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Abstract. Biomedical research is drowning in data, yet starving for knowledge. 
Current challenges in biomedical research and clinical practice include 
information overload – the need to combine vast amounts of structured, semi-
structured, weakly structured data and vast amounts of unstructured information 
– and the need to optimize workflows, processes and guidelines, to increase 
capacity while reducing costs and improving efficiencies. In this paper we 
provide a very short overview on interactive and integrative solutions for 
knowledge discovery and data mining. In particular, we emphasize the benefits 
of including the end user into the “interactive” knowledge discovery process. 
We describe some of the most important challenges, including the need to 
develop and apply novel methods, algorithms and tools for the integration, 
fusion, pre-processing, mapping, analysis and interpretation of complex 
biomedical data with the aim to identify testable hypotheses, and build realistic 
models. The HCI-KDD approach, which is a synergistic combination of 
methodologies and approaches of two areas, Human–Computer Interaction 
(HCI) and Knowledge Discovery & Data Mining (KDD), offer ideal conditions 
towards solving these challenges: with the goal of supporting human 
intelligence with machine intelligence. There is an urgent need for integrative 
and interactive machine learning solutions, because no medical doctor or 
biomedical researcher can keep pace today with the increasingly large and 
complex data sets – often called “Big Data”.  
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Biomedical Informatics, Integration, Interaction, HCI-KDD, Big Data. 
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1 Introduction and Motivation 

Cinical practice, healthcare and biomedical research of today is drowning in data, yet 
starving for knowledge as Herbert A. Simon (1916–2001) pointed it out 40 years ago: 
“A wealth of information creates a poverty of attention and a need to allocate that 
attention efficiently among the overabundance of information sources that might 
consume it [1].”  

 
The central problem is that biomedical data models are characterized by significant 

complexity [2-5] making manual analysis by the end users difficult, yet often 
impossible. Hence, current challenges in clinical practice and biomedical research 
include information overload – an often debated phenomenon in medicine for a long 
time [6-10]. 

There is the pressing need to combine vast amounts of diverse data, including 
structured, semi-structured and weakly structured data and unstructured information 
[11]. Interestingly, many powerful computational tools advancing in recent years have 
been developed by separate communities following different philosophies: Data 
mining and machine learning researchers tend to believe in the power of their 
statistical methods to identify relevant patterns – mostly automatic, without human 
intervention. There is, however, the danger of modelling artefacts when end user 
comprehension and control are diminished [12-15]. Additionally, mobile, ubiquitous 
computing and automatic medical sensors everywhere, together with low cost storage, 
will even accelerate this avalanche of data [16]. 

Another aspect is that, faced with unsustainable health care costs worldwide and 
enormous amounts of under-utilized data, medicine and health care needs more 
efficient practices; experts consider health information technology as key to 
increasing efficiency and quality of health care, whilst decreasing the costs [17]. 

Moreover, we need more research on methods, algorithms and tools to harness the 
full benefits towards the concept of personalized medicine [18]. Yet, we also need to 
substantially expand automated data capture to further precision medicine [19] and 
truly enable evidence-based medicine [20]. 

To capture data and task diversity, we continue to expand and improve individual 
knowledge discovery and data mining approaches and frameworks that let the end 
users gain insight into the nature of massive data sets [21-23].  

The trend is to move individual systems to integrated, ensemble and interactive 
systems (see Figure 1).  

Each type of data requires different, optimized approach; yet, we cannot interpret 
data fully without linking to other types. Ensemble systems and integrative KDD are 
part of the answer. Graph-based methods enable linking typed and annotated data 
further. Rich ontologies [24-26] and aspects from the Semantic Web [27-29] provide 
additional abilities to further characterize and annotate the discoveries.  
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2 Glossary and Key Terms 

Biomedical Informatics: similar to medical informatics (see below) but including the 
optimal use of biomedical data, e.g. from the “–omics world” [30]; 

 
Data Mining: methods, algorithms and tools to extract patterns from data by 

combining methods from computational statistics [31] and machine learning: “Data 
mining is about solving problems by analyzing data present in databases [32]”; 

 
Deep Learning: is a machine learning method which models high-level 

abstractions in data by use of architectures composed of multiple non-linear 
transformations [33]. 

