
Hardware-Software-Codesign of
Side-Channel Evaluated Identity-based

Encryption

Thomas Unterluggauer
t.unterluggauer@student.tugraz.at

Institute for Applied Information
Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a

8010 Graz, Austria

Master Thesis

Supervisor: Dipl.-Ing. Erich Wenger
Assessor: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Karl-Christian Posch

October, 2013

I hereby certify that the work presented in this thesis is my own work
and that to the best of my knowledge it is original except where indicated
by reference to other authors.

Ich bestätige hiermit, diese Arbeit selbständig verfasst zu haben. Teile
der Diplomarbeit, die auf Arbeiten anderer Autoren beruhen, sind durch
Angabe der entsprechenden Referenz gekennzeichnet.

Thomas Unterluggauer

i

Acknowledgements

I would like to thank my supervisor Erich Wenger for his support and input to successfully
accomplish this thesis. Further, I would like to thank Michael Hutter and Thomas Korak
for their guidance with respect to performing a side-channel attack practically. Besides,
both my parents and friends were a huge support during the challenges involved with this
thesis.

iii

Abstract

Providing sufficient security to embedded applications has become increasingly important.
The schemes being used rely on the presence of a key for encryption. Contrary to this
approach, the promising concept of identity-based encryption (IBE) enables the encryp-
tion of data by just knowing the recipient’s identity, avoiding the key exchange problem.
The goal of this thesis is to provide embedded platforms with identity-based encryption.
Besides computational speed and low resource requirements, security against side-channel
attacks is considered important.

The presented platform is based on a clone of the ARM Cortex-M0+. It is capable of
performing the Boneh-Boyen IBE Key Encapsulation Mechanism for both the 80-bit and
128-bit security level. In this respect, encapsulation is shown to be more expensive than
decapsulation. Using a 10 MHz clock, encapsulation is done depending on the security
level in 3.7 and 12.1 seconds, while decapsulation performs in 2.4 sec and 6.6 seconds.
In an 130 nm UMC process, the respective platforms are as small as 46,000 and 53,800
gate equivalents. Compared to the platforms based on the MSP430 and the ATMega
processors, runtime is reduced massively and memory requirements drop by at least 50%.
Other dedicated hardware platforms may be faster, but are at the minimum three times
larger and have the disadvantage that they can invariably execute their intended function.
To speed up the presented platform, two variants of a multiply-accumulate instruction-set
extension are introduced. These decrease the runtime and the demand for energy by up to
60%. Another benefit of the platform is, that it is shown to be secure against various types
of side-channel attacks, including timing attacks. A differential power analysis attack is
performed on the underlying pairing computation and, based on the observations made,
an effective countermeasure is deduced.

Evaluation reveals the feasibility of identity-based encryption in embedded environments
and clearly suggests that the proposed platform—due to its low memory requirements, its
general-purpose design, its adaptability and its side-channel security—is able to fill the
momentary gap between existing microcontroller-based platforms and dedicated hardware
platforms.

Keywords: Identity-based encryption, Cortex-M0+, ARM, embedded system, optimal
Ate pairing, side-channel attack, differential power analysis, hardware-software codesign

v

Kurzfassung

Die Gewährleistung von einem genügendem Maß an Sicherheit in eingebetteten Syste-
men ist zusehends wichtig geworden. Die dafür verwendeten Mechanismen basieren auf
dem Vorhandensein eines Schlüssels für die Verschlüsselung. Im Gegensatz zu diesem
Ansatz, ermöglicht das vielversprechende Konzept der Identity-Based Encryption (IBE)
das Senden verschlüsselter Daten basierend auf der Identität des Empfängers. Dies ver-
meidet den Austausch des zu verwendenden Schlüssels. Das Ziel dieser Masterarbeit ist
die Ausstattung von eingebetteten Plattformen mit Identity-Based Encryption. Neben
der Ausführungsgeschwindigkeit und niedrigen Ressourcenanforderungen war die Seiten-
kanalsicherheit ein wichtiger Aspekt.

Die hier präsentierte Plattform basiert auf einem Nachbau des ARM Cortex-M0+. Sie
ermöglicht die Verwendung des Boneh-Boyen IBE Key Encapsulation Mechanism und bi-
etet dabei wahlweise 80 bit oder 128 bit Sicherheit. In diesem Zusammenhang zeigt sich,
dass Key Encapsulation rechenintensiver ist als Key Decapsulation. Unter Verwendung
eines 10 MHz Taktgebers benötigt die Encapsulation Routine abhängig vom Sicherheits-
level 3,7 und 12,1 Sekunden, während die Decapsulation Routine 2,4 und 6,6 Sekun-
den beansprucht. In einem 130 nm UMC Prozess benötigen die jeweiligen Plattformen
lediglich 46.000 bzw. 53.800 Gatter. Verglichen mit ähnlichen Plattformen basierend auf
den MSP430 und ATMega Prozessoren reduziert sich die Laufzeit wesentlich und die Spe-
icheranforderungen vermindern sich um mindestens 50%. Andere, dedizierte Hardware
Plattformen sind zwar schneller, aber auch mindestens drei mal so groß und besitzen
den Nachteil, ausnahmslos die ihr zugedachte Funktion erfüllen zu können. Um die hi-
er präsentierte Plattform zu beschleunigen, werden zwei unterschiedliche Varianten einer
Multiplizier-Akkumulier Instruktionssatzerweiterung eingeführt. Diese reduzieren sowohl
die Laufzeit als auch den Energiebedarf um bis zu 60%. Ein weiterer Vorteil der Plat-
tform ist, dass sie resistent gegenüber verschiedensten Varianten von Seitenkanalattacken,
darunter Timing Attacken, ist. Eine Differential Power Analysis Attacke wird an der
Berechnung der zugrundeliegenden bilinearen Abbildung durchgeführt und daraus eine
effektive Gegenmaßnahme abgeleitet.

Die Evaluierung attestiert die Machbarkeit von Identity-Based Encryption in eingebet-
teten Systemen und legt nahe, dass die vorgeschlagene Plattform aufgrund ihrer niedri-
gen Speicheranforderungen, ihrer vielfältigen Einsetzbarkeit, ihrer Adaptierbarkeit, und
ihrer Seitenkanalresistenz, in der Lage ist, die gegenwärtige Lücke zwischen existieren-
den Microcontroller-basierten Plattformen und den dedizierten Hardware Plattformen zu
schließen.

Stichwörter: Identity-based Encryption, Cortex-M0+, ARM, eingebettetes System, op-
timal Ate pairing, Seitenkanalattacke, Differential Power Analysis, Hardware-Software
Codesign

vii

Contents

1. Introduction 1

2. Identity-Based Encryption 3
2.1. Introduction . 3
2.2. Symmetric Cryptography . 3
2.3. Asymmetric Cryptography . 4
2.4. Concept of Identity-Based Encryption . 5
2.5. Drawbacks of Identity-Based Encryption . 8
2.6. Conclusion . 9

3. Mathematical Background 11
3.1. Groups, Rings and Fields . 11

3.1.1. Groups . 11
3.1.2. Rings and Fields . 13
3.1.3. Extension Fields . 15

3.2. Elliptic Curves over Finite Fields . 16
3.2.1. Group Laws . 17
3.2.2. Group Structure . 18

3.3. Bilinear Maps . 20
3.3.1. Diffie-Hellman Problem . 20
3.3.2. Bilinear Diffie-Hellman Problem . 21

3.4. Pairing Definition . 22
3.4.1. Divisors . 22
3.4.2. Group Definition . 23
3.4.3. Tate Pairing . 25
3.4.4. Miller Algorithm . 26
3.4.5. (Optimal) Ate Pairing . 26

3.5. Pairing-friendly curves . 27
3.5.1. Barreto-Naehrig Curves . 27

3.6. Conclusion . 28

4. Identity-Based Encryption Schemes 31
4.1. Security Defintion . 31

4.1.1. Chosen Plaintext Attack (CPA) Security 32
4.1.2. Chosen Ciphertext Attack (CCA) Security 33
4.1.3. Selective-Identity and Adaptive-Identity Models 33

4.2. (Historic) Overview . 34
4.3. Boneh-Boyen IBE-KEM . 35

4.3.1. Prerequisites . 36
4.3.2. Setup . 36
4.3.3. Derive . 36

ix

4.3.4. Encapsulate . 36

4.3.5. Decapsulate . 37

4.3.6. Security . 37

4.4. Kiltz IBE-KEM . 37

4.4.1. Prerequisites . 38

4.4.2. Setup . 38

4.4.3. Derive . 38

4.4.4. Encapsulate . 39

4.4.5. Decapsulate . 39

4.4.6. Security . 39

4.5. Comparison . 40

4.6. Conclusion . 42

5. Side-Channel Attacks 43
5.1. Overview . 43

5.2. Passive Attacks . 44

5.2.1. Timing Attacks . 44

5.2.2. Simple Power Analysis . 44

5.2.3. Template Attacks . 45

5.2.4. Differential Power Analysis . 46

5.2.5. Comparative Side-Channel Attacks 46

5.2.6. Refined Power Analysis . 46

5.2.7. Electromagnetic Attacks . 47

5.3. Active Attacks . 47

5.3.1. Safe-Error Analysis . 47

5.4. Conclusion . 47

6. Implementation in an Embedded Environment 49
6.1. Architecture . 49

6.1.1. Hardware . 50

6.1.2. Software . 51

6.2. Implementation Aspects . 52

6.2.1. Prime Field Arithmetic . 53

6.2.2. Extension Field Arithmetic . 54

6.2.3. Elliptic Curve Arithmetic . 59

6.2.4. Pairing Realization . 60

6.3. Testing . 62

6.4. Optimization . 63

6.4.1. Prime Field Arithmetic . 63

6.4.2. Extension Field Arithmetic . 66

6.4.3. Pairing Computation . 67

6.5. Instruction-Set Extension . 69

6.5.1. MAC-1 . 70

6.5.2. MAC-2 . 71

6.6. Conclusion . 73

7. Side-Channel Analysis 75
7.1. Encapsluate . 75

x

7.2. Decapsulate . 76
7.2.1. Differential Power Analysis Attack 77
7.2.2. Other Attacks . 84

7.3. Conclusion . 84

8. Evaluation 85
8.1. Finite Field Arithmetic . 85
8.2. Pairing . 88

8.2.1. Software . 88
8.2.2. Hardware . 89

8.3. Identity-Based Encryption Scheme . 93
8.3.1. Software . 93
8.3.2. Hardware . 95

8.4. Related Work . 96
8.5. Conclusion . 99

9. Conclusion 101

A. Point Multiplication Formulas 105

B. Pairing Evaluation Formulas 107

Bibliography 109

xi

1. Introduction

Year after year tiny microchips pervade our lives even more. Sometimes as little as a grain
of sand, they can be found in numerous embedded applications. These range from wireless
sensor networks, automotive parts, microcontroller-based automation, to the internet of
things. Yet, there are many more of these applications to come. However, acceptance of
embedded applications heavily depends on the possibility to preserve people’s privacy and
to ensure confidentiality of the processed data. Consequently, security in these applications
becomes a very important aspect, but security has its cost and it is a demanding task to
provide the desired level of security in these environments as lack of resources is a chronic
condition: if user interaction is involved, speed is an important criteria as people do not
accept long waiting times. On the other hand, a common requirement is to have a small
design in order to keep costs in mass production low. Further, the microchips involved
are typically powered by battery or passively through electromagnetic fields, leading to a
demand for designs that are energy-efficient in the first, and power-efficient in the latter
case.

Nowadays, there are two common approaches to keep transmitted data confidential:
symmetric cryptography and asymmetric cryptography. Symmetric cryptographic schemes
are fast and allow small designs. On the other hand, all parties involved in the commu-
nication need to share the same key that is used for encryption and decryption. This
leads to the problem of key distribution, which becomes increasingly hard if many small
and widespread devices are involved as it is the case for the aforementioned applications.
Asymmetric schemes do not have this problem: a publicly known key is used for encryp-
tion and decryption is then done using a private key that is linked in some way to the
public key. Contrary to symmetric schemes, asymmetric cryptography is slower and more
complex. In addition, we cannot be sure about the authenticity of the public key of the
communication partner. As a consequence, very complex constructs, namely public key
infrastructures, have been introduced. In these structures, trusted authorities certify the
authenticity of public keys in a recursive fashion.

Another concept that was proposed by Shamir [Sha84] is identity-based encryption.
This asymmetric scheme works without a public key. Instead, the publicly known identity
string of the communication partner is used, which solves the problem of authenticity of
the public key. The main drawbacks of these schemes are its performance and memory
requirements due to the complex elliptic curve and pairing computations involved. Nev-
ertheless, it avoids recursive validation of public keys and seems a promising concept for
embedded environments too.

Performance of elliptic curve operations and pairing computation is crucial for imple-
menting identity-based encryption. High-speed software implementations for computing
pairings have been presented by Beuchat et al. [Beu+10], Grewal et al. [Gre+13] and
Sánchez and Rodŕıguez-Henŕıquez [SR13], but are targeted at high-end application pro-
cessors. On the other hand, the results by Gouvêa, Oliveira, and López [GOL12a], Gouvêa
and López [GL09], and Szczechowiak et al. [Szc+08] constitute software implementations
of pairings for embedded environments, which either lack sufficient performance or have an

1

1. Introduction

tremendous demand for memory. Moreover, dedicated hardware platforms were created by
Kammler et al. [Kam+09] and Fan, Vercauteren, and Verbauwhede [FVV09], which have
sizes not necessarily suitable for use in embedded applications. Unfortunately, the various
implementation mentioned do not cover security against side-channel attacks, whose pos-
sibility was emphasized by Whelan and Scott [WS06]. A practical attack, among others,
was shown to be feasible by Ghosh and Roychowdhury [GR11].

In this thesis, a compact, but yet performant platform capable of performing identity-
based encryption is presented. The platform is based on a clone of the ARM Cortex-M0+
microprocessor, namely the Xetroc-M0+ by Unterluggauer [Unt13]. This microprocessor-
based platform can beneficially be used for any further applications that need to be sup-
ported as well. Both the pure software implementation and the overall hardware platform
are aimed to be competitive. In the process of hardware-software codesign, two variants
of an instruction-set extension to perform multiply-accumulate operations are created,
which aid to significantly improve the efficiency of the platform. To underline the signif-
icance of the attained results, a comprehensive evaluation with related implementations
on hardware and both high-end and low-end microprocessors is done.

Another advantage of the presented platform is, that security against various types of
side-channel attacks, for example timing attacks, is shown. In this context, a differential
power analysis attack on the Decapsulation routine of the key encapsulation mechanism
variant of the BB1 identity-based encryption scheme by Boyen [Boy06] is carried out. In
the scheme’s plain implementation, the underlying pairing computation leaks the identity’s
private key that allows decryption of any ciphertext that is intended for the respective
identity. Resulting from this observation, a simple countermeasure to prevent this type of
attack is presented.

The thesis is organized as follows. Chapter 2 explains the concept of identity-based
encryption. The mathematical background of this work is covered in Chapter 3. Based on
this, concrete identity-based encryption schemes are evaluated in Chapter 4. Once a suit-
able identity-based encryption scheme is chosen, Chapter 5 points out the threats resulting
from side-channel attacks and gives an overview on the most relevant ones. Consequently,
Chapter 6 details the proposed architecture along with important aspects of both im-
plementation and optimization. A side-channel analysis of the identity-based encryption
scheme as well as an side-channel attack is performed in Chapter 7. A comprehensive
evaluation is part of Chapter 8. Finally, this thesis is concluded in Chapter 9.

2

2. Identity-Based Encryption

2.1. Introduction

To this day, two basic approaches to preserve confidentiality of data have emerged: sym-
metric and asymmetric encryption schemes. These concepts are used widely, but also
suffer from fundamental problems. An alternative concept that is ought to solve the prob-
lems involved with conventional cryptography is the so-called Identity-Based Encryption
(IBE). In this chapter, conventional symmetric and asymmetric cryptography are reviewed
and their problems highlighted in Sections 2.2 and Section 2.3 respectively. Following this,
the concept of identity-based encryption is introduced in Section 2.4 and its advantages
and disadvantages are discussed in Section 2.5.

2.2. Symmetric Cryptography

Symmetric encryption schemes, such as block ciphers, use a common secret key that is
utilized for both encryption and decryption. Figure 2.1 illustrates the concept: both
parties, Alice and Bob, have the same key K that is used to perform en- and decryption.
Bob encrypts his message M intended for Alice by using the common key K and sends
the resulting ciphertext C to Alice. She unveils the original message M by invoking the
Decrypt method using both the received ciphertext C and the common secret K.

This is a very simple and efficient concept. Typically, block ciphers such as AES, DES
and 3DES, but also stream ciphers such as Trivium are used. These ciphers are generally
fast and compact. However, the problem that lies within this concept is the establishment
of a common secret between the communication partners. For this purpose, key agreement
mechanisms can be used: each of the involved parties influence the shared secret that is
established during the agreement process. Although this is done via an insecure channel,
no third party is able to obtain the resulting key. A concrete instance of this concept is
the Diffie-Hellman key exchange. [DH76] A significant problem remains though: origin
authenticity must be ensured by using an authentic channel in order to avoid man-in-the-
middle attacks.

Alice

 Bob

K

C = Encrypt(K, M)
Encrypt(K, data)

M = Decrypt(K, C)

C =Encrypt(K, M)

K

M = Decrypt(K, C)

C= Encrypt(K, M)

Figure 2.1.: Basic concept of symmetric cryptography: Alice and Bob share a common
secret.

3

2. Identity-Based Encryption

Alice

 Bob

C = Encrypt(Kpublic,Alice, M)Encrypt(K, data)

M = Decrypt(Kprivate, C)

C = Encrypt(Kpublic, M)

Kprivate,Alice Kpublic,Alice Kpublic,Bob Kprivate,Bob

M = Decrypt(Kprivate, C)

C = Encrypt(Kpublic, M)

Figure 2.2.: Basic concept of asymmetric cryptography: Alice and Bob each have a key
pair of their own. Bob uses Alice’s public key for encryption, who in turn can
decrypt using her private key.

An alternative approach to establishing a common secret is key distribution: one of the
parties generates a secret and securely distributes it to its desired communication partners.
Therefore, a secure channel is needed, which can be established by using asymmetric
cryptography.

2.3. Asymmetric Cryptography

In asymmetric cryptography, shown in Figure 2.2, each party has a key pair consisting
of a private and a public key. For example, Bob possesses the key pair consisting of
Kprivate,Bob and Kpublic,Bob. These two keys are related in a way, that if a public key is
used to encrypt a message M , only its corresponding private key is able to decrypt the
ciphertext C. It is generally hard to calculate the private key from its public key without
additional knowledge.

Asymmetric cryptography can be used to securely distribute a shared secret intended
for symmetric encryption, that is, the generated common secret is encrypted using the
other party’s public key. Consequently, no one but the intended recipient is able to unveil
the common secret using their private key.

In addition, asymmetric schemes support the creation of signatures. For this purpose,
one’s private key is used to sign a message. This is equivalent to decryption in the original
setting. The resulting signature can then be verified by anyone using the message, the
signature, and the appropriate public key. This is, up to comparisons in the verification
step, identical to encryption in the original setting. The resulting signatures are authentic
as the private key is only known by its creator. This is shown in Figure 2.3: Bob signs the
message M using his private key Kprivate,Bob and sends the resulting signature S together
with the message M to Alice. She invokes the Verify method using the message M , the
signature S and Bob’s public key Kpublic,Bob. The method’s result v indicates the validity
of the signature. Typically, the signature is calculated from a hash of the message rather
than the message itself. The concept of signatures can be used to obtain authenticity in
the aforementioned key agreement process.

Asymmetric cryptography also has its drawbacks: a public key used for encryption or
verification may be forged, that is, authenticity of the public keys is not assured. The
conventional approach to deal with this problem is to certify authenticity of public keys
by means of the same public key mechanisms. This concept of public key infrastructures is
illustrated by Figure 2.4. Certificate Authorities (CA) certify the authenticity of a public
key, that is, an identity along with its public key are signed by the authority. This is done

4

2.4. Concept of Identity-Based Encryption

Alice

 Bob

S = Sign(Kprivate,Bob, M), MEncrypt(K, data)

v = Verify(Kpublic, M, S)

S = Sign(Kprivate, M)

Kprivate,Alice Kpublic,Alice Kpublic,Bob Kprivate,Bob

v = Verify(Kpublic, M, S)

S = Sign(Kprivate, M)

Figure 2.3.: Using asymmetric cryptography for signatures: Alice and Bob each have a key
pair of their own. Bob uses his private key for signing a message. Alice can
verify the authenticity of the message using the signature and Bob’s public
key.

in a recursive fashion. The uppermost CA, also called the root CA, certifies itself.

This common procedure implies delegation of trust to the root CA. Authentic keys for
root CAs are usually shipped as systems are distributed. Otherwise, there is no reason
to trust such a CA. To verify the authenticity of a public key, the whole chain of certifi-
cates needs to be validated. This, however, does not seem a satisfying solution. Ellison
and Schneier [ES00] point out many good reasons for not relying on these public key
infrastructures.

In case a key is compromised, revocation of public key certificates becomes necessary as
these should not be used any further. In addition to an expiry date, certificate revocation
lists and online services to check the status of a certificate exist to tackle this. Maintaining
these lists and services is a huge effort. Considering all these problems, alternatives are of
high interest.

2.4. Concept of Identity-Based Encryption

In 1984, Shamir [Sha84] proposed the concept of identity-based encryption with the intent
to simplify certificate management in e-mail systems. In this asymmetric concept, the
public key is replaced by a unique identity string. One can think of this identity string
being an e-mail address, social insurance number, or similar. The advantage of such a
concept is obvious: there is no public key that could be faked. Hence, there is no problem
of authenticity and the blown up construct of public key infrastructures is avoided. On
the other hand, decryption is still done using a private key only known to the intended
recipient of a message.

The basic concept of identity-based encryption is illustrated in Figure 2.5. In the fol-
lowing, an exemplary sequence based on Figure 2.5 is shown. Involved are a trusted third
party, Alice, and Bob.

1. The trusted third party starts by calling the Setup method. The public parameters
P of the scheme are then published, while the master secret is kept hidden.

2. Bob wants to use the identity-based encryption scheme and obtains his private key
DBob from the trusted third party by invoking the Derive method with the public
parameters P and his name as arguments. Note that Bob needs his private key for
decryption only. If Bob merely wanted to send encrypted data, he would not have
to obtain his private key.

5

2. Identity-Based Encryption

Root-CA
Kpublic,RootCA Kprivate,RootCA

certifies

CA
Kpublic,CA Kprivate,CA

Sub-CA
Kpublic,SubCA Kprivate,SubCA

certifies

certifies

Alice

 Bob

 Kprivate,Alice

Kpublic,Alice Kpublic,Bob

Kprivate,Bob

certifies

Root-CA

CA

Sub-CA

Alice Bob

Figure 2.4.: Public key infrastructures: Certificate Authorities (CA) certify authenticity
of lower-level parties’ public keys. The uppermost CA certifies itself.

3. In the next step, Bob wants to send a secret message M to Alice. Therefore, he starts
the Encrypt method with the public parameters P , Alice’s name and the confidential
data as arguments. The resulting ciphertext C is passed on to Alice.

4. Alice realizes that she received an encrypted message from Bob. Before she can read
it, she needs to obtain her private key DAlice via the Derive method from the trusted
third party using the public parameters P and her name as arguments.

5. Now that Alice is in possession of her private key, she can reveal the original message
from the ciphertext C using the Decrypt method.

From this example it can be seen, that there is a trusted third party that publishes
public parameters that clearly define the instance of the identity-based encryption scheme.
Further, it is in possession of a master secret. Its confidentiality is crucial as its leakage
compromises the whole system. Identities obtain their private keys from that trusted third
party, which in turn uses the master secret to derive the private keys for each identity. If
a private key is leaked, it does not compromise the rest of the system. Encryption can be
done by anyone just knowing the identity string. It is not even necessary that the recipient
has already obtained their private key.

6

2.4. Concept of Identity-Based Encryption

Trusted Third Party

Bob

Public parameters (P)

P = Setup(κ)

DId = Derive (P, Id)

Master Secret

 Alice

C = Encrypt (P, Id, M)

M = Decrypt (P, DAlice, C)

DAlice DBob

C = Encrypt(P, “Alice”, M)

DBob = Derive(P, “Bob”)DAlice = Derive(P, “Alice”)

C = Encrypt (P, Id, M)

M = Decrypt (P, DBob, C)

Figure 2.5.: Concept of identity-based encryption (IBE).

Following this, the four basic algorithms of any identity-based encryption scheme can
be characterized. Let Kmaster denote the master key and P the public parameters. An
identity’s private key is labeled Did.

Setup. By this algorithm, the identity-based encryption scheme is set up, that is, given a
security parameter κ, the master secret Kmaster and the public parameters P along
with the necessary algorithmic descriptions are generated.

(Kmaster, P) = Setup(κ)

Derive. Participants in the scheme can obtain their corresponding private keys using this
algorithm. It takes the identity string id, the public parameters P and the master
secret Kmaster as an argument and returns the private key Did. This algorithm is
typically executed at a trusted third party as it ought to be the only facility to keep
the master secret.

Did = Derive(P , Kmaster, id)

Encrypt. Encryption of messages is done using this algorithm. To compute the correct
ciphertext C, the public parameters P and the identity string id of the communica-
tion partner are needed in addition to the message M .

C = Encrypt(P , id, M)

7

2. Identity-Based Encryption

Decrypt. This algorithm decrypts the ciphertext C to obtain the original message M .
Therefore, the correct private key Did, the public parameters P , and the ciphertext
C are needed. If a ciphertext cannot be decrypted because it is invalid, the algorithm
returns with a corresponding message.

M = Decrypt(P , Did, C)

According to Gentry and Silverberg [GS02], identity-based encryption can be extended
hierarchically, where private key derivation can be delegated to intermediate entities. How-
ever, complexity of Hierarchical Identity-Based Encryption (HIBE) schemes increases sig-
nificantly with each additional layer.

2.5. Drawbacks of Identity-Based Encryption

Besides the compelling benefits, identity-based encryption also has its drawbacks as
pointed out by Boneh and Franklin [BF01] and Gentry and Silverberg [GS02]. First, pro-
posed schemes are based on bilinear maps or, as presented by Cocks [Coc01], the quadratic
residuosity problem. Hence, they have worse performance than conventional asymmetric
cryptography. Second, the public parameters need to be authentic and the identities’
private keys need to be transmitted securely. This is a very similar problem to that of
conventional asymmetric cryptography. Nevertheless, receiving one private key per person
seems less effort than obtaining many authentic public keys. Moreover, the public parame-
ters may be distributed as the applications are shipped. The third problem is the inherent
key escrow. The trusted third party is able to derive any private key it wants, while in
asymmetric cryptography the private key is typically generated on the user’s computer.
Correspondingly, non-repudiation cannot be assured. Finally, as a consequence of inherent
key escrow, the trusted third party poses a security threat as it is an interesting target for
attackers.

If a private key is leaked, the remaining system stays secure. Still, some kind of re-
vocation should be available in this case. Identity-based encryption does not generally
offer such a mechanism. However, expiry dates can be included in the public identity
string: for a user called “Bob”, the identity string for the current year could look like
“Bob <currentyear>”. Anyone who wants to transmit an encrypted message to Bob uses
the identity string containing the current year instead. It forces the user to obtain a new
private key every year. Hence, if a private key is compromised, the private key remains
valid for the current year only. This can also be done for the current date, forcing the
user to obtain a new private key every day. For example, if users leaves an organization,
they will not receive any more private keys and will not be able to read e-mails past the
date of their separation. Along with this comes the problem of having to transmit private
keys on a daily basis via a separate secure channel. Ironically, conventional asymmetric
cryptography, using a key pair of public and private key for the trusted third party, is
a reasonable possibility since there are very likely many more users than trusted third
parties.

The previously shown concept of concatenation can also be used for information different
from expiry dates, such as permissions. As an additional form of revocation, compromised

8

2.6. Conclusion

identities along with a new identity string to be used could be published on some sort of
revocation list.

2.6. Conclusion

Symmetric cryptographic schemes are fast and compact, but suffer from the key distribu-
tion problem. Nowadays, it is tackled using conventional asymmetric schemes, but there
are some negative aspects about it that leave one with a bad taste. Therefore, the con-
cept of identity-based encryption seems a promising alternative. Public keys are replaced
by simple identity strings, avoiding the problem of key authenticity at all. Drawbacks
are the secure distribution of the private keys and the public parameters as well as re-
vocation. Apart from distributing these parameters once initially, this problem can, as
mentioned before, be overcome with conventional asymmetric cryptography. Using this
setup, there are mechanisms that support revocation, but still revocation is the real draw-
back of identity-based encryption.

9

3. Mathematical Background

Identity-based encryption schemes commonly make use of bilinear maps, or simply pair-
ings. In this mathematical concept each an element from two groups is taken and then
mapped to a third group. The first two of those groups are usually, but not necessarily, de-
fined over elliptic curves. The target group that is being mapped to is usually an extension
of a prime field. As one can see from this, it involves many different concepts that need
to be brought in line with each other before it is possible to decide on an identity-based
encryption scheme and to concretely perform an implementation.

For this purpose, the mathematical basics and concepts behind the work of this thesis are
covered in this section. However, it does not pay regard to the concrete implementation
aspects. These will be covered in a latter chapter. The concept of groups, fields, and
extension fields is the heart of everything in this work. Therefore, Section 3.1 covers
the their most important properties that are needed later on. Section 3.2 then introduces
elliptic curves. Following, a simple and abstract definition of bilinear maps, as it is usually
used for protocol descriptions, is done in Section 3.3. Combining the knowledge gained
from the former sections, a concrete instance of a bilinear map based on groups over
elliptic curves is presented in Section 3.4. As there are some restrictions to the elliptic
curves being used for pairings, Section 3.5 gives a short overview on the methods to
generate such curves. Moreover, it describes the type of curves being used in the context
of this thesis in more detail. A conclusion is done in Section 3.6.

3.1. Groups, Rings and Fields

The mathematical basis of the whole work are the basic algebraic concepts of groups
and fields. For that reason, the aspects relevant to the understanding of this work are
reviewed in this part. The definitions in Section 3.1.1 to Section 3.1.3 largely follow Lidl
and Niederreiter [LN86].

The well-known concept of multiplication and addition on integers can be generalized to
operations on arbitrary sets. Given a set S, a mapping from all ordered pairs (s, t) ∈ S×S
into S is called a binary operation on S. Closure of an operation means that the image of
(s, t) ∈ S × S is again in S. An algebraic structure is a set S together with one ore more
operations on S.

3.1.1. Groups

One of the simplest algebraic structures only having one operation are groups.

Definition 3.1. A group is a set G together with a binary operation ? on G that has the
following properties:

1. The operation ? is associative, that is, for any a, b, c ∈ G,

(a ? b) ? c = a ? (b ? c).

11

3. Mathematical Background

2. There exists an identity element e, such that for any a ∈ G,

a ? e = e ? a = a.

3. Each element a ∈ G has an inverse element a−1 ∈ G, such that

a−1 ? a = a ? a−1 = e.

A group that satisfies a ? b = b ? a is called commutative or abelian. Additionally,
(a ? b)−1 = a−1 ? b−1 is valid for all a, b ∈ G. Definition 3.1 uses multiplicative notation.
However, sometimes additive notation is preferred.

Multiplicative notation Additive notation
an = a · a · a... · a (n times)

(an)m = anm

an · am = a(n+m)

a−n = (a−1)n

a0 = e

n · a = a+ a+ a...+ a (n times)

m(na) = (nm)a

na+ma = (n+m)a

(−n)a = n(−a)

0a = e

Another term to be defined is equivalence relation, which is a subset R of S × S having
the properties:

1. Reflexivity: (s, s) ∈ R, ∀ s ∈ S.

2. Symmetry: (s, t) ∈ R⇔ (t, s) ∈ R.

3. Transitivity: (s, t), (t, u) ∈ R⇒ (s, u) ∈ R.

An equivalence relation R on a set S partitions the set S into equivalence classes. All
elements equivalent to a fixed s ∈ S are denoted by:

[s] = {t ∈ S : (s, t) ∈ R}.

Definition 3.2. Given arbitrary integers a, b and a positive integer n, a is said to be
congruent to b modulo n if the difference a − b is a multiple of n, that is a = b + kn,
denoted by a ≡ b mod n.

Congruence modulo n is an equivalence relation on the set of integers Z. The result-
ing set of equivalence classes is compatible with the original binary operation: it allows
modular arithmetic and the equivalence relation is then called a congruence relation.

Definition 3.3. The set {[0], [1], ...[n − 1]} of equivalence classes modulo n with the
operation of addition [a] + [b] = [a + b] forms a group Zn called the group of integers
modulo n.

Definition 3.4. A group containing finitely many elements is called finite. The number
of elements in a finite group is called its order, denoted by |G|.

Definition 3.5. A subgroup of a group G is a subset H of G if it is itself a group with
respect to the operation of G. Trivial subgroups are {e} and G itself.

12

3.1. Groups, Rings and Fields

Definition 3.6. A multiplicative group G is said to be cyclic if there is an element a ∈ G
such that for any b ∈ G ∃ j ∈ Z : b = aj .

Then a is called a generator of the cyclic group G. A short notation to define a group
using a generator is G = 〈a〉. A cyclic group may have more than one generator. Cyclic
groups are always commutative. For example, Zn is an additive cyclic group of order n
having the generator [1].

Definition 3.7. A subgroup of G generated by 〈a〉 consists of all powers of the element
a of G. The subgroup is always cyclic. If 〈a〉 is finite, its order is also called the order of
a. Otherwise, a is of infinite order.

The finite order k of a is the least positive integer such that ak = e. In terms of
subgroups, there is an important theorem on their orders that will be needed for elliptic
curves:

Theorem 3.1 (Lagrange’s Theorem). Let H be a subgroup of G. Then, the order of H
divides the order of G. Consequently, the order of any element g ∈ G divides the order of
G.

Definition 3.8. A homomorphism is a mapping f : G→ H of the group G into the group
H that preserves the operation of G, that is, if ? and ∗ are the operations on G and H
respectively, then f(a ? b) = f(a) ∗ f(b) must be true for all a, b ∈ G. A homomorphism of
G into G is called an endomorphism. A one-to-one homomorphism of G onto H is called
an isomorphism. In this case, G and H are called isomorphic. An isomorphism of G onto
G is called automorphism.

Another property of a homomorphism f : G→ H is f(e)f(e) = f(e), that is, f(e) = e′,
the identity element of H. Elements different from e ∈ G may also map to the identity
e′ ∈ H, which is covered by the definition of the kernel. Additionally, it holds that
f(a−1) = f(a)−1 ∀ a ∈ G.

Definition 3.9. The kernel of an homomorphism f : H → H is the set

ker(f) = {a ∈ G : f(a) = e′},

where e′ denotes the identity in H.

3.1.2. Rings and Fields

Very often two distinct binary operations are defined for a specific set of elements, for
example, addition and multiplication for integers and rational numbers. This leads to the
definition of a ring structure.

Definition 3.10. A set R that has two arithmetic operations + and · is said to be a ring
(R,+, ·) if it has the following properties:

1. Abelian group: R is an abelian group with respect to + .

2. Associativity: a · (b · c) = (a · b) · c ∀ a, b, c ∈ R.

3. Distributivity of + with respect to · : (a + b) · c = ac + bc and (b + c) · a = ba +
ca ∀ a, b, c ∈ R.

13

3. Mathematical Background

The identity element of the abelian group (R,+) is denoted 0 (the zero element), the
inverse of a by −a. A ring that has a multiplicative identity e satisfies ae = ea = a ∀ a ∈ R.
It is called ring with identity or unitary ring. If the operation · is commutative, the ring
is also called commutative. If the elements R \ {0} form a group with respect to ·, the ring
is called a division ring. A commutative division ring is called a field. Summarizing, the
definition of a field is as follows:

Definition 3.11. A set F with two binary operations (F,+, ·) and two distinct elements
0 6= e, that is an abelian group with respect to + having 0 as an identity element, that also
forms an abelian group for the elements F \ {0} with respect to · having the identity e, is
called a field if the two operations + and · are linked by the rules of the distributive law,
that is, (a+ b) · c = ac+ bc. 0 is called the zero element and e is called the multiplicative
identity element.

The following definitions of subsets and ideals directly lead to the definition of prime
fields that are important in the context of this work.

Definition 3.12. A subring of R is a subset S of R that is closed and forms a ring under
its operations + and ·.

Definition 3.13. An ideal is a subset J of a ring R that fulfills ra ∈ J, ar ∈ J for any
a ∈ J, r ∈ R.

Definition 3.14. For a given commutative ring R, the smallest ideal that contains a
specific element a ∈ R is denoted by (a) = {ra+ na : r ∈ R,n ∈ Z} if R does not contain
an identity element, and (a) = {ra : r ∈ R} otherwise. Such an ideal is called principal.
The principal ideal is generated by a.

For example, an element n ∈ Z generates the subset J = (n) = {..,−2n,−n, 0, n, 2n, ..},
which is a principal ideal of Z.

An ideal J of a ring R partitions R into residue classes modulo J . The residue class
of an element a of R modulo J is denoted [a] = a + J as it is consists of all elements of
the form a = a+ c, where c ∈ J . Elements in the same residue class are called congruent.
Two congruent elements a, b are denoted by a ≡ bmod J . The residue classes of the ring
R modulo J form the the so-called residue class ring R/J under the following operations:

1. (a+ J) + (b+ J) = (a+ b) + J

2. (a+ J) · (b+ J) = ab+ J

An example is the residue class ring Z/(n), which is spread widely in cryptography. If
n is a prime, the the residue class ring becomes a field. The definitions of the diverse
variants of homomorphisms in Definition 3.8 stay valid so far as both operations + and ·
are preserved by the mapping. Such mappings can be used to transfer a structure from an
algebraic system with a structure, for example a ring R, to a set S without a structure.
Then, the resulting structure of S is induced by the mapping.

Definition 3.15. Given a prime p and a set of integers Fp = {0, 1, 2, ..., p−1}, the mapping
φ : Z/(p) → Fp, which is defined as φ([a]) = a for a ∈ {0, 1, 2, ..., p − 1}, induces a field
structure on Fp. Fp is a Galois field of order p.

Definition 3.16. The least positive integer n that fulfills nr = 0 for any element r of the
ring R is called characteristic. If there is no such r, the characteristic is 0.

14

3.1. Groups, Rings and Fields

A finite field always has prime characteristic. Computing with elements in the finite
field of characteristic p, denoted Fp, is ordinary integer arithmetic modulo p. Its identity
is 1, its zero element 0.

A subfield of a field F is a subset K of F that itself is a field under the operations of
F . It is called a proper subfield if K 6= F . Conversely, F is an extension (field) of K.

