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1 Introduction

We show that information bottleneck optimization (IB) [1] and extraction of independent
components (IC) [2] can be implemented by stochastic spiking neurons with refractoriness.
Both have attracted substantial interest as general principles for unsupervised learning in
biological systems, however, concrete learning rules that implement these principles for spiking
neurons have still been missing.

Learning situations:

• Information Bottleneck (IB) (Fig. A): We want to maximize the mutual information
between the output Y K

1 of a learning neuron and the activity of several target signals

Y K
2 , Y K

3 , . . . (which can be functions of the inputs plus some other external signals) while

at the same time keeping the mutual information between the inputs XK and the output
Y K

1 as low as possible.

• Independent Component (IC) Extraction (Fig. B): We want two neurons that re-
ceive the same inputs XK at their synapses to maximize their information transmission and
simultaneously, with the help of interneurons, keep their outputs Y K

1 and Y K
2 statistically

independent.

In both learning situations we additionally want to keep the output of the learning neurons
within a biologically realistic range by maintaining a constant output firing rate. We extend
the approach in [3] where it has been shown that maximizing information transmission for a
spiking neuron yields a generalized BCM rule [5].

2 Neuron Model

We use the model from [3], a stochastically spiking neuron with refractoriness, where the
membrane potential of neuron i at time tk = k∆t is given as the sum over all postsynaptic
potentials at synapses j = 1, . . . , N :

ui(t
k) = ur +

N
∑

j=1

k
∑

n=1

wijε(t
k − tn)xn

j , (1)

where ur = −70mV is the resting potential and wij is the weight of synapse j. xn
j ∈ {0, 1}

denotes the presence of a input spike at synapse j at time tn, which evokes a postsynaptic
potential (PSP) with time course ε(tk − tn).
At each time step the neuron fires with a certain probability that depends on the current
membrane potential and refractory state. This neuron model is a stochastic version of the
integrate-and-fire model [7]. The probability of firing for neuron i in the k-th time step is
given by

ρk
i = 1 − exp[−g(ui(t

k))Ri(t
k)∆t] ≈ g(ui(t

k))Ri(t
k)∆t, (2)

where g(u) is a smooth increasing function of the membrane potential u and R(t) ∈ [0; 1] is
the refractory variable.

3 Learning Rules

Consider spike trains XK , Y K
1 , and Y K

2 of length K∆t. The objective functions to be
maximized for the IB and IC case are given as

LIB = −I(XK;YK
1 ) + βI(YK

1 ;YK
2 ) − γDKL(P (Y K

1 )||P̃ (Y K
1 )), (3)

and

LIC
i = I(XK;YK

i ) − βI(YK
1 ;YK

2 ) − γDKL(P (Y K
i )||P̃ (Y K

i )), (4)

where

I(XK ;YK
i ) mutual information between input spike trains XK and output

spike train Y K
i of neuron i

I(YK
1 ;YK

2 ) mutual information between spike trains Y K
1 and Y K

2
DKL(P (Y K

i )||P̃ (Y K
i )) Kullback-Leibler divergence between current output distribution

P (Y K
i ) and desired target output distribution P̃ (Y K

i ) (constant
target firing rate of 30Hz)

β, γ optimization constants

We have derived learning rules which perform gradient ascent on the objective functions LIB

(3) and LIC
i (4). The resulting update rules are an extension to the generalized Bienenstock-

Cooper-Munro (BCM) rule for spiking neurons [3].

3.1 Spike-based learning rules

Performing gradient ascent on LIB (3) and LIC
i (4) yields online learning rules for the weights

of neuron i, wij. The weight change ∆wk
ij at time tk = k∆t is given by

∆wk
1j

∆t
= −αCk

1j

[

Bk
1 (−γ) − β∆tBk

12

]

for the IB case, and (5)

∆wk
ij

∆t
= αCk

ij

[

Bk
i (γ) − β∆tBk

12

]

for the IC case, (6)

with a learning rate α > 0 and optimization parameters β and γ.

The correlation term Ck
ij measures coincidences between postsynaptic spikes at neuron i

and PSPs generated by presynaptic action potentials arriving at synapse j:

Ck
ij = Ck−1

ij

(

1 −
∆t

τC

)

+

k
∑

n=1

ε(tk − tn)xn
j
g′(ui(t

k))

g(ui(tk))

[

yk
i − ρk

i

]

(7)

τC time constant of exponential correlation window (1s)

yk
i binary variable indicating an output spike of neuron i in the k-th time step

g′(u) derivative of g(u) with respect to u

The term Bk
i is responsible for optimizing the mutual information between input and

output and maintaining the constant target firing rate for neuron i. It compares the current
firing rate g(ui(t

k)) with its running average ḡi(t
k), and simultaneously the running average

ḡi(t
k) with the constant target rate g̃:

Bk
i (γ) =

yk
i

∆t
log

[

g(ui(t
k))

ḡi(tk)

(

g̃

ḡi(tk)

)γ
]

− (1 − yk
i )Ri(t

k)
[

g(ui(t
k)) − (1 + γ)ḡi(t

k) + γg̃
]

(8)

The term Bk
12 measures the mutual information between spike trains Y K

1 and Y K
2 .