 
Ensemble Machine Learning: uses multiple learning algorithms to obtain better 

predictive performance as could be obtained from any standard learning algorithms 
[34]; A tutorial on ensemble-based classifiers can be found in [35]. 

 
Human–Computer Interaction: involves the study, design and development of the 

interaction between end users and computers (data); the classic definition goes back 
to Card, Moran & Newell [36], [37]. Interactive user-interfaces shall, for example, 
empower the user to carry out visual data mining;  

 
Interactome: is the whole set of molecular interactions in a cell, i.e. genetic 

interactions, described as biological networks and displayed as graphs. The term goes 
back to the work of [38]. 

 
Information Overload: is an often debated, not clearly defined term from decision 

making research, when having to many alternatives to make a satisfying decision 
[39]; based on, e.g. the theory of cognitive load during problem solving [40-42]. 

 
Knowledge Discovery (KDD): Exploratory analysis and modeling of data and the 

organized process of identifying valid, novel, useful and understandable patterns from 
these data sets [21].  

 
Machine Learning: the classic definition is “A computer program is said to learn 

from experience E with respect to some class of tasks T and performance measure P, 
if its performance at tasks in T, as measured by P, improves with experience E” [43]. 

 
Medical Informatics: in the classical definition:  “… scientific field that deals with 

the storage, retrieval, and optimal use of medical information, data, and knowledge 
for problem solving and decision making“ [44]; 

 
Usability Engineering: includes methods that shall ensure that integrated and 

interactive solutions are useable and useful for the end users [45]. 
 
Visual Data Mining: An interactive combination of visualization and analysis with 

the goal to implement workflow that enables integration of user’s expertise [46]. 
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3 State-of-the-Art of Interactive and Integrative Solutions 

Gotz et al. (2014) [47] present in a very recent work an interesting methodology for 
interactive mining and visual analysis of clinical event patterns using electronic health 
record data. They start with the evidence that the medical conditions of patients often 
evolve in complex and unpredictable ways and that variations between patients in 
both their progression and eventual outcome can be dramatic. Consequently, they 
state that understanding the patterns of events observed within a population that most 
correlate with differences in outcome is an important task. Their approach for 
interactive pattern mining supports ad hoc visual exploration of patterns mined 
from retrospective clinical patient data and combines three issues: visual query 
capabilities to interactively specify episode definitions; pattern mining techniques to 
help discover important intermediate events within an episode; and interactive 
visualization techniques that help uncover event patterns that most impact outcome 
and how those associations change over time.  

 
Pastrello et al. (2014) [48] emphasize that first and foremost it is important to 

integrate the large volumes of heterogeneous and distributed data sets and that 
interactive data visualization is essential to obtain meaningful hypotheses from the 
diversity of various data (see Figure 1). They see network analysis (see e.g. [49]) as 
a key technique to integrate, visualize and extrapolate relevant information from 
diverse data sets and emphasize the huge challenge in integrating different types of 
data and then focus on systematically exploring network properties to gain insight 
into network functions. They also accentuate the role of the interactome in connecting 
data derived from different experiments, and they emphasize the importance of 
network analysis for the recognition of interaction context-specific features.  