Definition 3.17. A prime field is a field containing no proper subfields.

The finite field of characteristic p, Fp, is such a prime field.

3.1.3. Extension Fields

A short review on polynomials needs to be done in order to define extension fields. A
polynomial over the ring R is defined as

f(x) =
n∑
i=0

aix
i = anx

n + ...+ a1x+ a0,

where n is a positive integer and the coefficients ai are elements of R. x is called the
indeterminate over R. Its degree deg(f) is denoted by n. If all coefficients are zero, the
polynomial is called the zero polynomial. If the identity of R is 1, a polynomial that has
1 as its leading coefficient is said to be monic. If all coefficients but a0 are zero, it is a
constant polynomial. Rules for calculating with polynomials is assumed to be known.

Definition 3.18. The polynomials over R form a ring with respect to addition and mul-
tiplication. This ring of polynomials is denoted by R[x].

The ring of polynomials R[x] inherits commutativity and the identity from the under-
lying ring R. In the following, R will be replaced by the prime field Fp. A polynomial
g ∈ Fp[x] divides a polynomial f ∈ Fp[x] if there is a polynomial h ∈ Fp[x] that fulfills
f = gh. This leads to the definition of irreducible polynomials.

Definition 3.19. A polynomial f ∈ Fp[x] irreducible over Fp (or irreducible in Fp[x]) is a
polynomial of positive degree that only allows trivial factorizations.

In more detail, an irreducible polynomial f implies that ∀ b | f ⇒ b ∈ F∗p ∨ b = f .
The residue class ring Fp[x]/(f) is a field iff f ∈ Fp[x] is irreducible over Fp. This works
analogously to the residue classes from Section 3.1.2. Two residue classes [g] = g+(f) and
[h] = h+(f) are equivalent if g ≡ hmod f , that is, g−h is divisible by f . Correspondingly,
g and h leave the same remainder when dividing by f . This remainder r ∈ Fp[x] satisfies
deg(r) < deg(f) and is the unique representative of the respective residue class. These
residue classes can be explicitly described by r + (f) with r running through all elements
in Fp[x] with deg(r) < deg(f). For a polynomial f with deg(f) = n ≥ 0, the number of
elements in Fp[x]/(f) equals the number of polynomials in Fp[x] with degree smaller than
n, that is, pn. Replacing the indeterminate x in f(x) by a fixed element from Fp evaluates
to an element in Fp.

Definition 3.20. A root (or a zero) r ∈ Fp of a polynomial f ∈ Fp[x] is an element that
fulfills f(r) = 0. Then, (x− r) divides f .

If a polynomial f has the same root k times, k denotes the roots multiplicity. Having
the basics of polynomials in mind, extension fields can be defined.

15

3. Mathematical Background

Definition 3.21. Given a subfield K of the field F and any subset M of the field F , the
intersection of all subfields of F containing both K and M is called extension field of K
and is denoted K(M). If M is a single element, the extension is said to be simple.

The smallest subfield of F containing both K and M is K(M). Polynomials can be
used to define such extensions.

Definition 3.22. Given a subfield K of F and an element θ ∈ F , θ is said to be algebraic
over K if it satisfies a nontrivial polynomial equation with coefficients in K, that is,
anθ

n + ... + a2θ
2 + a1θ + a0 = 0. An extension L of K is said to be algebraic if every

element in L is algebraic over K.

The set J = {f ∈ K[x] : f(θ) = 0} is an ideal of K if θ ∈ F is algebraic over K. A
monic polynomial g ∈ K[x] uniquely determines the set J such that it equals the principal
ideal J = (g). The polynomial g is irreducible over K. The degree of θ over K is defined
as the degree of the irreducible polynomial g.

Theorem 3.2. The irreducible polynomial g over K for an extension θ that is algebraic
over K has the following properties:

1. For any f ∈ K[x], f(θ) = 0 iff g divides f .

2. The irreducible polynomial g is the monic polynomial in K[x] of least degree having
the root θ.

Theorem 3.3. Given an element θ ∈ F that is algebraic of degree n over K and g, the
irreducible polynomial of θ over K, the following properties apply:

1. K(θ) is isomorphic to K[x]/(g).

2. {1, θ, ..., θn−1} is a basis of K(θ) over K.

3. Every element α ∈ K(θ) is algebraic over K. The degree of α divides n.

It follows, that, on the one hand, one can use an irreducible polynomial to define an
extension field, and, on the other hand, a simple defining element may be used instead.
Elements of the simple extension K(θ) can be represented by polynomials of the form
a0 + a1θ + ...+ an−1θ

n−1.
For the purpose of this thesis, a field Fp can be extended using an irreducible polynomial

such as to be able to represent solutions to that polynomial equation. The k-th extension
of the prime field Fp is denoted as Fpk . For illustration of extension fields, a nice example
is the complex number system. It is well known that there is no solution to the equation
x2 + 1 = 0 ∈ R[x] in R, that is, it has no roots in R. In other words, the equation is
irreducible in R[x]. However, the monic and irreducible polynomial h(x) = x2 + 1 creates
a principal ideal J = (h), which splits the ring of polynomials R[x] into residue classes of
the form a0 +a1x, where x is nothing else than the imaginary part in C. This results from
performing a modulo operation on elements in R[x] using h(x) = x2 + 1.

3.2. Elliptic Curves over Finite Fields

Another fundament of identity-based encryption are elliptic curves. The theory of elliptic
curves makes extensive use of the concepts defined before, namely groups and (extension)

16

3.2. Elliptic Curves over Finite Fields

fields. It is an interesting field of study since groups formed by elliptic curves defined over
some field can be used for different cryptographic applications, and most importantly,
for bilinear maps. This introduction to elliptic curves is based in large parts on the
publications by Costello [Cos13, Ch. 2] and Silverman [Sil09].

Definition 3.23. An elliptic curve E defined over a field K, denoted E/K, is an affine
equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (3.1)

where a1, a2, ..., a6 are elements in K.

Equation 3.1 is the general Weierstrass equation for elliptic curves. For fields with
characteristic not equal to 2 or 3, the equation can be simplified by substitution. This
results in the short Weierstrass equation, which is defined as

y2 = x3 + ax+ b, (3.2)

and covers all isomorphism classes of elliptic curves for large prime fields Fp. The values
a, b ∈ K need to be chosen appropriately in order to obtain a valid elliptic curve, that
is, for the choice of a, b ∈ K, both derivatives of the curve ∂f

∂x ,
∂f
∂y must not vanish for

any point P = (xP , yP). Then, the curve is said to be smooth, otherwise singular. A
simple condition that the parameters a,b need to fulfill in order to obtain a valid curve is
4a2 + 27b2 6= 0 (discriminant). For illustrations and examples the interested reader may
refer to Costello [Cos13, Chapter 2].

In addition to Equation 3.1 and Equation 3.2, other types of equations for elliptic curves
exist, for example Edwards curves [Edw07] and Hessian curves [Sma01]. These sometimes
have advantages in terms of computational speed, but their usage is, contrary to the
general Weierstrass equation, restricted by some conditions.

3.2.1. Group Laws

Definition 3.24. The group elements of an elliptic curve E/K are the points (x, y) with
coordinates in K (the algebraic closure of K), which satisfy the elliptic curve equation.
In addition, the group consists of a point at infinity, denoted O, which is the identity
element. The operation defined on the group of elliptic curve points is point addition +.
The group is denoted E(K).

The operation of point addition mentioned in Definition 3.24 still needs to be specified.
Two points P = (xP , yP) ∈ K ×K and Q = (xQ, yQ) ∈ K ×K are used to draw a line
` : y = λx+ ν with gradient λ = (yQ − yP)/(xQ − xP). The line ` intersects the curve E
in three points. Two of the intersection points are known to be P and Q, and the third
intersection point is defined to be −R. Drawing a vertical line v through the point −R
yields another point of intersection, namely R = P + Q. Insertion of the line equations
`, v into the curve equation E and comparison of coefficients leads to the specification of
the point R as

xR = λ2 − xP − xQ yR = −(λxR + ν), (3.3)

where ν = yP − λxP . Besides, addition of the identity O and additions of the form
P + (−P) are special cases that result from Section 3.1.

17

3. Mathematical Background

Analogously, point doubling is defined for the case P = Q: the tangent in the point P
has gradient λ = (3xP

2 + a)/(2yP) and is defined to be `t : y = λx + ν . The unknown
of the two intersections of `t and E is defined to be −R. Its inverse is the second point of
intersection of E and the vertical line v through −R, namely R = P +P = [2]P . Insertion
of the line equations `t, v in the curve equation E results in the the point R as

xR = λ2 − 2xP yR = −(λxR + ν), (3.4)

where ν = yP − λxP .
From these definitions it becomes clear, why additive notation is used for elliptic curve

groups. The two operations are also known as the chord-and-tangent rule. Inversion of a
point P is defined to be −P = (xP ,−yP), that is, the y-coordinate is reflected over the
x-axis. For a point P , one can observe that

[0]P = O, [1]P = P, [2]P = P + P, [3]P = [2]P + P, ..., [n]P = [n− 1]P + P .

The operation point multiplication follows from this observation and is defined as [n]P =
P + P + ...+ P (n times) for n ≥ 0. Note that the concrete computations for any of the
elliptic curve operations take place in the underlying field though.

The previous definitions of point addition and point doubling considered the usage
of affine coordinates. However, projective coordinates are often used to speed up the
computation as to avoid field inversions, that is, points in the 2-dimensional space are
mapped to lines in the 3-dimensional space. Using homogeneous projective coordinates, a
point (x, y) ∈ K2 is mapped to the line (λx, λy, λ) ∈ K3, where λ ∈ K∗. Consequently,
the point (0, 0, 0) ∈ K3 is not mapped at all and all points on the same line in the
3-dimensional space equal the same point in the 2-dimensional space. Hence, a single
point has several possible mappings in K3. The set of all equivalent points is denoted
by (X : Y : Z). A point P = (x, y) is usually mapped to (x : y : 1) and a projective
point Pproj = (X : Y : Z) is mapped back to (X/Z, Y/Z). Using the affine Equation 3.1,
the point at infinity O can not be specified. In projective coordinates, O is represented
by (0 : 1 : 0), which can obviously not be mapped back to affine coordinates. The curve
equation in homogeneous projective coordinates changes to

Y 2Z = X3 + aXZ2 + bZ3. (3.5)

Accordingly, the formulas for point addition and doubling are adapted, avoiding costly field
inversion until the projective point is mapped back to affine coordinates. There are also
other types of projective coordinates that have different mappings, for example, Jacobian
projective coordinates perform a mapping (X : Y : Z) 7→ (X/Z2, Y/Z3). A database with
explicit formulas for different types of projective coordinates is provided by Bernstein and
Lange [BL13]. However, in the context of this thesis, homogeneous projective coordinates
are used.

3.2.2. Group Structure

The number of elements for a finite field Fq with prime characteristic p is obviously q.
However, for an elliptic curve E/Fq, Hasse gives a bound on the number of elements in
the group (see Silverman [Sil09, Ch. 5, Th. 1.1]).

Theorem 3.4 (Hasse’s theorem). Let E/Fq be an elliptic curve E defined over a finite
field Fq, then the number of elements in the group #E(Fq) satisfies

#E(Fq) = q + 1− t |t| ≤ 2
√
q

18

3.2. Elliptic Curves over Finite Fields

Consequently, the group order can be approximated as #E(Fq) ≈ q = #Fq. The
concrete number of elements can be counted in polynomial time using Schoof’s algorithm
[Sch85] though. According to Lagrange’s theorem (see Theorem 3.1), there will generally
be subgroups of order n |#E(Fq), for example, the (single) point of order 1 is O, and
the generator is of order #E(Fq). To obtain a point of order n, one has to multiply
the generator with the appropriate cofactor h = #E(Fq)/n. Usually, it is desired for
cryptographic applications to have groups of prime order, because it makes hard solving
the elliptic curve variant of the discrete logarithm problem. Otherwise, an adversary could
solve the problem partially in each of the subgroups and apply the chinese remainder
theorem. Over finite fields, E is called supersingular if the characteristic p satisfies p | t,
and ordinary otherwise.

Definition 3.25. The i -th frobenius endomorphism of the group E(Fq) is defined as

πqi : E(Fq) 7→ E(Fq), (x, y) 7→ (xq
i
, yq

i
)

The frobenius endomorphism has the property, that πqi only acts non-trivially on

E(Fq)\E(Fqi), that is, it does not change anything about elements in E(Fqi). Let πq
denote the first frobenius endomorphism. Then, a point P ∈ E(Fq) is also in E(Fq) if and
only if πq(P) = P , which leads to the notation E(Fq) = E(Fq) ∩ ker([1] − πq). This is
important with respect to finding a bound for the number of elements (Hasse) by filtering
out elements in extensions of E(Fq) as shown by Silverman [Sil09, Ch.5, Th. 1.1, Le. 1.2].

The term t in Hasse’s theorem is called the trace of frobenius as it results from the trace
of the first frobenius endomorphism. It fulfills the characteristic polynomial [Sil09, Ch. 5,
Re. 2.6, Th. 2.3.1]

π2q + [t] ◦ πq + [q] = 0,

or equivalently, for all P ∈ E(Fq) it satisfies

(xq
2
, yq

2
) + [t](xq, yq) + [q](x, y) = O

Closely related to group orders is the term of n-torsion.

Definition 3.26. The n-torsion subgroup E[n] of an elliptic curve E, for any n ∈ Z, n ≥ 1,
is the set of points of E of order n, that is,

E[n] = {P ∈ E(Fq) : [n]P = O}.

The elements of E[n] are called n-torsion points. In this context, the following theorem
by Cohen et al. [Coh+10, Th. 13.13] gives an idea about the structure of the n-torsion.

Theorem 3.5. Let E be an elliptic curve defined over the finite field Fq. If its character-
istic is either zero or co-prime to n, then

E[n] ∼= Zn × Zn.

19

3. Mathematical Background

3.3. Bilinear Maps

In a simple way, bilinear maps are an additional property for certain types of cyclic groups
that allows to map two elements from two cyclic groups to an element of a third cyclic
group. Such a map fulfills a bilinearity property with respect to the elements chosen from
the former two cyclic groups. Originally, bilinear maps were used by Menezes, Okamoto,
and Vanstone [MOV93] and Frey and Rück [FR94] to break cryptosystems by transferring
hard problems in cyclic groups to another that provides better attacks. Later it was
discovered, that cryptosystems can be built from it, for example, identity-based encryption.

Let G, Ĝ, and Gt be cyclic groups of prime order n with their respective generators
G, Ĝ, Gt. Lynn [Lyn07, Sections 1.4 and 1.8] defines a bilinear map, also called bilinear
pairing, as a map

e : G× Ĝ −→ Gt,

that has the following properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab ∀ P ∈ G Q ∈ Ĝ a, b ∈ Z

2. Non-degeneracy: e(G, Ĝ) 6= 1

3. Computable: e(P,Q) can be computed efficiently

As a consequence of bilinearity, the following properties hold:

1. e(R+ S, T) = e(R, T) · e(S, T) and e(R,S + T) = e(R,S) · e(R, T),

2. e(−S, T) = E(S,−T) = e(S, T)−.

In some cases, these properties make possible trading operations in G and Ĝ with oper-
ations in Gt. Additionally, non-degeneracy also implies that e(S, T) = 1 if, and only if
S = O ∨ T = O.

These definitions are rather abstract and are typically used in the context of cryptogra-
phy so as to define protocols and schemes. As one can see in the above equations, the two
groups G, Ĝ use additive notation as these are usually elliptic curve groups. Contrary to
that, Gt is a multiplicative group. For the remaining of this thesis, we will stick to this
type of definition in the context of pairings.

The type of pairing defined before is called asymmetric as G and Ĝ are two different
cyclic groups. Accordingly, there is also a symmetric definition of a bilinear map, where
G equals Ĝ. Protocols are often only defined using the symmetric definition of pairings.
However, asymmetric pairings are faster and to be preferred practically. Actually, there
are four different types of pairings, which are discussed in more detail in Section 3.4.2.

3.3.1. Diffie-Hellman Problem

For the sake of clarity of the security of bilinear maps, a short review on the original
Diffie-Hellman problem [DH76] is done. Let G be a multiplicative cyclic group of order
n with generator g.

Computational Diffie-Hellman problem. Given g, ga, and gb, compute gab.

Decisional Diffie-Hellman problem. Boneh [Bon98] defines the problem such as to deter-
mine whether ab = c mod n provided the values g, ga, gb, and gc.

20

3.3. Bilinear Maps

Both of them rely on the Discrete Logarithm Problem (DLP), namely determining x
from gx, to be hard. Otherwise, anyone could first calculate a from ga, then b from gb, and
finally compute gab. As a consequence of pairings, the decisional Diffie-Hellman problem
can be solved for certain types of cyclic groups. Consider an additive cyclic group G in a
symmetric bilinear pairing. To solve the decisional Diffie-Hellman problem, provided G,
aG, bG, and cG, one could simply compute e(aG, bG) = e(G,G)ab and e(G, cG) = e(G,G)c

and check their equivalence. The computational Diffie-Hellman problem may, however,
still be hard.

3.3.2. Bilinear Diffie-Hellman Problem

Similar to the Diffie-Hellman problem for cyclic groups, there exists the Bilinear Diffie-
Hellman (BDH) problem for pairings as first described by Boneh and Franklin [BF01]. For
a symmetric pairing e : G×G −→ Gt, the bilinear Diffie-Hellman problem is defined as:

Given G, aG, bG, cG ∈ G4, calculate e(G,G)abc ∈ Gt.

For the more general asymmetric pairing e : G× Ĝ −→ Gt, the bilinear Diffie-Hellman
problem is defined by Boneh and Boyen [BB04b, Section 3.1] in the following variants.

Computational BDH problem Given G, aG, cG, Ĝ, aĜ, bĜ, an algorithmA has advantage
AdvBDH

A = ε in solving the computational BDH problem in (G, Ĝ) if

Pr
[
A(G, aG, cG, Ĝ, aĜ, bĜ) = e(G, Ĝ)abc

]
≥ ε

where the coefficients a, b, c ∈ Zn and the generators G, Ĝ are chosen randomly.

Decisional BDH problem An algorithm B that, for a tuple (G, aG, cG, Ĝ, aĜ, bĜ, T), re-
turns a bit γ = 1 if T = e(G, Ĝ)abc and γ = 0 otherwise, has an advantage
AdvBDDH

A = ε in solving the Decisional Bilinear Diffie-Hellman (BDDH) problem
in (G, Ĝ) if∣∣∣Pr [B(G, aG, cG, Ĝ, aĜ, bĜ, e(G, Ĝ)abc) = 0

]
− Pr

[
B(G, aG, cG, Ĝ, aĜ, bĜ, T) = 0

]∣∣∣ ≥ ε
where the coefficients a, b, c ∈ Zn, the generators G, Ĝ, and the value T ∈ Gt are
chosen randomly.

These formulations lead to the following definition of security with respect to the
(decisional-)BDH problem.

Definition 3.27. The (t, ε)-(Decisional-)BDH assumption hold in (G, Ĝ) if no t-time
algorithm has an advantage of at least ε in solving the (Decisional-)BDH problem in
(G, Ĝ).

For negligible advantage ε, the parameters are omitted and the assumptions are referred
to as BDH and decisional BDH respectively. Again, hardness of the BDH implies hardness
of the discrete logarithm problem in G, Ĝ, and Gt. Assume the DLP could be solved in G.
One could easily calculate a from aG, compute a bilinear map e(bG, cĜ) = e(G, Ĝ)bc, and
exponentiate this result by a, which would solve both the BDH problems. Analogously,
the BDH assumption would not hold if the DLP could by solved in Ĝ. Finally, if the DLP

21

3. Mathematical Background

could be solved in Gt, a could be recovered from e(aG, Ĝ) = e(G, Ĝ)a, again solving the
whole BDH. In addition, the decisional BDH assumption in (G, Ĝ) implies that the regular
decisional Diffie-Hellman assumption in Gt holds. Accordingly, parameters of appropriate
size need to be chosen in any of these groups for a pairing-based cryptosystem to stay
secure.

Furthermore, there are several variants of the BDH. Examples for these stronger as-
sumptions are the Bilinear Diffie-Hellman Inversion (BDHI) and the truncated Augmented
Bilinear Diffie-Hellman Exponent (q-ABDHE) assumptions. BDHI assumes hardness of
calculating e(G, Ĝ)1/x from (G, xG, Ĝ, xĜ). The task in the truncated q-ABDHE problem
is to calculate e(G, Ĝ)x

q+1
from (G, xq+2G, Ĝ, xĜ, x2Ĝ, ..., xqĜ).

3.4. Pairing Definition

Having the concepts of groups, (extension) fields and elliptic curves in mind, a concrete bi-
linear map that fulfills the properties mentioned in the previous section can be defined. For
this, the theory on function divisors is needed and therefore explained in Section 3.4.1. Sev-
eral ways to specify the concrete groups used for bilinear maps are shown in Section 3.4.2.
Then, the Tate pairing over elliptic curves is defined in Section 3.4.3. A method to eval-
uate the Tate pairing is presented in Section 3.4.4. The optimal Ate pairing that is later
on used for implementation is explained in Section 3.4.5.

The definitions follow Costello [Cos13, Ch. 3] and Galbraith [Gal06, Ch. IX.2] for divisors
in Section 3.4.1, Costello [Cos13, Ch. 4] for the group definitions in Section 3.4.2, and
Costello [Cos13, Ch. 5] and Galbraith [Gal06, Ch. IX.3-5, IX.7] for the Tate pairing and
the Miller algorithm in Sections 3.4.3 and 3.4.4.

3.4.1. Divisors

Definition 3.28. Let E(Fq) denote the set of points of an elliptic curve E defined over
the algebraic closure of Fq. A divisor on E is a formal sum

D =
∑

P∈E(Fq)

nP (P),

where nP ∈ Z and all but finitely many nP are zero.

Note that the standard parenthesis () is used instead of the square parenthesis [] to
distinguish between the sum of a divisor and a point multiplication. The set of divisors on
E together with the operation of addition forms a group, denoted DivF̂q

(E). Its identity

is the zero divisor, which is defined by nP = 0 ∀ P ∈ E(Fq) and denoted 0. The support
of a divisor D is defined as the set of points P for which nP 6= 0. A divisors degree is
defined as deg(D) =

∑
P nP . Divisors can be used to describe a function f on the elliptic

curve E by their points of intersection.

Definition 3.29. Let f be a non-zero function on the curve E and ordP (f) denote the
multiplicity of f at a point P , which is positive if f has a zero at P , and negative if f has
a pole at P . The divisor of f is then defined as

(f) =
∑

P∈E(Fq)

ordP (f)(P).

22

3.4. Pairing Definition

Obviously, it follows that (fg) = (f) + (g) and (f/g) = (f)− (g). A divisor (f) is zero
if and only if f is a constant. Hence, if (f/g) = 0, the two functions f and g are equal
up to a non-zero scalar multiple, that is, a divisor defines a function f up to a non-zero
scalar multiple. Additionally, the divisor’s degree of any function f on E is zero, which
results from analyzing the function in projective coordinates.

Considering the chord-and-tangent rule from Section 3.2.1, the line ` used for point
addition has three intersections with E, namely P , Q and −(P + Q). Moreover, it has
three poles at O, hence (`) = (P) + (Q) + (−(P + Q)) − 3(O). The mapping of a point
P to a divisor (P)− (O) is a group homomorphism. Two divisors are equivalent, denoted
D1 ∼ D2, if D1 = D2 + (f) for some function f . Consequently, Galbraith [Gal06, Th.
IX.2] defines the following theorem:

Theorem 3.6. Let E be an elliptic curve over the field Fq and D =
∑

P nP (P) be a
divisor with deg(D) = 0. Then D ∼ 0 (i.e., there is a function f such that D = (f))
if and only if

∑
P [nP]P = O on E. A divisor that satisfies this condition is said to be

principal.

Given a divisor D =
∑

P nP (P) of zero degree and a function f , such that (f) and D
have disjoint support, f is evaluated as

f(D) =
∏
P

f(P)nP . (3.6)

Note that f(D) = g(D) if (f) = (g). The condition that (f) and D have disjoint support
is necessary as the function would otherwise evaluate to zero or infinity. If both (f) and
D are defined over a field K, then f(D) ∈ K. To close the section on divisors, the Weil
reciprocity theorem is stated as it is an integral part of many proofs for pairings.

Theorem 3.7 (Weil reciprocity). Given two functions f and g such that (g) and (h) have
disjoint support, then

f((g)) = g((f)),

that is, evaluating f using divisor (g) equals evaluating g using divisor (f).

Nice illustrations of divisors and evaluations of functions using divisors can be found in
the guide by Costello [Cos13, Ch.3].

3.4.2. Group Definition

As indicated in Section 3.3, three groups G, Ĝ, and Gt need to be defined for a bilinear
map. The focus of this section is the definition of both G and Ĝ. Therefore, the n-torsion
mentioned in Definition 3.26 is something that needs a closer look first.

The n-torsion basically consists of all points P ∈ E(Fq) of order n that satisfy the curve
equation. Theorem 3.5 gives a hint on its structure. Generally, its size will be #E[n] = n2.
As the identity O is part of each of the order-n subgroups of the n-torsion, it splits up into
n+ 1 cyclic subgroups of order n. Typically, only one of the subgroups of the n-torsion is
found in the base field E(Fq). To find further of them, the field Fq needs to be extended
to Fqk , where k ≥ 1 is called the embedding degree. This embedding degree k is the least
positive integer such that another point of order n is found in E(Fqk)\E(Fq). There are
several meanings of the embedding degree, for example,

23

3. Mathematical Background

� k is the smallest positive integer such that n | (qk − 1),

� k is the smallest positive integer such that Fqk contains all of the n-th roots of unity

of Fq (denoted µn),

� k is the smallest positive integer such that E[n] ⊂ E(Fqk).

In this context, k > 1 if n | #E(Fq) and n2 - #E(Fq). Once another point of order n is
found in E(Fqk)\E(Fq), the whole n-torsion E[n] = Zn×Zn is found. The illustrations of
the n-torsion by Costello [Cos13, Ch. 4.1] are really recommended to the interested reader.

Two of the n + 1 subgroups of E[n] have special properties. Based on Definition 3.25
(Frobenius endomorphism), the trace map for P ∈ E(Fqk) is defined as

Tr(P) =

k−1∑
i=0

πqi(P).

Let GB denote the single subgroup of E[n] which is in E(Fq), that is, k > 1. Then,
the trace map maps all elements in the n-torsion to elements in the base-field group GB.
However, there is one subgroup, the trace zero group T , where the trace map transfers
any element to O. The other way round, the anti-trace map P ′ = [k]P − Tr(P) can be
used to map to T . More formally,

� GB = E[n] ∩Ker(πq − [1]), and

� T = {P ∈ E(Fqk)[n] : Tr(P) = O}.

G and Ĝ can be defined to be any of the order-n subgroups of E[n]. Depending on which
subgroups are used, different types of pairings are specified. However, G and Ĝ must not
be the same subgroup of E[n] as the bilinear map would otherwise become degenerate.
The following should give a short overview on the four different types of pairings:

Type-1 Pairing. The only type of pairing that uses supersingular curves is the type-1
pairing. The two groups G, Ĝ are set to be G = Ĝ = GB. In this case, there exists an
efficiently computable map to map elements out of GB, the so-called distortion map.
This map is applied to the elements of one of these two groups for the pairing not
to become degenerate. Obviously, there is an efficient homomorphism ψ : Ĝ 7→ G,
namely the identity. Hashing to either of these groups does not state a problem.
Drawback of type-1 pairings is the difficulty to find curves that are suitable for
efficient pairings.

Type-2 Pairing. As for type-3 and type-4 pairings, the type-2 pairing uses ordinary elliptic
curves. The group G is chosen to be GB and Ĝ is chosen to be any of the n − 1
subgroups of E[n] that is neither GB nor T . The trace map constitutes an efficiently
computable homomorphism that maps from Ĝ to G. However, an efficient way to
hash into Ĝ is unknown. A point multiplication with the respective generator is the
only solution, which is generally not satisfactory.

Type-3 Pairing. In this type of pairing, G is set to be GB and T is used for Ĝ. As there is
no efficient way to map out of T , this type of pairing lacks an efficient homomorphism
that maps from Ĝ to G. Instead, hashing to both G and Ĝ is efficiently possible.

24

3.4. Pairing Definition

Type-4 Pairing. As for the other types, G is chosen to be GB. The whole n-torsion E[n]
is chosen for Ĝ, which is a group of order n2. Hashing in one particular subgroup of
Ĝ is not possible. Hashing to Ĝ is feasible in general, but not very efficient.

Another introduction to the different types of pairings is given by Galbraith, Paterson,
and Smart [GPS08].

3.4.3. Tate Pairing

As indicated in the previous section, E(Fqk) contains all elements of the n-torsion E(Fq)[n],
where k denotes the embedding degree. The subgroup nE(Fqk) is defined as

nE(Fqk) = {[n]P : P ∈ E(Fqk)}.

The subgroup nE(Fqk) has order h = #E(Fqk)/n2, which is the cofactor that is used to
map an element from E(Fqk) to the n-torsion group E[n]. Similar to the definition of
equivalence classes in Section 3.1.1, a group consisting of n2 different residue classes of
order h can be defined as E(Fqk)/nE(Fqk), shortly denoted E/nE. The quotient group
E/nE is simply the set of equivalence classes of points in E(Fqk) under the equivalence
relation P1 ≡ P2 if and only if P1 − P2 ∈ nE.

The groups E[n] and E/nE have the same number of points, namely n2. It is not
necessarily the case that the elements from E[n] can be used to represent the residue classes
of E/nE. However, in general E[n] ∩ E/nE = {O} if n2 ||#E(Fqk), which was shown by
Galbraith [Gal06, Th. IX.22] for the supersingular case. Therefore, E[n] can be used to
represent the cosets of E/nE. If this were not the case, the pairing in Definition 3.30
would become degenerate.

By definition, [n]P = O for a given point P ∈ E(Fqk)[n]. It results from Theorem 3.6,
that there must exist a function that satisfies (f) = n(P)− n(O). Consequently, Costello
[Cos13, Def. 5.2] defines the Tate pairing as follows:

Definition 3.30. Let P ∈ E(Fqk)[n], f be a function with divisor (f) = n(P) − n(O),
and Q = E(Fqk) be any representative of any equivalence class in E(Fqk)/nE(Fqk). Let
DQ be a divisor of zero degree defined over E(Fqk) which is equivalent to (Q)− (O) and
has disjoint support to that of (f). Then, the Tate pairing is a map

tn : E(Fqk)[n]× E(Fqk)/nE(Fqk) −→ F ∗qk/(F
∗
qk)n,

defined as

tn(P,Q) = f(DQ).

The definition of the quotient group F∗
qk
/(F∗

qk
)n is similar to the definition of

E(Fqk)/nE(Fqk) : (F∗
qk

)n is a subgroup of F∗
qk

and defined as (F∗
qk

)n = {un : u ∈ F∗
qk
}.

Consequently, F∗
qk
/(F∗

qk
)n denotes the set of all equivalence classes of elements in F∗

qk
un-

der the equivalence relation u1 = u2 if and only if u1/u2 ∈ (F∗
qk

)n. The quotient group

F∗
qk
/(F∗

qk
)n is isomorphic to µn = {u ∈ F∗

qk
: un = 1}, the set of all n-th roots of unity.

However, the Tate pairing from Definition 3.30 is not practical for cryptography. It
maps to an equivalence class rather than to an exact value. The reason for this lies within
the choice of DQ and that fact that Q is merely any representative of the respective
equivalence class. To obtain an exact value, the resulting value in F∗

qk
/(F∗

qk
)n needs to be

25

3. Mathematical Background

raised to the power of (qk − 1)/n, which eliminates all n-th powers and maps to an exact
n-th root of unity in µn. This allows definition of the reduced Tate pairing over finite
fields [Cos13, Def. 5.3]:

Definition 3.31. Given P , Q, f and DQ as in Definition 3.30. The reduced Tate pairing
over finite fields is a map

Tn : E(Fqk)[n]× E(Fqk)/nE(Fqk) −→ µn,

defined as

Tn(P,Q) = tn(P,Q)
#F

qk
/n

= fn,P (DQ)(q
k−1)/n

Consequently, Gt is defined to be µn.

3.4.4. Miller Algorithm

From Definition 3.31 it is known that computing a pairing is basically evaluating a function
f with divisor (f) = n(P)−n(O). For small values of n, it may seem feasible to construct
such a function f and evaluate the value of f in DQ using Equation 3.6. For large n,
which is the case for cryptographic applications, this is unpractical though. Miller [Mil04]
found an algorithm to evaluate such a function f in polynomial time.

According to Theorem 3.6, there must exist a function fi,P with divisor

(fi,P) = i(P)− ([i]P)− (i− 1)(O),

that is uniquely defined up to a constant multiple. For a point P ∈ E[n], the divisor
obviously simplifies to (fn,P) = n(P)− n(O), which is exactly what is needed.

The divisor (fi+1,P) − (fi,P) = (P) + ([i]P) − ([i + 1]P) − (O) equals the function
`[i]P,P /ν[i+1]P , where `[i]P,P denotes the line through [i]P and P , and ν[i+1]P denotes the
vertical line through [i+1]P , that is, the lines used in the computation of [i]P+P = [i+1]P
(see Section 3.2.1 and Section 3.4.1). This observation leads to the relations

fi+j,P = fi,P fj,P
`[i]P,[j]P

ν[i+j]P
, and

f2i,P = f2i,P
`[i]P,[i]P

ν[2i]P
,

which can in turn be used to express fn,P recursively in a double-and-add approach, namely
the Miller algorithm. Its starting point is (f0,P) = 0, that is, a function f defined by an
arbitrary constant value not equal to zero. A concrete instance of the Miller algorithm
can be found in Section 6.2.4.

3.4.5. (Optimal) Ate Pairing

The Tate pairing can come in different settings as explained in Section 3.4.2. It turned
out, that the type-3 pairing is the most efficient, that is, G = E[n] ∩ Ker(πq − [1]) and

Ĝ = T = {P ∈ E(Fqk) : Tr(P) = O} = E[n] ∩Ker(πq − [q]). The Ate pairing, which was
first defined by Hess, Smart, and Vercauteren [HSV06], evolved from both the Tate pairing

26

3.5. Pairing-friendly curves

and the Eta pairing over supersingular curves (see Barreto et al. [Bar+04] for details on
the Eta pairing). For the Ate pairing, the two groups G and Ĝ as defined above are used,
that is, the two eigenspaces of the trace of frobenius. In the pairing definition itself, the
two groups are then switched, that is, Ĝ×G −→ µn.

Vercauteren [Ver10, Ch. 2.2] derives the concrete mapping by raising the fixed result
from the reduced Tate pairing by a constant m = (λk−1)/n ∈ Z, which still gives a bilinear
pairing, and trying to achieve a small constant λ = q mod n for the Miller function fλ,Q
by using the fact that multiplication by q does affect elements from Ĝ, but not elements
in G. Consequently, the Ate pairing, that is given by

aλ : Ĝ×G −→ µn : (Q,P) −→ fλ,Q(P)(q
k−1)/n,

results in a value that is a fixed power of the corresponding reduced Tate pairing. Details
on how to find an optimal λ to reduce the effort of computing the Miller function as well
as concrete examples are given by Vercauteren [Ver10, Ch. 3, Ch.4].

3.5. Pairing-friendly curves

Menezes [Men05] points out that only a small part of all the existing elliptic curves are
suitable for pairing-based cryptography as several properties need to be fulfilled:

� The group order n needs to be a prime divisor of #E(Fq) that is co-prime to q.

� To avoid Pollard’s rho method, n needs to be sufficiently large such that computing
the discrete logarithm in an order-n subgroup of E(Fq) is infeasible.

� The embedding degree k needs to be large enough to avoid index-calculus methods
that could solve the DLP in Fqk .

� On the other hand, k should be small enough to have efficient computations.

All current techniques for finding such ordinary elliptic curves rely on the Complex Multi-
plication (CM) method, which evolved from the results by Morain [Mor87] and Atkin and
Morain [AM93]. The first procedure to generate ordinary elliptic curves of low embedding
degree suitable for pairings was described by Miyaji, Nakabayashi, and Takano [MNT01].
Curves generated by this method are usually called MNT -curves and are particularly ef-
ficient for fields using 160-bit primes. Galbraith [Gal06, Section IX.15.2.] further states
another method, namely the Cocks-Pinch method, that allows construction of elliptic
curves of any embedding degree. Finally, Barreto and Naehrig [BN06] present a method
to construct elliptic curves of prime order n over prime fields Fp with the fixed embedding
degree k = 12. These curves are very often just labeled BN curves. As these are used in
the context of this thesis, the following section shall give an overview on them.

3.5.1. Barreto-Naehrig Curves

Elliptic curves constructed using the method presented by Barreto and Naehrig [BN06]
have gained much popularity as they can be computed efficiently for fields defined using
256-bit primes. These elliptic curves, which are defined over a prime field Fp as E(Fp) :
y2 = x3 + b, automatically have a group of prime order n that is almost the same size as
the prime of the underlying field. The embedding degree with respect to the underlying
field Fp and the group order n is always k = 12. The curves are parameterized in u:

27

3. Mathematical Background

� Field prime p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1.

� Group order: n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1.

� Trace of frobenius: t(u) = 6u2 + 1.

In Section 3.4.5, the two groups G and Ĝ involved in the Ate pairing aλ : Ĝ×G −→ µn
were defined to be in the type-3 setting. For BN curves, the two groups are defined as
G = E(Fp12)[n] ∩ Ker(πp − [1]) ⊆ E(Fp) and Ĝ = E(Fp12)[n] ∩ Ker(πp − [p]) ⊆ E(Fp12).
Written in a simplified notation, this gives an Ate pairing of the form

E(Fp12)× E(Fp) −→ Fp12 . (3.7)

The large elements in Ĝ are not satisfying though. Barreto and Naehrig [BN06, Section
3] propose the compression of points in the group Ĝ to both yield better performance
and smaller element sizes. This is done by using the curve’s sextic twist E′(Fp2). An
element Q ∈ E(Fp12) may then be represented by a point Q′ ∈ E′(Fp2) since there exists
an efficient injective group homomorphism ψ : E′(Fp2) → E(Fp12). Consequently, the
pairing operation can be done by using this homomorphism. On the other hand, non-
pairing operations such as hashing to the group or common curve operations can be done
in the smaller field. Using the twist modifies the rather informal notation of the pairing
from Equation 3.7 to

E′(Fp2)× E(Fp) −→ Fp12 . (3.8)

The sextic twist of the curve E is defined as E′(Fp2) : y′2 = x′3 + b/ξ, where ξ satisfies
that the polynomial z6 − ξ is irreducible in Fp2 [z]. The roots of the polynomial z6 − ξ are
used to both define Fp12 over Fp2 and the elliptic curve’s sextic twist E′. It must be taken
care, that the chosen ξ produces a twist of correct order, that is, n | #E′(Fp2). Otherwise
an easily computable alternative is given by ξ5. For more details on twists in general, the
reader may refer to Costello [Cos13, Ch. 4.3].