It basically compares the average product of firing rates ḡ12(t
k) with the product of average

firing rates ḡ1(t
k)ḡ2(t

k):

Bk
12 =

yk
1yk

2

(∆t)2
log

ḡ12(t
k)

ḡ1(tk)ḡ2(tk)
−

yk
1

∆t
(1 − yk

2 )R2(t
k)

[

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k)

]

−
yk
2

∆t
(1 − yk

1 )R1(t
k)

[

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k)

]

+ (1 − yk
1 )(1 − yk

2 )R1(t
k)R2(t

k)
[

ḡ12(t
k) − ḡ1(t

k)ḡ2(t
k)
]

(9)

3.2 Rate-based learning rule for Informa-
tion Bottleneck

For a simplified neuron model without refractoriness the spike-based rule for the IB case (5)
reduces to the following rate-based rule:

∆wk
1j

∆t
= −αν

pre,k
j f (νk

1 )

{

log

[

νk
1

ν̄k
1

(

ν̄k
1

g̃

)γ]

−β∆t

(

νk
2 log

[

ν̄k
12

ν̄k
1 ν̄k

2

]

− ν̄k
2

[

ν̄k
12

ν̄k
1 ν̄k

2

− 1

])}

(10)

ν
pre,k
j presynaptic firing rate at synapse j at time tk

f (νk
1 ) sensitivity of neuron 1 at its current firing state νk

1
νk
1 output firing rate of neuron 1 at time tk

νk
2 firing rate of the target signal at time tk

ν̄k
1 , ν̄k

2 running averages of νk
1 and νk

2
ν̄k
12 running average of the product νk

1 νk
2

4 Relation to the BCM rule

We can rewrite the rate-based learning rule (10) as

∆wk
1j

∆t
= −αν

pre,k
j Φ(νk

1 , νk
2 ) (11)

and view it as an extension of the classical Bienenstock-Cooper-Munro (BCM) rule [5] with
a two-dimensional synaptic modification function Φ(νk

1 , νk
2 ). Values of Φ > 1 produce LTD

whereas values of Φ < 1 produce LTP. These regimes are separated by a sliding threshold
that does not only depend on the running average of the postsynaptic rate ν̄k

1 , but also on

the current values of νk
2 and ν̄k

2 .
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Extension of the classical BCM rule to 2 dimensions:
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This figure shows the function Φ(νk
1 , νk

2 ) for different values of φ = ν̄k
12/(ν̄k

1 ν̄k
2 ) and for the

special case ν̄k
1 = ν̄k

2 = g̃ = 20Hz. For φ = 1 (top right) it reduces to a one-dimensional
function, as in the classical BCM-rule. In each plot the black solid line indicates the transition
from depression to potentiation (Φ = 0).

5 Results (Information Bottleneck)

We maximize the information between the output Y K
1 of a learning neuron and two target

signals, Y K
2 and Y K

3 , and get the learning rule

∆wk
1j

∆t
= −αCk

1j

[

Bk
1 (−γ) − β

(

Bk
12 + Bk

13

)]

, (12)

where Bk
12 and Bk

13 are terms characterizing the statistical dependence between the output

Y K
1 and target signals Y K

2 and Y K
3 , respectively (cf. equ. (9)).

• We use two different kinds of target signals: one which has a similar rate modulation to
one part of the input, and one which has spike-spike correlations with another part of the
input.

• 100 synapses are divided into 4 groups: The first two groups receive rate modulated Poisson
spike trains, the other two groups receive correlated spike trains at a constant rate (20Hz,
cc = 0.5). Spike trains from different groups are uncorrelated.

• The first target signal, Y K
2 , has a similar rate modulation as input group 1, and the second

target spike train, Y K
3 , is correlated with inputs from group 3. Both target signals are

silent during random intervals.
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Strong weights are developed for those parts of the input which are correlated to one of the
target signals (groups 1 and 3). The output rate approximates the rate of the target signal.
The mutual information between output and target signal increases, whereas the information
between input and output is kept as low as possible.
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With the rate-based learning rule (10) strong weights grow only for input group 1. It is not
able to detect spike-spike correlations between outputs and the target signals.

6 Results (Independent Compo-
nents)

We use a biologically more realistic setup where the the nonlocal term Bk
12 (9) is implemented

by interneurons IN1 to IN4 that modulate the gain function g(ui(t)). The gain g(u1(t
k)) of

neuron 1 is modified by IN2 and IN4 according to

ĝ1(t
k) =







g(u1(t
k)) exp

[

R2(t
k)β∆t

(

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k)
)]

if neuron 1 has spiked (IN4),

g(u1(t
k)) − β̃

[

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k)
]

if neuron 2 has spiked (IN2),

(13)
where the parameter β̃ is scaled such that g1(t

k) does not become negative. In the absence
of spikes ĝ1(t

k) decays back exponentially to the original g(u1(t
k)). The gain g(u2(t

k)) of
neuron 2 is changed in a symmetric way (by interneurons IN1 and IN3).

• Two neurons receive the same input at 100 synapses, con-
sisting of constant rate Poisson spike trains (20Hz).

• The input is divided into two groups of 40 correlated spike
trains each (cc = 0.5); spike trains from different input
groups are uncorrelated.

• The remaining 20 synapses receive uncorrelated Poisson
input.
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Each neuron develops strong weights for a different correlated group. The information trans-
mission of both neurons is maximized, whereas the mutual information between the outputs
decreases.

7 Discussion

Information Bottleneck (IB) and Independent Component Analysis (ICA) have been proposed
as principles for unsupervised learning in lower cortical areas, however, learning rules that can
implement these principles with spiking neurons have still been missing. In this work we have
derived learning rules for such tasks for a stochastically spiking neuron with refractoriness
from information theoretic principles. Furthermore, we have demonstrated that the extrac-
tion of independent components can be implemented in a biologically realistic manner, using
inhibitory interneurons for gain control.
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