of the surface contact areas.

7 CONCLUSION

A surface contact algorithm with different numerical
interpolation approaches for the clearance gap and
its time derivative was utilized to investigate the elas-
tohydrodynamic behaviour of axial thrust bearings.
Thereby, the modelling of the moving and flexible
bodies as well as the discretization of the contact
equation was represented. An efficient interpolation
method (Fritsch–Butland) as well as an accurate inter-
polation approach (generalized cubic spline) was
investigated. Detailed results for linear and tetrago-
nal FEM meshes for the contact surfaces were shown,
such as the hydrodynamic pressure distributions in
terms of different deformed crankshafts in axial thrust
bearings. The results outlined, that an accurate and
smooth interpolation approach leads to a better simu-
lation performance (CPU-time) for applications with
large deformations of the contact surfaces.
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APPENDIX

Notation

Ax skew symmetric matrix for any vec-
tor x ∈ R3 defined as

Ax =
⎛
⎝ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎠

c clearance
ci position vector (geometry) of node

i in the non-deformed body
d displacement
D damping matrix of a body
D̄ reduced damping matrix of a body
e eccentricity
f vector of forces and moments
f ext vector of external forces and

moments
f gyros vector of gyroscopic forces and

moments

f rbAcc vector of rigid body accelerations
f̄ reduced vector of forces and

moments
Gfa dynamic transformation matrix
h̄ average film thickness in physical

domain
hT local film thickness
Ii mass moment of inertia of node i
K stiffness matrix of a body
K̄ reduced stiffness matrix of a body
mi mass of the discrete body node i
M mass matrix of a body
M̄ reduced mass matrix of a body

p parameter for smoothness of the
rational spline function

q vector of displacements
q̇ vector of velocities
q̈ vector of accelerations
qa reduced vector of displacements
qt vector of physical degrees of

freedom
r radial coordinate
Rin flange/thrust external radius
Rout flange/thrust internal radius
t time
w speed in radial direction
ui local displacement vector of node i
u speed in φ-direction
xB global position vector of a body
y coordinate in film thickness direc-

tion
z vector of modal degrees of freedom

δ1, δ2 random roughness amplitudes
with Gaussian distribution

η dynamic viscosity
θ̄ fill ratio (0 < θ̄ < 1)

κ tilt angle
σc composite RMS roughness
σ1, σ2 standard deviation of clearance

gap at thrust and flange surfaces
φ circumferential coordinate
�x pressure flow factor in circumfer-

ential direction
�z̄ pressure flow factor in radial direc-

tion
�s shear flow factor
ωi vector of local angular velocities of

node i
� angular velocity vector of a body
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