Given a root z ∈ Fp12 of the polynomial z6 − ξ, the necessary map is defined as ψ :
E′(Fp2) → E(Fp12) : (x′, y′) 7→ (z2x′, z3y′). Since elements in Fp12 are represented as a
polynomial of the form a5z

5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0, the map is indeed efficient

and avoids any multiplications.
Vercauteren [Ver10, Section 4] gives an optimal Ate pairing for BN curves. Let P ∈

E(Fp) and Q ∈ E′(Fp2), then the optimal Ate pairing over BN curves is defined as

aopt =
(
f6u+2,Q(P) · `[6u+2]Q,πp(Q)(P) · `[6u+2]Q+πp(Q),−πp2 (Q)(P)

)(q12−1)/n
, (3.9)

where u denotes the BN parameter and πpi the i-th frobenius endomorphism.

3.6. Conclusion

This chapter dealt with the mathematical concepts behind identity-based encryption
schemes and should help to get a better feeling for the schemes presented in the next
chapter. Initially, basic algebraic principles such as groups, fields and extension fields
were reviewed. Based on these, groups of elliptic curves over finite fields were defined and
investigated in terms of their structure. Following the introduction to bilinear pairings and

28

3.6. Conclusion

divisors, the ideas from algebra and elliptic curves were used to define the Tate pairing.
A method to evaluate a function that is given by its divisor was given by Miller and op-
timal pairings were presented by Vercauteren. After a short overview on the construction
of suitable elliptic curves, the elliptic curves by Barreto and Naehrig were presented in
detail.

29

4. Identity-Based Encryption Schemes

As introduced in Chapter 2, identity-based encryption seems a promising alternative to
conventional asymmetric cryptography. From the day Shamir [Sha84] proposed the con-
cept, it took 17 years for a satisfactory solution to be published. In 2001, Boneh and
Franklin [BF01] presented the first practical identity-based encryption scheme. It is based
on a bilinear map, a so-called pairing. Following this publication, several more identity-
based encryption schemes were invented. However, there are only a few constructions that
are the centerpiece of all of them.

Drawbacks of these schemes involve complexity, performance and size. They differ
enormously in these terms, and as the goal is to provide identity-based encryption in
constrained environments, these criteria are some of the most important. Nevertheless,
security must not be overseen. For that reason, a clear definition and understanding of
security for IBE schemes is necessary. Since there are many schemes out there, the focus is
on two schemes that were shortlisted during the process of research, that is, two schemes
with promising properties for usage in constrained environments.

This Chapter starts with a definition of the different types of security in Section 4.1.
Consecutively, a historical overview of IBE schemes is given in Section 4.2, leading to the
concrete description of two interesting schemes in Section 4.3 and Section 4.4. These two
schemes are compared in Section 4.5.

4.1. Security Defintion

In order to be able to assess the quality of a cryptographic scheme, it is important to have
clear and precise definitions for their level of security. Especially security proofs make
extensive use of these definitions. In the following, the definitions that are of relevance in
context of identity-based encryption are explained.

Identity-based encryption schemes are typically proven secure by showing that they
are equivalently hard as a problem that is known or thought to be hard. As identity-
based encryption schemes usually involve the computation of bilinear maps, these schemes
are reduced to the Bilinear Diffie-Hellman (BDH) problem or one of its variants. These
problems are thought to be sufficiently hard to solve for an attacker. Depending on the
quality of the proof, it introduces an additive or multiplicative factor of security loss, that
is, given a certain security level of the underlying problem, the identity-based encryption
scheme is by a certain amount less secure. In other words, to attain a desired security level
in the identity-based encryption scheme, a security level correspondingly higher has to be
chosen for the underlying hard problem. A security proof is called tight if the introduced
loss of security is small or can be neglected.

Security proofs can be done using different models. Initially, identity-based encryption
schemes were proven secure in the random oracle model, which is due to Bennett and Gill
[BG81]. According to Chatterjee and Sarkar [CS11], these proofs rely on hash functions
being ideal random oracles, that is, all of these functions are independent and have uni-
formly distributed random output. In reality, there is no hash function that is as ideal as a

31

4. Identity-Based Encryption Schemes

random oracle. Therefore, there is clear doubt that schemes proven secure in the random
oracle model stay secure in the real world. Hence, the main goal is to create security
proofs in the standard model, which do not rely on the output of random oracles.

In the context of identity-based encryption, the level of proven security depends on
the freedom an attacker is adjudicated. In this matter, we distinguish between security
against Chosen-Plaintext Attacks (CPA) and security against Chosen-Ciphertext Attacks
(CCA). Depending on whether the attacker has to confine to a certain identity in advance
or not, two different notions of security, namely security in the selective-identity model
and security in the adaptive-identity model, are defined.

4.1.1. Chosen Plaintext Attack (CPA) Security

Chatterjee and Sarkar [CS11, Section 2.3.2] define security against chosen-plaintext attacks
by playing a game. Involved in this game are an adversary A, an identity-based encryption
scheme SIBE and a challenger. Further, there exists a key-extraction oracle Ok. The game
consists of the following phases:

Setup. Given a security parameter κ, the challenger runs the Setup algorithm of the IBE
SIBE , consecutively returns the public parameters to the adversary A and keeps the
master secret to itself.

Query Phase 1. The adversary A performs a finite number of key-extraction queries to
the oracle Ok, which returns the correct private key given a certain identity. The
adversary is allowed to adaptively choose the identities to be queried. As the Derive
algorithm is typically probabilistic, the algorithm returns different private keys if it
is invoked several times for the same identity.

Challenge. The adversary A creates two messages M0, M1 of equal length and decides
for an identity id that has not been queried during phase 1. Additionally, prefixes
of the chosen identity id must not have been queried. Consecutively, the challenger
randomly picks one of the two messages M0, M1, encrypts it, and returns the corre-
sponding ciphertext C to the adversary A.

Query Phase 2. Similar as in query phase 1, the adversary A adaptively performs key-
extraction queries for different identities. However, the identity picked during the
challenge phase must not be used for such a query.

Guess. At this stage, the adversary makes a guess about which of the two messages M0,
M1 was used to create the ciphertext C.

Consider pcorrect being the probability of the adversary making a correct guess. Then, the
advantage of the adversary is defined as

AdvSIBE
A =

∣∣∣∣pcorrect − 1

2

∣∣∣∣ .
If any t-time adversary A that makes at most q private key-extraction queries has an
advantage AdvSIBE

A ≤ ε, an IBE is said to be (t, q, ε)-secure against an adaptive chosen
plaintext attack, or simply chosen plaintext attack secure. This is also labeled IND-CPA

security, which means that the IBE is indistinguishable under chosen plaintext attacks.

32

4.1. Security Defintion

4.1.2. Chosen Ciphertext Attack (CCA) Security

Similar to security against chosen plaintext attacks in Section 4.1.1, Chatterjee and Sarkar
[CS11, Section 2.3.1] define security against chosen ciphertext attacks playing a game.
Again, there is an adversary A, an identity-based encryption scheme SIBE and a chal-
lenger. In addition to the key-extraction oracle Ok, a decryption oracle Od exists. The
game is defined as follows:

Setup. Given a security parameter κ, the challenger runs the Setup algorithm of the IBE
SIBE , consecutively returns the public parameters to the adversary A and keeps the
master secret to itself.

Query Phase 1. The adversary A performs a finite number of queries to the two oracles
Ok and Od. Key-extraction queries are placed to the key-extraction oracle Ok, which
returns the correct private key given a certain identity. Decryption queries are done
using the decryption oracle Od, which returns the correct plaintext or information
that the ciphertext cannot be decrypted. The adversary is allowed to adaptively
choose the identities to be queried.

Challenge. The adversary A creates two messages M0, M1 of equal length and decides
for an identity id that has not been used in a key-extraction query during phase 1.
Additionally, prefixes of the chosen identity id must not have been queried. Consec-
utively, the challenger randomly picks one of the two messages M0, M1, encrypts it,
and returns the corresponding ciphertext C to the adversary A.

Query Phase 2. Similar as in query phase 1, the adversary A adaptively performs key-
extraction and decryption queries for different identities. However, the identity
picked during the challenge phase must not be used for key-extraction queries and
the decryption oracle must not be invoked for the ciphertext C and the previously
chosen identity id.

Guess. At this stage, the adversary makes a guess about which of the two messages M0,
M1 was used to create the ciphertext C.

If the adversary succeeds with probability pcorrect, the advantage of the adversary to
successfully attack the scheme is defined as

AdvSIBE
A =

∣∣∣∣pcorrect − 1

2

∣∣∣∣ .
Consequently, if any t-time adversary A that makes at most qk private key-extraction
queries and at most qd decryption queries has an advantage AdvSIBE

A ≤ ε, an IBE is said
to be (t, qk, qd, ε)-secure against an adaptive chosen ciphertext attack, or simply chosen
ciphertext attack (IND-CCA) secure.

4.1.3. Selective-Identity and Adaptive-Identity Models

Chatterjee and Sarkar [CS11, Section 2.3.3] point out that two different notions of security
are relevant in context of identity-based encryption:

33

4. Identity-Based Encryption Schemes

Adaptive-identity model This is the standard definition of security. As defined in Sec-
tions 4.1.1-4.1.2, the adversary chooses the identity to be attacked during the Chal-
lenge stage, that is, the adversary can gain arbitrary much knowledge about the
system using key-extraction and decryption queries prior to settling down for an
identity to attack.

Selective-identity model In this model, the adversary has to choose the identity to be
attacked at the very beginning, even before the system parameters are generated.

Obviously, security in the selective-identity model is a weaker notion of security than it is
in the adaptive-identity model. It neglects the fact that an attacker could learn something
about the secrets of any identity using the knowledge gained from other identities. As
the identity needs to be fixed prior to the setup of the system, Chatterjee and Sarkar
[CS11, Section 5.3] conclude that the concrete setup might depend on the identity being
under attack. Consequently, security for a certain identity might be ensured by choosing
an appropriate setup of the system. In other words, the selective-identity security model
ensures that one particular identity is secured by the setup of the system, blinding out
the many others. The security model does not tell anything about the security of them,
meaning, it is not assured. However, it does not say that there is a security problem with
these identities.

4.2. (Historic) Overview

The problem of Identity-Based Encryption (IBE) was first posed by Shamir [Sha84] in
1984. It took until 2001 for the first satisfying solution to be presented by Boneh and
Franklin [BF01]. It was proven to be adaptive-identity IND-CCA secure in the random
oracle model. Following the ideas of Katz and Wang [KW03], Attrapadung et al. [Att+05]
adapted the Boneh-Franklin scheme, which allowed them to present a tighter security
reduction. Gentry and Silverberg [GS02] published the first Hierarchical Identity-Based
Encryption (HIBE) scheme by modifying the scheme from Boneh and Franklin.

In 2003, Sakai and Kasahara [SK03] published an identity-based encryption scheme
with clear advantages in performance, but it took until 2005 for a proof of security in
the random oracle model to appear. Unfortunately, the reduction in the security proof
by Chen and Cheng [CC05] is not tight at all. Based on the Sakai-Kasahara scheme,
an IBE Key Encapsulation Mechanism (KEM) was proposed by Chen et al. [Che+06].
Unluckily, the proof for adaptive-identity IND-CCA security is based on a very strong
hardness assumption.

Boneh and Boyen [BB04a] presented efficient identity-based encryption schemes that are
selective-identity IND-CPA secure in the standard model and adaptive-identity IND-CCA se-
cure in the random oracle model. Canetti, Halevi, and Katz [CHK03, Section 2.2] showed a
generic method that enabled transformation of the Boneh-Boyen schemes to schemes that
are selective-identity IND-CCA secure in the standard model. Moreover, several methods
were presented that can be used to transform a (l+1)-layer HIBE that is IND-CPA secure
into a l-layer HIBE that is IND-CCA secure: Ran Canetti and Katz [RCK03] achieved
this by appending a one-time signature to the ciphertext, while Boneh and Katz [BK04]
attached a Message Authentication Code (MAC) instead. The same transformation ap-
proach can be pursued using the results from Boyen, Mei, and Waters [BMW05], which
exploits features of the ciphertext in the BB1 scheme by Boneh and Boyen [BB04a]. Con-
trary to the former two transformations, Boyen, Mei, and Waters avoided using MACs

34

4.3. Boneh-Boyen IBE-KEM

and signatures. Additionally, the BB1 scheme was modified to attain a selective-identity
IND-CCA secure IBE KEM. Among others, for example the Sakai-Kasahara and the Boneh-
Franklin schemes, the BB1 scheme and its KEM variant were proposed for the future IEEE
P1363.3 standard, which will cover identity-based encryption.

Up to that point, there was no adaptive-identity IND-CCA secure IBE in the standard
model. Boneh and Boyen [BB04b] were the first to provide a solution to this problem.
However, this solution is not practical as it does not perform well as the number of identities
increases. This changed with the results by Waters [Wat05]. In this publication, the first
efficient IBE that is fully secure in the standard model was presented. To attain this,
Waters did a slight modification of the BB1 scheme by Boneh and Boyen to use a special
hash function. The drawback of his solution is the vast memory footprint that results
from the modified hash function: if identities are represented by bit strings of length k,
it takes k elements from the group G as public parameters to define the hash function.
This is shown in detail in Section 4.4.1. The number of elements can be reduced massively
by a factor l as independently presented by Naccache [Nac05] and Chatterjee and Sarkar
[CS06]. This reduces the number of public parameters to be stored and speeds up the
evaluation of Water’s hash function. The price to pay is a security degradation by the
same factor as pointed out in Section 4.4.6.

Another practical IBE that was proven to be fully secure was published by Gentry
[Gen06]. However, its proof relies on a tight reduction to a strong assumption that depends
on the number of queries made by an attacker (truncated q-ABDHE). Therefore, it is not
safe to say that this necessarily means more security as already shown by Cheon [Che06].

Based on Water’s scheme, Kiltz and Galindo [KG06] presented an adaptive-identity
IND-CCA secure IBE KEM. Similarly, Water’s and Gentry’s schemes were adapted by
Kiltz and Vahlis [KV08] using techniques of authenticated symmetric encryption to speed
up their schemes as well as to provide full security proofs.

A new approach, called dual system encryption, was presented by Waters [Wat09].
Security proofs for these IBE schemes significantly differ from the previous and allow both
tight security reductions and compact public parameters while attaining full adaptive-
identity security. However, these schemes are considerably slower.

In consequence of analyzing the world of identity-based encryption schemes, two of them
were shortlisted due to their properties: the BB1 IBE in its KEM variant [IEE08] augurs
good performance, is contained in the draft for the future IEEE P1363.3 standard, has
good security proofs, and is used in practice. Secondly, the IBE KEM by Kiltz [Kil06] made
a good impression due to its full IND-CCA security and its relatively good performance.
Section 4.3 and Section 4.4 explain their details.

4.3. Boneh-Boyen IBE-KEM

The IBE by Boneh and Boyen [BB04a] has gained much attention and is clearly one of the
most efficient IBE schemes. It is proposed for the future IEEE P1363.3 standard [Boy06].
For this purpose, also a KEM version was published. This is clearly favorable as Chapter 2
suggests: when the involved parties have exchanged their session key using the KEM, a
Data Encapsulation Mechanism (DEM) that is based on an efficient block cipher can be
used for transferring the real message. In the following, the scheme is described as by
Boyen [Boy06, Section 5.2]:

35

4. Identity-Based Encryption Schemes

4.3.1. Prerequisites

For the system to work, two groups (G, Ĝ) of prime order n, suitable for a bilinear map
e : G× Ĝ −→ Gt , are needed. Their corresponding generators are G and Ĝ. Additionally,
two cryptographic hash functions are needed:

1. H : {0, 1}∗ −→ Zn to hash the recipients identity, a string of arbitrary length, to a
fixed-range number.

2. H ′ : Gt −→ {0, 1}` to hash an element of the target group to fixed size (` bits) to
obtain a session key.

4.3.2. Setup

The system is set up by the following procedure:

1. Randomly pick three integers α, β, and γ ∈ Zn.

2. Calculate G1 = α ·G and G3 = γ ·G ∈ G.

3. Compute Ĝ0 = α · β · Ĝ ∈ Ĝ and then v0 = e(G, Ĝ0) ∈ Gt.

When these computations are done, the public parameters and the master secret are
defined as follows:

� Public parameters: P = (G,G1, G3, v0) ∈ G3 ×Gt.

� Master secret: Kmaster = (Ĝ, α, β, γ) ∈ Ĝ× Z3
n.

The identity-based encryption scheme is then ready to be used.

4.3.3. Derive

To derive a private key Did = (Did,0, Did,1) ∈ Ĝ× Ĝ for a certain identity id, the following
routine needs to be done:

1. Choose a random value r ∈ Zn.

2. Calculate Did,0 = (αβ + (αH(id) + γ) · r) · Ĝ.

3. Compute Did,1 = r · Ĝ.

As it can be seen, the private key is randomized. Hence, if an identity invokes Derive
several times, different private keys that can be used equivalently for decapsulation are
returned.

4.3.4. Encapsulate

Encapsulation pursues two different goals: creating a random session key and encapsulat-
ing it in a ciphertext C = (C0, C1) ∈ G × G decryptable by a certain identity id. Boyen
[Boy06] states this process as follows:

1. Pick a random value s ∈ Zn.

36

4.4. Kiltz IBE-KEM

Table 4.1.: Configurations of the IBE scheme by Kiltz [Kil06] for asymmetric pairings. A
trade-off between speed and ciphertext size can be done.

Variant Ciphertext space Ciphertext size Encryption Decryption

V1 Ĝ× Ĝ big slow fast
V2 G×G small fast slow

V3 Ĝ×G big medium fast

2. Generate the random session key K = H ′(vs0) ∈ {0, 1}`.

3. Compute C0 = s ·G.

4. Calculate C1 = s ·G3 + (s ·H(id)) ·G1.

4.3.5. Decapsulate

Decapsulating the ciphertext C = (C0, C1) ∈ G × G given the private key Did =
(Did,0, Did,1) ∈ Ĝ× Ĝ of the identity id consists of solely calculating

K = H ′(e(C0, Did,0)/e(C1, Did,1)) ∈ {0, 1}`.

4.3.6. Security

The scheme by Boyen [Boy06] is proven to be secure against selective-identity chosen-
ciphertext attacks in the standard model (sID-IND-CCA security). At the same time, there
is a proof for security against adaptive-identity chosen-ciphertext attacks using random
oracles (IND-CCA security). The scheme is based on “commutative blinding”. According
to Boyen [Boy06, A.2.1], security proofs for schemes like this make use of random oracles,
but the schemes can also achieve full security in the standard model.

Security is proven by assuming security of the decisional Bilinear Diffie-Hellman (BDH)
problem, which is the weakest of all BDH assumptions. Consequently, the attack by Cheon
[Che06] does not pose a problem for the scheme. Considering that at most q private key-
extraction queries can be made by an adversary, security of the scheme reduces by a
factor of q, respectively log2 q bits, relative to the security of underlying BDH problem. A
typical assumption for q is 230. Additionally, the security of this scheme relies on a data
encapsulation mechanism with integrity checks. For that purpose, a MAC can be used.

4.4. Kiltz IBE-KEM

Analogously to Boyen [Boy06] in Section 4.3, Kiltz [Kil06] presents an identity-based en-
cryption KEM-DEM construction that is based on the previous work by Kiltz and Galindo
[KG06], which merely comprises a KEM part. Viewing the system as a full KEM-DEM
has some advantages with respect to performance as the integrity check is delegated to the
DEM part. The original paper states the scheme in a setting usable for symmetric pairings.
However, Kiltz [Kil06, Section 7.2] points out the advantage in performance and ciphertext
size when utilizing asymmetric pairings and proposes three different configurations in the
asymmetric setting, namely V1,V2 and V3, shown in Table 4.1.

37

4. Identity-Based Encryption Schemes

As small ciphertexts and fast encryption seem favorable for constrained environments,
setting V2 was chosen and is presented in the following.

4.4.1. Prerequisites

Two groups (G, Ĝ) of prime order n that are suitable for a bilinear map e : G× Ĝ −→ Gt

are needed. Their corresponding generators are G and Ĝ.

For the system to work, a special hash function, first introduced by Waters [Wat05], is
needed. Let this hash function be denoted Hid as it is used for hashing an identity string id
of fixed length k to G. Given k+ 1 random elements H = {H0, H1, ...,Hk−1, Hk} ∈ Gk+1,
the hash function is defined as

H(id) = H0 +

k∑
i=1

idi ·Hi,

where idi denotes the i-th bit of the identity string id. Accordingly, the elements Ĥ =
{Ĥ0, Ĥ1, ..., Ĥk−1, Ĥk} ∈ Ĝk+1 are used to define a second hash function Ĥ(id) of the same
type.

Additionally, a target collision resistant hash function TCR : G→ Zn is needed. Boyen,
Mei, and Waters [BMW05, Appendix C] give an efficient way to built such a function for
bilinear maps defined over elliptic curves. However, a common cryptographic hash function
may be used instead.

4.4.2. Setup

The setup of the system is done by the following routine:

1. Randomly pick two integers α and u ∈ Zn.

2. Calculate Â = α · Ĝ, U = u ·G, and Û = u · Ĝ.

3. Prepare the constants for Waters’ hash:

a) Generate k + 1 random numbers t0, t1, ..., tk−1, tk ∈ Zn.

b) Calculate H = {H0, H1, ...,Hk−1, Hk} = {t0G, t1G, ..., tk−1G, tkG} ∈ Gk+1.

c) Compute Ĥ = {Ĥ0, Ĥ1, ..., Ĥk−1, Ĥk} = {t0Ĝ, t1Ĝ, ..., tk−1Ĝ, tkĜ} ∈ Ĝk+1.

4. Prepare the parameter z = e(G, Â).

Consequently, the IBE scheme is ready-to-use and comprises the following parameters:

� Public parameters: P = (H, Ĥ, U, Û , z) ∈ Gk+1 × Ĝk+1 ×G× Ĝ×Gt.

� Master secret: Kmaster = (Â) ∈ Ĝ

4.4.3. Derive

Given a certain identity id, the subsequent steps need to be performed to derive its private
key Did = (Did,0, Did,1, Did,2) ∈ Ĝ3.

1. Randomly pick a number s ∈ Zn.

38

4.4. Kiltz IBE-KEM

2. Compute Did,0 = Â+ s · Ĥid(id).

3. Calculate Did,1 = s · Ĝ.

4. Compute Did,2 = s · Û .

As also stated for the IBE by Boneh and Boyen [BB04a], the process of key derivation
is randomized.

4.4.4. Encapsulate

The encapsulation routine creates a random session key and encapsulates it in a ciphertext
C = (C0, C1) ∈ G×G that is only decryptable by a certain identity id. According to Kiltz
[Kil06], this is done as follows:

1. Pick a random number r ∈ Zn.

2. Generate the random session key K = zr ∈ Gt.

3. Calculate C0 = r ·G.

4. Derive a parameter t = TCR(C0).

5. Compute C1 = r · (t · U +Hid(id)).

4.4.5. Decapsulate

Decapsulating the ciphertext C = (C0, C1) ∈ G × G given the private key Did =
(Did,0, Did,1, Did,2) ∈ Ĝ3 of the identity id is done by the following steps:

1. Derive the parameter t = TCR(C0).

2. Randomly pick a number v ∈ Zn.

3. Compute X̂0 = Did,0 + t ·Did,2 + v · (Ĥid(id) + t · Û).

4. Calculate X̂1 = v · Ĝ+Did,1.

5. Compute the session key K = e(C0, X̂0)/e(C1, X̂1) ∈ Gt.

4.4.6. Security

For the scheme by Kiltz [Kil06], security against adaptive-identity chosen-ciphertext at-
tacks is proven in the standard model (IND-CCA security). Security reduces to a modified
Decisional Bilinear Diffie-Hellman (mBDDH) problem, which is almost the same as the
original decisional BDH. In contrast to the latter, the mBDDH offers an additional term
b2 ·G to be used to solve the decisional BDH. This term is generally hard to compute given
b ·G. As this assumption is indeed very similar, the attack by Cheon [Che06] should not
become viable. Considering that at most q private key-extraction queries can be made
by an adversary and the length of the identity strings is k bits, security of the scheme
reduces by a factor of q · 2k relative to the security of underlying mBDDH problem, which
is equivalent to log2 q + k bits.

39

4. Identity-Based Encryption Schemes

As this scheme obviously comes with a large set of public parameters, it might be
desirable to reduce its size. As mentioned in Section 4.2, Naccache [Nac05] presented a
solution to this problem, which reduces the number of elements needed for Waters’ hash
by a factor of `. For that purpose, the k-bit long identity strings are reinterpreted as
v = (v1, ...vk′). Each vi is ` bits long. Then, the hash is computed as follows:

H(ID) = H0 +
k′∑
i=1

vi ·Hi

Consequently, less elements are needed as public parameters and the evaluation of the hash
function becomes faster. However, security also reduces by another factor of 2`, leading
to an overall loss of 2`q2k.

According to Bentahar et al. [Ben+08], a hybrid encryption scheme is secure against
chosen ciphertext attacks if both KEM and DEM are secure against chosen-ciphertext
attacks. Secure DEMs can be built from a symmetric encryption scheme by adding a
MAC. Kiltz [Kil06, Section 5] states that the overhead of a MAC can be avoided by using
the CMC [HR03] or EMC [HR04] modes of operation. Deriving random session keys of
appropriate size as well as using identity strings of arbitrary length need additional hash
functions, which may have impact on the proof and type of security.

4.5. Comparison

Sections 4.3 and 4.4 introduced the KEM-DEM configuration two different identity-based
encryption schemes in more detail. To be able to decide on which scheme to use, a com-
parison of these two schemes based on several characteristics seems suitable: performance,
memory, and security.

Table 4.2 gives an overview on the number of operations involved in the four basic algo-
rithms Setup, Derive, Encapsulate, and Decapsulate for the two mentioned schemes. Typ-
ically, operations in G are the fastest, followed by operations in Ĝ. Also, point additions
in these groups are generally significantly faster than their multiplication counterparts.
Depending on the concrete definition of G, Ĝ and the bilinear map e, exponentiations in
Gt are often more expensive than the computation of a pairing. In addition, pairings are
typically slower than a multiplication in Ĝ. Ratios of pairings are assumed to take 50%
longer than a simple pairing as the algorithm allows some optimizations in this case.

As it can be seen, the routines Derive and especially Setup involve more operations for
the scheme by Kiltz, that is, the two routines are slower in this case. However, these are
performed at the trusted third party. There, performance is not as critical as it is for the
Encapsulate and Decapsulate routines that are executed in the constrained environment.
Additionally, Setup is only executed once. Hence, these performance-related drawbacks are
not of great importance for our purpose. Considering Encapsulate, the two schemes differ
only in a multiplication in G, giving the scheme by Boyen a small advantage. However, the
dominant factor for Encapsulate seems the exponentiation in Gt. A different view reveals
when investigating the Decapsulate routine. Boyen’s scheme simply calculates a ratio of
two pairings, while Kiltz’s scheme additionally takes several additions and multiplications
in Ĝ. This has significant impact on runtime which might not be tolerable on devices
already lacking performance.

In terms of memory footprint, a look at the number of elements in each of the groups
G, Ĝ, and Gt is necessary. Elements in G are the smallest, while elements in Ĝ and Gt

40

4.5. Comparison

Table 4.2.: Overview of the relevant operation counts involved in the two considered
schemes.

G Ĝ Gt G× Ĝ
Add Mul Add Mul Exp Pairing

Boyen [Boy06]
Setup 2 1 1
Derive 2a

Encapsulate 1 3 1
Decapsulate 1.5

Kiltz [Kil06]
Setup k+1b k+3 b 1
Derive 1 4c

Encapsulate 1 4c 1
Decapsulate 4 5c 1.5

aTwo consecutive point multiplications are simplified to one by multiplying the scalar values modulo n.
bk denotes the fixed length of the identity strings, for example, k=8 if 256 identities should be supported.
cHashing the identity is counted as one multiplication.

are significantly larger. Their actual sizes depend heavily on the concrete definition of the
groups and the bilinear map being used. For the BN curves from Section 3.5.1, elements
in Ĝ and Gt are respectively twice and six times larger than elements in G. An overview
of the number of elements needed in the considered schemes is given in Table 4.3. The
ciphertext is small in both cases, which is good to keep communication overhead low. The
private keys of the scheme by Kiltz are larger by a third, which does not seem a big issue.
The master secret, however, is clearly bigger for the scheme by Boyen. The main drawback
of Kiltz’s scheme is the size of its public parameters. While this may not be a problem
for a high-level application, it is clearly unfavorable for systems designed to be as small
as possible.

The last important aspect to look at is security. Both schemes are designed as hybrid
KEM-DEM construction and rely on an integrity check by the DEM, which seems legit-
imate. Security proofs assume hardness of (a slight variation of) the decisional bilinear
diffie-hellman problem for both of the schemes, avoiding exposure to the attack presented
by Cheon [Che06]. However, the type of security assured differs: Kiltz [Kil06] offers full
adaptive-identity IND-CCA security in the standard model, while Boyen [Boy06] can of-
fer this only using random oracles. Nevertheless, in the standard model it still achieves
selective-identity IND-CCA security. The two schemes have a common basis as the scheme
by Kiltz has evolved from Boyen’s scheme. Their difference that is reflected in their types
of security is also seen in the security loss introduced by the schemes. Relative to the
underlying hard problem, Kiltz’s scheme introduces an additional loss of k bits compared
to Boyen, where k denotes the length of the identity strings involved. Chatterjee and
Sarkar [CS11, Section 5.3] points out, that this seems to be the price to be paid for as-
suring security for adaptive identities. Accordingly, this factor further suggests that even
the weakest notion of security in the adaptive-identity model offers more security than
strongest notion of security in the selective-identity model. The security loss in Kiltz’s
scheme is even increased if the hash function being used is adapted to reduce the number
of elements in the public parameters as shown by Naccache [Nac05].

41

4. Identity-Based Encryption Schemes

Table 4.3.: Overview of the sizes of keys, parameters and ciphertexts in the two considered
schemes.

Zn G Ĝ Gt

Boyen [Boy06]
Ciphertext 2
Public parameters 3 1
Private key 2
Master secret 3 1

Kiltz [Kil06]
Ciphertext 2
Public parameters k+2a k+2a 1
Private key 3
Master secret 1

ak denotes the fixed length of the identity strings.

For our goal of establishing identity-based encryption in constrained environments, run-
time and memory footprint of both constants and variables seem the most important
aspects. In addition, the previous discussion on the security of these schemes suggests
that their difference in these terms is merely a trade-off between assured security, mem-
ory, and runtime. As a consequence of both, we decided to implement the scheme by
Boyen. Additionally, this scheme is contained by the draft of the future IEEE P1363.3
standard on identity-based encryption and is used in practice by Voltage Security [Vol13],
which also adds a slight advantage to the scheme.

4.6. Conclusion

This chapter focused on the various forms of identity-based encryption schemes. For
understanding their differences, the several forms of security for identity-based encryption
schemes were defined. In a chosen-plaintext attack, an adversary is allowed to do key-
extraction queries, but cannot make decryption queries to a corresponding oracle prior
to making a guess about the message being encrypted. In a chosen-ciphertext attack,
an adversary can additionally make decryption queries. In a selective-identity model, the
adversary has to define the identity to be attacked prior to system setup, while this is done
in an adaptive-identity model when the challenge is issued. Further, some of the schemes
rely on random oracles, which do not exist in reality. For that reason, security proofs in
the standard model are preferred.

Following this, an overview on the existing IBEs was given. Two of them [Boy06; Kil06]
were discussed in more detail due to their interesting properties. Favorably, both offer
small ciphertext sizes. Their sizes are according to Kiltz [Kil06, Section 5] comparable to
the most efficient public-key encryption schemes secure in the standard model. However,
their detailed comparison shows clear advantages for the scheme by Boyen [Boy06] in
constrained environments as a consequence of expected runtime and public parameter
size. For that reason, and despite its weaker notion of security, it is chosen for the target
platform to be implemented.

42

5. Side-Channel Attacks

The main goal of this thesis is to deploy an identity-based encryption scheme to an em-
bedded platform. Whenever cryptographic applications are established in such an envi-
ronment, one has to consider physical attacks too. In the embedded scenario, attackers
may have full access to the device they wish to attack, and consequently may do any-
thing they like with it in order to compromise its security. In this respect, security of the
cryptographic algorithm is widened by the facet of secrecy of the used keys.

To be able to protect the used keys in the identity-based encryption scheme, the most
relevant types of physical attacks are reviewed in this Chapter. Based on this, the goals
for physical security can be defined. Section 5.1 gives a categorization of physical attacks.
Passive attacks are covered in Section 5.2 and one particularly interesting active attack is
shown in Section 5.3.

5.1. Overview

Physical attacks can be distinguished by two criteria. Based on the first criteria, Mangard,
Oswald, and Popp [MOP07] state the following types of attacks:

� Passive Attacks: The device is operated within its specification, for example, analysis
of power consumption, electromagnetic emission, or execution time.

� Active Attacks: The device is forced to behave abnormally by manipulating the
device itself, its input, or its environment. The goal is to exploit the abnormal
behavior to reveal the key.

Based on the second criteria, each attack can be considered being one of the following:

� Invasive Attacks: In this case, there are no limits to what is done with the device
in order to reveal its key. This includes depackaging and directly accessing single
components of the device using for example a probing station.

� Semi-Invasive Attacks: As in invasive attacks, the device is depackaged. However,
there is no direct electrical contact made during the attack, for example, optical
attacks.

� Non-Invasive Attacks: In this type of attack, the device is kept as it is and only the
directly accessible interfaces are used.

Combining the two criteria, side-channel attacks are defined as passive, non-invasive at-
tacks. This means that the device is kept as it is and is only accessed through external
interfaces. Additionally, no faults are induced to reveal the key. In a similar manner,
fault analysis is defined. This type of attack is always active as the goal is to exploit
the induced abnormal behavior of the cryptographic device. These attacks can be inva-
sive, semi-invasive, or non-invasive. For example, if faults are induced by clock or power

43

5. Side-Channel Attacks

glitches, the attack is non-invasive. The attack is semi-invasive if depackaging is necessary,
for example, if x-rays or light flashes are used to alter single bits in memory cells. If faults
are induced using an electric probe, the attack is invasive.

In the context of this thesis, the one goal is to secure the application against side-channel
attacks. The remaining of this chapter shall give an overview on the most common. For
a more comprehensive overview the reader may have a look at the survey by Fan and
Verbauwhede [FV12].

5.2. Passive Attacks

5.2.1. Timing Attacks

The concept of timing attacks was first presented by Kocher [Koc96]. Here, the fact that
the runtime of the implementation of the cryptographic algorithm depends on data and key
is exploited. The reasons for this are branching, conditional statements, and performance
optimizations on a higher level. On a lower level, instructions performed by the CPU, for
example, multiplications, may have a data-dependent runtime.

For example, if a certain bit of the key is set, the cryptographic algorithm’s runtime
may be longer than otherwise. Similarly, the algorithm’s runtime may vary for different
data inputs. Consequently, for a given key hypothesis, the measured runtimes for different
inputs can be separated into two sets according to the expected runtime. If the means
of those two sets are very close, the key hypothesis was very probably wrong, otherwise
right. Such an attack can be easily counteracted by adapting all algorithms to have
constant runtime. An example for a routine that has runtime dependent on a secret value
k is given with Algorithm 1. A simple countermeasure that yields constant runtime is
shown in Algorithm 2.

5.2.2. Simple Power Analysis

In Simple Power Analysis (SPA) attacks, the goal is to reveal the key of a cryptographic
device by measuring its power consumption during one or a small number of runs. The
cryptographic algorithm might be performed with the same input or with different inputs.
When performing several runs using the same input, noise can be reduced by calculating
the mean. The basic idea behind SPA attacks is to find key-dependent patterns within
the power traces.

One tries is to derive the key from the power trace by analyzing it visually. It is based
on the fact, that different operations and instructions during the execution of the cryp-
tographic algorithm cause different patterns in the power trace, for example, instructions
involving memory may take more clock cycles than others. If the sequence of instructions
depends on the key and if the sequence of instructions can be derived from the power
trace, the key is leaked. This can be counteracted by yielding constant runtime, since
such algorithms have regular power traces that do not leak information when inspecting
them visually.

An example is given by the basic square-and-multiply exponentiation in Algorithm 1.
The multiplication in Line 4 is only executed if the i-th bit of the secret exponent k is
set. If the attacker is able to distinguish between squarings and multiplications in the
power trace, the secret key is easily revealed. One simple countermeasure is to introduce
a dummy operation as shown in Algorithm 2. This algorithm is simply called square-and-

44

5.2. Passive Attacks

Algorithm 1 Square-and-multiply exponentiation in Fp.
Input: g ∈ Fp, k = (kt−1, ..., k1, k0)2 ∈ N
Output: y = gk ∈ Fp
1: r ← 1
2: for i = t− 1 downto 0 do
3: r ← r2

4: if ki = 1 then r ← r · g
5: end for
6: return r

multiply-always. Due to the multiplication on Line 7, runtime is constant if and only if
kt−1 = 1. Execution of the algorithm always consists of the same sequence of squarings
and multiplications, hence being not vulnerable to SPA attacks.

Algorithm 2 Square-and-multiply-always exponentiation in Fp.
Input: g ∈ Fp, k = (kt−1, ..., k1, k0)2 ∈ N
Output: y = gk ∈ Fp
1: r ← 1
2: for i = t− 1 downto 0 do
3: r ← r2

4: if ki = 1 then
5: r ← r · g
6: else
7: d← r · g
8: end if
9: end for

10: return r

5.2.3. Template Attacks

Similar to SPA attacks, template attacks try to derive the secret key by creating only one
or a small number of power traces from the cryptographic device that is under attack.
Contrary to SPA attacks, the process consists of two steps. In the first step, templates are
created. These templates are simply power traces created for each pair of key and data.
In order to create these, the attacker must possess a device of the same type that is under
the attackers full control. Otherwise, the attacker is not able to create power traces for all
pairs of key and data. In the second step, the templates are used to figure out the key being
used on the attacked device. For this purpose, a power trace is measured from the device
under attack. For each of the templates the probability that the recorded power trace
belongs to this template is calculated. The maximum probability then reveals the used
key. The number of pairs of possible keys and data is huge. Therefore, usually templates
for intermediate values, which are calculated from pairs of keys and data, or templates
for power models are used. Note that template attacks are very powerful attacks, as the
results by Herbst and Medwed [HM09] and Medwed and Oswald [MO09] show.