 
A previous work of Pastrello et al. (2013) [50] states that, whilst high-throughput 

technologies produce massive amounts of data, individual methods yield data, 
specific to the technique and the specific biological setup used. They also emphasize 
that at first the integration of diverse data sets is necessary for the qualitative 
analysis of information relevant to build hypotheses or to discover knowledge. 
Moreover, Pastrello et al. are of the opinion that it is useful to integrate these data sets 
by use of pathways and protein interaction networks; the resulting network needs to 
be able to focus on either a large-scale view or on more detailed small-scale views, 
depending on the research question and experimental goals. In their paper, the authors 
illustrate a workflow, which is useful to integrate, analyze, and visualize data from 
different sources, and they highlight important features of tools to support such 
analyses. 
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Koelling et al. (2012) [52] present a web-based tool for visual data mining 
colocation patterns in multivariate bioimages, the so-called Web-based Hyperbolic 
Image Data Explorer (WHIDE). The authors emphasize that bioimaging techniques 
rapidly develop toward higher resolution and higher dimension; the increase in 
dimension is achieved by different techniques, which record for each pixel an n-
dimensional intensity array, representing local abundances of molecules, residues or 
interaction patterns. The analysis of such Multivariate Bio-Images (MBIs) calls for 
new approaches to support end users in the analysis of both feature domains: space 
(i.e. sample morphology) and molecular colocation or interaction. The approach 
combines principles from computational learning, dimension reduction and 
visualization within, freely available via: http://ani.cebitec.uni-bielefeld.de/BioIMAX 
(login: whidetestuser; Password: whidetest). 

 
An earlier work by Wegman (2003) [53], emphasizes that data mining strategies 

are usually applied to “opportunistically” collected data sets, which are frequently in 
the focus of the discovery of structures such as clusters, trends, periodicities, 
associations, correlations, etc., for which a visual data analysis is very appropriate and 
quite likely to yield insight. On the other hand, Wegman argues that data mining 
strategies are often applied to large data sets where standard visualization techniques 
may not be appropriate, due to the limits of screen resolution, limits of human 
perception and limits of available computational resources. Wegman thus envisioned 
Visual Data Mining (VDM) as a possible successful approach for attacking high-
dimensional and large data sets. 

4 Towards Finding Solutions: The HCI-KDD Approach 

The idea of the HCI-KDD approach is in combining the “best of two worlds”: 
Human–Computer Interaction (HCI), with emphasis on perception, cognition, 
interaction, reasoning, decision making, human learning and human intelligence, and 
Knowledge Discovery & Data Mining (KDD), dealing with data-preprocessing, 
computational statistics, machine learning and artificial intelligence [54].  

In Figure 2 it can be seen how the concerted HCI-KDD approach may provide 
contributions to research and development for finding solutions to some challenges 
mentioned before. However, before looking at further details, one question may arise: 
What is the difference between Knowledge Discovery and Data Mining? The 
paradigm “Data Mining (DM)” has an established tradition, dating back to the early 
days of databases, and with varied naming conventions, e.g., “data grubbing”, “data 
fishing” [55]; the term “Information Retrieval (IR)” was coined even earlier in 1950 
[56, 57], whereas the term “Knowledge Discovery (KD)” is relatively young, having 
its roots in the classical work of Piatetsky-Shapiro (1991) [58], and gaining much 
popularity with the paper by Fayyad et al. (1996) [59]. Considering these definitions, 
we need to explain the difference between Knowledge Discovery and Data Mining 
itself: Some researchers argue that there is no difference, and to emphasize this it is 
often called “Knowledge Discovery and Data Mining (KDD)”, whereas the original 
definition by Fayyad was “Knowledge Discovery from Data (KDD)”, which makes 
also sense but separates it from Data Mining (DM). Although it makes sense to 
differentiate between these two terms, we prefer the first notion: “Knowledge 
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Discovery and Data Mining (KDD)” to emphasize that both are of equal importance 
and necessary in combination. This orchestrated interplay is graphically illustrated in 
Figure 2: Whilst KDD encompasses the whole process workflow ranging from the 
very physical data representation (left) to the human aspects of information 
processing (right), data mining goes in depth and includes the algorithms for 
particularly finding patterns in the data. Interaction is prominently represented by HCI 
in the left side. 