45

5. Side-Channel Attacks

5.2.4. Differential Power Analysis

In Differential Power Analysis (DPA), the goal is to reveal the key of a cryptographic
device by measuring a large number of power traces using different inputs. Its basic idea
is to analyze the data-dependent power consumption of the device at a fixed moment of
time based on a large number of power traces. For this purpose, a concrete intermediate
value of the executed algorithm is chosen to be attacked. This value should both depend
on the processed input data and the unknown key. For every combination of k possible
keys and n different data inputs, the hypothetical intermediate value is computed and
mapped to a power model, for example, the hamming weight model, which simply counts
the number of bits set to one. Next, power traces of length t for the n different data
inputs are recorded. In the last step, the hypothetical power-consumption is compared to
the real power-consumption using statistical methods, for example, Pearson correlation.
For each of the k keys, the correlation with each of the t samples is computed. High
correlation results reveal the used key and the points of time, where the intermediate
value is processed. The typical countermeasure is to make statistical analysis impossible
by introducing randomness into the computation as shown by Coron [Cor99].

The address-bit DPA constitutes a special form of the DPA attack and was first shown
by Itoh, Izu, and Takenaka [IIT03]. In many implementations, the register or memory
addresses used depend on a bit of the secret k. This, for example, is a side-effect of
masking addresses in order to avoid branches. Their attack showed that one can mount
a successful DPA to distinguish whether data is read from or written to either of two
memory locations, hence leaking information on the secret k. The attack still applies for
implementations that randomize input data. One possible countermeasure is to randomize
the secret k.

5.2.5. Comparative Side-Channel Attacks

Comparative side-channel attacks are a mixture of SPA and DPA attacks. Using a single or
a few power traces, correlations between related values reveal the secret key. In particular,
one can decide whether the same value is processed twice without knowing the actual
value. One such attack was presented by Fouque and Valette [FV03], namely the doubling
attack. In this attack, two elliptic curve point multiplications with a secret scalar k are
done as [k]P and [k](2P). By comparing the patterns resulting from the doublings of the
intermediate values in two point multiplication’s power traces, the whole secret k can be
recovered. This is possible, since it depends on the secret key whether the same doublings
are performed for a simple double-and-add implementation (cf. Algorithm 1).

5.2.6. Refined Power Analysis

Goubin [Gou02] introduced the term of refined power analysis, which works for addition-
chains in general, but was presented for elliptic curve point multiplications. In this attack,
the point multiplication [k]P is started with a point P that, under the correct hypothesis
for the key bit ki, leads to one of the special points (x, 0) or (0, y) in step i of the algorithm.
The mean of several traces reveals whether the guess for the key bit ki was correct. Since
the respective coordinate also becomes zero at step i when the algorithm is randomized as
originally suggested by Coron [Cor99], this attack also works for many secured implemen-
tations. The attack was extended to exploit zero values in arbitrary registers by Akishita
and Takagi [AT03].

46

5.3. Active Attacks

5.2.7. Electromagnetic Attacks

Electromagnetic attacks try to reveal the key by analyzing the electromagnetic emissions
of the attacked device. They are basically equal to SPA and DPA attacks, but are referred
to as Simple Electromangetic Analysis (SEMA) and Differential Electromagnetic Analysis
(DEMA). In contrast to the former two attacks, not the power consumption is measured,
but the electromagnetic emission, which is proportional to the power consumption of
the device. An advantage of this attack is that the electromagnetic emission can also
be measured from the distance. The attacker does not necessarily have to possess the
device. Moreover, electromagnetic attacks can be mounted such that the origin of the
electromagnetic emanation on the chip is additionally used to extract information, for
example, one could find out about memory accesses if the radiation originates from the
memory.

5.3. Active Attacks

5.3.1. Safe-Error Analysis

This particularly interesting active attack is both simple and powerful. Yen and Joye
[YJ00][JY03] introduced the concept of safe-error analysis, which exploits the existence
of unnecessary operations that were introduced in order to counteract SPA and timing
attacks. There are two different types of safe-error analysis.

C safe-error analysis. An attacker can learn about the secret value that is being processed
by inducing a fault during a specific operation and checking whether the final result
is correct or not. Assume an attacker can induce a temporary fault in iteration i
during the multiplication in Algorithm 2. If the final result is correct, the dummy
operation on Line 7 was executed. If the final result is wrong, obviously the real
operation on Line 5 was performed. Consequently, the attacker can learn one bit of
the secret k after another simply by checking the correctness of the final result. Joye
and Yen [JY03] showed that a Montgomery ladder can be used as a countermeasure.
The algorithm presented in Algorithm 3 is based on a result by Montgomery [Mon87]
and yields constant runtime. Instead of using dummy operations, it interleaves the
computations of r0 and r1.

M safe-error analysis. Similarly to the C safe-error analysis, an attacker can learn about
the secret value by inducing a fault into a specific memory location and checking
whether the final result is correct or not. The idea behind this is, that memory
locations with induced faults may be cleared and overwritten under conditions, that
depend on a bit of the secret k. This kind of attack is more difficult to perform than
the C safe-error attack.

5.4. Conclusion

An attacker in possession of a device performing cryptographic algorithms has many op-
tions to find out about the secret key being processed. The different types of attacks were
initially categorized, which lead to the definition of side-channel attacks as passive, non-
invasive attacks. Similarly, active attacks that try to exploit abnormal behavior of devices

47

5. Side-Channel Attacks

Algorithm 3 Simple Montgomery ladder exponentiation in Fp.
Input: g ∈ Fp, k = (kt−1, ..., k1, k0)2 ∈ N
Output: y = gk ∈ Fp
1: r0 ← 1; r1 ← g
2: for i = t− 1 downto 0 do
3: r¬ki ← rki · r¬ki ; rki ← r2ki
4: end for
5: return r0

were named fault attacks. Several side-channel attacks, such as timing attacks, simple
and differential power analysis attacks, were explained. These attacks are the easiest and
hence the most important to secure an application against. Fault attacks, such as the pre-
sented safe-error attack, are in general very powerful, but also more difficult to perform
than simple side-channel attacks. For this reason, we decided to protect the identity-based
encryption scheme against the aforementioned variants of side-channel attacks.

48

6. Implementation in an Embedded
Environment

In the previous chapters, an introduction to the concept of identity-based encryption and
the underlying mathematical model was given. As indicated in the very beginning, these
concepts were aimed to be brought into the embedded world. Concerning the implemen-
tation, several goals were initially defined:

� An efficient identity-based encryption scheme should become available for systems
working in embedded environments.

� The identity-based encryption system should be resistant to the most common side-
channel attacks, namely timing, simple power analysis and differential power analysis
attacks.

� Realization of the underlying pairing computation should be state-of-the-art, that
is, it should be competitive with regard to other good implementations.

� Correctness of the implementation shall be assured.

In terms of efficiency, the demand for resources, for example memory, should be low,
because we interpret security as a feature rather than an application. On the other hand,
short runtime is expected. These goals shall be achieved for both the hardware platform
and the software implementation. However, and as it will show in the following, it is a
demanding task to fulfill as the complexity is rather high for an additional feature in an
embedded environment.

The architecture of the implemented system is covered in Section 6.1. The most impor-
tant implementation aspects are part of Section 6.2. The approach to testing is pointed
out in Section 6.3 and the various optimizations done are detailed in Section 6.4.

6.1. Architecture

For the realization of the identity-based encryption system, we decided to use a micro-
processor-based architecture. The main reason for this is that identity-based encryption,
and pairings in general, comprise computations that are very irregular. Even though the
algorithms spend most of the time doing the same computations, the high-level algorithms
would be hard to implement as a state machine in hardware. Such a pure-hardware
implementation would result in a complex structure, very probably with bad critical path,
that is hard to maintain and almost impossible to reuse for other systems that implement
other types of pairings or other pairing-based schemes.

Using a microprocessor, on the other hand, has several advantages. The same micro-
processor can be used for the actual application that is to be deployed in the embedded
environment, hence viewing the security added as a feature which can also be equipped at
a later time. In addition, and this will also be done later on, one can improve such a system

49

6. Implementation in an Embedded Environment

Microprocessor
(Cortex-M0+)

B
us

 C
o n

tr
o l

le
r

Program Memory

U
A

R
T

Data Memory

Rx

Tx

Memory Bus

In
te

rr
u

p
t

Figure 6.1.: Architecture of the implemented hardware platform.

by adding simple instructions that increase performance of heavily used routines, therefore
creating an Application-Specific Instruction-set Processor (ASIP). Further, the software
implementation for the security feature is portable to other systems as well. However,
very often pure hardware implementations are faster than such using a microprocessor.

6.1.1. Hardware

The microprocessor-based hardware platform used for our purpose is illustrated by Fig-
ure 6.1. The design consists of a microprocessor, a program memory, a data memory, a
bus arbiter, and an UART interface for communication. Of course, the communication
interface may be replaced by any other interface suitable for the concrete purpose. The pro-
gram memory is built using ROM macros, yielding low power consumption. Analogously,
the data memory is created from RAM macros. As a microprocessor, the Cortex-M0+ by
ARM was chosen. A clone of this processor was created in previous work by Unterluggauer
[Unt13], which allows to give concrete power measures and reliable area figures.

Cortex-M0+

The Cortex-M0+ is the most energy-efficient microprocessor offered by ARM [Ltd13].
Its main areas of application are microcontrollers, wireless sensor nodes, automotive, and
mixed-signal processing. The 32-bit microprocessor supports a Von Neumann architecture
and a mixed 16-bit and 32-bit instruction-set, namely Thumb and small parts of Thumb-2.
The processor has 16 registers r0-r15, which are 32 bits in size. Three of those registers
have predefined meaning, namely the program counter pc (r15), the stack pointer sp

(r14), and the link register lr (r13). From the remaining 13 registers, merely 8 can
be efficiently used as many instructions are confined to the lower 8 registers r0-r7. In

50

6.1. Architecture

addition, many of the instructions require the destination register to be equal to one of
the source registers. The upper 8 registers r8-r15, apart from the stack pointer, are most
commonly only accessible by a mov instruction.

For efficiency reasons, the calling convention requires the first four parameters of a
function to be passed via the registers r0-r3. Similarly, the return value is also passed
via the first register r0. In case the number of available registers is insufficient for the
function call, the stack is used for any additional parameters.

Several options for customizations are offered by the processor. For example, one can
choose between a 32-cycle bit-serial or a 1-cycle bit-parallel multiplier. In the context
of this thesis, always the 1-cycle bit-parallel multiplier was used as multiplications are
significant for pairing computations. Up to 32 interrupts can be served by the processors
internal interrupt controller. In the configuration used, four interrupts are supported. The
processor offers advanced mechanisms for interrupt handling, that is, it automatically takes
care of pushing the current register values to the stack prior to invocation of the interrupt
service routine. Also, four different priorities may be defined for the interrupts. However,
the identity-based encryption scheme implemented does not make use of them, but the
powerfulness of interrupts on the Cortex-M0+ is clearly an advantage for any embedded
application that is deployed. At the same time, one can resort to state-of-the-art security
features.

The processor, which only has about 12, 000 Gate Equivalents (GE) at 90 nm in its
minimal configuration, supports addressing of up to 4 GB of memory due to its 32-bit
address bus. The address space is split into areas that are dedicated to certain types of
memory, that is, constant program memory, data memory, and memory-mapped devices.
Therefore, the Cortex-M0+ seems adequate for any future application.

6.1.2. Software

The identity-based encryption scheme and the underlying pairing operations were imple-
mented on the hardware architecture arising from the Cortex-M0+ microprocessor. The
architecture of the software implementation is depicted by Figure 6.2. As it shows, the
implementation consists of several layers. The identity-based encryption scheme relies on
a Pseudo Random Number Generator (PRNG) and a hash function, that stand outside
of this layered implementation. As a PRNG, the random number generator stated in the
FIPS 186-2 standard [NIS01, Appendix 3] was used. SHA-256 [NIS12] was taken as the
hash function.

Besides these, the identity-based encryption scheme requires the computation of pairings
and operations in groups of elliptic curves over simple prime fields and its quadratic ex-
tension. The pairing itself again relies on the computation of the elliptic curve operations,
but additionally needs to perform operations in the 12th extension of the prime field being
used. The extension field arithmetic as well as elliptic curve arithmetic is based on the
simpler finite field arithmetic, which in turn uses simple multi-precision integer arithmetic.
The latter is necessary to operate with integers of large width on a processor architecture
with fixed data width.

Contrary to this view, the architecture may be looked at in a bottom-up style, where
one starts with the multi-precision integer arithmetic, builds finite field arithmetic on top
of it, and creates a tower of extensions. With this arithmetic, operations in groups of
elliptic curves and further pairings can be implemented. Finally, everything needed for
the identity-based encryption scheme is ready to use.

51

6. Implementation in an Embedded Environment

Multi-precision integer arithmetic

Arithmetic over �p

Arithmetic over �p²

�p⁴

�p¹²

E(�p²)

E(�p)

Pairing computation
(optimal Ate)

Identity-based encryption
Boneh-Boyen IBE-KEM

Hash: SHA-256

PRNG

Figure 6.2.: Software architecture of the implemented identity-based encryption scheme.

6.2. Implementation Aspects

As pointed out in the comparison of Chapter 4, the BB1 scheme by Boyen in its KEM vari-
ant was implemented. As underlying curve, three different BN curves (see Section 3.5.1)
were used to accomplish different levels of security. For the sake of transparency and
reproducibility, the various parameters found by Pereira et al. [Per+11] are stated as
follows:

BN256 (y2 = x3 + 3)

u : 0x60800000 00040043

p : 0xBA139EC2 401EDC28 FB605C6B 53E289B5 1311ACA0 D477DF46 FEEE89B1 622C349B

n : 0xBA139EC2 401EDC28 FB605C6B 53E289B4 38D02CA0 D465C617 ECEE8951 559BCB65

BN254 (y2 = x3 + 2)

u : -0x40800000 00000001

p : 0x25236482 40000001 BA344D80 00000008 61210000 00000013 A7000000 00000013

n : 0x25236482 40000001 BA344D80 00000007 FF9F8000 00000010 A1000000 0000000D

52

6.2. Implementation Aspects

BN158 (y2 = x3 + 2)

u : 0x00000040 00800023

p : 0x24012003 AF565BE6 394AC09E 1E2D54A0 4C50525B

n : 0x24012003 AF565BE6 394A609C 9E2B6B9F 7A5035A5

As BN curves have embedding degree k = 12, appropriate extension field arithmetic
needs to be implemented, which is already indicated by Figure 6.2. The following sections
shall give an overview on the most important implementation aspects, that is, the structure
and the algorithms used.

6.2.1. Prime Field Arithmetic

Prime field arithmetic comprises addition, subtraction, doubling, halving, inversion, mul-
tiplication and exponentiation. Addition, subtraction, doubling and halving are trivial
modular operations and bascially do not need any further explanation. However, one of
the goals was to attain security against Simple Power Analysis (SPA) attacks, that is,
the routines should perform independent of the data being processed. Therefore, it is
necessary for these operations to always consume the same amount of time. This can be
achieved by always doing the reduction step. Since branches must be avoided, masking of
operands is used instead. For example, to avoid branches in modular subtraction, one can
use the borrow to build a suitable mask to avoid branches:

Input: a, b
Output: a− b mod p

1: (borrow, s)← a− b
2: if borrow then
3: return s+ p
4: else
5: return s
6: end if

Input: a, b
Output: a− b mod p

1: (borrow, s)← a− b
2: sr ← s+ p
3: maski ← borrow ∀ 0 ≤ i < bitwidth
4: return (sr ∧mask) ∨ (s ∧mask)

Modular multiplication consists of a multiplication and a reduction step. The reduction
step can be done in several ways: a simple loop subtracting the modulus as long as the
result is too large, trial division known as Barrett reduction [Bar87], Montgomery’s method
[Mon85], and fast-reduction techniques. The loop-based approach is clearly inadmissibly
slow. For primes used in the context of BN curves, there are no fast-reduction techniques,
which is why this approach cannot be used. From the remaining two methods, Montgomery
reduction was examined to be the most efficient.

According to Koç, Acar, and Kaliski [KAK96, Section 2], the Montgomery reduction
is very often faster than other methods as it does not involve a division by the prime p.
To perform a Montgomery reduction, for the prime 2k−1 < p < 2k a number r, that is
co-prime to p, is chosen to be 2k. Further, the operands are replaced by their p-residues,
that is, for a given integer a < p, the corresponding p-residue is defined as ā = a · r mod p.
The set {a · r mod p : 0 ≤ a ≤ p−1} is a complete p-residue system that is bijective to the
numbers in range 0 to p− 1. The Montgomery product for two p-residues is then defined
to be

c̄ = ā · b̄ · r−1 mod p,

53

6. Implementation in an Embedded Environment

where r−1 is the inverse of r such that r−1 ·r = 1 mod p. The result c̄ is then the p-residue
of the product of a and b:

c̄ = ā · b̄ · r−1 mod p

= a · r · b · r · r−1 mod p

= c · r mod p

The inverse r−1 and a value p0 are precomputed from r · r−1 + p · p0 = 1 using the
extended euclidean algorithm and then stored as constants in memory. The Montgomery
multiplication can then be expressed as shown in Algorithm 4.

Algorithm 4 Computation of the Montgomery product.

Input: ā, b̄, p, p0, r
Output: c̄
1: t← a · b
2: u← (t+ (t · p0 mod r) · p)/r
3: if u ≥ p then
4: return u− p
5: else
6: return u
7: end if

As divisions and modulo operations in Algorithm 4 are performed using a power of 2, cal-
culation of the Montgomery product is faster than other modular multiplication techniques
on the Cortex-M0+. However, conversion to the Montgomery domain, that is, calculating
ā = a · r mod p, and conversion back, that is, calculating a = ā · r−1 mod p, introduce an
overhead that does not amortize in a single multiplication. Therefore, all operations that
are not exposed via external interfaces, that is, anything, but the identity-based encryp-
tion scheme, operate on parameters in the Montgomery domain. Consequently, constants
being used are stored in Montgomery form as well. In practical scenarios and in this work,
r is set to fit the underlying architecture’s word size, that is, if s words of size w are needed
to represent a multi-precision integer, then r = 2sw.

Inversion can be done by either using the extended euclidean algorithm or Fermat’s
little theorem. In general, the extended euclidean algorithm is faster. However, constant
runtime is something that cannot be achieved using the extended euclidean algorithm.
Therefore, inversion based on Fermat’s little theorem was used, that is,

ap−2 ≡ a−1 mod p .

This theorem leads to inversion by exponentiation. As inversion uses a fixed exponent,
namely p− 2, it always consumes the same amount of time. Any other modular exponen-
tiation in the prime field is not needed by the identity-based encryption scheme. If it is
implemented though, runtime that is independent of a secret exponent is necessary. This
can be achieved using a Montgomery powering ladder. Similar to the subtraction example
mentioned before, its implementation must not use branches.

6.2.2. Extension Field Arithmetic

For the pairing computation over BN curves, several extension fields are needed: Fp2 is
needed to represent one of the input parameters and Fp12 is the smallest extension of the

54

6.2. Implementation Aspects

prime field Fp where the result lies. Therefore, a tower of extensions was implemented as
suggested by Koblitz and Menezes [KM05, Section 5]. For this thesis, the tower was built
as Fp ← Fp2 ← Fp4 ← Fp12 . Note that there are also other constructions possible that are
isomorphic to that. However, this construction seems suitable for our purpose.

Fast operations over the quadratic extension Fp2 seem particularly important as both
elliptic curve operations in E′(Fp2) and the remaining tower Fp2 ← Fp4 ← Fp12 rely on
it. Therefore, and this is always possible if p ≡ 3 mod 4, Fp2 was built by adjoining the
root of −1, that is, Fp2 = Fp[i]/(i2 + 1). Elements in Fp2 may hence be represented as
b0+b1i, where i denotes a root of i2 = −1 and b0, b1 ∈ Fp. This allows fast computations in
the quadratic extension as multiplying by i does not involve any multiplication overhead.
Instead, reducing terms of i2 corresponds to simple negation.

As indicated by Barreto and Naehrig [BN06, Le. 1 and following], the residue used to
construct Fp12 needs to be chosen carefully so as to produce a sextic twist of correct order.
To satisfy this condition, the residue was chosen as ξ = (1 + i) in case of the BN256 curve,
and ξ = 1/(1 + i) for the curves BN254 and BN158. The sextic residue ξ over Fp2 is used
to create Fp4 = Fp2 [u]/(u2 − ξ) and Fp12 = Fp4 [v]/(v3 − ζ), where ζ =

√
ξ. Note that Fp12

can also be expressed as Fp12 = Fp2 [z]/(z6 − ξ).
Analog to the quadratic extension Fp2 , elements in Fp4 can be represented as c0 + c1u,

where u =
√
ξ and c0, c1 ∈ Fp2 . Elements in Fp12 are similarly represented as d0+d1v+d2v

2,
where v = 3

√
ζ = 6

√
ξ and d0, d1, d2 ∈ Fp4 . However, sometimes it is more convenient to

represent elements in Fp12 as a0 + a1z + a2z
2 + a3z

3 + a4z
4 + a5z

5, where z = 6
√
ξ and

a0, ..., a5 ∈ Fp2 . One can easily switch between those two representations:

(c0,0 + c0,1u) + (c1,0 + c1,1u)v + (c2,0 + c2,1u)v2 =

c0,0 + c0,1u+ c1,0v + c1,1uv + c2,0v
2 + c2,1uv

2 =

c0,0 + c1,0z + c2,0z
2 + c0,1z

3 + c1,1z
4 + c2,1z

5.

It shall be noted, that the tower construction Fp2 ← Fp6 ← Fp12 is equivalent by the same
means. Further, the residue ξ constitutes an efficient solution since multiplications and
divisions by i + 1 can be efficiently computed merely using additions and subtractions.
This is an important aspect as this type of computation occurs regularly in the tower of
extension fields.

Additions, subtractions, doublings, negations and halvings are easy to implement in
extension fields: each coefficient in the polynomial is separately processed in the underlying
field. Crucial, however, are multiplications and squarings in extension fields. Different
approaches for quadratic and cubic extensions are needed. All of these trade additions and
subtractions in the underlying field against the respective multiplications. This is clearly
favorable on platforms, where multiplications are significantly more expensive than the
former.

Multiplication and Squaring in Quadratic Extensions

Multiplication in Fp2 can be done using Karatsuba’s [KO63; Dev+06] algorithm. Given
two values a, b ∈ Fp2 , represented as a0 + a1x ∈ Fp[x]/(x2 − β), the Karatsuba algorithm
to compute c = a · b ∈ Fp2 is

v0 = a0b0 v1 = a1b1

c0 = v0 + βv1 c1 = (a0 + a1)(b0 + b1)− v0 − v1.

55

6. Implementation in an Embedded Environment

Consequently, it takes three multiplications instead of four in the schoolbook method. On
the other hand, it takes two additions and three subtractions compared to two additions
in the schoolbook method, but, as already mentioned, it amortizes when multiplications
are significantly more expensive. For squaring in the quadratic extension Devegili et al.
[Dev+06, Section 3] showed even better formulas based on Karatsuba. The square of a
value c = a2 ∈ Fp2 is computed as

v0 = a0a1

c0 = (a0 + a1)(a0 + βa1)− v0 − βv0 c1 = 2v0.

The same multiplication and squaring formulas are used for Fp4 , which is the quadratic
extension over Fp2 .

Multiplication and Squaring in Cubic Extensions

In a cubic extension, multiplication and squaring is more difficult as it consists of 3 × 3
partial products. As in the quadratic case, a variant of Karatsuba can be used. According
to Knuth [Knu97, Section 4.3.3.A], the method by Toom-Cook constitutes a more general
alternative. If the cubic extension is utilized only to compute the pairing in Fp12 , divisions
involved in the Toom-Cook method can be avoided, because constant multiples are filtered
out in the final exponentiation step. However, the advantage in runtime was too small in
order to justify the additional demand for memory. Therefore, the Karatsuba method for
cubic extensions was used. [Dev+06, Section 4]

Let a, b denote two elements in Fp12 , represented as a0 + a1x+ a2x
2 ∈ Fp4 [x]/(x3 − β),

then the product c = a · b ∈ Fp12 is calculated as follows:

v0 = a0b0 v1 = a1b1 v2 = a2b2

c0 = v0 + β((a1 + a2)(b1 + b2)− v1 − v2)
c1 = (a0 + a1)(b0 + b1)− v0 − v1 + βv2

c2 = (a0 + a2)(b0 + b2)− v0 + v1 − v2.

Compared to the schoolbook method with 9 multiplications and 6 additions, the Karatsuba
method takes 6 multiplications and 13 additions. Fast formulas for squaring in cubic
extensions were presented by Chung and Hasan [CH07]. In three different variants, a trade-
off between multiplications, squarings, additions and halvings is done. Nevertheless, the
sum of multiplications and squarings in the underlying field stays constant. As squaring
in the underlying field Fp4 is cheaper than multiplication, the formulas with the least
number of multiplications, namely CH-SQR3, were used. Devegili et al. [Dev+06, Section
4] square a value c = a2 ∈ Fp4 as

s0 = a20 s1 = (a0 + a1 + a2)
2

s2 = (a0 − a1 + a2)
2 s3 = 2a1a2

s4 = a22 t1 = (s1 + s2)/2

c0 = s0 + βs3

c1 = s1 − s3 − t1 + βs4

c2 = t1 − s0 − s4.

Contrary to the schoolbok method, which takes three multiplications, three squarings,
and 6 additions, the formulas presented make possible squaring in one multiplication, four

56

6.2. Implementation Aspects

squarings, 11 additions and one halving. Note that halving a value is also cheap compared
to multiplication.

Inversion

Inversion in the prime field was done by exploiting Fermat’s little theorem, which is quite
expensive. In extension fields, Davida [Dav72] shows that direct inversion techniques are
more suitable. Let p(x) denote the irreducible polynomial defining the extension field.
The product of two polynomials

c(x) = a(x)b(x) mod p(x) = 1

forms a set of equations in the coefficients of a(x) and b(x) that is solved in order to transfer
the inversion problem to the underlying base field. In this manner, Baktir et al. [Bak+04,
Ex. 2,3] state formulas for direct inversion in quadratic and cubic extension fields. Given
the value a ∈ Fp2 represented as a0 + a1x ∈ Fp[x]/(x2 − β), the inverse b = a−1 ∈ Fp2 is
computed as

∆ = a20 − βa21,
b0 = a0∆

−1 b1 = −a1∆−1.

Note that the inversion of ∆ takes place in the underlying base field, namely Fp. Con-
sequently, inversion in extension fields introduces only negligible overhead. Analogously,
inversion is done in Fp4 .

For inversion in the cubic extension of Fp4 , namely Fp12 , different formulas are needed:
let a ∈ Fp12 be represented as a0 + a1x + a2x

2 ∈ Fp4 [x]/(x3 − β), then the inverse b =
a−1 ∈ Fp12 is determined by computing

∆ = a30 − 3a0a1a2β + a31β + a32β
2,

b0 = (a20 − a1a2β)∆−1,

b1 = (a22β − a0a1)∆−1,
b2 = (a21 − a0a2)∆−1.

Frobenius Endomorphism

Similar to Definition 3.25 for elliptic curves, the frobenius endomorphism is defined for
extension fields. It can help to massively reduce runtime of large exponentiations and is
specified as:

πpi : Fpk 7→ Fpk , x 7→ xp
i
.

For the base field, that is, the case k = 0, it is the identity morphism. For extension
fields, it depends on the residue that defined the extension field whether it is trivial to
calculate the frobenius endomorphism. Considering the quadratic extension of a field Fp,
its elements are represented as a0 + a1x ∈ Fp[x]/(x2 − β). According to Gouvêa [Gou13],
the i-th frobenius endomorphism is calculated as

(a0 + a1)
pi = ap

i

0 + ap
i

1 x
pi (6.1)

= a0 + a1x
pi (6.2)

= a0 + a1(x
2)(p

i−1)/2x

= a0 + a1β
(pi−1)/2x.

57

6. Implementation in an Embedded Environment

The two marked equations are particularly interesting. Equation 6.1 is allowed since any
binomial coefficient

(
p
k

)
= p!

k!(p−k)! vanishes for k 6∈ {0, p} (Freshman’s dream). Further, the
two coefficients a0 and a1 are in the base field, which is why the frobenius endomorphism
acts trivially on them in Equation 6.2. The remaining consists of simple substitutions.

In the context of this thesis, Fp2 was defined by adjoining the root of β = −1. This is
particularly advantageous since the frobenius map simplifies to

a0 + a1β
(pi−1)/2x = a0 + a1(−1)(p

i−1)/2x

= a0 + a1(−1)i iff p ≡ 3 mod 4,

which holds for BN curves. Consequently, frobenius endomorphisms in Fp2 are simply
computed as conjugations. For the quadratic extension Fp4 over Fp2 , which is defined as
Fp2 [u]/(u2 − ξ), the frobenius action looks as follows:

(a0 + a1x)p
i

= ap
i

0 + ap
i

1 ξ
(pi−1)/2x. (6.3)

Since a0, a1 ∈ Fp2 , the frobenius endomorphism on the two coefficients a0, a1 is not the
identity any more. Instead, the frobenius map is applied recursively on the coefficients
a0, a1 in Fp2 .

Similarly, the frobenius endomorphism can be computed in Fp12 . Let a0 + a1v + a2v
2

denote an element in Fp12 = Fp4 [v]/(v3 −
√
ξ). Then, the frobenius map evaluates as

(a0 + a1v + a2v
2)p

i
= ap

i

0 + ap
i

1 v
pi + ap

i

2 v
2pi

= ap
i

0 + ap
i

1 (v3)bp
i/3cvp

i mod 3 + ap
i

2 (v3)b2p
i/3cv2p

i mod3

= ap
i

0 + ap
i

1

√
ξ
bpi/3c

vp
i mod 3 + ap

i

2

√
ξ
b2pi/3c

v2p
i mod 3

= ap
i

0 + ap
i

1

√
ξ

pi−1
3 v + ap

i

2

√
ξ
2 pi−1

3 v2. (6.4)

The derivation of the formulas to compute the map is basically the same as for the
quadratic extension. However, in Equation 6.4 the fact that BN curves satisfy p = 1 mod 3
is used to simplify the result. Again, the frobenius map on the coefficients a0, a1 and a2
has to be computed in the underlying field, namely Fp4 .

For computing the first frobenius endomorphism πp in Fp4 and Fp12 , several roots of the
exponentiated residue ξp−1 are needed as one can see in Equation 6.3 and Equation 6.4. It
would take too much effort to compute these on an embedded platform. For this reason,
the powers of the 6th root of ξp−1, namely 6

√
ξ, 6
√
ξ2, ..., 6

√
ξ5, are precomputed and stored

as constants in memory. To evaluate higher orders of the frobenius endomorphism πpi ,
precomputation of even more constants would be necessary. In order to avoid this, higher
orders of frobenius operation are simply done iteratively, that is, πpi = πp ◦ πp ◦ ... ◦ πp (i
times).

Exponentiation

The encryption routine of the identity-based encryption scheme needs an exponentiation
by a secret value in Fp12 . Therefore, one could use a simple square-and-multiply approach
as shown in Algorithm 1. However, this algorithm has runtime that depends on the secret
value k, which constitutes a vulnerability. Hence, the Montgomery powering ladder from

58

6.2. Implementation Aspects

Algorithm 5 Elliptic curve point multiplication using homogeneous projective co-Z co-
ordinates and a Montgomery ladder.

Input: P ∈ E(Fp), k = (kt−1, ..., k1, k0)2 ∈ N, with kt−1 6= 0
Output: Q = kP
1: {X1, X2, Z} ← AddDblCoZ({0, xP, 1})
2: X1 ← xP · Z
3: for i = t− 2 downto 0 do
4: b← ki
5: {X2−b, X1+b, Z} ← AddDblCoZ({X2−b, X1+b, Z})
6: end for
7: {X,Y, Z} ← RecoverFullCoordinatesCoZ({X1, X2, Z})
8: Verify that Z(Y 2 − bZ2) = X(X2 + aZ2)
9: return {X,Y, Z}

Algorithm 3 is used instead. The algorithm has constant runtime and does not involve any
branches. In addition, the two values r0 and r1 are interleaved which avoids the C safe-
error attacks from Section 5.3.1. Nevertheless, Algorithm 3 has a higher overall runtime
than Algorithm 1 on average.

6.2.3. Elliptic Curve Arithmetic

Arithmetic over the elliptic curve basically splits into two parts. On the one hand, basic
arithmetic curve arithmetic such as point addition, point doubling and point multiplication
is needed. On the other hand, arithmetic over elliptic curves is needed for the evaluation
of pairings. For the latter, very specialized formulas exist that perform interleaved elliptic
curve arithmetic and function evaluation. These are the topic of Section 6.2.4. This section
covers the basic elliptic curve arithmetic though.

For isolated point additions and point doublings, the formulas from Equation 3.3 and
Equation 3.4 in Section 3.2.1 are used. These, however, are not efficient to use in point mul-
tiplications as they involve many field inversions, which are significantly more expensive
than field multiplications. Note that inversions become cheaper relatively to multiplica-
tions in large extension fields, but this is not the case for prime fields and their quadratic
extension, where elliptic curve arithmetic is performed in the context of this thesis.

The identity-based encryption scheme chosen involves several point multiplications over
the prime field Fp during encryption. A secret value is used as the scalar. The common
double-and-add approach cannot be used in such a case, because both power consumption
and timing would clearly relate to the secret value as it does in its square-and-multiply
counterpart in Algorithm 1. An efficient method that computes the product of an elliptic
curve point with a scalar secret in constant time was shown by Hutter, Joye, and Sierra
[HJS11]. The method is based on a Montgomery ladder, whose square-and-multiply coun-
terpart was already shown in Algorithm 3. Further, it utilizes the homogeneous projective
coordinates from Section 3.2.1 and the so-called co-Z coordinate system, that is, both
points involved in the Montgomery ladder share a common z-coordinate. In addition,
each of the points is only represented by their x-coordinates during computation of the
ladder. To obtain the final result, its full coordinates are recovered from both the x- and
the z-coordinates. This is illustrated by Algorithm 5.

The routine AddDblCoZ({X1, X2, Z}) interleaves the double step with the add step of the

59

6. Implementation in an Embedded Environment

Algorithm 6 Optimal Ate pairing over BN curves.

Input: P ∈ E(Fp), Q ∈ E(Fp2), s = |6u+ 2|
Output: aopt(Q,P)
1: T ← Q, f ← 1
2: for i = bld(s)c − 2 downto 0 do
3: f ← f2 · `T,T (P)
4: T ← [2]T
5: if si = 1 then
6: f ← f2 · `T,Q(P)
7: T ← T +Q
8: end if
9: end for

10: if u < 0 then
11: T ← −T, f ← f−1

12: end if
13: Q1 ← πp(Q);Q2 ← πp2(Q)
14: f ← f · `T,Q1(P);T ← T +Q1

15: f ← f · `T,−Q2(P);T ← T −Q2

16: f ← f (p
12−1)/n

17: return f

Montgomery ladder in order to obtain more efficient formulas. The algorithm can be ran-
domized by introducing a random number in the initial double-and-add step. However,
this is not done as the secret parameter in the scheme is already random. The full coordi-
nates are recovered by the routine RecoverFullCoordinatesCoZ({X1, X2, Z}). By verifying
that Z(Y 2 − bZ2) equals X(X2 + aZ2), fault attacks applied during the multiplication
can be detected. Several variants were presented for the two routines AddDblCoZ and
RecoverFullCoordinatesCoZ. One can choose between in-place and out-of-place compu-
tations on the one hand, and do a trade-off between memory footprint and runtime on
the other hand. The concrete algorithms were chosen to have low memory requirements
and little computational effort considering that the equations of BN curves do not have a
term in x. They are listed in Appendix A.

6.2.4. Pairing Realization

The optimal Ate pairing from Equation 3.9 was chosen to be implemented due to its good
performance. As for every pairing, the computation shown in Algorithm 6 consists of
two steps: evaluation of the Miller function in Lines 1-15, and the final exponentiation in
Line 16.

By definition of the pairing, the former is split into a loop part, namely the Miller loop
in Lines 1-9, and some additional computations in Lines 10- 15 to obtain the final result of
the Miller function. The Miller loop is based on a double-and-add approach that results
from the observations made by Miller as presented in Section 3.4.4. The Miller function f
is evaluated using line functions of the form `T,Q(P), which give the result of the straight
line from point T to point Q at point P . In addition, the first and the second frobenius
endomorphism πp, πp2 are needed.

The Miller loop is intended to calculate a function f6u+2,Q(P). For negative BN pa-

60

6.2. Implementation Aspects

rameters u, the term 6u + 2 that controls the Miller loop would also become negative.
To avoid this situation, the function f|6u+2|,Q(P) is evaluated first by setting the loop
parameter s = |6u+2|. Afterwards, the correct function f6u+2,Q(P) is computed by doing
an inversion of f in Lines 10-12. Additionally, the point T is negated for the remaining
computations.

In contrast to the formulas shown Section 3.4.4, the algorithm does not involve any
vertical line functions ν. The reason for this is, that under certain circumstances, the
vertical lines through the result of point additions of the form P3 = P1 + P2 lie in Fp
and become 1 in the final exponentiation step due to Fermat’s little theorem. This was
first shown by Barreto et al. [Bar+02], titled denominator eliminiation, and generalized
for twisted curves by Barreto, Lynn, and Scott [BLS04]. In addition, speaking in terms
of the Ate pairing in Algorithm 6, Barreto et al. showed that the Miller function f does
not have to be evaluated on a divisior DP equivalent to (P)− (O), but to simply use the
second argument P if the points P and Q are linearly independent, that is, they are from
different subgroups of E(Fp12), which is clearly the case for G = E(Fp12)[n]∩Ker(πp−[1]) ⊆
E(Fp) and Ĝ = E′(Fp2) isomorphic to E(Fp12). Scott [Sco05] introduced the term BKLS
algorithm for the Miller algorithm that incorporates the optimizations by Barreto et al.

It seems clear that the evaluation of a line function `T,Q between two points T and Q
has much in common with adding these two points. The same observation can be made for
the tangent function `T,T in a point T and the doubling of the same point T . Therefore,
the operations in Lines 3-4 as well as in Lines 6-7 can be interleaved. Costello, Lange,
and Naehrig [CLN10] published highly optimized formulas for interleaved point addition
and line evaluation as well as interleaved point doubling and tangent line evaluation.
These formulas, which were used for the implementation in this thesis, use homogeneous
projective coordinates and are listed in Appendix B.

The final exponentiation in Line 16 of Algorithm 6 has a very large exponent and is
in this form far from being efficiently computable. Therefore, the exponent of a pairing’s
final exponentiation is generally split as

(pk − 1)/n = (pk/2 − 1) · [(pk/2 + 1)/φk(p)] · [φk(p)/n], (6.5)

where φk denotes the k-th cyclotomic polynomial. As Scott et al. [Sco+09] show, for BN
curves this translates into

(p12 − 1)/n = (p6 − 1) · (p2 + 1) · [(p4 − p2 + 1)/n].

Exponentiations by (p6 − 1) and (p2 + 1) are easy as they can be computed using the
frobenius endomorphism, an inversion and two multiplications. For the hard part, namely
the exponentiation by (p4 − p2 + 1)/n, several methods that exploit the parameterized
definition of the group order n were presented by Devegili, Scott, and Dahab [DSD07],
Scott et al. [Sco+09], and Fuentes-Castañeda, Knapp, and Rodŕıguez-Henŕıquez [FKR12].
Fuentes-Castañeda, Knapp, and Rodŕıguez-Henŕıquez uses a lattice-based approach to
obtain the fastest currently known formulas for the hard part of exponentiation. The
approach by Scott et al. uses addition chains, while the method by Devegili, Scott, and
Dahab is rather random. For this implementation, the formulas by Fuentes-Castañeda,
Knapp, and Rodŕıguez-Henŕıquez are used.

Using the definitions of p(u) and n(u) from Section 3.5.1, Fuentes-Castañeda, Knapp,
and Rodŕıguez-Henŕıquez express the term (p4−p2+1)/n via the parameter u, from which
they derive the following chain of computations:

f → fu → f2u → f4u → f6u → f6u
2 → f12u

2 → f12u
3
.

61

6. Implementation in an Embedded Environment

After computing a = f12u
3 · f6u2 · f6u and b = a · (f2u)−1, the hard part and hence the

full exponentiation is finished by

[a · fu2 · f] · [b]p · [a]p
2 · [b · f−1]p3 .

Inversions become simple conjugations after the easy part of the final exponentiation,
which equals the 6th frobenius endomorphism. This can be cheaply computed by several
negations in Fp. Hence, the overall effort in Fp12 sums up to 3 exponentiations by u, 3
squarings, and 10 multiplications.

6.3. Testing

Assuring the correctness of implementations is a very important aspect that must not
be overseen. Once a platform is deployed, faulty implementations may raise high costs.
Especially on an embedded hardware platform such as the one presented, fixing errors
after deployment may be impossible. Therefore, comprehensive tests of the platform
are necessary. Evaluating the correctness of any possible input is impossible though.
Therefore, a meaningful trade-off has to be done. This section shall give an overview on
the approach to testing the platform created.

In terms of the software implementation, a high-level reference was initially created in
Java. This implementation is self-contained and comes with several self-tests that check its
correctness, for example, the group orders of the sextic twists, and the bilinearity and non-
degeneracy of the pairing. These self-tests already give a good indication of correctness.
However, this code was additionally tested against the implementation by Pereira et al.
[Per+11].

Consequently, an optimized software implementation for use in embedded environments
was done in C. It was at first tested on a common x86-64 platform using test cases generated
from the verified high-level reference in Java. In general, these test-cases do not involve
self-tests, but consist of concrete input samples for each of the routines of all layers along
with their expected result. Consequently, the output of a routine given a concrete input is
tested against its corresponding reference result by a simple test program. These pairs of
input and reference result involve both random samples and border cases that are expected
to lead to problems, for example, overflows. Concerning the identity-based encryption
scheme, the decapsulation routine is tested the same way, but there exists a self-test as
encapsulation is randomized and cannot be covered using the just mentioned approach.

At this point, there is a high degree of certainty that the software part is correct. This
implementation was then transferred to the Cortex-M0+ architecture and its instruction
set. To avoid repeating hardware simulations, the more efficient instruction-set simulator
for the Cortex-M0+ by Winter and Hein [WH12] was used. Consequently, both the cross-
compiled C implementation and the optimized assembler routines could be tested for the
target architecture.

As mentioned before, the processor itself is a clone of the Cortex-M0+ that was cre-
ated in previous work by Unterluggauer [Unt13]. Its instruction-set has extensively been
tested during that work using both hand-crafted test cases for each instruction and several
cryptographic routines. To verify the correctness of the overall hardware platform, it was
deployed to an FPGA and run successfully with 15,000 different, randomly chosen input
values.

62

6.4. Optimization

6.4. Optimization

Based on the implementation described in Section 6.2, several optimizations have been
applied to obtain a fast and resource-efficient solution for the Cortex-M0+ hardware plat-
form.

6.4.1. Prime Field Arithmetic

Besides multi-precision integer routines, the basic operations in the prime field Fp were
optimized in assembler to make the best possible use of the instruction-set provided by
the Cortex-M0+. As heavy use of loop unrolling is made, the routines add, subtract,
negate, halve, and multiply have to be adapted for each of the curves being used, that
is, BN158, BN254, and BN256. Further, each of the implemented assembler routines
operates in constant time to avoid timing attacks and simple power analysis. Therefore,
they do not use any branches, but use masking of operands instead, which was already
shown in Section 6.2.1.

Particularly important is the optimization of the prime field multiplication as most of
the overall runtime of elliptic curve arithmetic is due to it. For this reason, the Finely
Integrated Product Scanning (FIPS) method of the Montgomery multiplication by Koç,
Acar, and Kaliski [KAK96] was chosen for assembler optimization. The method avoids
slow memory accesses for intermediate results by using an accumulator instead. Three
of the registers are dedicated to the accumulator, hence achieving better performance.
Besides, the multiplication and the reduction step of the Montgomery multiplication are
interleaved.

Algorithm 7 shows the FIPS method: the two multi-precision integers a, b ∈ Fp are
multiplied modulo p. Additionally the constant p0, mentioned in Section 6.2.1, is needed.
Each element is represented by s words of size W . As the Cortex-M0+ is a 32-bit processor,
the value of W is 32. Consequently, s = 8 for the curves BN254 and BN256. The routine
MultiplyAccumulate(t[0..2], a[i], b[j]) simply multiplies the i-th words of a with the j-th
word of b and accumulates the result in the accumulator t, which consists of three words.
Subtraction of two multi-precision integer values a, b is done by the routine Subtract(a, b),
which besides the result also returns the borrow flag. Shifting in Lines 10 and 18 is possible
since the least significant word of the accumulator becomes zero at the end of each iteration.
After finishing the two loops, the result is found in m. However, t[0] contains the most
significant bit of the result. Consequently, if the result in m is larger than the modulus p or
the least significant bit in t[0] is set, an additionally necessary subtraction of the modulus
p is performend in Lines 20-22. Note that this subtraction is done without branches,
merely using masking of the operands. For performance reasons, the loops are all unrolled
applying appropriate assembler macros.

As one can see from Algorithm 7, the MultiplyAccumulate routine is the most im-
portant. Therefore, Wenger, Unterluggauer, and Werner [WUW13] have put much effort
into optimizing this routine, which is shown in Algorithm 8. The two registers r8, r9

contain pointers to the two multi-precision values in Fp. The accumulator t is represented
by the registers r5-r3, where r5 and r3 denote the most and least significant words re-
spectively. For each of the two operands, a single word, which is specified by offset, is
loaded in Lines 1-4 and then multiplied in Lines 10-13. The Cortex-M0+ merely supports
a 32 bit× 32 bit→ 32 bit multiplication. As one half of the 64-bit result is missing in this
case, the multiplier is used to perform 16 bit× 16 bit→ 32 bit multiplications. Therefore,

63

6. Implementation in an Embedded Environment

Algorithm 7 Finely Integrated Product Scanning (FIPS) Montgomery multiplication.

Input: a, b, p, p0
Output: a · b mod p
1: t[0..2]← 0
2: for i = 0 to s do
3: for j = 0 to i+ 1 do
4: MultiplyAccumulate(t[0..2], a[j], b[i− j])
5: MultiplyAccumulate(t[0..2], m[j], p[i− j])
6: end for
7: MultiplyAccumulate(t[0..2], a[i], b[0])
8: m[i]← t[0] · p0[0] mod W
9: MultiplyAccumulate(t[0..2], m[i], p[0])

10: t[0]← t[1]; t[1]← t[2]; t[2]← 0
11: end for
12: for i = s to 2s− 1 do
13: for j = i− s+ 1 to s− 1 do
14: MultiplyAccumulate(t[0..2], a[j], b[i− j])
15: MultiplyAccumulate(t[0..2], m[j], p[i− j])
16: end for
17: m[i− s]← t[0]
18: t[0]← t[1]; t[1]← t[2]; t[2]← 0
19: end for
20: (borrow, tmp)← Subtract(m[0..s− 1], p[0..s− 1])
21: maski ← borrow ∨ (t[0])0 ∀ 0 ≤ i < bitwidth
22: return (tmp ∧mask) ∨ (m ∧mask)

the shifting and masking routines in Lines 5-8 are needed. After multiplication, the four
partial products are summed up in the accumulator. The intermediate result is stored
on the stack. Therefore, the single words of the intermediate value can be loaded and
stored using stack-relative addressing, and an additional mov instruction, such as the one
in Line 1, is avoided in this case.

For the curve BN254, Gouvêa, Oliveira, and López [GOL12b] suggested exploiting the
sparse form of the prime in the field multiplication. The prime used for this curve has five
16-bit parts being all zero. They proposed this optimization for the MSP430 that operates
on 16-bit words. However, due to the fact that on the 32-bit Cortex-M0+ a full 32-bit
multiplication has to be split into four 16-bit multiplications, this optimization can also
be applied to this work. It reduces both the number of multiply-accumulate operations to
be performed and the size of the unrolled loops.

The optimizations done for the prime field multiplication automatically speed up the
exponentiation-based inversion as well. Additionally, inversion can be further optimized
when using BN curves with positive parameters u. Therefore, the computation of the
inverse a−1 ∈ Fp is split as

a−1 mod p = ap−2 mod p = a36u
4+36u3+24u2+6u−1 mod p

= a6u(4u+6u2(1+u)) · a6u−1 mod p.

64

6.4. Optimization

Algorithm 8 Multiply-Accumulate routine on the Cortex-M0+ processor.

Input: r8, r9 are pointers to the operands
Output: {r5, r4, r3} is the accumulator

1: mov r1, r8

2: ldr r1, [r1, #offset1]

3: mov r2, r9

4: ldr r2, [r2, #offset2]

5: uxth r6, r1

6: uxth r7, r2

7: lsr r1, r1, #16

8: lsr r2, r2, #16

9: mov r0, r6

10: mul r0, r0, r7 . low × low
11: mul r6, r6, r2 . low × high
12: mul r2, r2, r1 . high × high
13: mul r1, r1, r7 . high × low

14: mov r7, #0

15: add r5, r5, r0 . low × low
16: adc r4, r4, r2 . high × high
17: adc r3, r3, r7

18: lsl r0, r6, #16

19: lsr r2, r6, #16

20: add r5, r5, r0 . low × high
21: adc r4, r4, r2

22: adc r3, r3, r7

23: lsl r0, r1, #16

24: lsr r2, r1, #16

25: add r5, r5, r0 . high × low
26: adc r4, r4, r2

27: adc r3, r3, r7

Precomputing 6u− 1 as a constant leads to the following chain of computations:

a6u−1 → a6u → a12u
2 → a24u

2 → a36u
2 → a36u

3 → a36u
4
.

Afterwards, the inverse of an element a ∈ Fp is simply computed as the product

a−1 mod p = a6u−1 · a24u2 · a36u3 · a36u4 mod p.

Therefore, the exponentiation by a large exponent is done using three exponentiations by
u, one exponentiation by 6u − 1, five multiplications and two squarings. Note that the
exponents are fixed and publicly known. Hence, runtime is constant any way and branches
may be used, which leads to reduced runtime due to the usually sparse form of u.

Besides optimizing the standard implementation of the prime field operations using
assembler, the effect of lazy reduction has also been evaluated, that is, elements in Fp
must not necessarily be represented by a value smaller than p. Consequently, reduction
steps in modular additions only become necessary when a carry flag is raised. Algorithm 9
shows the lazy reduction technique applied to the addition of a and b ∈ Fp. Note that
in regular modular addition, that is, when elements are represented by values smaller
than the modulus p, the reduction in Line 3 must also take place if s ≥ p, leading to an
additional comparison. On the other hand, a second reduction may become necessary if
the two operands a and b are larger than the modulus p, which becomes visible in Line 7.
Analogously, an additional reduction step may be necessary for subtraction too. The
savings during the final reduction of the Montgomery multiplication are negligible.

Let each multi-precision integer be represented by s words of each W bits. If the prime
satisfies p < 2Ws−1, even precomputed multiples of p may be subtracted in the reduction
step in Line 3. This, for example, is the case for the curve BN254. Then, the speedup
is even higher if lazy reduction is implemented as in Algorithm 9. However, each routine

65

6. Implementation in an Embedded Environment

Algorithm 9 Lazy reduction technique applied to modular addition.

Input: a, b ∈ Fp
Output: a+ b mod p
1: (carry, s)← a+ b
2: if carry = 1 then
3: (carryt, t)← s− p
4: if carryt = 1 then
5: return t
6: else
7: return t− p
8: end if
9: else

10: return s
11: end if

should have a constant-runtime characteristic. To achieve this, addition and subtraction
have to perform two reductions every time (such as in Lines 3, 7). Consequently, lazy
reduction trades a comparison against a normal subtraction during modular addition.
In modular subtraction, lazy reduction introduces another addition. The impact on the
Montgomery multiplication is, however, very small. For a fair comparison, these lazy
reduction routines were also optimized in assembly language.

6.4.2. Extension Field Arithmetic

The computation of pairings over BN curves relies heavily on operations in Fp2 . Out
of this context, Sánchez and Rodŕıguez-Henŕıquez [SR13] presented faster formulas for
multiplication in Fp2 . These formulas make use of the lazy reduction technique and are
thus able to save a modular reduction. They are particularly interesting for the two
curves BN254 and BN158, because their corresponding primes have two leading zeros in
their computational representation as a multi-precision integer. Algorithm 10 illustrates
these formulas.

The operations in Lines 1 - 7 are done using plain multi-precision integer arithmetic.

Algorithm 10 Optimized multiplication in Fp2 .

Input: a = a0 + a1i, b = b0 + b1i ∈ Fp2
Output: c = c0 + c1i ∈ Fp2
1: s← a0 + a1
2: t← b0 + b1
3: d0 ← s · t
4: d1 ← a0 · b0
5: d2 ← a1 · b1
6: d0 ← d0 − d1 − d2
7: d0 ← d1 − d2
8: c0 = d0 mod p
9: c1 = d1 mod p

10: return c = c0 + c1i

66

6.4. Optimization

Since for BN158 and BN254 all elements are represented with two leading zero bits, the
additions in Lines 1 - 2 do not produce a carry flag. The multiplications in Lines 3 - 5 have
results that are twice the size of their inputs. Correspondingly, the further calculations
are performed on elements which are also twice as large, but do not involve any modular
reductions. There are only two reductions modulo p that take place in Lines 8 - 9. Con-
sequently, there are three multiplications, but only two full reductions, which leads to an
improved performance.

Contrary to the original multiplication in Fp2 , this algorithm does not use a Montgomery
multiplication that has an integrated reduction, but performs three full multi-precision in-
teger multiplications and two separate Montgomery reductions in the end. Since this is
also optimized using assembly language, the size of the program memory increases signif-
icantly, because both the Montgomery multiplication with integrated reduction and the
separated multiplication and Montgomery reduction have their loops unrolled. Therefore,
the FIPS method is replaced by a sequence of multi-precision integer multiplication and
Montgomery reduction as the multiplication algorithm in Fp, which in turn reduces the
impact on the size of the program memory. The drawback of this solution is, that even
though pairings and operations in Fp2 become faster, operations in elliptic curve groups
over Fp are a bit slower, because the separated multiplication method involves a higher
amount of memory accesses.

6.4.3. Pairing Computation

In Algorithm 6, negative BN parameters involved an additional inversion in Fp12 , namely
f−1 following the Miller loop. Aranha et al. [Ara+11, Section 5.1] showed how to avoid
this expensive inversion and replace it by a simple conjugation instead. Consequently, an
optimal Ate pairing can be computed as

aopt(Q,P) = [g−1 · h]
p12−1

n = [gp
6 · h]

p12−1
n ,

where s = 6u+ 2, g = f|s|,Q(P) and h = `[s]Q,πp(Q)(P) · `[s]Q+πp(Q),−πp2 (Q)(P).

There is another optimization that can be done in Algorithm 6: the evaluated line
functions `T,Q(P) and `T,T (P) give results of the form a = a0 + a1z + a3z

3 ∈ Fp12 =
Fp2 [z]/(z6 − ξ), that is, the coefficients a2, a4, a5 are zero. Therefore, multiplication of
the intermediate Miller function f with the result of ` can be done using a more efficient
multiplication method in Fp12 , which exploits the sparse form of one of the operands.
Recalling the equivalence of a = a0 + a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5 ∈ Fp12 and (a0 +

a3z
3)+(a1+a4z

3)z+(a2+a5z
3)z2, the sparse result of the line function may be represented

by the two elements b0 = a0 + a3z
3 ∈ Fp4 and b1,0 = a1 ∈ Fp2 . Then, the sparse

outcome b = b0 + b1,0z of the line function is multiplied with the intermediate Miller
variable f according to Algorithm 11. It takes merely three multiplications in Fp4 and
two multiplications of the form Fp4 × Fp2 compared to 9 multiplications in Fp4 using the
common formulas for multiplication in cubic extensions.

Besides these optimizations during the computation of the Miller function, the final
exponentiation also offers several possibilities to increase performance. As covered in
Section 6.2.4, the final exponentiation consists of an easy and a hard part. The easy part is
computed efficiently due to Frobenius. However, the hard part of the final exponentiation is
definitely worth optimizing: both Karabina [Kar10] and Granger and Scott [GS10] showed
how squarings, and hence exponentiations, in the hard part of the final exponentiation
can be made more efficient. Both present formulas that take advantage of the structure

67

6. Implementation in an Embedded Environment

Algorithm 11 Sparse multiplication of the result b of the line function ` with the inter-
mediate Miller variable f .

Input: f, b ∈ Fp12 , where f = f0 + f1z + f2z
2, b = b0 + b1,0z : f0−2, b0 ∈ Fp4 , b1,0 ∈ Fp2

Output: f · b ∈ Fp12
1: d0 ← f0 · b0
2: d1 ← f1 · b1,0
3: v0 ← f1 + f2
4: v0 ← v0 · b1,0
5: v0 ← v0 − d1
6: v0 ← v0 · z3
7: v0 ← d0 + v0
8: t0 ← b0 + b1,0

9: f1 ← f0 + f1
10: f1 ← f1 · t0
11: f1 ← f1 − d0 − d1
12: f2 ← f0 + f2
13: f2 ← f2 · b0
14: f2 ← f2 − d0 − d1
15: f0 ← v0
16: return f

of the so-called cyclotomic subgroup of Fpk , where k is the embedding degree. Therefore,
Karabina does a compressed squaring, which uses a compressed representation of elements
in the cyclotomic subgroup. Contrary to that, Granger and Scott simply provide more
efficient formulas for squaring elements in the cyclotomic subgroup.

The cyclotomic subgroup Gφk(p) can be defined as

Gφk(p) = {α ∈ Fpk | αφk(p) = 1},

where φk(p) denotes the k-th cyclotomic polynomial. It follows from the partition of
the final exponentiation into an easy and a hart part in Equation 6.5, that any element
a ∈ Fpk is an element of the cyclotomic subgroup after computing the easy part of the final

exponentiation, that is, a(p
k−1)/φk(p) ∈ Gφk(p) ⊆ Fpk , because the order of Fpk is pk − 1.

In this thesis, the faster formulas from Granger and Scott are used for the hard part of
the final exponentiation: let Fp4 = Fp2 [u](u2 − ξ) and Fp12 = Fp4 [v]/(v3 −

√
ξ), the square

b = b0 + b1v + b2v
2 of an element a = a0 + a1v + a2v

2 ∈ Gφ12(p) is computed as

b0 = 3a20 − 2a0,

b1 = 3
√
ξa22 + 2a1,

b2 = 3a21 − 2a2,

where a denotes the conjugate of a. Note that these formulas only need three squarings
in Fp4 compared to four in the formulas by Chung and Hasan on page 56. Further,
the squaring formulas presented are also used when operating on values that result from
pairings, that is, elements in Gt, since these are contained by the cyclotomic subgroup.

Analysis of the stack trace of the pairing computation revealed that the majority of
the memory needed results from the final exponentiation. Consequently, optimizing this
computation in terms of memory turned out to be important. One thing that immediately
helped to reduce the memory footprint is splitting the Miller loop and the final exponenti-
ation into two functions. By applying this trick, variables that become unnecessary after
the Miller algorithm are removed from the stack when leaving the function. However,
the biggest impact on memory is due to the large elements in Fp12 . To avoid repeated
exponentiations by the BN parameter u, several elements in Fp12 are held in memory dur-
ing the hard part of the final exponentiation. While keeping the computation similarly
fast, the number of those elements in memory was reduced by adapting the formulas by

68

6.5. Instruction-Set Extension

Algorithm 12 Memory-optimized hard part of the final exponentiation for pairings over
BN curves.

Input: f ∈ Fp12
Output: fφ12(p)/n ∈ Fp12
1: t0 ← fp

2: b← fu

3: if u < 0 then b← b
4: b← b2

5: a← b2

6: a← a · b
7: b← b · f
8: b← b
9: f ← f · t0

10: t0 ← au

11: if u < 0 then t0 ← t0
12: f ← f · t0

13: a← a · t0
14: t0 ← t20
15: if u < 0 then t0 ← t0
16: a← a · tu0 . Interleaved
17: b← b · a
18: t0 ← bp

19: t0 ← t0 · a
20: t0 ← tp0
21: t0 ← t0 · b
22: t0 ← tp0
23: t0 ← t0 · f
24: f ← t0 · a
25: return f

Fuentes-Castañeda, Knapp, and Rodŕıguez-Henŕıquez [FKR12]. Initially t0 = fp and the
following chain are computed:

fu → f2u → f4u → f6u → f6u
2 → f12u

2 → f12u
3
.

Consequently, a and b are set to a = f6u · f6u2 · f12u3 and b = a · (f2u · f)−1. Afterwards,
one can compute the result

f = f6u
2 · f · fp,

f = [f · a][b]p[a]p
2
[b]p

3
.

This computation takes one multiplication and one frobenius action more than the original
version by Fuentes-Castañeda, Knapp, and Rodŕıguez-Henŕıquez. However, by performing
Algorithm 12, only three temporary variables are needed instead of four. Note that the
exponentiation and multiplication on Line 16 is done in one single step using an especially
crafted function. Since the operand being exponentiated is not needed any more, this can
be done without any further memory needs. The newly introduced function has only little
impact on the size of the program memory: merely additional 50 byte are needed. Note
that on the other hand, this method saves 384 byte on the stack for BN254.

6.5. Instruction-Set Extension

Most of the runtime of cryptography based on elliptic curves is spent performing multipli-
cations in the prime field Fp. Although inversions in Fp are more expensive, their effect on
runtime is relatively small since these can mostly be avoided at the cost of additional mul-
tiplications. The remaining basic operations, such as modular addition, subtraction and
negation, are significantly faster than multiplication and have comparably little impact on
overall performance. Therefore, optimization of the multiplication in Fp can speed up the
implemented system a lot.

69

6. Implementation in an Embedded Environment

Much effort has already been put into assembly optimization of the Montgomery mul-
tiplication as shown in Section 6.4.1. However, as Algorithm 8 indicates, the multiplier
that comes with the Cortex-M0+ is not ideal. Even though a single mul instruction is
done in one cycle using the bit-parallel multiplier, performance is rather mediocre: for a
full 32 bit× 32 bit→ 64 bit multiplication, four of these mul instructions have to be per-
formed since the resulting product of the two 32-bit operands is only 32 bits. In addition,
the accumulation and shifting overhead is tremendous. The multiply-accumulate routine
listed in Algorithm 8 constitutes the real bottleneck of the prime field computation, which
in turn limits the performance of pairings, elliptic curve operations, and identity-based
encryption.

In order to further improve the prime field multiplication and consequently everything
else, two versions of a multiply-accumulate instruction-set extension were designed for
the Cortex-M0+. The first instruction-set extension, MAC-1, performs both 32 bit ×
32 bit→ 64 bit multiplication and accumulation in a single cycle. Using a 130 nm process
technology, it increases the processor’s regular size of 15,850 GE by 3,500 GE. The second
extension, MAC-2, does the same as MAC-1 in four cycles, which reduces the amount
of additional hardware needed to merely 1,300 GE. Nevertheless, it achieves comparable
performance since the multiply-accumulation step can be done parallel to loading new
operands.

6.5.1. MAC-1

The one-cycle multiply-accumulate extension MAC-1 is illustrated by Figure 6.3. Basi-
cally, the existing multiplier is extended to perform full 32 bit× 32 bit→ 64 bit multipli-
cations. The result may then be added to an accumulator. By default, the mul instruction
performs the standard 32 bit×32 bit→ 32 bit multiplication. Therefore, the two operands
opA and opB are selected from the range of registers using the corresponding select sig-
nals. Following, the multiplication is done and the result is stored in the destination
register rdest, which is defined by the instruction. The signal doMultiply triggers such a
multiplication and is also used for operand isolation.

The multiply-accumulate unit can be activated by setting a bit in the processors control
register using the msr instruction. The respective bit is represented by the control signal
doMAC in Figure 6.3. When this signal is set, the mul instruction is interpreted as a
multiply-accumulate. At first, the two operands opA and opB are selected. Subsequently,
the result is not stored in the destination register rdest, but added to the accumulator
that is represented by the registers r8-10. The least significant word of the accumulator
is r8, and the most significant word r10. The result of the addition is stored back to the
accumulator.

Using this extension, the routine from Algorithm 8 simplifies to Algorithm 13. Note that
the destination register used in the mul instruction is ignored in that case. In addition,
the pointers to the operands can be stored in one of the low registers, avoiding the addi-
tional mov instructions. Typically, the multiply-accumulate unit is activated once at the
beginning of the multiplication routine, and deactivated once at the end of it. However,
the Montgomery multiplication also needs a standard multiplication modulo the word
size when performing the multiplication by the value p0[0]. At this point, the multiply-
accumulate unit has to be temporarily deactivated. This may seem a bad compromise,
but on the other hand, any standard compiler can be used in such case.

70

6.5. Instruction-Set Extension

X

+

3232

Registers Registers

selOpBselOpA

doMultiply doMultiply

64 96

rdest r10 - r8 enableenable

doMultiply doMAC
doMultiply doMAC

32

64

'0'
32

r10 - r8

Figure 6.3.: Hardware design of the multiply-accumulate extension MAC-1.

Algorithm 13 Multiply-Accumulate routine on the Cortex-M0+ processor using the
multiply-accumulate extension.

Input: r1, r2 are pointers to the operands
Output: {r10, r9, r8} is the accumulator
1: ldr r5, [r1, #offset1]

2: ldr r6, [r2, #offset2]

3: mul r5, r5, r6

6.5.2. MAC-2

Figure 6.4 shows the four-cycle multiply-accumulate extension MAC-2. Just as the stan-
dard processor, it incorporates merely a 32 bit × 32 bit → 32 bit multiplier. As for the
extension MAC-1, a normal multiplication can be performed. Therefore, the two operands
opA and opB are selected by their respective select signals and the selCache signal is set
to use the two operands. In this scenario, the two modules Shift+Mask remain the two
signals unchanged. Following this, the two values are multiplied and the result is stored
in the destination register rdest. The signal doMultiply triggers the multiplication and is
used for operand isolation to reduce power consumption if the unit is not in use.

A bit in the control register, represented by doMAC, is set to activate the multiply-
accumulate unit. Its operation is also triggered by the doMultiply signal. In its first cycle,
the two operands are selected according to the registers defined in the mul instruction. In
addition, these are stored in the respective operand caches, which is controlled by the signal
storeOp. This is necessary, since the multiplication is performed as a background task over
four cycles and another instruction that is performed might otherwise change one of the

71

6. Implementation in an Embedded Environment

X

+

3232

Registers Registers

selOpBselOpA

doMultiply doMultiply

32

96

rdest r10 - r8 enableenable

doMultiply doMAC
doMultiply doMAC

Shift + Mask Shift + Mask

32 32

Shift + Mask

96

cycleMAC

cycleMAC

OpBcache
storeOp

selCache

OpAcache

cycleMAC

r10 - r8

storeOp

selCache

Figure 6.4.: Hardware design of the multiply-accumulate extension MAC-2.

operands in cycles 2-4. The unit Shift+Mask extracts 16-bit parts from the two operands
and aligns them correctly. This is basically the same as what is done using standard
instructions in Lines 5-8 of Algorithm 8. Consequently, the 32 bit × 32 bit → 32 bit
multiplier is used as a 16 bit × 16 bit → 32 bit multiplier in this case. The resulting
product is then aligned correctly by the successive Shift+Mask unit and added to the
accumulator, which is, here too, represented by the registers r8-r10. The corresponding
sum is stored again in registers r8-r10. In the remaining three cycles, basically the same
is done, but other instructions might be performed in parallel. For example, the operands
for the next multiplication could be loaded from the memory. To assure constant input
during all four cycles, the operands have to be selected from the two operand caches in
cycles 2-4. In these three cycles, the units Shift+Mask, which are controlled by the signal
cycleMAC, successively shift and align the operands and the result such that all necessary
multiplications are done and accumulated.

Since loading the operands can be done parallel to the multiply-accumulate instruction,
one would expect the same performance for MAC-2 as for MAC-1. However, whenever the
accumulator has to be shifted or to be stored, nop instructions must be inserted manually

72

6.6. Conclusion

to wait for the result of the multiply-accumulate to be ready. Besides this, Algorithm 13
can be used. Regarding the (de-)activation of the multiply-accumulate instruction, the
same applies for this extension as for the extension MAC-1.

6.6. Conclusion

In this section, both the hardware and the software for the identity-based encryption
scheme in embedded environments was investigated. In the beginning, clear goals were
defined that should be fulfilled, namely performance, side-channel security and keeping
the demand for resources low. Following, the microprocessor-based hardware platform
and the Cortex-M0+ processor were introduced. After giving an overview on the soft-
ware’s architecture, the focus was turned to the concrete implementation. From basic
computations in a prime field, successively the implementation aspects of extension fields,
elliptic curve groups, and pairings were illustrated. Next, the approach to testing was
outlined. Besides assembler optimizations of prime field arithmetic, the following section
covered several optimization tricks at different layers. Finally, two variants of a multiply-
accumulate instruction-set extension were presented that help to speed up the prime field
multiplication, and consequently elliptic curve operations, pairings, and identity-based
encryption as well.

73

7. Side-Channel Analysis

The identity-based encryption scheme has the requirement to withstand several of the
attacks presented in Chapter 5, specifically timing, simple power analysis, and differential
power analysis attacks. Partially, the measures to fulfill these requirements have already
been discussed in the previous chapter. Nevertheless, a detailed investigation of side-
channel security is done in this chapter. In Section 7.1, the security of the encapsulation
routine is analyzed, while Section 7.2 points out the vulnerability of the decapsulation
routine against differential power analysis attacks. As a result, a simple countermeasure
is presented.

7.1. Encapsluate

The encapsulation routine of the implemented identity-based encryption scheme BB1-
KEM from Section 4.3 is reformulated in Algorithm 14. As pointed out in the previous
section, all algorithms were designed to consume constant runtime, that is, the hash
functions, the modular multiplication on Line 3, the elliptic curve operations on Lines 4-7,
and the exponentiation on Line 8 have runtime independent of the data being processed.
The security parameter is denoted κ.

Algorithm 14 BB1 IBE KEM encapsulation routine.

Input: id ∈ {0, 1}∗, κ
Output: K ∈ {0, 1}`, C ∈ E(Fp)× E(Fp)
1: s← rand(κ)
2: hid ← H ′(id)
3: t← hid · s mod n
4: C1 ← s ·G3

5: C0 ← t ·G1

6: C1 ← C0 + C1

7: C0 ← s ·G
8: K ← H ′(vs0)
9: return (K, (C0, C1))

With respect to the various types of attacks mentioned in Chapter 5, security of the
encapsulation routine is given as follows:

Timing attacks are not possible since any operations performed have constant runtime,
that is, the operations in the finite field have constant runtime. In addition, exponen-
tiation in the extension field and elliptic curve point multiplication were implemented
using a Montgomery ladder that yields constant runtime if the most significant bit
of the exponent or the factor respectively is set to one.

Simple power analysis cannot be applied to the point multiplications and the exponentia-
tion, because the combination of constant runtime execution of finite field arithmetic

75

7. Side-Channel Analysis

and Montgomery ladders results in regular sequences in the power trace that are in-
distinguishable by visual inspection. However, the computation of the parameter t
may pose a vulnerability.

Differential power analysis, refined power analysis do not work as the number s is cho-
sen randomly at each invocation. For the same reason, the address-bit DPA cannot
be performed as well.

Comparative power analysis may be possible as two point multiplications with the same
value s are done. Nevertheless, the doubling attack is not feasible, because a new
random secret s is used at each invocation.

Safe-error attacks cannot be successfully applied, because the random secret s changes
at each invocation.

Electromagnetic attacks depend on the attackers capability to determine which memory
locations are accessed at certain points of time.

Template attacks may possibly be used to extract the random secret s as indicated by
Herbst and Medwed [HM09].

For all these types of attacks, the interesting target is the random number s, which
leaks the session key. On the other hand, a session key alone may not be as interesting as
someones private key, which can be used to reveal any of the ciphertexts intended for the
respective party. This type of attack may be done during decapsulation.

7.2. Decapsulate

Algorithm 15 states the routine for decapsulation of the ciphertext C of the BB1 identity-
based encryption scheme from Section 4.3. This routine is more critical than the encap-
sulation routine since it does not involve random numbers by default and relies on the
identity’s secret private key Did that must not be compromised.

Algorithm 15 BB1 IBE KEM decapsulation routine.

Input: C ∈ E(Fp)× E(Fp), Did ∈ E(Fp2)× E(Fp2)
Output: K ∈ {0, 1}`,
1: T ← −C1

2: f ← optate mul(C0, Did,0, T,Did,1) . aopt(C0, Did,0) · aopt(T,Did,1)
3: K ← H ′(f)
4: return K

The routine optate mul(a, b, c, d) simply performs two optimal Ate pairings aopt(a, b)
and aopt(c, d) and multiplies their result. Note that this implementation is optimized
such that the squarings in Fp12 during the Miller loop are shared between both pairing
computations. Further, there is only one single final exponentiation to be performed for
both pairings. From Algorithm 6 and the line evaluation formulas in Appendix A, one can
see that the computation of a bilinear pairing has constant runtime since the underlying
finite field and elliptic curve operations have constant runtime. Further, the branches in
Algorithm 6 are admissible, because the parameter s = |6u + 2| that controls the loop is
constant for a specific implementation. Consequently, we argue that the implementation
of the decapsulation routine is secure against timing and attacks.

76

7.2. Decapsulate

7.2.1. Differential Power Analysis Attack

A different picture unveils when investigating the security of the decapsulation routine
against differential power analysis attacks. In more detail, a DPA attack could be per-
formed in practice for the decapsulation routine in Algorithm 15. At first, the attack is
described in general. Following, the concrete setup as well as the results of a practical
attack are explained. Finally, a countermeasure to this type of DPA attack is proposed.

Attack Description

Decapsulation of a ciphertext C in the BB1 IBE KEM involves the computation of the two
pairings aopt(C0, Did,0) and aopt(−C1, Did,1). The attack is capable of extracting Did from
these two computations. However, the two points Did,0 and Did,1 have to be extracted
separately. Therefore, the attack is first described for the point Did,0 only.

When computing the optimal Ate pairing aopt(C0, Did,0) according to Algorithm 6, the
homogeneous projective point T is initialized with (Did,0,x, Did,0,y, 1) in Line 1, where
Did,0,x and Did,0,y denote the x- and y-coordinate of the point Did,0. In Line 3 of the Miller
loop, the tangent line in T is evaluated in the point P , which equals C0 in this scenario.
Therefore, the formulas from Appendix A are used, which involve the computation of
L1,0Px. In the first iteration of the Miller loop, this evaluates to 3 · D2

id,0,x · C0,x, which
seems perfectly suitable to mount a DPA attack.

At first, the value L1,0 = 3 ·D2
id,0,x ∈ Fp2 is computed on the cryptographic device based

on the private key’s x-coordinate. The value L1,0 is then multiplied with the x-coordinate
of the input ciphertext, namely C0,x ∈ Fp. In a typical scenario, the attacker can freely
choose the input ciphertext that is used for the decapsulation routine. Consequently, power
traces of the finite field multiplication L1,0 ·C0,x can be collected for an arbitrary number
of different inputs. Following, statistical methods are applied to extract the unknown
intermediate L1,0. Note that the finite field multiplication L1,0 ·C0,x is actually two prime
field multiplications in Fp, which have to be attacked separately.

Once the value L1,0 is revealed, one can simply recover Did,0,x by computing
√
L1,0/3 ∈

Fp2 . If one of the Fp-coefficients of the value L1,0 ∈ Fp2 is not immediately divisible by
three, one simply adds the modulus p once or twice such that the coefficient becomes
divisible by three. The square root in Fp2 is computed using a specialized version of the
Tonelli-Shanks algorithm as shown by Adj and Rodŕıguez-Henŕıquez [AR12, Algorithm
9]. The respective y-coordinate of the private key Did,0 can be calculated using the curve
equation y2 = x3 + b.

In a similar manner, the value Did,1 is revealed from the pairing computation
aopt(C0, Did,1). In particular, the two prime field multiplications in L1,0 · (−C1)x, where
L1,0 = 3 ·D2

id,1,x, recover the second point of the private key. Afterwards, the full private
key of the attacked identity is known.

Practical Attack

The attack was performed using a Sasebo G board [UA13] that comes with two Xilinx
Virtex-II pro FPGAs. Therefore, the hardware platform described in Section 6.1.1 was
deployed to the control FPGA—the Xilinx Virtex-II pro xc2vp30—and connected to the
PC using the RS232 interface. A MATLAB Side-Channel Analysis (SCA) toolbox was
used to communicate with the cryptographic device and to retrieve the power traces from
the LeCroy LC584 oscilloscope. In order to trigger the oscilloscope correctly, a trigger

77

7. Side-Channel Analysis

0 1 2 3 4 5 6 7 8

x 104

−150

−100

−50

0

50

100

150

Time [Samples]

P
ow

er

Figure 7.1.: Power trace of a multiplication in Fp at 250 MS/s sampling rate and 25 Mhz
clock frequency.

signal was sent from the FPGA to the oscilloscope just before the attacked prime field
multiplication takes place. The power consumption was measured on an 1 Ω resistor on
the line from the FPGA core to VCC using a differential probe. The FPGA was operated
at a frequency of 25 Mhz such that the sampling rate of the oscilloscope is a multiple of
the clock frequency.