Within this “big picture” seven research areas can be identified, numbered from 
area 1 to area 7:  

 

 

Fig. 2. The big picture of the HCI-KDD approach: KDD encompasses the whole horizontal 
process chain from data to information and knowledge; actually from physical aspects of raw 
data, to human aspects including attention, memory, vision, interaction etc. as core topics in 
HCI, whilst DM as a vertical subject focuses on the development of methods, algorithms and 
tools for data mining (Image taken from the hci4all.at website, as of March, 2014). 

4.1 Area 1: Data Integration, Data Pre-processing and Data Mapping 

In this volume three papers (#4, #8 and #15) are addressing research area 1:  
 
In paper #4 “On the Generation of Point Cloud Data Sets: Step one in the 

Knowledge Discovery Process” Holzinger et al. [60] provide some answers to the 
question “How do you get a graph out of your data?” or more specific “How to get 
point cloud data sets from natural images?”. The authors present some solutions, 
open problems and a future outlook when mapping continuous data, such as natural 
images, into discrete point cloud data sets (PCD). Their work is based on the 
assumption that geometry, topology and graph theory have much potential for the 
analysis of arbitrarily high-dimensional data. 
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In paper #8 “A Policy-based Cleansing and Integration Framework for Labour and 
Healthcare Data” Boselli et al. [61] report on a holistic data integration strategy 
for large amounts of health data. The authors describe how a model based cleansing 
framework is extended to address such integration activities. Their combined 
approach facilitates the rapid prototyping, development, and evaluation of data 
preprocessing activities. They found, that a combined use of formal methods and 
visualization techniques strongly empower the data analyst, which can effectively 
evaluate how cleansing and integration activities can affect the data analysis. The 
authors show also an example focusing on labour and healthcare data integration. 

 
In paper #15 “Intelligent integrative knowledge bases: bridging genomics, 

integrative biology and translational medicine”, Nguyen et al. [62] present a 
perspective for data management, statistical analysis and knowledge discovery related 
to human disease, which they call an intelligent integrative knowledge base (I2KB). 
By building a bridge between patient associations, clinicians, experimentalists and 
modelers, I2KB will facilitate the emergence and propagation of systems medicine 
studies, which are a prerequisite for large-scaled clinical trial studies, efficient 
diagnosis, disease screening, drug target evaluation and development of new 
therapeutic strategies.  

 
In paper #18 “Biobanks – A Source of large Biological Data Sets: Open Problems 

and Future Challenges”, Huppertz & Holzinger [63] are discussing Biobanks in light 
of a source of large biological data sets and present some open problems and future 
challenges, amongst them data integration and data fusion of the heterogeneous 
data sets from various data banks. In particular the fusion of two large areas, i.e. the 
business enterprise hospital information systems with the biobank data is essential, 
the grand challenge remains in the extreme heterogeneity of data, the large amounts 
of weakly structured data, in data complexity, and the massive amount of unstructured 
information and the associated lack of data quality. 

4.2 Area 2: Data Mining Algorithms 

Most of the papers in this volume are dealing with data mining algorithms, in 
particular: 

 
In paper #3 “Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 

for Knowledge Discovery and Data Mining” Katharina Holzinger et al. [64] are 
discussing the differences between evolutionary algorithms, beginning with some 
background on the theory of evolution by contrasting the original ideas of Charles 
Darwin and Jean-Baptiste de Lamarck; the authors provide a discussion on the 
analogy between biological and computational sciences, and briefly describe some 
fundamentals of various algorithms, including Genetic Algorithms, but also new and 
promising ones, including Invasive Weed Optimization, Memetic Search, Differential 
Evolution Search, Artificial Immune Systems, and Intelligent Water Drops. 
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In paper #5 “Adapted Features and Instance Selection for Improving Co-
Training”, Katz et al. [65] report on the importance of high quality, labeled data as it 
is essential for successfully applying machine learning to real-world problems. 
Because often the amount of labeled data is insufficient and labeling that data is time 
consuming, Katz et al. propose co-training algorithms, which use unlabeled data in 
order to improve classification. The authors propose simple and effective strategies 
for improving the basic co-training framework, i.e.: the manner in which the features 
set is partitioned and the method of selecting additional instances. Moreover, they 
present a study over 25 datasets, and prove that their proposed strategies are 
especially effective for imbalanced datasets.  