A power trace of a prime field multiplication is shown in Figure 7.1. There are two
periods of higher power consumption visible, which correspond to the multiplication of
the two operands and to the reduction step. Both the multiplication and the reduction
step are implemented using product scanning. Two such prime field multiplications have
to be analyzed in order to successfully reveal the x-coordinate of the point Did,0 ∈ E(Fp2)
of the private key Did ∈ E(Fp2)×E(Fp2), In particular, the multiplications L1,0,0 ·C0,x ∈ Fp
and L1,0,1 ·C0,x ∈ Fp are attacked, where L1,0 ∈ Fp2 denotes the intermediate value that is
derived from the private key’s x-coordinate Did,0,x, and C0,x denotes the x-coordinate of
the first point of the ciphertext. Attacking a prime field multiplication was described by
Hutter et al. [Hut+09]. Basically, the partial products that appear in the multi-precision
integer multiplication of the secret intermediate L0,1 and the known ciphertext C0,x are
attacked to reveal the single words of the secret value.

Let a[i] denote the i-th word of a multi-precision integer a. To attack the i-th word of
L1,0,0, the product of C0,x[0] and L1,0,0[i] is computed for n different inputs of C and for
every possible value of L1,0,0[i]. Note that the key space for a single word of L1,0,0 consists
of 232 possibilities. Since we use 16-bit multiplications on the Cortex-M0+, the attack is
simplified by attacking only the 16-bit half-words of L1,0,0. This reduces the key-space to
216 choices, but doubles the number of attacks to be performed to reveal the whole secret
intermediate L1,0,0. This leads to the following reformulation of the attack.

78

7.2. Decapsulate

0 0.5 1 1.5 2 2.5

x 104

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time [Samples]

C
or

re
la

tio
n

1000 1500 2000 2500 3000 3500
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time [Samples]

C
or

re
la

tio
n

Figure 7.2.: (Zoomed) Correlation of three different key candidates over time: red and
black mark the correct hypothesis for half-words 0 and 3, respectively, and
blue depicts a wrong hypothesis.

79

7. Side-Channel Analysis

0 1 2 3 4 5 6 7
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Key Hypothesis

C
or

re
la

tio
n

Figure 7.3.: Correlation as a function of the hypothesis for half-word zero.

Let now denote a[i] the i-th half-word of the multi-precision integer a. In order to
attack the i-th half-word of L1,0,0, the product of C0,x[0] and L1,0,0[i] is computed for n
different inputs of C and for every possible value of L1,0,0[i]. The hamming weights of these
products are stored in a matrix of size n × 216, which constitutes the hypothesis matrix.
For each of the n different inputs of C, a power trace is measured using the aforementioned
setup. This results in a trace matrix of size n× t, where t denotes the number of samples
captured in the power trace. Computing a Pearson correlation of those two matrices gives
a correlation matrix of size 216 × t. This matrix indicates the correlation for each key
hypothesis at every point of time. Further, the hypothesis with the highest correlation
peak can be extracted and is assumed to be the correct one.

Figure 7.2 illustrates the correlation of three different key hypothesis over time when
attacking partial products of 16× 16→ 32 bit multiplications. The hypothesis marked by
the blue line suggests that there is some relevant data processed, but does not have a peak
high enough to conclude that the hypothesis is correct. Using this correlation trace, one
can simply find the positions in the trace, where the multiplications of interest take place.
The remaining two lines have peaks that are significantly higher. In particular, one can
see that the red line has its highest peak when the multiplication of the least-significant
half-word takes place. It marks the correct key hypothesis for half-word zero. Similarly,
the black line has its highest peak when the multiplication of half-word three is done. For
this and the following side-channel analysis, 10,000 power traces were used.

The correlation traces over time have been processed by extracting their maximum peak
for each of the partial products. For example, from Figure 7.2 it is known that the partial
product of half-word zero of the input and half-word zero of the unknown intermediate

80

7.2. Decapsulate

0 1 2 3 4 5 6 7
x 104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Key Hypothesis

C
or

re
la

tio
n

Figure 7.4.: Correlation as a function of the hypothesis for half-word eight.

is computed somewhere between samples 1300 and 1700. Hence, the maximum peak for
each hypothesis is extracted from this range in order to find the correct hypothesis for
half-word zero. The result of this evaluation leads to the interpretation of correlation as a
function of the hypothesis as it is shown in Figure 7.3. This figure clearly shows two peaks
that mark two key candidates for half-word zero. The same is done for the remaining
half-words as well.

Figure 7.4 additionally shows the result for half-word eight. This plot obviously has
many more peaks. The correct ones are marked by red arrows. The remaining peaks
are false positives caused by powers of two that clearly have some correlation. However,
there are still eight key candidates. These indicate shifts of the correct hypothesis. Since
multiplication is a linear operation, the result of a multiplication with a shifted operand
results in the same hamming weight as multiplication with the original operand if only
zeros are shifted out. Therefore, these shifted versions of the correct hypothesis also
correlate. The two peaks in Figure 7.3 are also shifted variants of the same value. This
becomes even more obvious when the scale of the x-axis is considered. The numeric value
of the hypothesis causing the left peak is half of the numeric value of the hypothesis
causing the right peak. This is equivalent to a shift by one bit. Similar observations can
be made in Figure 7.4. In the worst case, one has 16 valid key candidates that are shifted
equivalents for each half-word. For a 256-bit prime, this results in 1616 = 264 possible
keys, which is not satisfying. Therefore, the partial sums are considered as well.

Using the partial products, 1-16 key candidates can be filtered out from 216 for each
half-word. These can then be used to attack two partial sums occurring in the multi-
precision integer multiplication. Let a and b denote two multi-precision integers consisting

81

7. Side-Channel Analysis

0 2000 4000 6000 8000 10000 12000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Key Hypothesis

C
or

re
la

tio
n

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.02

0.04

0.06

0.08

0.1

0.12

Key Hypothesis

C
or

re
la

tio
n

Figure 7.5.: Correlation as a function of the hypothesis when attacking the sums.

of each eight 32-bit words and let a[i] ∀ 0 ≤ i < 8 denote the i-th word of a. In a
product-scanning multiplication, the two sums a[0]b[3] + a[1]b[2] + a[2]b[1] + a[3]b[0] and
a[4]b[7] + a[5]b[6] + a[6]b[5] + a[7]b[4] appear as intermediate results in the accumulator.
Using the appropriate key candidates learned from attacking the partial products and the
n different ciphertexts, two more hypothesis matrices can be built based on the hamming
weights of these two sums. These matrices are correlated with the power traces already
captured and thus a DPA is performed that reveals the two 128-bit halves of the full
256-bit value in Fp.

The correlations resulting from attacking the two sums are shown in Figure 7.5. For the
lower four words of the 256-bit value under attack, a clear peak is given. The upper four
words also give a peak, but less prominent. Note that the two results involve a different
number of possible keys on the x-axis as the hypothesis is built from the key candidates
found during the attack of the single half-words. Further, the numbers do not give a
hint about the numerical value of the concrete key, but refer to the indices of a matrix
containing the full 128-bit hypothesis. The correlation was computed from 10,000 power
traces. It was also tried reducing the number of used power traces, but the upper four
words could not be extracted with 9,000 or less power traces.

Attacking the partial products to reveal the single half-words of the unknown inter-
mediate is possible using a smaller number of power traces though. Figure 7.6 shows
the correlation in dependence of the key hypothesis when attacking half-word zero using
10,000, 5,000, 1,000, 500, 300 and 100 power traces. For more than 1,000 traces, one can-
not recognize any difference. When using 500 power traces, the peaks are already slightly
smaller. This effect is even more significant for 300 traces. Performing the DPA with
merely 100 traces gives peaks indeed, but these are hardly recognized as the right ones.
A different picture may unveil when doing the same experiment for a different half-word,
for example, half-word eight as previously shown in Figure 7.4. There, it may become in-
creasingly hard to recognize the right peaks even when using more than 500 power traces.
In addition, more false positives may appear in this analysis.

Countermeasure

In order to make this kind of DPA attack impossible, a simple countermeasure has been
created. Earlier, it was mentioned that the point T ∈ E(Fp2) in the formulas in Ap-

82

7.2. Decapsulate

0 1 2 3 4 5 6 7
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Key Hypothesis

C
or

re
la

tio
n

10,000 Traces

0 1 2 3 4 5 6 7
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Key Hypothesis

C
or

re
la

tio
n

5,000 Traces

0 1 2 3 4 5 6 7
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Key Hypothesis

C
or

re
la

tio
n

1,000 Traces

0 1 2 3 4 5 6 7
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Key Hypothesis

C
or

re
la

tio
n

500 Traces

0 1 2 3 4 5 6 7
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Key Hypothesis

C
or

re
la

tio
n

300 Traces

0 1 2 3 4 5 6 7
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Key Hypothesis

C
or

re
la

tio
n

100 Traces

Figure 7.6.: Correlation as a function of the hypothesis when attacking the multiplication
with half-word zero of the unknown intermediate using different numbers of
power traces.

83

7. Side-Channel Analysis

pendix A equals parts of the identity’s private key when computing the first loop of the
optimal ate pairings of the decapsulation routine. This makes possible the DPA attack and
is due to the initialization of the point T with the parameter Q in Line 1 of Algorithm 6.

Instead of initializing this homogeneous projective point as T = (Qx, Qy, 1), one simply
generates a random number λ, which is used as the z-coordinate in the representation
of homogeneous projective coordinates. Consequently, the initialization is done as T =
(Qx ·λ,Qy ·λ, λ), which costs merely two multiplications in Fp2 . The point Q, which is set
to the identity’s private key, is hence randomized and invulnerable to this attack. Note
that the point P is always used in affine coordinates and is not randomized at all. In the
scenario of this thesis, the point P is always set to the publicly known ciphertext, which is
why not randomizing P does not constitute a problem. If the point P was set to a private
secret, it would also have to be randomized. However, this adaption is more difficult since
the formulas in Appendix A work with P in affine coordinates.

7.2.2. Other Attacks

As already mentioned, timing attacks are not possible since everything has constant run-
time. DPA attacks are prevented by the just introduced countermeasure. Safe-error and
address-bit DPA attacks are not an issue, because there are no dummy operations in-
volved in the pairing computation. Electromagnetic attacks are restricted in the same
way as power analysis attacks, because one cannot learn anything from memory accesses
alone in the context of pairing computations. However, attackers might recover the se-
cret point if they are able to recognize the words transferred on the bus. Refined power
analysis and zero-value attacks are possible, but are expected to take the same effort as
brute-force as it is not possible to attack single bits consecutively. Moreover, security
against simple power analysis attacks is assumed since power traces should always reveal
the same patterns. This, however, was not tested and remains an open question. Further,
template attacks may be possible by first building a template that recovers the random
value as shown by Herbst and Medwed [HM09].

7.3. Conclusion

This chapter was dedicated to analyzing the security of the presented implementation of
the BB1 IBE KEM. At first, the encapsulation routine was investigated, where merely
comparative side-channel attacks and template attacks seem feasible. In the next step,
analysis of the decapsulation routine revealed a possible DPA attack that allows extraction
of the identity’s private key. To counteract this, the parameter Q ∈ E(Fp2) in the optimal
Ate pairing has to be randomized. It is a lucky coincidence that this can be easily done
for the parameter Q, but involves adaption of a whole range of evaluation formulas for
the point P ∈ E(Fp). However, the input to point P is public in this application and
the formulas can be kept as they are. Template attacks may again pose a threat to the
security of the decapsulation routine. The original goal to have an implementation secure
against timing and DPA attacks is fulfilled. However, assessment of the security against
SPA attacks and comparative side-channel attacks needs a more detailed analysis, which
may be subject to future work.

84

8. Evaluation

In the previous chapters, the concept of bilinear maps and identity-based encryption was
introduced. The respective implementation in a constrained environment had to satisfy
several conditions, such as good runtime, low demand for resources and side-channel se-
curity. The attainment of the latter has been investigated in Chapter 7. Evaluation of the
achieved performance and the implementation’s demand for resources is content of this
chapter. As pointed out earlier in this work, the finite field arithmetic is crucial for having
reasonable performance. Therefore, the results in this respect are looked at first in Sec-
tion 8.1. Following, Section 8.2 investigates the efficiency of the pairing implementation for
both the software implementation and the whole hardware platform. Consecutive to ana-
lyzing the performance of the BB1 IBE KEM’s implementation in Section 8.3, Section 8.4
does a comparison with related work to see how the platform presented here ranks.

8.1. Finite Field Arithmetic

An overview of the cycle counts of addition, multiplication and squaring in the finite
fields used for the curves BN158, BN254 and BN256 is given in Table 8.1. Although the
same number of words are needed to represent finite field elements for the curves BN256
and BN254, multiplication and squaring is faster for the latter since the sparse form of
the prime is exploited to speed up the reduction step. Another effect that can be seen
is, that the number of cycles needed for addition scales linearly with the degree of the
extension field, for example, addition in Fp2 takes about twice as long as addition in Fp.
For multiplication and squaring, cycle counts scale quadratically with the degree of the
extension field. This leads to rather long runtime for multiplications and squarings in Fp12 .
Similarly, performance of addition scales linearly with the size of the prime given by the
curve. Multiplication and squaring, however, scale quadratically in this respect.

Another evaluation of this kind is given by Table 8.2, which shows the performance of
inversion in relation to multiplication in the finite fields used for the respective curves.
One can see, that, especially in the prime field Fp, inversion is massively more expensive
than multiplication. For example, the ratio of cycle counts for inversion and multiplication
is 297 for BN254. A large part of this observation is contributed to performing inversion
using Fermat’s little theorem. However, inversion is not vulnerable to timing and SPA

Table 8.1.: Cycle counts for addition, multiplication and squaring in the finite fields Fp,
Fp2 , and Fp12 using the assembler optimized prime field operations.

Curve Addition Multiplication Squaring
Fp Fp2 Fp12 Fp Fp2 Fp12 Fp Fp2 Fp12

BN256 167 350 2,163 3,862 12,354 248,998 3,862 8,217 160,708
BN254 167 350 2,163 3,462 11,154 225,158 3,462 7,417 144,428
BN158 112 240 1,503 1,575 5,239 111,111 1,575 3,485 72,625

85

8. Evaluation

Table 8.2.: Cycle counts for multiplication and inversion in the finite fields Fp, Fp2 , and
Fp12 and the respective inversion-to-multiplication ratios.

Curve Multiplication Inversion I/M Ratio
Fp Fp2 Fp12 Fp Fp2 Fp12 Fp Fp2 Fp12

BN256 3,862 12,354 248,998 1,111,882 1,127,649 1,615,925 287.9 91.3 6.5
BN254 3,462 11,154 225,158 1,028,298 1,042,465 1,481,541 297.0 93.5 6.6
BN158 1,575 5,239 111,111 290,930 297,460 511,111 184.7 56.8 4.6

Table 8.3.: Cycle counts for addition, multiplication and squaring in the finite fields Fp,
Fp2 , and Fp12 for the implementation variants of the curve BN254. Additionally,
the performance relative to the standard implementation is visualized.

Variant Addition Multiplication Squaring
Fp Fp2 Fp12 Fp Fp2 Fp12 Fp Fp2 Fp12

Standarda 167 350 2,163 3,462 11,154 225,158 3,462 7,417 144,428
LR in Fpb 208 438 2,691 3,462 11,434 237,518 3,462 7,569 153,773
LR-Fp2c 167 350 2,163 3,782 10,053 205,340 3,782 8,056 132,317
LR-Fp2 MAC-1 167 350 2,163 1,199 3,356 84,794 1,199 2,890 58,650
LR-Fp2 MAC-2 167 350 2,163 1,316 3,635 89,816 1,316 3,124 61,719

Relative Performance

LR in Fp +24.6% +25% +24.4% ±0.0% +2.5% +5.5% ±0% +2.0% + 6.5%
LR-Fp2 ±0.0% ±0.0% ±0.0% +9.2% −9.9% −8.8% +9.2% +8.6% −8.4%
LR-Fp2 MAC-1 ±0.0% ±0.0% ±0.0% −65.4%−69.9%−62.3%−65.4%−61.0%−59.4%
LR-Fp2 MAC-2 ±0.0% ±0.0% ±0.0% −62.0%−67.4%−60.1%−62.0%−57.9%−57.3%

aPlain assembler-optimized implementation with FIPS Montgomery multiplication in Fp.
bLazy reduction in Fp.
cMultiplication in Fp2 uses lazy reduction technique by Sánchez and Rodŕıguez-Henŕıquez [SR13].

attacks in this case. Since direct formulas are used to reduce the problem of inversion in
extension fields to inversion in their respective subfields, the inversion to multiplication
ratio becomes better with higher extension degrees, for example, the ratio is only 6.6
in Fp12 for BN254. Consequently, there is a point, where projective coordinates may be
more expensive than affine coordinates when computing elliptic curve operations. This,
however, is not the case in this work. In Table 8.2 one can also observe that inversion in
Fp scales approximately with the third power of the prime, which splits into a quadratic
part from multiplication and a linear part from exponentiation.

In Table 8.3 performance of addition, multiplication and squaring are presented for
different finite field implementations for the curve BN254. Performance of the variants is
also given relatively to the standard implementation, which was also used in Table 8.1.
Addition, and subtraction accordingly, only changes its runtime when the lazy reduction in
Fp is employed. In particular, speed of addition worsens by a quarter throughout the used
fields. This effect has already been indicated in Section 6.4.1. It is due to additional integer
additions and subtractions of the modulus that need to be done independently of the value
since the implementation should resist timing attacks. Even though multiplications and
squarings in Fp do not lose speed in this case, they do in the extension fields Fp2 and Fp12
as they also resort to additions and subtractions in the subfield.

86

8.1. Finite Field Arithmetic

Table 8.4.: Cycle counts for multiplication, squaring and inversion in the finite fields Fp,
Fp2 , and Fp12 for the implementation variants of the curve BN158. Additionally,
the performance relative to the standard implementation is visualized.

Variant Multiplication Squaring Inversion
Fp Fp2 Fp12 Fp Fp2 Fp12 Fp Fp2 Fp12

Standarda 1,575 5,239 111,111 1,575 3,485 72,625 290,930 297,460 511,111
LR-Fp2b 1,800 4,757 102,435 1,800 3,934 67,323 331,459 338,884 536,563
LR-Fp2 MAC-1 646 1,856 50,217 646 1,626 35,412 123,739 126,548 218,076
LR-Fp2 MAC-2 718 2,027 53,295 718 1,770 27,293 136,699 139,796 237,597

Relative Performance

LR-Fp2 +14.3% −9.2% −7.8% +14.3% +12.9% −7.3% +13.9% +13.9% +5.0%
LR-Fp2 MAC-1 −59.0%−64.6%−54.8%−59.0%−53.3%−51,2%−57.5%−57.5%−57.3%
LR-Fp2 MAC-2 −54.4%−61.3%−52.0%−54.4%−49.2%−48.6%−53.0%−53.0%−53.5%

aPlain assembler-optimized implementation with FIPS Montgomery multiplication in Fp.
bMultiplication in Fp2 uses lazy reduction technique by Sánchez and Rodŕıguez-Henŕıquez [SR13].

When employing the lazy reduction technique in the multiplication in Fp2 as shown by
Sánchez and Rodŕıguez-Henŕıquez [SR13], multiplication in Fp2 speeds up by roughly 10%.
Contrary to that, multiplication slows down by 10% in Fp, because the FIPS variant of the
Montgomery multiplication in Fp is split up into a separate multiplication and reduction
step in order to keep the size of the program memory low. If this was not done this way,
basically the same unrolled loop would stay in memory twice and make the platform less
efficient. The results are similar for squaring. When equipping the platform with either
of the two multiply-accumulate instructions MAC-1 or MAC-2, multiplication speeds up
between 60% and 70% for each of the fields implemented. The best results are reached for
Fp2 , which is a consequence of the speed-up coming from the lazy reduction technique in
Fp2 . The extension MAC-1 gives results that are a slightly better than the results from
extension MAC-2, which is due to the additional nop instructions needed to wait for the
finished results in the latter case.

A similar evaluation has been done using the curve BN158 and is shown in Table 8.4. It
does not contain an implementation using lazy reduction in Fp as it was only implemented
for BN254. Addition performs equally well for all the variants shown and can be looked up
in Table 8.1. Cycle counts are significantly lower than for BN254, but the observations are
mainly the same. Applying the trick by Sánchez and Rodŕıguez-Henŕıquez [SR13] yields
the same speed-up for multiplications in Fp2 , but worsens multiplication even by 14% in
Fp. Using one of the instruction-set extensions yields performance increases between 48%
and 59%, which is less than for BN254. This can be explained by the fact that complexity
of multiplication scales quadratically with the size of the prime and hence becomes less
significant in the overall performance if smaller primes are used. The table also shows,
that inversion behaves similar to multiplication when comparing the different variants.
Nevertheless, since inversion in any of the extension fields relies on inversion (and hence
multiplication) in Fp, one can observe that inversion in Fp12 is 5% slower than in the
standard version after applying the lazy reduction technique in Fp2 , which is contrary to
the speed-up observed for multiplication and squaring in Fp12 .

87

8. Evaluation

Table 8.5.: Memory requirements for an optimal Ate pairing and cycle counts for pairing
computations and point multiplications.

Curve Memory Pairing Point Multiplication
Stack RAM ROM Single Product E(Fp) E(Fp2)

[Bytes] [Bytes] [Bytes] [kCycles] [kCycles] [kCycles] [kCycles]

BN256 2,488 2,692 14,024 61,395 84,183 16,323 54,420
BN254 2,488 2,692 13,120 50,825 69,658 14,709 49,271
BN158 1,636 1,768 9,284 18,346 24,897 4,205 14,707

8.2. Pairing

Evaluation of the bilinear map, in particular the optimal Ate pairing, is done with respect
to the software itself and the overall hardware platform. In addition, performance of
elliptic curve point multiplications is investigated.

8.2.1. Software

The software implementations of both the optimal Ate pairing and the elliptic curve point
multiplications are compared with respect to the three different curves BN256, BN254
and BN158 in Table 8.5. A pairing computation can be done in 61 million clock cycles
for BN256. Using the implementation for BN254, this is reduced to 50 million clock
cycles, providing almost the same level of security though. At the 80-bit security level, an
optimal Ate pairing can be computed in 18 million cycles. Computing the product of two
pairings is only about 35% slower than computing a single pairing, because some of the
computations can be done once for both. Point multiplications in E(Fp) are clearly faster
than in E(Fp2). Point multiplications in E(Fp2) are slower than computing a pairing
though, but the difference is only small for the curve BN254. This is interesting since
pairings seem computationally extremely more complex due to their operations in Fp12 .
The main reason for this may be the need for constant runtime, which is automatically
given for the pairing computation as the loop parameter s is fixed, but needs to be added
expensively for point multiplication. The computation of pairings takes about 3-4 times
the number of clock cycles of point multiplications in E(Fp). With respect to memory,
pairings at the 128-bit security level need about 2,7 KB of RAM including stack. Due
to the smaller elements for BN158, about 930 byte less RAM is needed in this case,
which indicates linear behavior. Any additional memory needed is allocated on the stack,
which makes possible the utilization of the memory for other applications when the pairing
computation is done. With 13,1 KB, the program memory is 900 byte smaller for the curve
BN254 than for the curve BN256, which is due to the saved operations in the unrolled
reduction step of the Montgomery multiplication. The smaller code in BN158 results from
smaller unrolled loops.

The performance of pairing computations and the elliptic curve point multiplications
using BN254 is shown in Table 8.6 for the different implementation variants. Performance
is additionally evaluated in relation to the standard version. When applying the lazy
reduction technique to the multiplication in Fp2 , approximately 4.5% more RAM is needed,
which is acceptable as runtime of pairing computations is reduced by 6%. Contrary to
that, point multiplications in E(Fp) become slower by 9% due to the splitting of the
Montgomery multiplication. Adding randomness to the pairing computation to prevent

88

8.2. Pairing

Table 8.6.: Memory requirements for an optimal Ate pairing and cycle counts for pairing
computations and point multiplications for the implementation variants of the
curve BN254.

Variant Memory Pairing Point Multiplication
Stack RAM ROM Single Product E(Fp) E(Fp2)

[Bytes] [Bytes] [Bytes] [kCycles] [kCycles] [kCycles] [kCycles]

Standarda 2,488 2,692 13,120 50,825 69,658 14,709 49,271
LR-Fp2b 2,600 2,804 13,752 47,585 65,612 16,027 47,153
LRsc-Fp2c 2,600 2,824 14,740 47,643 65,728 16,027 47,153
LRsc-Fp2 MAC-1 2,596 2,820 9,496 20,536 27,690 5,390 16,877
LRsc-Fp2 MAC-2 2,596 2,820 9,728 21,680 29,303 5,872 18,174

Relative Performance

LR-Fp2 +4.5% +4.2% +4.8% −6.4% −5.8% +9.0% −4.3%
LRsc-Fp2 +4.5% +4.9% +12.4% −6.3% −5.6% +9.0% −4.3%
LRsc-Fp2 MAC-1 +4.3% +4.8% −27.6% −59.6% −60.2% −63.4% −65.7%
LRsc-Fp2 MAC-2 +4.3% +4.8% −25.9% −57.3% −57.9% −60.1% −63.1%

aPlain assembler-optimized implementation with FIPS Montgomery multiplication in Fp.
bMultiplication in Fp2 uses lazy reduction technique by Sánchez and Rodŕıguez-Henŕıquez [SR13].
cAdditionally incorporates the countermeasure against DPA attacks.

DPA attacks has only negligible impact on runtime. However, the size of the program
memory increases by additional 7.6%, because a cryptographically secure pseudorandom
number generator has to be included. The two instruction-set extensions MAC-1 and
MAC-2 in turn reduce program memory size by a quarter as the unrolled loops shrink.
Further, a massive speedup of around 60% is observed for pairing computations and point
multiplications. Hence, the improvement observed for finite field multiplications directly
leads to a speed-up in pairing computations.

The same evaluation is done for the curve BN158 in Table 8.7. The requirements for
RAM behave very similar to the implementations for the curve BN254. In absolute values,
program memory size also increases similarly when adding the random number generator,
but it shrinks less when making use of one of the two multiply-accumulate extensions.
For this curve, only 10% of program memory can be saved if one of these extensions is
used. With respect to runtime of pairing computations and the elliptic curve operations,
the picture is very similar to the one conveyed by the curve BN254: the lazy reduction
technique in Fp2 speeds pairings up by 5%, but slows down point multiplications in E(Fp)
by 13.6%. The instruction-set extensions achieve improvements by up to 59%.

8.2.2. Hardware

The hardware platforms capable of computing point multiplications in E(Fp) and optimal
Ate pairings are compared for the three different curves in Table 8.8. The typical power
values, which were determined using power simulations of the respective chips at 10 Mhz,
are roughly the same for all three curves. Runtime is equivalent to the respective software
platforms investigated in Section 8.2.1 and is given in milliseconds at a clock frequency
of 10 Mhz. One can observe that computing a pairing takes 6.1 seconds for the curve
BN254 in this realistic scenario. This runtime is reduced to 5 and 1.8 seconds when

89

8. Evaluation

Table 8.7.: Memory requirements for an optimal Ate pairing and cycle counts for pairing
computations and point multiplications for the implementation variants of the
curve BN158.

Variant Memory Pairing Point Multiplication
Stack RAM ROM Single Product E(Fp) E(Fp2)

[Bytes] [Bytes] [Bytes] [kCycles] [kCycles] [kCycles] [kCycles]

Standarda 1,636 1,768 9,284 18,346 24,897 4,205 14,707
LR-Fp2b 1,700 1,832 9,680 17,360 23,707 4,778 14,327
LRsc-Fp2c 1,700 1,852 10,640 23,765 27,098 4,778 14,327
LRsc-Fp2 MAC-1 1,696 1,848 8,308 8,788 11,745 1,836 6,000
LRsc-Fp2 MAC-2 1,696 1,848 8,452 9,300 12,461 2,020 6,500

Relative Performance

LR-Fp2 +3.9% +3.6% +4.3% −5.4% −4.8% +13.6% −2.6%
LRsc-Fp2 +3.9% +4.8% +14.6% −5.2% −4.5% +13.6% −2.6%
LRsc-Fp2 MAC-1 +3.7% +4.5% −10.5% −52.1% −52.8% −56.3% −59.2%
LRsc-Fp2 MAC-2 +3.7% +4.5% −9.0% −49.3% −49.9% −52.0% −55.8%

aPlain assembler-optimized implementation with FIPS Montgomery multiplication in Fp.
bMultiplication in Fp2 uses lazy reduction technique by Sánchez and Rodŕıguez-Henŕıquez [SR13].
cAdditionally incorporates the countermeasure against DPA attacks.

Table 8.8.: Comparison of the hardware platforms capable of computing point multiplica-
tions and pairings at 10 Mhz.

Curve Area Power Runtime Energy
RAM ROM Core Total Typ. Pairing Point Mul. Pairing Point Mul.
[kGE] [kGE] [kGE] [kGE] [mW] [ms] [ms] [mJ] [mJ]

BN256 15.3 15.6 16.3 48.0 0.66 6,140 1,632 4.04 1.07
BN254 15.3 15.6 16.3 48.0 0.66 5,083 1,471 3.34 0.97
BN158 10.9 11.9 16.3 39.9 0.67 1,835 421 1.23 0.28

pairings are computed for the curves BN254 and BN158 respectively. Point multiplications
are significantly faster and can be performed in a range of 420 and 1,630 milliseconds
depending on the curve being used. With respect to energy, the same ratios can be
observed when comparing the three curves: for a BN256 curve about 4 mJ of energy
are needed to compute an optimal Ate pairing, which drops to 3.3 mJ for BN254 and
1.2 mJ for BN158. Accordingly, point multiplications consume less energy than pairing
computations.

Another important characteristic of hardware platforms is their area. The figures in
Table 8.8 and all the following are given in gate equivalents for a 130 nm UMC process.
Both RAM and ROM were implemented using macros of appropriate size. The core area
consists of the processor and a bus arbiter. The total area additionally consists of a RS232
interface for communication. The hardware platforms for BN256 and BN254 are equal in
size when the standard implementation is used. Total chip area shrinks by roughly 17%
if the smaller curve BN158 is used.

The hardware platforms for the various implementation variants using the curve BN254
are shown in Table 8.9. The first thing that catches the eye is that power consumption

90

8.2. Pairing

Table 8.9.: Comparison of the various hardware platforms capable of computing point
multiplications and pairings using a 10 Mhz clock and the curve BN254.

Variant Area Power Runtime Energy
RAM ROM Core Total Typ. Pairing Mult.a Pairing Mult.
[kGE] [kGE] [kGE] [kGE] [mW] [ms] [ms] [mJ] [mJ]

Standardb 15.3 15.6 16.3 48.0 0.66 5,083 1,471 3.34 0.97
LR-Fp2c 15.8 15.6 16.3 48.5 0.66 4,759 1,603 3.14 1.06
LRsc-Fp2d 15.9 17.0 16.3 50.0 0.68 4,764 1,603 3.24 1.09
LRsc-Fp2 MAC-1 15.9 11.9 19.8 48.4 0.74 2,054 539 1.51 0.40
LRsc-Fp2 MAC-2 15.9 11.9 17.6 46.2 1.09 2,168 587 2.35 0.64

Relative Performance

LR-Fp2 +3.5% ±0.0% ±0.0% +1.1% ±0.0% −6.4% +9.0% −6.1% +9.3%
LRsc-Fp2 +4.0% +9.1% ±0.0% +4.2% +3.4% −6.3% +9.0% −3.1% +12.7%
LRsc-Fp2 MAC-1 +4.0%−23.7% +21.5% +0.9% +11.9%−59.6%−63.4%−54.8%−59.0%
LRsc-Fp2 MAC-2 +4.0%−23.7% +8.0% −3.7% +65.0%−57.3%−60.1%−29.6%−34.1%

aElliptic curve point multiplication in E(Fp).
bPlain assembler-optimized implementation with FIPS Montgomery multiplication in Fp.
cMultiplication in Fp2 uses lazy reduction technique by Sánchez and Rodŕıguez-Henŕıquez [SR13].
dAdditionally incorporates the countermeasure against DPA attacks.

is more or less the same for all versions that do not have hardware extensions employed.
Adding the extension MAC-1 raises the typical power consumption by about 12%. This
value is even topped by a 65% gain when utilizing MAC-2. Using the lazy reduction
technique for multiplication in Fp2 , overall chip area and area for RAM increases slightly.
Pairing computations consume less energy in less time, and point multiplications have
increased demand for energy. Making the pairing computation secure against DPA attacks
increases chip size by about 4%. Nevertheless, the effect on chip area vanished when
employing the MAC-1 instruction-set extension. For the extension MAC-2, even a smaller
chip size can be observed since the increased size of the processor core is overcompensated
by the reduced need for program memory. Significant differences can be recognized for
the amount of energy needed: the extension MAC-1 reduces energy consumption for both
pairing computation and point multiplication by over 50%. Despite similar runtime for the
extension MAC-2, this version is less energy-efficient than the version incorporating MAC-
1. Nevertheless, it consumes only 70% of the energy originally needed. The area-efficiency
and energy-efficiency of these platforms is also visualized in Figure 8.1 and Figure 8.2
respectively.

This kind of evaluation has also been done for the hardware platforms capable of per-
forming computations using the BN158 curve, which is shown in Table 8.10. More or less
the same observations can be made as for the curve BN254 in Table 8.9. One remarkable
difference is, that employing one of the multiply-accumulate extensions does not lead to
equal or reduced chip size relative to the standard variant for BN158. The reason for
this is, that there were no suitable ROM macros available that would reflect the reduced
size of the program memory. Energy consumption of pairing computations and elliptic
curve point multiplications is reduced significantly by using the extensions. However, the
effect is about 10% less than it is for the curve BN254. The same can be observed for the
respective runtimes.

91

8. Evaluation

1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000
4.4

4.6

4.8

5

5.2

5.4
·104

Standard

LRsc-Fp2

LRsc-Fp2 MAC-1

LRsc-Fp2 MAC-2

Runtime [milliseconds]

A
re

a
[G

E
]

Faster

More Efficient

Smaller

Figure 8.1.: Area-runtime characteristics for pairing computations using BN254 at
10 MHz.

1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000
500

600

700

800

900

1,000

1,100

1,200

Standard

LRsc-Fp2
LRsc-Fp2 MAC-1

LRsc-Fp2 MAC-2

Runtime [milliseconds]

P
ow

er
[µ

W
]

Faster

More Energy-Efficient

Less Power

Figure 8.2.: Power-runtime characteristics for pairing computations using BN254 at
10 MHz.

92

8.3. Identity-Based Encryption Scheme

Table 8.10.: Comparison of the various hardware platforms capable of computing point
multiplications and pairings using a 10 Mhz clock and the curve BN158.

Variant Area Power Runtime Energy
RAM ROM Core Total Typ. Pairing Mult.a Pairing Mult.
[kGE] [kGE] [kGE] [kGE] [mW] [ms] [ms] [mJ] [mJ]

Standardb 10.9 11.9 16.3 39.9 0.67 1,835 421 1.23 0.28
LR-Fp2c 11.2 11.9 16.3 40.2 0.67 1,736 478 1.17 0.32
LRsc-Fp2d 11.3 13.8 16.3 42.2 0.68 1,739 478 1.18 0.32
LRsc-Fp2 MAC-1 11.3 11.9 19.8 43.8 0.74 879 184 0.65 0.14
LRsc-Fp2 MAC-2 11.3 11.9 17.6 41.6 1.09 930 202 1.01 0.22

Relative Performance

LR-Fp2 +2.6% ±0.0% ±0.0% +0.7% ±0.0% −5.4% +13.6% −5.0% +14.1%
LRsc-Fp2 +3.4% +15.6% ±0.0% +5.6% +5.6% −5.2% +13.6% −4.3% +14.7%
LRsc-Fp2 MAC-1 +3.4% ±0.0% +21.5% +9.7% +10.8%−52.1%−56.3%−46.9%−51.6%
LRsc-Fp2 MAC-2 +3.4% ±0.0% +8.0% +4.2% +61.6%−49.3%−52.0%−18.0%−22.3%

aElliptic curve point multiplication in E(Fp).
bPlain assembler-optimized implementation with FIPS Montgomery multiplication in Fp.
cMultiplication in Fp2 uses lazy reduction technique by Sánchez and Rodŕıguez-Henŕıquez [SR13].
dAdditionally incorporates the countermeasure against DPA attacks.

8.3. Identity-Based Encryption Scheme

The original goal of this work was to equip embedded platforms with identity-based en-
cryption. In the following, it is evaluated how well this goal is achieved in terms of the
software imlementation and the respective hardware platform.

8.3.1. Software

The memory requirements and runtime for the BB1 IBE KEM are listed in Table 8.11.
At the 128-bit security level, encapsulation takes 136 and 123 million clock cycles for
the curves BN256 and BN254 respectively. This number drops significantly to 37 million
when reducing security to 80 bit. Decapsulation is significantly faster than encapsulation:
decapsulating a session key takes, depending on the curve, only 55-65% of the runtime
needed for encapsulation. The implementations using BN256 and BN254 both need 2,848
bytes of RAM. Their demand for constant memory is 19,668 bytes and 18,872 bytes,
respectively. When the curve BN158 is used, the demand for RAM drops to 1,900 bytes.
The effect on constant memory is less, but still significant as it shrinks by 23%.

Detailed evaluation of the identity-based encryption implementations for the curve
BN254 are shown in Table 8.12. The table also shows performance relative to the standard
implementation used in Table 8.11. The lazy reduction technique in the multiplication in
Fp2 , however, reduces runtime of both routines. This is remarkable since encapsulation
involves several point multiplications in E(Fp), which, in the previous section, have been
shown to be less efficient after applying this trick. The downside is a slightly increased
memory footprint. Application of the countermeasure to prevent DPA attacks only has
little impact on decapsulation performance. Using either of the instruction-set extensions
MAC-1 and MAC-2 significantly speeds up the operations involved in the identity-based

93

8. Evaluation

Table 8.11.: Memory requirements and runtime of the BB1 IBE KEM using the three
curves BN256, BN254, and BN158.

Curve Memory Encapsulate Decapsulate
Stack RAM ROM

[Bytes] [Bytes] [Bytes] [kCycles] [kCycles]

BN256 2,824 2,848 19,668 136,822 84,638
BN254 2,824 2,848 18,872 123,320 70,107
BN158 1,876 1,900 14,704 37,700 25,149

Table 8.12.: Memory requirements and runtime of the BB1 IBE KEM for the implemen-
tation variants of the curve BN254.