 
In paper #6 “Knowledge Discovery & Visualization of Clusters for Erythromycin 

Related Adverse Events in the FDA Drug Adverse Event Reporting System”, Yildirim 
et al. [66] present a study to discover hidden knowledge in the reports of the public 
release of the Food and Drug Administration (FDA)’s Adverse Event Reporting 
System (FAERS) for the antibiotic Erythromycin. This is highly relevant, due to the 
fact that bacterial infections can cause significant morbidity, mortality and high costs 
of treatment and are known as a significant health problem in the world. The authors 
used cluster analysis and the DBSCAN algorithm. Medical researchers and 
pharmaceutical companies may utilize these results and test these relationships along 
with their clinical studies. 

 
In paper #10 “Resources for Studying Statistical Analysis of Biomedical Data and 

R”, Kobayashi [67] introduces some online resources to help medical practitioners 
with little or no background in predictive statistics, to learn basic statistical concepts 
and to implement data analysis methods on their personal computers by using R, a 
high-level open source computer language that requires relatively little training. This 
offers medical practitioners an opportunity to identify effectiveness of treatments for 
patients using summary statistics, so to offer patients more personalized medical 
treatments based on predictive analytics. Some open problems emphasized by 
Kobayashi include Privacy Preserving Data Mining (PPDM) algorithms and High 
Speed Medical Data Analysis. 

 
In paper #11 “A Kernel-based Framework for Medical Big-Data Analytics”, 

Windridge & Bober [68] point out that issues of incompleteness and heterogeneity are 
problematic and that data in the biomedical domain can be as diverse as handwritten 
notes, blood pressure readings, and MR scans, etc., and typically very little of this 
data will be co-present for each patient at any given time interval. Windridge & Bober 
therefore advocate a kernel-based framework as being most appropriate for 
handling these issues, using the neutral point substitution method to accommodate 
missing inter-modal data, and advocates for the pre-processing of image based MR 
data a deep learning solution for contextual areal segmentation, with edit-distance 
based kernel measurement, used to characterize relevant morphology. Moreover, the 
authors promote the use of Boltzmann machines.  
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In paper #16 “Biomedical Text Mining: Open Problems and Future Challenges” 
Holzinger et al. [69] provide a short, concise overview of some selected text mining 
methods, focusing on statistical methods (Latent Semantic Analysis, Probabilistic 
Latent Semantic Analysis, Latent Dirichlet Allocation, Hierarchical Latent Dirichlet 
Allocation, Hierarchical Latent Dirichlet Allocation, Principal Component Analysis), 
but also introduces relatively new and promising text mining methods including 
graph-based approaches and topological text mining. Although in our modern 
graphic-driven multimedia world, the importance of text is often debated, it should 
not be underestimated, as particularly in the medical domain “free text” is a very 
important type of data for medical communication; however, the increasing volumes 
of this unstructured information makes manual analysis nearly impossible, and calls 
for machine learning approaches for text mining. 

4.2.1 Area 3: Graph Based Data Mining 
In paper #14 “Multi-touch Graph-Based Interaction for Knowledge Discovery on 
Mobile Devices: State-of-the-Art and Future Challenges” Holzinger et al. [70] 
provide an overview on graph-based knowledge representation: Graphs are most 
powerful tools to map structures within a given data set and to recognize relationships 
between specific data objects. Many advantages of graph-based data structures can be 
found in the applicability of methods from network analysis, topology and data 
mining (e.g. small world phenomenon, cluster analysis). Moreover, Holzinger et al. 
present graph-based approaches for multi-touch interaction on mobile devices 
(tablets, smartphones), which is particularly important in the medical domain, as a 
conceptual graph analysis may provide novel insights on hidden patterns in data, 
hence support interactive knowledge discovery. Amongst the open problems the 
authors list the question “Which structural properties possess the multi-touch 
interaction graphs?”, which calls for investigating graph classes beyond small world 
and random networks. 

 
In paper #13 “Sparse Inverse Covariance Estimation for Graph Representation of 

Feature Structure”, Lee [71] states that higher dimensionality makes it challenging to 
understand complex systems. The author reports on structure learning with the 
Gaussian Markov random field, by identifying conditional independence structure of 
features in a form that is easy to visualize and understand. The learning is based on a 
convex optimization problem, called the sparse inverse covariance estimation, for 
which many efficient algorithms have been developed in the past. When dimensions 
are much larger than sample sizes, structure learning requires to consider statistical 
stability, in which connections to data mining arise in terms of discovering common 
or rare sub-graphs as patterns. Lee discusses the outcome of structure learning, which 
can be visualized as graphs provide a perceivable way to investigate complex feature 
spaces. He identifies two major open challenges for solving the sparse inverse 
covariance estimation problem in high-dimensions: development of efficient 
optimization algorithms and consideration of statistical stability of solutions. 
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4.2.2 Area 4: Entropy Based Data Mining 
In paper #12 “On Entropy-based Data Mining”, Holzinger et al. [72], start with some 
basics on information entropy as measure for the uncertainty of data. Then the 
authors provide a taxonomy of various entropy methods, whereby describing in more 
detail: Approximate Entropy, Sample Entropy, Fuzzy Entropy, and particularly 
Topological Entropy for finite sequences. Holzinger et al. state that entropy 
measures have successfully been tested for analysing short, sparse and noisy time 
series data, but that they have not yet been applied to weakly structured data in 
combination with techniques from computational topology, which is a hot and 
promising research route.  

4.2.3 Area 5: Topological Data Mining 
In paper #19 “Topological Data Mining in a Nutshell” [73] Holzinger presents a 
nutshell-like overview on some basics of topology and data and discusses some 
issues on why this is important for knowledge discovery and data mining: Humans are 
very good at pattern recognition in dimensions of lower or equal than 3, this suggests 
that computer science should develop methods for exploring this capacity, whereas 
computational geometry and topology have much potential for the analysis of 
arbitrarily high-dimensional data sets. Again, both together could be powerful beyond 
imagination. 

4.3 Area 6: Data Visualization 

In paper #2 “Visual Data Mining: Effective Exploration of the Biological Universe”, 
Otasek et al. [74] present their experiences with Visual Data Mining (VDM), 
supported by interactive and scalable network visualization and analysis, which 
enables effective exploration within multiple biological and biomedical fields. The 
authors discuss large networks, such as the protein interactome and transcriptional 
regulatory networks, which contain hundreds of thousands of objects and millions of 
relationships. The authors report on the involved workflows and their experiences 
with biological researchers on how they can discover knowledge and new theories 
from their complex data sets.  
 

In paper #7 “On Computationally-enhanced Visual Analysis of Heterogeneous 
Data and its Application in Biomedical Informatics”, Turkay et al. [75] present a 
concise overview on the state-of-the-art in interactive data visualization, relevant for 
knowledge discovery, and particularly focus on the issue of integrating computational 
tools into the workplace for the analysis of heterogeneous data. Turkay et al. 
emphasize that seamlessly integrated concepts are rare, although there are several 
solutions that involve a tight integration between computational methods and 
visualization. Amongst the open problems, the most pressing one is the application of 
sophisticated visualization techniques, seamlessly integrated into the (bio)-medical 
workplace, useable and useable to the medical professional. 
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In paper #9 “Interactive Data Exploration using Pattern Mining” van Leeuwen 
[76] reports on challenges in exploratory data mining to provide insight in data, i.e. to 
develop principled methods that allow both user-specific and task-specific 
information to be taken into account, by directly involving the user into the discovery 
process. The author states that pattern mining algorithms will need to be combined 
with techniques from visualization and human-computer interaction. As ultimate goal 
van Leeuwen states to make pattern mining practically more useful, by enabling the 
user to interactively explore the data and identify interesting structures.  