Variant Memory Encapsulate Decapsulate
Stack RAM ROM

[Bytes] [Bytes] [Bytes] [kCycles] [kCycles]

Standarda 2,824 2,848 18,872 123,320 70,107
LR-Fp2b 2,936 2,960 19,480 121,194 66,066
LRsc-Fp2c 2,936 2,960 19,500 121,194 66,183
LRsc-Fp2 MAC-1 2,932 2,956 14,252 47,925 28,103
LRsc-Fp2 MAC-2 2,932 2,956 14,488 51,096 29,717

Relative Performance

LR-Fp2 +4.0% +3.9% +3.2% −1.7% −5.8%
LRsc-Fp2 +4.0% +3.9% +3.3% −1.7% −5.6%
LRsc-Fp2 MAC-1 +3.8% +3.8% −24.5% −61.1% −59.9%
LRsc-Fp2 MAC-2 +3.8% +3.8% −23.2% −58.6% −57.6%

aPlain assembler-optimized implementation with FIPS Montgomery multiplication in Fp.
bMultiplication in Fp2 uses lazy reduction technique by Sánchez and Rodŕıguez-Henŕıquez [SR13].
cAdditionally incorporates the countermeasure against DPA attacks.

encryption scheme: runtime plummets by about 60%. In addition, the demand for con-
stant memory shrinks by almost a quarter since the unrolled loops become smaller. Con-
sequently, encapsulation can be done in about 50 million clock cycles, and decapsulation
is done in approximately 29 million cycles when the multiply-accumulate extensions are
used. Still, decapsulation is much faster than encapsulation.

As in the previous sections, this evaluation was also done for the curve BN158 and is
shown in Table 8.13. The results are practically the same as for the curve BN254, but the
speed-up of the encapsulation routine when using lazy reduction in Fp2 has almost van-
ished. On the other hand, the increase of the needed memory’s size is less significant, which
ranges between 3.4% for RAM and 2.6% for ROM. Using one of the two instruction-set
extensions MAC-1 and MAC-2 halves the cycle counts for encapsulation and decapsu-
lation, leading to about 18 and 12 million clock cycles respectively. Further, 13.2% of
constant memory can be saved when using the instruction-set extensions. Nevertheless,
the memory-saving effect is less for BN158 than it is for BN254.

94

8.3. Identity-Based Encryption Scheme

Table 8.13.: Memory requirements and runtime of the BB1 IBE KEM for the implemen-
tation variants of the curve BN158.

Variant Memory Encapsulate Decapsulate
Stack RAM ROM

[Bytes] [Bytes] [Bytes] [kCycles] [kCycles]

Standarda 1,876 1,900 14,704 37,700 25,149
LR-Fp2b 1,940 1,964 15,076 37,642 23,962
LRsc-Fp2c 1,940 1,964 15,096 37,642 24,020
LRsc-Fp2 MAC-1 1,936 1,960 12,764 16,960 11,982
LRsc-Fp2 MAC-2 1,936 1,960 12,908 18,136 12,699

Relative Performance

LR-Fp2 +3.4% +3.4% +2.5 % −0.2% −4.7%
LRsc-Fp2 +3.4% +3.4% +2.6 % −0.2% −4.5%
LRsc-Fp2 MAC-1 +3.2% +3.2% −13.2% −55.0% −52.4%
LRsc-Fp2 MAC-2 +3.2% +3.2% −12.2% −51.9% −49.5%

aPlain assembler-optimized implementation with FIPS Montgomery multiplication in Fp.
bMultiplication in Fp2 uses lazy reduction technique by Sánchez and Rodŕıguez-Henŕıquez [SR13].
cAdditionally incorporates the countermeasure against DPA attacks.

Table 8.14.: Comparison of the hardware platforms for the BB1 IBE KEM at 10 Mhz.

Curve Area Power Runtime Energy
RAM ROM Core Total Typ. Enc. Dec. Enc. Dec.
[kGE] [kGE] [kGE] [kGE] [mW] [ms] [ms] [mJ] [mJ]

BN256 16.0 20.1 16.3 53.2 0.71 13,682 8,464 9.68 5.99
BN254 16.0 20.1 16.3 53.2 0.71 12,332 7,011 8.73 4.96
BN158 11.6 17.0 16.3 45.7 0.70 3,770 2,515 2.64 1.76

8.3.2. Hardware

Finally, the hardware platforms capable of performing identity-based encryption are com-
pared for the three curves BN256, BN254 and BN158 in Table 8.14. Runtime and power
measurements are given for a clock frequency of 10 Mhz. Among the three platforms,
BN158 is of course the fastest, but also provides the least security. Identity-based encryp-
tion at the 128-bit security level comes at the cost of merely 53,300 gate equivalents using
an 130 nm UMC process. This number drops to 45,700 when reducing security to 80 bits.
Consequently, chip area shrinks less than the size of the prime in use. Encapsulation is
done in roughly 12 seconds at the 128-bit security level using a 10 Mhz clock, which is sig-
nificantly slower than decapsulation, which is performed in 7 seconds. Therefore, 10.7 mJ
and 6.1 mJ of energy are needed respectively. At the 80-bit security level, encapsulation
and decapsulation are done in 3.7 and 2.5 seconds, which also reduces the demand for
energy to 2.6 mJ and 1.7 mJ.

The different variants of the hardware platforms capable of performing the operations
of the BB1 IBE KEM are compared for the BN254 curve in Table 8.15. The lazy reduction
technique in Fp2 reduces runtime of encapsulation and decapsulation by 1.7% and 5.8%,
respectively. On the other hand, chip area is increased slightly by the higher memory

95

8. Evaluation

Table 8.15.: Comparison of the various hardware platforms for the BB1 IBE KEM using
a 10 Mhz clock and the curve BN254.

Variant Area Power Runtime Energy
RAM ROM Core Total Typ. Enc. Dec. Enc. Dec.
[kGE] [kGE] [kGE] [kGE] [mW] [ms] [ms] [mJ] [mJ]

Standarda 16.0 20.1 16.3 53.2 0.71 12,332 7,011 8.73 4.96
LR-Fp2b 16.6 20.1 16.3 53.8 0.71 12,119 6,607 8.56 4.67
LRsc-Fp2c 16.6 20.1 16.3 53.8 0.71 12,119 6,618 8.56 4.67
LRsc-Fp2 MAC-1 16.5 15.6 19.8 52.7 0.74 4,793 2,810 3.56 2.09
LRsc-Fp2 MAC-2 16.5 17.0 17.6 51.9 1.10 5,110 2,972 5.60 3.26

Relative Performance

LR-Fp2 +3.3% ±0.0% ±0.0% +1.0% ±0.0% −1.7% −5.8% −1.9% −5.9%
LRsc-Fp2 +3.3% ±0.0% ±0.0% +1.0% ±0.0% −1,7% −5.6% −1.9% −5.8%
LRsc-Fp2 MAC-1 +3.1%−22.5% +21.5%−1.0% +4.9% −61.1%−59.9%−59.2%−57.9%
LRsc-Fp2 MAC-2 +3.1%−15.5% +8.0% −2.5% +54.9%−58.6%−57.6%−35.8%−34.3%

aPlain assembler-optimized implementation with FIPS Montgomery multiplication in Fp.
bMultiplication in Fp2 uses lazy reduction technique by Sánchez and Rodŕıguez-Henŕıquez [SR13].
cAdditionally incorporates the countermeasure against DPA attacks.

requirements. Inclusion of the countermeasure to DPA attacks reduces performance and
energy efficiency slightly, but is negligibly. More interesting is the usage of either of the two
multiply-accumulate extensions MAC-1 and MAC-2. These reduce the requirements for
constant memory by up to 20%, but reduce chip size only slightly, because the extensions
increase the processor core’s size. On the other hand, runtime drops massively by up to
60%, also yielding lower energy consumption. Since power consumption for MAC-2 is
increased by one half, the platform using MAC-1 is more energy-efficient.

Finally, the impact of the several implementation variants on their respective hardware
platforms for the curve BN158 are presented in Table 8.16. Similar to BN254, both
runtime and demand for energy are reduced when employing the lazy reduction technique
in the multiplication in Fp2 . This remains valid for the secured implementation. However,
chip size increases minimally. The two instruction-set extensions MAC-1 and MAC-2
further reduce runtime of encapsulation and decapsulation by 50%. This is also reflected
in energy consumption. However, the energy reduction for the extension MAC-2 is only
20-25% since power consumption rises by 50% in this case. On the other hand, MAC-1
leads to an overall 5% larger chip, while there is a negligible effect on chip size when using
MAC-2.

8.4. Related Work

Many implementations of bilinear pairings have been published in recent years. In the
earlier years, the focus was on pairings over binary curves, since they are generally faster.
However, the results by Joux [Jou13] and Göloğlu et al. [Göl+13] indicate that pairings
over fields with small characteristic might be less secure. Therefore, the comparison to
related work is restricted to those implementations that are based on finite fields with
large prime characteristic.

96

8.4. Related Work

Table 8.16.: Comparison of the various hardware platforms for the BB1 IBE KEM using
a 10 Mhz clock and the curve BN2158.

Variant Area Power Runtime Energy
RAM ROM Core Total Typ. Enc. Dec. Enc. Dec.
[kGE] [kGE] [kGE] [kGE] [mW] [ms] [ms] [mJ] [mJ]

Standarda 11.6 17.0 16.3 45.7 0.70 3,770 2,515 2.64 1.76
LR-Fp2b 11.9 17.0 16.3 46.0 0.70 3,764 2,396 2.64 1.68
LRsc-Fp2c 11.9 17.0 16.3 46.0 0.70 3,764 2,402 2.64 1.69
LRsc-Fp2 MAC-1 11.9 15.6 19.8 48.1 0.74 1,696 1,198 1.26 0.89
LRsc-Fp2 MAC-2 11.9 15.6 17.6 45.8 1.10 1,814 1,270 1.99 1.39

Relative Performance

LR-Fp2 +2.5%±0.0% ±0.0% +0.6% ±0.0% −0.2% −4.7% −0.1% −4.7%
LRsc-Fp2 +2.5%±0.0% ±0.0% +0.6% ±0.0% −0.2% −4.5% ±0.0% −4.3%
LRsc-Fp2 MAC-1 +2.5%−8.3% +21.5% +5.2% +5.9% −55.0%−52.4%−52.3%−49.5%
LRsc-Fp2 MAC-2 +2.5%−8.3% +8.0% +0.4% +56.3%−51.9%−49.5%−24.8%−21.1%

aPlain assembler-optimized implementation with FIPS Montgomery multiplication in Fp.
bMultiplication in Fp2 uses lazy reduction technique by Sánchez and Rodŕıguez-Henŕıquez [SR13].
cAdditionally incorporates the countermeasure against DPA attacks.

In Table 8.17, performance of pairing implementations providing about 128 bits of se-
curity is shown. The MSP430 platform used by Gouvêa [GL09; GOL12a] is targeted at
similar applications as the Cortex-M0+. Consequently, these implementations seem good
for comparison. Runtime of the optimal Ate pairing on the MSP430 is about 67% slower
than on the Cortex-M0+. If its successor MSP430X is used, the Cortex-M0+ still per-
forms 41% better. However, if an MSP430 with integrated 32-bit multiplication unit is
utilized, the MSP430 seems to be equally fast. Contrary to that, the implementation in
this work based on the Cortex-M0+ needs 40%-57% less RAM and 60% less ROM. In this
respect, the platform presented is clearly more efficient. When further using one of the
two instruction-set extensions MAC-1 or MAC-2, performance of the Cortex-M0+-based
platform becomes even better compared to the MSP430.

The implementations on the Cortex-A and Intel processors are listed to give a sense of
their performance relative to the Cortex-M0+. Note that these are typically clocked at
over 1 GHz, while the Cortex-M0+ is clocked between 10 MHz and 50 MHz. Therefore,
cycle counts are not as comparative as for the MSP430 in this case. Using the much more
powerful Cortex-A9, the implementation by Acar et al. [Aca+13] needs 7% more cycles
compared to this work’s implementation. However, Grewal et al. [Gre+13] and Sánchez
and Rodŕıguez-Henŕıquez [SR13] presented implementations that exploit the advantages
of the application processors Cortex-A9 and Cortex-A15 and yield about 75% better cy-
cle counts than on the Cortex-M0+. Even better results were shown by Sánchez and
Rodŕıguez-Henŕıquez [SR13] when the NEON extensions are used. These yield a similar
speed-up as the two proposed instruction-set extensions MAC-1 and MAC-2. In terms of
cycle counts, the implementation on the Intel i7 by Beuchat et al. [Beu+10] is about 20
times faster than this work, which is even topped by the results on the Intel i5 by Aranha
et al. [Ara+11]. However, both the Intel i5 and i7 are massively more powerful. Note
that none of these implementations but the ones presented in this thesis provide sufficient
security against side-channel attacks.

97

8. Evaluation

Table 8.17.: Comparison of pairing implementations providing roughly 128 bits of security.

Variant Platform κ RAM ROM Pairing Type
[Bit] [Bytes] [Bytes] [kCycles]

LRsc-Fp2 Cortex-M0+ 127 2,824 14,740 47,644 Opt. Ate
LRsc-Fp2 MAC-1 Cortex-M0+ 127 2,820 9,496 20,536 Opt. Ate
LRsc-Fp2 MAC-2 Cortex-M0+ 127 2,820 9,728 21,681 Opt. Ate

Gouvêa [GL09] MSP430 128 4,700 36,200 117,598 Opt. Ate

Gouvêa [GOL12a]
MSP430 127 6,500 36,000 79,440 Opt. Ate

MSP430X 127 6,500 35,200 67,688 Opt. Ate
MSP430/MPY32 127 6,500 34,400 47,736 Opt. Ate

Acar [Aca+13] Cortex-A9 127 - - 51,010 Opt. Ate

Sánchez [SR13]
Cortex-A15 127 - - 13,618 Opt. Ate

Cortex-A15/NEON 127 - - 5,838 Opt. Ate
Grewal [Gre+13] Cortex-A9 127 - - 11,886 Opt. Ate
Beuchat [Beu+10] Intel i7 128 - - 2,330 Opt. Ate
Aranha [Ara+11] Intel i5 127 - - 1,703 Opt. Ate

Table 8.18.: Comparison of pairing implementations providing less than 128 bits of secu-
rity.

Variant Platform κ RAM ROM Pairing Type
[Bit] [Bytes] [Bytes] [kCycles]

LRsc-Fp2 Cortex-M0+ 79 1,852 10,640 17,389 Opt. Ate
LRsc-Fp2 MAC-1 Cortex-M0+ 79 1,848 8,308 8,789 Opt. Ate
LRsc-Fp2 MAC-2 Cortex-M0+ 79 1,848 8,452 9,300 Opt. Ate

TinyTate[Oli+07] ATMega 64 1,831 18,384 223,034 Tate
NanoECC [Szc+08] ATMega 80 2,500 71,900 132,373 Ate
Szczechowiak[Szc+09] ATMega 64 3,390 60,910 54,800 Tate
Gouvêa [GL09] MSP430 70 2,300 28,900 40,869 Tate

A comparison of pairing implementations at a lower level of security is done in Table 8.18.
Comparable work uses the slower Tate and Ate pairings. The implementation on the
Cortex-M0+ results in massively lower memory requirements and runtime that is 2.3-
12 times faster. This becomes even more obvious when considering the provided level
of security, which, apart from the implementation by Szczechowiak et al. [Szc+08], is
significantly lower for the related work.

The positioning of the hardware platform for computing pairings is shown in Table 8.19.
When not using instruction-set extensions, the implementations provided in this thesis are
massively slower. Apart from one variant presented by Kammler et al. [Kam+09], the im-
plementations by Kammler et al. and by Fan, Vercauteren, and Verbauwhede [FVV09]
are even faster than the presented platform when instruction-set extensions are used. In
addition, their platforms can be operated at clock frequencies of 338 Mhz and 204 Mhz
respectively, while the Cortex-M0+-based platform is typically clocked at 50 Mhz at most.
Contrary to that, the microcontroller-based approach is more general and may hence be
used for other applications as well. Addtionally, the platform is over 60% smaller. Fig-
ure 8.3 summarizes these results and shows, that the implementation by Fan, Vercauteren,

98

8.5. Conclusion

Table 8.19.: Comparison of hardware platforms for computing pairings using a 130 nm
process.

Variant Platform κ Area Pairing Type
[Bit] [GE] [kCycles]

LRsc-Fp2 Cortex-M0+ 127 50,008 47,644 Opt. Ate
LRsc-Fp2 MAC-1 Cortex-M0+ 127 48,289 20,536 Opt. Ate
LRsc-Fp2 MAC-2 Cortex-M0+ 127 46,202 21,681 Opt. Ate
LRsc-Fp2 Cortex-M0+ 79 42,144 17,389 Opt. Ate
LRsc-Fp2 MAC-1 Cortex-M0+ 79 43,796 8,789 Opt. Ate
LRsc-Fp2 MAC-2 Cortex-M0+ 79 41,609 9,300 Opt. Ate

Kammler [Kam+09]
RISC Core 128 164,000 5,340 Opt. Ate
RISC Core 128 145,000 6,490 Opt. Ate
RISC Core 128 130,000 10,816 Opt. Ate

Fan [FVV09]
ASIC 128 183,000 593 R-Ate
ASIC 128 183,000 862 Ate

and Verbauwhede is the most efficient. The implementations by Kammler et al. are ap-
proximately as efficient as the two Cortex-M0+ platforms equipped with instruction-set
extensions. The least-efficient platform is based on a plain Cortex-M0+ microprocessor.

8.5. Conclusion

In this chapter, performance of the implementations provided in this thesis was evaluated.
Since finite field arithmetic is crucial, this was looked at in the first place. It was shown
how runtime of addition, multiplication and inversion scales in extension fields and de-
pending on the size of the prime being used. Consequently, the pairing implementation
along with the elliptic curve point multiplication was investigated. It turned out, that
pairing computations are 3-4 times slower than point multiplications in E(Fp). Further,
lazy reduction in the base field Fp was shown not to be beneficial. However, the lazy reduc-
tion trick in the multiplication in Fp2 improved runtime noticeably. This was remarkably
enhanced by using either of the instruction-set extensions. Additionally, the demand for
memory is reduced by these extensions. The effect of these optimizations could also be
observed in a similar manner for the BB1 IBE KEM. There, it turned out that encapsula-
tion is significantly more expensive than decapsulation. Moreover, the need for constant
memory is clearly higher than for a simple pairing computation.

The impact of in- and decreases in terms of memory size was also reflected in the
area of the respective hardware platforms. Using instruction-set extensions raises power
consumption, especially when utilizing MAC-2. However, the platforms with multiply-
accumulate extensions are significantly more energy-efficient and to be preferred in battery-
powered systems.

In the context of related work, the pairing implementation provided is clearly superior
to any other implementation in the same processor segment, which is largely contributed
to the 32-bit architecture. The memory requirements are extraordinary low for the pre-
sented platform. Furthermore, the investigated related work lacks countermeasures to
prevent side-channel attacks, which typically reduce performance. The provided hardware
platform to compute pairings is clearly slower than the ones presented in related work.

99

8. Evaluation

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

0.5

1

1.5

2
·105

Cortex-M0+Cortex-M0+ MAC-1

Cortex-M0+ MAC-2

Kammler 1

Kammler 2

Kammler 3

Fan

Runtime [milliseconds]

A
re

a
[G

E
]

Faster

More Efficient

Smaller

Figure 8.3.: Area-runtime characteristics at 10 MHz.

This drawback becomes even more significant when taking the possible clock frequency
into account. Nevertheless, the platform based on the Cortex-M0+ is general-purpose and
also significantly smaller.

100

9. Conclusion

Cryptography nowadays suffers from several problems: symmetric encryption schemes rely
on the distribution of a common secret key, while asymmetric schemes have the problem
of authenticity of the public keys used for encryption. Consequently, identity-based en-
cryption was presented as a promising alternative, where a publicly known identity-string,
for example an e-mail address, is used instead of the public key for data encryption.

Since most published identity-based encryption schemes rely on bilinear pairings, their
mathematical background was looked at in more detail. In the most common case, bilinear
parings map two elements from groups over elliptic curves to an element in a large extension
field, for example, E(Fp) × E(Fp2) −→ Fp12 for BN curves. These maps are efficiently
computable and fulfill a bilinearity property, which allows creation of new protocols based
on the difficulty of the bilinear Diffie-Hellman problem. However, overall complexity of
such systems is high.

Consecutively, various identity-based encryption schemes that followed the scheme by
Boneh and Franklin [BF01] were presented. These differ enormously in size of public
domain parameters, performance, and the proven notion of security. A special focus
was put on the latter, which lead to the conclusion that adaptive-identity security without
random oracles is the most secure type of security. It seems, that it provides more security
than selective-identity security without random oracles even in its weakest form. Two of
the mentioned identity-based encryption schemes, namely the KEM variant of the BB1

IBE by Boyen [Boy06] and the KEM IBE by Kiltz [Kil06], were investigated in more detail
since they seemed suitable for usage in embedded applications. It turned out, that in order
to be able to provide sufficient performance on a resource-limited device, the weaker notion
of security provided by the BB1 IBE KEM had to be accepted.

The BB1 IBE KEM was implemented on a hardware platform based on the Cortex-
M0+ microprocessor, which targets the embedded applications. This approach offered
clear advantages. First, the processor can be used for other applications as well and is
not limited to identity-based encryption. Second, a microprocessor seems most suitable
for the irregular data flow that evolves from the executed operations. At last, existing
compilers can be used. The layered implementation was then explained on architectural
level. Following, the most important implementation aspects and optimization strategies
were explained. In this matter, a new method for final exponentiation in the pairing
computation could be presented, which significantly reduces the demand for memory. In
addition, the parameterization of the prime allows more efficient inversion in the prime
field being used. Nevertheless, the main contribution is the optimized finite field arithmetic
on the Cortex-M0+ processor, which provides good runtime and needs little memory. This
was further improved by equipping the processor with two different multiply-accumulate
instruction-set extensions, which make the platform faster and more energy-efficient.

Side-channel attacks pose a serious threat to security applications in embedded environ-
ments since an adversary very probably has full access to the device. Therefore, the most
important types of side-channel attacks, among them timing attacks, simple and differ-
ential power analysis attacks, were discussed. The implementation of the identity-based

101

9. Conclusion

encryption scheme was done with respect to preventing many side-channel attacks. This
was pointed out partly in Chapter 6, but in more detail in Chapter 7. Moreover, a DPA
attack on the pairing computation in the decapsulation routine of the identity-based en-
cryption scheme was shown. It allows extraction of the identity’s private key. Fortunately,
a simple but effective countermeasure, in particular randomization of the private elliptic
curve point in the pairing computation, could be proposed and included in the implemen-
tation. If the identity-based encryption scheme was set up differently, that is, the private
key was not in E(Fp2), but in E(Fp), the countermeasure would take considerably more
effort.

The various software implementations done for the three curves BN256, BN254 and
BN158 were evaluated in detail. It turned out, that encapsulation in the identity-based
encryption scheme is roughly by 50-75% more expensive than decapsulation. On a typical
platform clocked at 10 MHz, encapsulation is done in 12 and 3.7 seconds at the 128-bit
and 80-bit security levels, respectively. The latter seems acceptable, especially if 80 bits
of security are enough for the embedded applications. When comparing the proposed
architecture to related work, it was found that dedicated hardware platforms consume
much more chip area, but are significantly faster. On the other hand, architectures based
on processors also targeted at the embedded market have massively longer runtime and
memory requirements, which are a number of times higher. Considering side-channel
security and the general-purpose architecture, the platform presented in this work seems
to fill the current gap between the existing microcontroller-based solutions and dedicated
hardware platforms.

102

Appendix

103

A. Point Multiplication Formulas

For the routines AddDblCoZ and RecoverFullCoordinatesCoZ in the elliptic curve point
multiplication from Algorithm 5, the variants having both low memory requirements and
little computational effort were chosen. Algorithm 16 illustrates the combined double-and-
add step using homogeneous projective co-Z coordinates. Correspondingly, Algorithm 17
shows how to recover the full point from the two x-coordinates and the z-coordinate.

In these two Algorithms, X1, X2 and Z are variables representing the two points used in
the Montgomery ladder. The variables a and 4b constitute the parameters of the elliptic
curve y2 = x3 + ax + b. The coordinates xD and yD belong to the difference of the two
points used in the Montgomery ladder, namely D = R2 −R1 = (xD, yD). This difference
D is invariant during the whole point multiplication and equals the original point P that
is to be multiplied.

Algorithm 16 Out-of-place version of AddDblCoZ using homogeneous projective co-Z
coordinates by Hutter, Joye, and Sierra [HJS11, Alg. 5].

Input: X1, X2, Z, xD, a, 4b
Output: X1, X2, Z
1: R2 ← Z2

2: R3 ← a ·R2

3: R1 ← Z ·R2

4: R2 ← 4b ·R1

5: R1 ← X2
2

6: R5 ← R1 −R3

7: R4 ← R2
5

8: R1 ← R1 +R3

9: R5 ← X2 ·R1

10: R5 ← R5 +R5

11: R5 ← R5 +R5

12: R5 ← R5 +R2

13: R1 ← R1 +R3

14: R3 ← X2
1

15: R1 ← R1 +R3

16: X1 ← X1 −X2

17: X2 ← X2 +X2

18: R3 ← X2 ·R2

19: R4 ← R4 −R3

20: R3 ← X2
1

21: R1 ← R1 −R3

22: X1 ← X1 +X2

23: X2 ← X1 ·R1

24: X2 ← X2 +R2

25: R2 ← Z ·R3

26: Z ← xD ·R2

27: X2 ← X2 − Z
28: X1 ← R5 ·X2

29: X2 ← R3 ·R4

30: Z ← R2 ·R5

31: return {X1, X2, Z}

105

A. Point Multiplication Formulas

Algorithm 17 Out-of-place version of RecoverFullCoordinatesCoZ using homogeneous
projective co-Z coordinates by Hutter, Joye, and Sierra [HJS11, Alg. 7].

Input: X1, X2, Z, xD, yD, a, 4b
Output: X1, X2, z
1: R1 ← xD · Z
2: R2 ← X1 −R1

3: R3 ← R2
2

4: R4 ← R3 ·X2

5: R2 ← R1 ·X1

6: R1 ← X1 +R1

7: X2 ← Z2

8: R3 ← a ·X2

9: R2 ← R2 +R3

10: R3 ← R2 ·R1

11: R3 ← R3 −R4

12: R3 ← R3 +R3

13: R1 ← yD + yD
14: R1 ← R1 +R1

15: R2 ← R1 ·X1

16: X1 ← R2 ·X2

17: R2 ← R2 · Z
18: Z ← R2 ·R1

19: R4 ← 4b ·R2

20: X2 ← R4 +R3

21: return {X1, X2, Z}

106

B. Pairing Evaluation Formulas

Costello, Lange, and Naehrig [CLN10, Section 5] presented fast formulas for interleaved
line evaluation and point addition for computing pairings. Accordingly, fast formulas for
interleaved line evaluation and and point doubling were shown. In particular, they pre-
sented formulas for curves of the form E : y2 = x3 + b, which have even embedding degree
and a sextic twist E′. They use homogeneous projective coordinates, which transform the
curve equation to Y 2Z = X3 + bZ3. Consequently, these formulas are perfectly suitable
for BN curves that are used in this thesis.

The double of the point T = (Tx, Ty, Tz) ∈ E′(Fp2) in projective coordinates is denoted
T ′ = (T ′x, T

′
y, T

′
z) = [2](Tx, Ty, Tz) ∈ E′(Fp2) and computed as

T ′x = 2TxTy(T
2
y − 9bT 2

z), T ′y = T 4
y + 18bT 2

y T
2
z − 27b2T 4

z , T
′
z = 8T 3

y Tz.

Let z denote the root of the irreducible polynomial z6− ξ over Fp2 , which is used to define
Fp12 . The tangent line in T is represented in homogeneous projective coordinates as

`T,T (P) = (3bT 2
z − T 2

y) · z3 + 3T 2
x · Px · z − 2TyTz · Py ∈ Fp12 ,

where P = (Px, Py) ∈ E(Fp) denotes the point at which the tangent line has to be
evaluated. Let `T,T (P) = L0,1 · z3 + L1,0 · Px · z + L0,0 · Py and T ′ = (T ′x, T

′
y, T

′
z) =

[2](Tx, Ty, Tz). The interleaved point doubling and the tangent line evaluation can be
done as follows:

A = T 2
x , B = T 2

y , C = T 2
z , D = 3bC, E = (Tx + Ty)

2 −A−B,
F = (Ty + Tz)

2 −B − C, G = 3D, T ′x = E · (B −G), T ′y = (B +G)2 − 12D2,

T ′z = 4B · F, L1,0 = 3A, L0,0 = −F, L0,1 = D −B.

This sequence performs in only two multiplications, 7 squarings and one multiplication by
the constant b in Fp2 . The full evaluation of `T,T (P) takes only two more multiplications
by Px, Py ∈ Fp respectively.

According to Costello et al. [Cos+09], the sum of two points T = (Tx, Ty, Tz) and
Q = (Qx, Qy, 1) ∈ E′(Fp2) using homogeneous projective coordinates, denoted T ′ =
(T ′x, T

′
y, T

′
z) = (Tx, Ty, Tz) + (Qx, Qy, 1) ∈ E′(Fp2), is computed as

T ′x = (Tx − TzQx)(Tz(Ty − TzQy)2 − (Tx + TzQx)(Tx − TzQx)2),

T ′y = (Ty − TzQy)((2Tx + TzQx)(Tx − TzQx)2 − Tz(Ty − TzQy)2)− Ty(Tx − TzQx)3,

T ′z = Tz(Tx − TzQx)3.

The line between the two points T and Q is represented as

`T,Q(P) = ((Ty − TzQy) ·Qx − (Tx − TzQx) ·Qy) · z3−
(Ty − TzQy) · Px · z + (Tx − TzQx) · Py,

107

B. Pairing Evaluation Formulas

where P = (Px, Py) ∈ E(Fp) denotes the point at which the line is evaluated. Writing
`T,Q(P) = L0,1·z3+L1,0·Px·z+L0,0·Py and let T ′ = (T ′x, T

′
y, T

′
z) = (Tx, Ty, Tz)+(Qx, Qy, 1),

the interleaved point addition and the line evaluation can be done as follows:

A = Ty − TzQy, B = Tx − TzQx, C = B2, D = B · C,
E = C · Tx, F = A2Tz +D − 2E, G = (E − F) ·A,
T ′x = B · F, T ′y = G−D · Ty, T ′z = D · Tz,
L0,0 = B, L1,0 = −A, L0,1 = A ·Qx −B ·Qy.

The chain presented takes 11 multiplications and two squarings in Fp2 . As for point
doubling, the full evaluation of `P ′1,P ′2(S) comprises only two more multiplications by
Px, Py ∈ Fp respectively.

108

Bibliography

[Aca+13] Tolga Acar et al. “Affine pairings on ARM”. In: Proceedings of the 5th in-
ternational conference on Pairing-Based Cryptography. Pairing’12. Cologne,
Germany: Springer-Verlag, 2013. url: http://dx.doi.org/10.1007/978-3
-642-36334-4_13 (cit. on pp. 97, 98).

[AM93] A. O. L. Atkin and F. Morain. “Elliptic Curves And Primality Proving”. In:
Math. Comp 61 (1993), pp. 29–68 (cit. on p. 27).

[AR12] Gora Adj and Francisco Rodŕıguez-Henŕıquez. Square root computation over
even extension fields. Cryptology ePrint Archive, Report 2012/685. http:

//eprint.iacr.org/. 2012 (cit. on p. 77).

[Ara+11] DiegoF. Aranha et al. “Faster Explicit Formulas for Computing Pairings over
Ordinary Curves”. In: Advances in Cryptology – EUROCRYPT 2011. Ed. by
KennethG. Paterson. Vol. 6632. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 48–68. isbn: 978-3-642-20464-7. doi: 10.1007/9
78-3-642-20465-4_5. url: http://dx.doi.org/10.1007/978-3-642-204
65-4_5 (cit. on pp. 67, 97, 98).

[AT03] Toru Akishita and Tsuyoshi Takagi. “Zero-Value Point Attacks on Ellip-
tic Curve Cryptosystem”. In: Information Security. Ed. by Colin Boyd and
Wenbo Mao. Vol. 2851. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2003, pp. 218–233. isbn: 978-3-540-20176-2. doi: 10.1007/1095
8513_17. url: http://dx.doi.org/10.1007/10958513_17 (cit. on p. 46).

[Att+05] Nuttapong Attrapadung et al. Efficient Identity-Based Encryption with Tight
Security Reduction. 2005 (cit. on p. 34).

[Bak+04] S. Baktir et al. “Optimal tower fields for hyperelliptic curve cryptosystems”.
In: Signals, Systems and Computers, 2004. Conference Record of the Thirty-
Eighth Asilomar Conference on. Vol. 1. 2004, 522–526 Vol.1. doi: 10.1109
/ACSSC.2004.1399187 (cit. on p. 57).

[Bar+02] Paulo S. L. M. Barreto et al. “Efficient Algorithms for Pairing-Based Cryp-
tosystems”. In: Proceedings of the 22nd Annual International Cryptology Con-
ference on Advances in Cryptology. CRYPTO ’02. London, UK, UK: Springer-
Verlag, 2002, pp. 354–368. isbn: 3-540-44050-X. url: http://dl.acm.org/
citation.cfm?id=646767.704315 (cit. on p. 61).

[Bar+04] Paulo S. L. M. Barreto et al. “Efficient Pairing Computation on Supersingular
Abelian Varieties”. In: Designs, Codes and Cryptography. 2004, pp. 239–271
(cit. on p. 27).

109

http://dx.doi.org/10.1007/978-3-642-36334-4_13
http://dx.doi.org/10.1007/978-3-642-36334-4_13
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-20465-4_5
http://dx.doi.org/10.1007/978-3-642-20465-4_5
http://dx.doi.org/10.1007/978-3-642-20465-4_5
http://dx.doi.org/10.1007/978-3-642-20465-4_5
http://dx.doi.org/10.1007/10958513_17
http://dx.doi.org/10.1007/10958513_17
http://dx.doi.org/10.1007/10958513_17
http://dx.doi.org/10.1109/ACSSC.2004.1399187
http://dx.doi.org/10.1109/ACSSC.2004.1399187
http://dl.acm.org/citation.cfm?id=646767.704315
http://dl.acm.org/citation.cfm?id=646767.704315

Bibliography

[Bar87] Paul Barrett. “Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor”. English.
In: Advances in Cryptology — CRYPTO’ 86. Ed. by AndrewM. Odlyzko.
Vol. 263. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1987, pp. 311–323. isbn: 978-3-540-18047-0. doi: 10.1007/3-540-47721-7
_24. url: http://dx.doi.org/10.1007/3-540-47721-7_24 (cit. on p. 53).

[BB04a] Dan Boneh and Xavier Boyen. “Efficient Selective-ID Secure Identity
Based Encryption Without Random Oracles”. In: Advances in Cryptology—
EUROCRYPT 2004. Vol. 3027. Lecture Notes in Computer Science. Available
at http://www.cs.stanford.edu/~xb/eurocrypt04b/. Berlin: Springer-
Verlag, 2004, pp. 223–238 (cit. on pp. 34, 35, 39).

[BB04b] Dan Boneh and Xavier Boyen. “Secure Identity Based Encryption Without
Random Oracles”. In: Advances in Cryptology – CRYPTO 2004. Ed. by Matt
Franklin. Vol. 3152. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2004, pp. 443–459. isbn: 978-3-540-22668-0. doi: 10.1007/978-3-54
0-28628-8_27. url: http://dx.doi.org/10.1007/978-3-540-28628-8_27
(cit. on pp. 21, 35).

[Ben+08] K. Bentahar et al. “Generic Constructions of Identity-Based and Certificate-
less KEMs”. English. In: Journal of Cryptology 21.2 (2008), pp. 178–199. issn:
0933-2790. doi: 10.1007/s00145-007-9000-z. url: http://dx.doi.org/1
0.1007/s00145-007-9000-z (cit. on p. 40).

[Beu+10] Jean-Luc Beuchat et al. “High-Speed Software Implementation of the Optimal
Ate Pairing over Barreto–Naehrig Curves”. In: Pairing-Based Cryptography -
Pairing 2010. Ed. by Marc Joye, Atsuko Miyaji, and Akira Otsuka. Vol. 6487.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 21–
39. isbn: 978-3-642-17454-4. doi: 10.1007/978-3-642-17455-1_2. url:
http://dx.doi.org/10.1007/978-3-642-17455-1_2 (cit. on pp. 1, 97, 98).

[BF01] Dan Boneh and Matthew Franklin. “Identity-Based Encryption from the Weil
Pairing”. In: Springer-Verlag, 2001, pp. 213–229 (cit. on pp. 8, 21, 31, 34, 101).

[BG81] Charles H. Bennett and John Gill. “Relative to a Random Oracle A, PA
!= NPA != co-NPA with Probability 1.” In: SIAM J. Comput. 10.1 (1981),
pp. 96–113. url: http://dblp.uni-trier.de/db/journals/siamcomp/
siamcomp10.html#BennettG81 (cit. on p. 31).

[BK04] Dan Boneh and Jonathan Katz. “Improved Efficiency for CCA-Secure Cryp-
tosystems Built Using Identity-Based Encryption”. In: Springer-Verlag, 2004,
pp. 87–103 (cit. on p. 34).

[BL13] D. J. Bernstein and T. Lange. Explicit-Formulas Database. Aug. 2013 (cit. on
p. 18).

[BLS04] PauloS.L.M. Barreto, Ben Lynn, and Michael Scott. “On the Selection of
Pairing-Friendly Groups”. In: Selected Areas in Cryptography. Ed. by Mit-
suru Matsui and RobertJ. Zuccherato. Vol. 3006. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2004, pp. 17–25. isbn: 978-3-540-21370-3.
doi: 10.1007/978-3-540-24654-1_2. url: http://dx.doi.org/10.1007
/978-3-540-24654-1_2 (cit. on p. 61).