4.4 Area 7: Privacy, Data Protection, Safety and Security 

In the biomedical domain it is mandatory to consider aspects of privacy, data 
protection, safety and security, and a fair use of data sets, and one paper is particularly 
dealing with these topics: 

 
In paper #17 Kieseberg et al. [77] discuss concerns of the disclosure of research 

data, which raises considerable privacy concerns, as researchers have the 
responsibility to protect their (volunteer) subjects and must adhere to respective 
policies. The authors provide an overview on the most important and well-researched 
approaches to deal with such concerns and discuss open research problems to 
stimulate further investigation: One solution for this problem lies in the protection of 
sensitive information in medical data sets by applying appropriate anonymization 
techniques, due to the fact that the underlying data set should always be made 
available to ensure the quality of the research done and to prevent fraud or errors. 

5 Conclusion and Future Outlook 

Some of the most important challenges in clinical practice and biomedical research 
include the need to develop and apply novel tools for the effective integration, 
analysis and interpretation of complex biomedical data with the aim to identify 
testable hypothesis, and build realistic models. A big issue is the limited time to make 
a decision, e.g. a medical doctor has in average five minutes to make a decision [78], 
[79]. 

Data and requirements also evolve over time – we need approaches that seamlessly 
and robustly handle change.  

The algorithms must also handle incomplete, noisy, even contradictory/ambiguous 
information, and they have to support multiple viewpoints and contexts.  

Solutions need to be interactive, seamlessly integrating diverse data sources, and 
able to scale to ultra-high dimensions, support multimodal and rapidly evolving 
representations. 

Major future research areas in HCI-KDD in the biomedical field include graph-
based analysis and pattern discovery, streaming data mining, integrative and 
interactive visual data mining. Thus, solutions will need to use heuristics, 
probabilistic and data-driven methods, with rigorous train-test-validate steps. 
Especially the last point highlights the need for open data.  
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It is paramount importance that the data is broadly available in usable formats – 
without relevant reliable and clean data there is no data mining; without accessible 
data we cannot assure correctness; without data, we cannot train and validate machine 
learning systems. It is alarming to see an exponential trend in number of retracted 
papers per year, and especially since the majority of them are fraud – 21.3% being 
attributed to error and 67.4% to (suspected) fraud [80]: A detailed review of over 
2,000 biomedical research articles indexed by PubMed as retracted by May, 2012 
revealed that only 21.3% of retractions were attributable to error [80]. In contrast, 
67.4% of retractions were attributable to misconduct, including fraud or suspected 
fraud (43.4%), or duplicate publication (14.2%), and even plagiarism (9.8%) [80]. 
Incomplete, uninformative or misleading retraction announcements have led to a 
previous underestimation of the role of fraud in the ongoing retraction epidemic. 
Machine learning and data mining also plays a significant role in identifying outliers, 
errors, and thus could contribute to ‘cleaning up’ science from fraud and errors. 

 
Concluding, there are a lot of open problems and future challenges in dealing with 

massive amounts of heterogeneous, distributed, diverse, highly dynamic data sets, 
complex, high-dimensional and weakly structured data and increasingly large 
amounts of unstructured and non-standardized information. The limits of our human 
capacities makes it impossible to deal manually with such data, hence, efficient 
machine learning approaches becomes indispensable. 
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