110

http://dx.doi.org/10.1007/3-540-47721-7_24
http://dx.doi.org/10.1007/3-540-47721-7_24
http://dx.doi.org/10.1007/3-540-47721-7_24
http://www.cs.stanford.edu/~xb/eurocrypt04b/
http://dx.doi.org/10.1007/978-3-540-28628-8_27
http://dx.doi.org/10.1007/978-3-540-28628-8_27
http://dx.doi.org/10.1007/978-3-540-28628-8_27
http://dx.doi.org/10.1007/s00145-007-9000-z
http://dx.doi.org/10.1007/s00145-007-9000-z
http://dx.doi.org/10.1007/s00145-007-9000-z
http://dx.doi.org/10.1007/978-3-642-17455-1_2
http://dx.doi.org/10.1007/978-3-642-17455-1_2
http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp10.html#BennettG81
http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp10.html#BennettG81
http://dx.doi.org/10.1007/978-3-540-24654-1_2
http://dx.doi.org/10.1007/978-3-540-24654-1_2
http://dx.doi.org/10.1007/978-3-540-24654-1_2

Bibliography

[BMW05] Xavier Boyen, Qixiang Mei, and Brent Waters. “Direct Chosen Ciphertext
Security from Identity-Based Techniques”. In: In ACM Conference on Com-
puter and Communications Security. ACM Press, 2005, pp. 320–329 (cit. on
pp. 34, 38).

[BN06] PauloS.L.M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic Curves
of Prime Order”. In: Selected Areas in Cryptography. Ed. by Bart Preneel
and Stafford Tavares. Vol. 3897. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2006, pp. 319–331. isbn: 978-3-540-33108-7. doi: 10.100
7/11693383_22. url: http://dx.doi.org/10.1007/11693383_22 (cit. on
pp. 27–29, 55).

[Bon98] Dan Boneh. “The Decision Diffie-Hellman problem”. In: Algorithmic Number
Theory. Ed. by JoeP. Buhler. Vol. 1423. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1998, pp. 48–63. isbn: 978-3-540-64657-0. doi:
10.1007/BFb0054851. url: http://dx.doi.org/10.1007/BFb0054851
(cit. on p. 20).

[Boy06] Xavier Boyen. The BB1 identity-based cryptosystem: a standard for encryp-
tion and key encapsulation. Aug. 2006. url: http://grouper.ieee.org/
groups/1363/IBC/submissions/Boyen-bb1ieee.pdf (cit. on pp. 2, 35–37,
40–42, 52, 101).

[CC05] Liqun Chen and Zhaohui Cheng. “Security proof of Sakai-Kasahara’s identity-
based encryption scheme”. In: In Proceedings of Cryptography and Coding
2005, LNCS 3706. Springer-Verlag, 2005, pp. 442–459 (cit. on p. 34).

[CH07] Jaewook Chung and M.A. Hasan. “Asymmetric Squaring Formulae”. In: Com-
puter Arithmetic, 2007. ARITH ’07. 18th IEEE Symposium on. 2007, pp. 113–
122. doi: 10.1109/ARITH.2007.11 (cit. on pp. 56, 68).

[Che+06] L. Chen et al. “An Efficient ID-KEM Based On The Sakai-Kasahara Key
Construction”. In: IEE Proceedings of Information Security. 2006 (cit. on
p. 34).

[Che06] JungHee Cheon. “Security Analysis of the Strong Diffie-Hellman Problem”.
In: Advances in Cryptology - EUROCRYPT 2006. Ed. by Serge Vaudenay.
Vol. 4004. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2006, pp. 1–11. isbn: 978-3-540-34546-6. doi: 10.1007/11761679_1. url:
http://dx.doi.org/10.1007/11761679_1 (cit. on pp. 35, 37, 39, 41).

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. “A Forward-Secure Public-
Key Encryption Scheme”. English. In: Advances in Cryptology — EURO-
CRYPT 2003. Ed. by Eli Biham. Vol. 2656. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2003, pp. 255–271. isbn: 978-3-540-14039-9.
doi: 10.1007/3-540-39200-9_16. url: http://dx.doi.org/10.1007/3-5
40-39200-9_16 (cit. on p. 34).

[CLN10] Craig Costello, Tanja Lange, and Michael Naehrig. “Faster Pairing Compu-
tations on Curves with High-Degree Twists”. In: Public Key Cryptography –
PKC 2010. Ed. by PhongQ. Nguyen and David Pointcheval. Vol. 6056. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 224–
242. isbn: 978-3-642-13012-0. doi: 10.1007/978-3-642-13013-7_14. url:
http://dx.doi.org/10.1007/978-3-642-13013-7_14 (cit. on pp. 61, 107).

111

http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1007/BFb0054851
http://grouper.ieee.org/groups/1363/IBC/submissions/Boyen-bb1 ieee.pdf
http://grouper.ieee.org/groups/1363/IBC/submissions/Boyen-bb1 ieee.pdf
http://dx.doi.org/10.1109/ARITH.2007.11
http://dx.doi.org/10.1007/11761679_1
http://dx.doi.org/10.1007/11761679_1
http://dx.doi.org/10.1007/3-540-39200-9_16
http://dx.doi.org/10.1007/3-540-39200-9_16
http://dx.doi.org/10.1007/3-540-39200-9_16
http://dx.doi.org/10.1007/978-3-642-13013-7_14
http://dx.doi.org/10.1007/978-3-642-13013-7_14

Bibliography

[Coc01] Clifford Cocks. “An identity based encryption scheme based on quadratic
residues”. In: IN IMA INT. CONF. Springer-Verlag, 2001, pp. 360–363 (cit.
on p. 8).

[Coh+10] H. Cohen et al. Handbook of Elliptic and Hyperelliptic Curve Cryptography.
Discrete Mathematics and Its Applications. Taylor & Francis, 2010. isbn:
9781420034981 (cit. on p. 19).

[Cor99] Jean-Sébastien Coron. “Resistance Against Differential Power Analysis For
Elliptic Curve Cryptosystems”. English. In: Cryptographic Hardware and Em-
bedded Systems. Ed. by ÇetinK. Koç and Christof Paar. Vol. 1717. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1999, pp. 292–302.
isbn: 978-3-540-66646-2. doi: 10.1007/3- 540- 48059- 5_25. url: http:
//dx.doi.org/10.1007/3-540-48059-5_25 (cit. on p. 46).

[Cos+09] Craig Costello et al. “Faster Pairings on Special Weierstrass Curves”. In:
Pairing-Based Cryptography – Pairing 2009. Ed. by Hovav Shacham and
Brent Waters. Vol. 5671. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, pp. 89–101. isbn: 978-3-642-03297-4. doi: 10.1007/978-3-
642-03298-1_7. url: http://dx.doi.org/10.1007/978-3-642-03298-1_7
(cit. on p. 107).

[Cos13] Craig Costello. Pairings for Beginners. 2013. url: http : / / www .

craigcostello.com.au/pairing/ (cit. on pp. 17, 22–26, 28).

[CS06] Sanjit Chatterjee and Palash Sarkar. “Trading time for space: towards an
efficient IBE scheme with short(er) public parameters in the standard model”.
In: Proceedings of the 8th international conference on Information Security
and Cryptology. ICISC’05. Seoul, Korea: Springer-Verlag, 2006, pp. 424–440.
isbn: 3-540-33354-1, 978-3-540-33354-8. doi: 10.1007/11734727_33. url:
http://dx.doi.org/10.1007/11734727_33 (cit. on p. 35).

[CS11] S. Chatterjee and P. Sarkar. Identity-Based Encryption. SpringerLink :
Bücher. Springer, 2011. isbn: 9781441993830. url: http://books.google.
fr/books?id=a5mkUnEPMooC (cit. on pp. 31–34, 41).

[Dav72] George I. Davida. “Inverse of elements of a Galois field”. In: Electronics Letters
8.21 (1972), pp. 518–520. issn: 0013-5194. doi: 10.1049/el:19720378 (cit.
on p. 57).

[Dev+06] Augusto Jun Devegili et al. Multiplication and Squaring on Pairing-Friendly
Fields. Cryptology ePrint Archive, Report 2006/471. http://eprint.iacr.
org/. 2006 (cit. on pp. 55, 56).

[DH76] W. Diffie and M.E. Hellman. “New directions in cryptography”. In: Informa-
tion Theory, IEEE Transactions on 22.6 (1976), pp. 644–654. issn: 0018-9448.
doi: 10.1109/TIT.1976.1055638 (cit. on pp. 3, 20).

[DSD07] AugustoJun Devegili, Michael Scott, and Ricardo Dahab. “Implementing
Cryptographic Pairings over Barreto-Naehrig Curves”. In: Pairing-Based
Cryptography – Pairing 2007. Ed. by Tsuyoshi Takagi et al. Vol. 4575. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2007, pp. 197–
207. isbn: 978-3-540-73488-8. doi: 10.1007/978-3-540-73489-5_10. url:
http://dx.doi.org/10.1007/978-3-540-73489-5_10 (cit. on p. 61).

112

http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/978-3-642-03298-1_7
http://dx.doi.org/10.1007/978-3-642-03298-1_7
http://dx.doi.org/10.1007/978-3-642-03298-1_7
http://www.craigcostello.com.au/pairing/
http://www.craigcostello.com.au/pairing/
http://dx.doi.org/10.1007/11734727_33
http://dx.doi.org/10.1007/11734727_33
http://books.google.fr/books?id=a5mkUnEPMooC
http://books.google.fr/books?id=a5mkUnEPMooC
http://dx.doi.org/10.1049/el:19720378
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1007/978-3-540-73489-5_10
http://dx.doi.org/10.1007/978-3-540-73489-5_10

Bibliography

[Edw07] Harold M. Edwards. “A normal form for elliptic curves”. In: Bulletin of the
American Mathematical Society. 2007, pp. 393–422 (cit. on p. 17).

[ES00] Carl Ellison and Bruce Schneier. “Ten Risks of PKI: What You’re Not Being
Told About Public Key Infrastructure”. In: Computer Security Journal 16.1
(2000), pp. 1–7. url: http://www.schneier.com/paper-pki.pdf (cit. on
p. 5).

[FKR12] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodŕıguez-
Henŕıquez. “Faster hashing to G2”. In: Proceedings of the 18th international
conference on Selected Areas in Cryptography. SAC’11. Toronto, ON, Canada:
Springer-Verlag, 2012, pp. 412–430. isbn: 978-3-642-28495-3. doi: 10.1007/9
78-3-642-28496-0_25. url: http://dx.doi.org/10.1007/978-3-642-28
496-0_25 (cit. on pp. 61, 69).

[FR94] Gerhard Frey and Hans-Georg Rück. “A remark concerning m-divisibility and
the discrete logarithm in the divisor class group of curves”. In: Math. Comput.
62.206 (Apr. 1994), pp. 865–874. issn: 0025-5718. doi: 10.2307/2153546.
url: http://dx.doi.org/10.2307/2153546 (cit. on p. 20).

[FV03] Pierre-Alain Fouque and Frederic Valette. “The Doubling Attack – Why Up-
wards Is Better than Downwards”. In: Cryptographic Hardware and Embedded
Systems - CHES 2003. Ed. by ColinD. Walter, ÇetinK. Koç, and Christof
Paar. Vol. 2779. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2003, pp. 269–280. isbn: 978-3-540-40833-8. doi: 10.1007/978-3-540
-45238-6_22. url: http://dx.doi.org/10.1007/978-3-540-45238-6_22
(cit. on p. 46).

[FV12] Junfeng Fan and Ingrid Verbauwhede. “An Updated Survey on Secure
ECC Implementations: Attacks, Countermeasures and Cost”. In: Cryptog-
raphy and Security: From Theory to Applications. Ed. by David Naccache.
Vol. 6805. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2012, pp. 265–282. isbn: 978-3-642-28367-3. doi: 10.1007/978-3-642-28368
-0_18. url: http://dx.doi.org/10.1007/978-3-642-28368-0_18 (cit. on
p. 44).

[FVV09] Junfeng Fan, Frederik Vercauteren, and Ingrid Verbauwhede. “Faster Fp-
Arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves”. In: Cryp-
tographic Hardware and Embedded Systems - CHES 2009. Ed. by Christophe
Clavier and Kris Gaj. Vol. 5747. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2009, pp. 240–253. isbn: 978-3-642-04137-2. doi: 10.1007
/978-3-642-04138-9_18. url: http://dx.doi.org/10.1007/978-3-642-
04138-9_18 (cit. on pp. 2, 98, 99).

[Gal06] Steven Galbraith. “Pairings”. In: LONDON MATHEMATICAL SOCIETY
LECTURE NOTE SERIES 317 (2006), p. 183 (cit. on pp. 22, 23, 25, 27).

[Gen06] Craig Gentry. “Practical identity-based encryption without random oracles”.
In: Proceedings of the 24th annual international conference on The Theory and
Applications of Cryptographic Techniques. EUROCRYPT’06. St. Petersburg,
Russia: Springer-Verlag, 2006, pp. 445–464. isbn: 3-540-34546-9, 978-3-540-
34546-6. doi: 10.1007/11761679_27. url: http://dx.doi.org/10.1007/1
1761679_27 (cit. on p. 35).

113

http://www.schneier.com/paper-pki.pdf
http://dx.doi.org/10.1007/978-3-642-28496-0_25
http://dx.doi.org/10.1007/978-3-642-28496-0_25
http://dx.doi.org/10.1007/978-3-642-28496-0_25
http://dx.doi.org/10.1007/978-3-642-28496-0_25
http://dx.doi.org/10.2307/2153546
http://dx.doi.org/10.2307/2153546
http://dx.doi.org/10.1007/978-3-540-45238-6_22
http://dx.doi.org/10.1007/978-3-540-45238-6_22
http://dx.doi.org/10.1007/978-3-540-45238-6_22
http://dx.doi.org/10.1007/978-3-642-28368-0_18
http://dx.doi.org/10.1007/978-3-642-28368-0_18
http://dx.doi.org/10.1007/978-3-642-28368-0_18
http://dx.doi.org/10.1007/978-3-642-04138-9_18
http://dx.doi.org/10.1007/978-3-642-04138-9_18
http://dx.doi.org/10.1007/978-3-642-04138-9_18
http://dx.doi.org/10.1007/978-3-642-04138-9_18
http://dx.doi.org/10.1007/11761679_27
http://dx.doi.org/10.1007/11761679_27
http://dx.doi.org/10.1007/11761679_27

Bibliography

[GL09] Conrado Porto Gouvêa and Julio López. “Software Implementation of Pairing-
Based Cryptography on Sensor Networks Using the MSP430 Microcontroller”.
In: Proceedings of the 10th International Conference on Cryptology in India:
Progress in Cryptology. INDOCRYPT ’09. New Delhi, India: Springer-Verlag,
2009. url: http://dx.doi.org/10.1007/978-3-642-10628-6_17 (cit. on
pp. 1, 97, 98).

[GOL12a] ConradoP.L. Gouvêa, LeonardoB. Oliveira, and Julio López. “Efficient soft-
ware implementation of public-key cryptography on sensor networks using the
MSP430X microcontroller”. English. In: Journal of Cryptographic Engineer-
ing 2.1 (2012), pp. 19–29. issn: 2190-8508. doi: 10.1007/s13389-012-0029
-z. url: http://dx.doi.org/10.1007/s13389-012-0029-z (cit. on pp. 1,
97, 98).

[GOL12b] ConradoP.L. Gouvêa, LeonardoB. Oliveira, and Julio López. “Efficient soft-
ware implementation of public-key cryptography on sensor networks using the
MSP430X microcontroller”. English. In: Journal of Cryptographic Engineer-
ing 2.1 (2012), pp. 19–29. issn: 2190-8508. doi: 10.1007/s13389-012-0029
-z. url: http://dx.doi.org/10.1007/s13389-012-0029-z (cit. on p. 64).

[Göl+13] Faruk Göloğlu et al. “On the Function Field Sieve and the Impact of Higher
Splitting Probabilities”. In: Advances in Cryptology – CRYPTO 2013. Ed.
by Ran Canetti and JuanA. Garay. Vol. 8043. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 109–128. isbn: 978-3-642-40083-
4. doi: 10.1007/978-3-642-40084-1_7. url: http://dx.doi.org/10.100
7/978-3-642-40084-1_7 (cit. on p. 96).

[Gou02] Louis Goubin. “A Refined Power-Analysis Attack on Elliptic Curve Cryp-
tosystems”. English. In: Public Key Cryptography — PKC 2003. Ed. by YvoG.
Desmedt. Vol. 2567. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2002, pp. 199–211. isbn: 978-3-540-00324-3. doi: 10.1007/3-540-3
6288-6_15. url: http://dx.doi.org/10.1007/3-540-36288-6_15 (cit. on
p. 46).

[Gou13] Conrado P. L. Gouvêa. The Frobenius endomorphism with finite fields.
Sept. 2013. url: http://alicebob.cryptoland.net/the- frobenius-

endomorphism-with-finite-fields/ (cit. on p. 57).

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. “Pairings
for cryptographers”. In: Discrete Appl. Math. 156.16 (Sept. 2008), pp. 3113–
3121. issn: 0166-218X. doi: 10.1016/j.dam.2007.12.010. url: http:

//dx.doi.org/10.1016/j.dam.2007.12.010 (cit. on p. 25).

[GR11] Santosh Ghosh and Dipanwita Roychowdhury. “Security of Prime Field Pair-
ing Cryptoprocessor against Differential Power Attack”. In: Security Aspects
in Information Technology. Ed. by Marc Joye, Debdeep Mukhopadhyay, and
Michael Tunstall. Vol. 7011. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 16–29. isbn: 978-3-642-24585-5. doi: 10.1007/9
78-3-642-24586-2_4. url: http://dx.doi.org/10.1007/978-3-642-245
86-2_4 (cit. on p. 2).

114

http://dx.doi.org/10.1007/978-3-642-10628-6_17
http://dx.doi.org/10.1007/s13389-012-0029-z
http://dx.doi.org/10.1007/s13389-012-0029-z
http://dx.doi.org/10.1007/s13389-012-0029-z
http://dx.doi.org/10.1007/s13389-012-0029-z
http://dx.doi.org/10.1007/s13389-012-0029-z
http://dx.doi.org/10.1007/s13389-012-0029-z
http://dx.doi.org/10.1007/978-3-642-40084-1_7
http://dx.doi.org/10.1007/978-3-642-40084-1_7
http://dx.doi.org/10.1007/978-3-642-40084-1_7
http://dx.doi.org/10.1007/3-540-36288-6_15
http://dx.doi.org/10.1007/3-540-36288-6_15
http://dx.doi.org/10.1007/3-540-36288-6_15
http://alicebob.cryptoland.net/the-frobenius-endomorphism-with-finite-fields/
http://alicebob.cryptoland.net/the-frobenius-endomorphism-with-finite-fields/
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1007/978-3-642-24586-2_4
http://dx.doi.org/10.1007/978-3-642-24586-2_4
http://dx.doi.org/10.1007/978-3-642-24586-2_4
http://dx.doi.org/10.1007/978-3-642-24586-2_4

Bibliography

[Gre+13] Gurleen Grewal et al. “Efficient Implementation of Bilinear Pairings on ARM
Processors”. In: Selected Areas in Cryptography. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013. url: http://dx.doi.org/10.100
7/978-3-642-35999-6_11 (cit. on pp. 1, 97, 98).

[GS02] Craig Gentry and Alice Silverberg. “Hierarchical ID-Based Cryptography”.
In: Proceedings of the 8th International Conference on the Theory and Appli-
cation of Cryptology and Information Security: Advances in Cryptology. ASI-
ACRYPT ’02. London, UK, UK: Springer-Verlag, 2002, pp. 548–566. isbn:
3-540-00171-9. url: http://dl.acm.org/citation.cfm?id=647098.717144
(cit. on pp. 8, 34).

[GS10] Robert Granger and Michael Scott. “Faster Squaring in the Cyclotomic Sub-
group of Sixth Degree Extensions”. In: Public Key Cryptography – PKC 2010.
Ed. by PhongQ. Nguyen and David Pointcheval. Vol. 6056. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2010, pp. 209–223. isbn:
978-3-642-13012-0. doi: 10.1007/978- 3- 642- 13013- 7_13. url: http:

//dx.doi.org/10.1007/978-3-642-13013-7_13 (cit. on pp. 67, 68).

[HJS11] Michael Hutter, Marc Joye, and Yannick Sierra. “Memory-Constrained Im-
plementations of Elliptic Curve Cryptography in Co-Z Coordinate Represen-
tation”. In: Progress in Cryptology – AFRICACRYPT 2011. Ed. by Abder-
rahmane Nitaj and David Pointcheval. Vol. 6737. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011, pp. 170–187. isbn: 978-3-642-21968-
9. doi: 10.1007/978-3-642-21969-6_11. url: http://dx.doi.org/10.10
07/978-3-642-21969-6_11 (cit. on pp. 59, 105, 106).

[HM09] Christoph Herbst and Marcel Medwed. “Using Templates to Attack Masked
Montgomery Ladder Implementations of Modular Exponentiation”. In: Infor-
mation Security Applications. Ed. by Kyo-Il Chung, Kiwook Sohn, and Moti
Yung. Vol. 5379. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2009, pp. 1–13. isbn: 978-3-642-00305-9. doi: 10.1007/978-3-642-003
06-6_1. url: http://dx.doi.org/10.1007/978-3-642-00306-6_1 (cit. on
pp. 45, 76, 84).

[HR03] Shai Halevi and Phillip Rogaway. “A Tweakable Enciphering Mode”. In: Ad-
vances in Cryptology - CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2003, pp. 482–499.
isbn: 978-3-540-40674-7. doi: 10 . 1007 / 978 - 3 - 540 - 45146 - 4 _ 28. url:
http://dx.doi.org/10.1007/978-3-540-45146-4_28 (cit. on p. 40).

[HR04] Shai Halevi and Phillip Rogaway. “A Parallelizable Enciphering Mode”. In:
Proc. RSA Conference 2004 – Cryptographer’s Track. Springer-Verlag, 2004,
pp. 292–304 (cit. on p. 40).

[HSV06] F. Hess, N.P. Smart, and F. Vercauteren. “The Eta Pairing Revisited”. In:
Information Theory, IEEE Transactions on 52.10 (2006), pp. 4595–4602. issn:
0018-9448. doi: 10.1109/TIT.2006.881709 (cit. on p. 26).

[Hut+09] Michael Hutter et al. “Attacking ECDSA-Enabled RFID Devices”. In: Ap-
plied Cryptography and Network Security. Ed. by Michel Abdalla et al.
Vol. 5536. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2009, pp. 519–534. isbn: 978-3-642-01956-2. doi: 10.1007/978-3-642-01957

115

http://dx.doi.org/10.1007/978-3-642-35999-6_11
http://dx.doi.org/10.1007/978-3-642-35999-6_11
http://dl.acm.org/citation.cfm?id=647098.717144
http://dx.doi.org/10.1007/978-3-642-13013-7_13
http://dx.doi.org/10.1007/978-3-642-13013-7_13
http://dx.doi.org/10.1007/978-3-642-13013-7_13
http://dx.doi.org/10.1007/978-3-642-21969-6_11
http://dx.doi.org/10.1007/978-3-642-21969-6_11
http://dx.doi.org/10.1007/978-3-642-21969-6_11
http://dx.doi.org/10.1007/978-3-642-00306-6_1
http://dx.doi.org/10.1007/978-3-642-00306-6_1
http://dx.doi.org/10.1007/978-3-642-00306-6_1
http://dx.doi.org/10.1007/978-3-540-45146-4_28
http://dx.doi.org/10.1007/978-3-540-45146-4_28
http://dx.doi.org/10.1109/TIT.2006.881709
http://dx.doi.org/10.1007/978-3-642-01957-9_32
http://dx.doi.org/10.1007/978-3-642-01957-9_32

Bibliography

-9_32. url: http://dx.doi.org/10.1007/978-3-642-01957-9_32 (cit. on
p. 78).

[IEE08] IEEE. P1363.3TM/D1 Draft Standard for Identity-based Public-key Cryptog-
raphy Using Pairings. 2008 (cit. on p. 35).

[IIT03] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. “Address-Bit Differen-
tial Power Analysis of Cryptographic Schemes OK-ECDH and OK-ECDSA”.
English. In: Cryptographic Hardware and Embedded Systems - CHES 2002.
Ed. by BurtonS. Kaliski, çetinK. Koç, and Christof Paar. Vol. 2523. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2003, pp. 129–143.
isbn: 978-3-540-00409-7. doi: 10.1007/3- 540- 36400- 5_11. url: http:
//dx.doi.org/10.1007/3-540-36400-5_11 (cit. on p. 46).

[Jou13] Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1))
in very small characteristic. Cryptology ePrint Archive, Report 2013/095.
http://eprint.iacr.org/. 2013 (cit. on p. 96).

[JY03] Marc Joye and Sung-Ming Yen. “The Montgomery Powering Ladder”. En-
glish. In: Cryptographic Hardware and Embedded Systems - CHES 2002. Ed.
by BurtonS. Kaliski, çetinK. Koç, and Christof Paar. Vol. 2523. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2003, pp. 291–302. isbn:
978-3-540-00409-7. doi: 10.1007/3-540-36400-5_22. url: http://dx.doi.
org/10.1007/3-540-36400-5_22 (cit. on p. 47).

[KAK96] C.K. Koç, Tolga Acar, and Jr. Kaliski B.S. “Analyzing and comparing Mont-
gomery multiplication algorithms”. In: Micro, IEEE 16.3 (1996), pp. 26–33.
issn: 0272-1732. doi: 10.1109/40.502403 (cit. on pp. 53, 63).

[Kam+09] David Kammler et al. “Designing an ASIP for Cryptographic Pairings over
Barreto-Naehrig Curves”. In: Proceedings of the 11th International Workshop
on Cryptographic Hardware and Embedded Systems. CHES ’09. Lausanne,
Switzerland: Springer-Verlag, 2009, pp. 254–271. isbn: 978-3-642-04137-2.
doi: 10.1007/978-3- 642- 04138-9_19. url: http://dx.doi.org/10
.1007/978-3-642-04138-9_19 (cit. on pp. 2, 98, 99).

[Kar10] Koray Karabina. Squaring in cyclotomic subgroups. Cryptology ePrint
Archive, Report 2010/542. http://eprint.iacr.org/. 2010 (cit. on pp. 67,
68).

[KG06] Eike Kiltz and David Galindo. “Direct chosen-ciphertext secure identity-based
key encapsulation without random oracles”. In: In ACISP 2006. Springer-
Verlag, 2006 (cit. on pp. 35, 37).

[Kil06] Eike Kiltz. “Chosen-Ciphertext Secure Identity-Based Encryption in the Stan-
dard Model with Short Ciphertexts”. In: In ACISP 2006, volume 4058 of
LNCS. Springer-Verlag, 2006, pp. 336–347 (cit. on pp. 35, 37, 39–42, 101).

[KM05] Neal Koblitz and Alfred Menezes. “Pairing-based Cryptography at High Secu-
rity Levels”. In: Proceedings of Cryptography and Coding 2005, volume 3796
of LNCS. Springer-Verlag, 2005, pp. 13–36 (cit. on p. 55).

[Knu97] Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.):
seminumerical algorithms. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1997. isbn: 0-201-89684-2 (cit. on p. 56).

116

http://dx.doi.org/10.1007/978-3-642-01957-9_32
http://dx.doi.org/10.1007/978-3-642-01957-9_32
http://dx.doi.org/10.1007/978-3-642-01957-9_32
http://dx.doi.org/10.1007/3-540-36400-5_11
http://dx.doi.org/10.1007/3-540-36400-5_11
http://dx.doi.org/10.1007/3-540-36400-5_11
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1109/40.502403
http://dx.doi.org/10.1007/978-3-642-04138-9_19
http://dx.doi.org/10.1007/978-3-642-04138-9_19
http://dx.doi.org/10.1007/978-3-642-04138-9_19
http://eprint.iacr.org/

Bibliography

[KO63] A. Karatsuba and Yu Ofman. Multiplication of Many-Digital Numbers by
Automatic Computers. 1963 (cit. on p. 55).

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”. In: Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology. CRYPTO ’96. London,
UK, UK: Springer-Verlag, 1996, pp. 104–113. isbn: 3-540-61512-1. url: http:
//dl.acm.org/citation.cfm?id=646761.706156 (cit. on p. 44).

[KV08] Eike Kiltz and Yevgeniy Vahlis. “CCA2 secure IBE: standard model effi-
ciency through authenticated symmetric encryption”. In: Proceedings of the
2008 The Cryptopgraphers’ Track at the RSA conference on Topics in cryp-
tology. CT-RSA’08. San Francisco, CA, USA: Springer-Verlag, 2008, pp. 221–
238. isbn: 3-540-79262-7, 978-3-540-79262-8. url: http://dl.acm.org/

citation.cfm?id=1791688.1791708 (cit. on p. 35).

[KW03] Jonathan Katz and Nan Wang. “Efficiency improvements for signature
schemes with tight security reductions”. In: Proceedings of the 10th ACM
conference on Computer and communications security. CCS ’03. Washington
D.C., USA: ACM, 2003, pp. 155–164. isbn: 1-58113-738-9. doi: 10.1145/94
8109.948132. url: http://doi.acm.org/10.1145/948109.948132 (cit. on
p. 34).

[LN86] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their
applications. New York, NY, USA: Cambridge University Press, 1986. isbn:
0-521-30706-6 (cit. on p. 11).

[Ltd13] ARM Ltd. Cortex-M0+ Processor. Sept. 2013. url: http://www.arm.com/
products/processors/cortex-m/cortex-m0plus.php (cit. on p. 50).

[Lyn07] Ben Lynn. “On the implementation of pairing-based cryptosystems”. PhD
thesis. Stanford University, 2007 (cit. on p. 20).

[Men05] Alfred Menezes. An introduction to pairing-based cryptography. Notes from
lectures given in. 2005 (cit. on p. 27).

[Mil04] Victor S. Miller. “The Weil Pairing, and Its Efficient Calculation”. English.
In: Journal of Cryptology 17.4 (2004), pp. 235–261. issn: 0933-2790. doi:
10.1007/s00145-004-0315-8. url: http://dx.doi.org/10.1007/s00145
-004-0315-8 (cit. on pp. 26, 29).

[MNT01] Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. New explicit con-
ditions of elliptic curve traces for FR-reduction. 2001 (cit. on p. 27).

[MO09] Marcel Medwed and Elisabeth Oswald. “Template Attacks on ECDSA”. In:
Information Security Applications. Ed. by Kyo-Il Chung, Kiwook Sohn, and
Moti Yung. Vol. 5379. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, pp. 14–27. isbn: 978-3-642-00305-9. doi: 10.1007/978-3-6
42-00306-6_2. url: http://dx.doi.org/10.1007/978-3-642-00306-6_2
(cit. on p. 45).

[Mon85] Peter L. Montgomery. “Modular Multiplication without Trial Division”. In:
Mathematics of Computation 44.170 (1985), pp. 519–521 (cit. on p. 53).

[Mon87] P. L. Montgomery. Speeding up the Pollard and elliptic curve methods of
factorization. 1987. doi: 48(177):243264 (cit. on p. 47).

117

http://dl.acm.org/citation.cfm?id=646761.706156
http://dl.acm.org/citation.cfm?id=646761.706156
http://dl.acm.org/citation.cfm?id=1791688.1791708
http://dl.acm.org/citation.cfm?id=1791688.1791708
http://dx.doi.org/10.1145/948109.948132
http://dx.doi.org/10.1145/948109.948132
http://doi.acm.org/10.1145/948109.948132
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
http://dx.doi.org/10.1007/s00145-004-0315-8
http://dx.doi.org/10.1007/s00145-004-0315-8
http://dx.doi.org/10.1007/s00145-004-0315-8
http://dx.doi.org/10.1007/978-3-642-00306-6_2
http://dx.doi.org/10.1007/978-3-642-00306-6_2
http://dx.doi.org/10.1007/978-3-642-00306-6_2
http://dx.doi.org/48(177):243–264

Bibliography

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis At-
tacks: Revealing the Secrets of Smart Cards. Springer, 2007 (cit. on p. 43).

[Mor87] François Morain. “Building Cyclic Elliptic Curves Modulo Large Primes”.
In: Advances in Cryptology - EUROCRYPT ’91, Lecture Notes in Computer
Science. 1987, pp. 328–336 (cit. on p. 27).

[MOV93] A.J. Menezes, T. Okamoto, and S.A. Vanstone. “Reducing elliptic curve log-
arithms to logarithms in a finite field”. In: Information Theory, IEEE Trans-
actions on 39.5 (1993), pp. 1639–1646. issn: 0018-9448. doi: 10.1109/18.25
9647 (cit. on p. 20).

[Nac05] David Naccache. “Secure and Practical Identity-Based Encryption.” In: IACR
Cryptology ePrint Archive 2005 (2005), p. 369. url: http://dblp.uni-

trier.de/db/journals/iacr/iacr2005.html#Naccache05 (cit. on pp. 35,
40, 41).

[NIS01] NIST. Digital Signature Standard (DSS). 2001. url: http://csrc.nist.
gov/publications/fips/archive/fips186- 2/fips186- 2.pdf (cit. on
p. 51).

[NIS12] NIST. Secure Hash Standard. Mar. 2012. url: http://csrc.nist.gov/

publications/fips/fips180-4/fips-180-4.pdf (cit. on p. 51).

[Oli+07] L.B. Oliveira et al. “TinyTate: Computing the Tate Pairing in Resource-
Constrained Sensor Nodes”. In: Network Computing and Applications, 2007.
NCA 2007. Sixth IEEE International Symposium on. 2007, pp. 318–323. doi:
10.1109/NCA.2007.48 (cit. on p. 98).

[Per+11] Geovandro C. C. F. Pereira et al. “A family of implementation-friendly BN
elliptic curves”. In: J. Syst. Softw. 84.8 (Aug. 2011), pp. 1319–1326. issn:
0164-1212. doi: 10.1016/j.jss.2011.03.083. url: http://dx.doi.org/1
0.1016/j.jss.2011.03.083 (cit. on pp. 52, 62).

[RCK03] Shai Halevi Ran Canetti and Jonathan Katz. Chosen-Ciphertext Security from
Identity-Based Encryption. Cryptology ePrint Archive, Report 2003/182.
http://eprint.iacr.org/. 2003 (cit. on p. 34).

[Sch85] René Schoof. “Elliptic curves over finite fields and the computation of square
roots mod p”. In: Mathematics of computation 44.170 (1985), pp. 483–494
(cit. on p. 19).

[Sco05] Michael Scott. “Computing the Tate Pairing”. In: Topics in Cryptology –
CT-RSA 2005. Ed. by Alfred Menezes. Vol. 3376. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2005, pp. 293–304. isbn: 978-3-540-24399-
1. doi: 10.1007/978-3-540-30574-3_20. url: http://dx.doi.org/10.10
07/978-3-540-30574-3_20 (cit. on p. 61).

[Sco+09] Michael Scott et al. “On the Final Exponentiation for Calculating Pairings on
Ordinary Elliptic Curves”. In: Pairing-Based Cryptography – Pairing 2009.
Ed. by Hovav Shacham and Brent Waters. Vol. 5671. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2009, pp. 78–88. isbn: 978-3-642-
03297-4. doi: 10.1007/978-3-642-03298-1_6. url: http://dx.doi.org/1
0.1007/978-3-642-03298-1_6 (cit. on p. 61).

118

http://dx.doi.org/10.1109/18.259647
http://dx.doi.org/10.1109/18.259647
http://dblp.uni-trier.de/db/journals/iacr/iacr2005.html#Naccache05
http://dblp.uni-trier.de/db/journals/iacr/iacr2005.html#Naccache05
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://dx.doi.org/10.1109/NCA.2007.48
http://dx.doi.org/10.1016/j.jss.2011.03.083
http://dx.doi.org/10.1016/j.jss.2011.03.083
http://dx.doi.org/10.1016/j.jss.2011.03.083
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-30574-3_20
http://dx.doi.org/10.1007/978-3-540-30574-3_20
http://dx.doi.org/10.1007/978-3-540-30574-3_20
http://dx.doi.org/10.1007/978-3-642-03298-1_6
http://dx.doi.org/10.1007/978-3-642-03298-1_6
http://dx.doi.org/10.1007/978-3-642-03298-1_6

Bibliography

[Sha84] Adi Shamir. “Identity-Based Cryptosystems and Signature Schemes”. In: Ad-
vances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, Califor-
nia, USA, August 19-22, 1984, Proceedings. Vol. 196. Lecture Notes in Com-
puter Science. Springer, 1984, pp. 47–53. doi: 10.1007/3-540-39568-7_5
(cit. on pp. 1, 5, 31, 34).

[Sil09] J.H. Silverman. The Arithmetic of Elliptic Curves. Graduate texts in math-
ematics. Springer, 2009. isbn: 9780387094946. url: http://books.google.
at/books?id=Z90CA_EUCCkC (cit. on pp. 17–19).

[SK03] Ryuichi Sakai and Masao Kasahara. ID based Cryptosystems with Pairing
on Elliptic Curve. Cryptology ePrint Archive, Report 2003/054. http://

eprint.iacr.org/. 2003 (cit. on p. 34).

[Sma01] N.P. Smart. “The Hessian Form of an Elliptic Curve”. English. In: Crypto-
graphic Hardware and Embedded Systems — CHES 2001. Ed. by ÇetinK. Koç,
David Naccache, and Christof Paar. Vol. 2162. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2001, pp. 118–125. isbn: 978-3-540-42521-2.
doi: 10.1007/3-540-44709-1_11. url: http://dx.doi.org/10.1007/3-5
40-44709-1_11 (cit. on p. 17).

[SR13] AnaHelena Sánchez and Francisco Rodŕıguez-Henŕıquez. “NEON Implemen-
tation of an Attribute-Based Encryption Scheme”. In: Applied Cryptography
and Network Security. Ed. by Michael Jacobson et al. Vol. 7954. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 322–338.
isbn: 978-3-642-38979-5. doi: 10 . 1007 / 978 - 3 - 642 - 38980 - 1 _ 20. url:
http://dx.doi.org/10.1007/978-3-642-38980-1_20 (cit. on pp. 1, 66,
86, 87, 89–91, 93–98).

[Szc+08] Piotr Szczechowiak et al. “NanoECC: Testing the Limits of Elliptic Curve
Cryptography in Sensor Networks”. In: Wireless Sensor Networks. Ed. by
Roberto Verdone. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2008. url: http://dx.doi.org/10.1007/978-3-540-77690-1_19
(cit. on pp. 1, 98).

[Szc+09] Piotr Szczechowiak et al. “On the application of pairing based cryptography
to wireless sensor networks”. In: Proceedings of the second ACM conference
on Wireless network security. WiSec ’09. Zurich, Switzerland: ACM, 2009.
url: http://doi.acm.org/10.1145/1514274.1514276 (cit. on p. 98).

[UA13] Tohoku University and AIST. Evaluation Environment for Side-Channel At-
tacks. Sept. 2013. url: http://www.risec.aist.go.jp/project/sasebo/
(cit. on p. 77).

[Unt13] Thomas Unterluggauer. “Xetroc-M0+. An implementation of ARMs Cortex-
M0+”. Master Project. Graz University of Technology, 2013 (cit. on pp. 2,
50, 62).

[Ver10] F. Vercauteren. “Optimal Pairings”. In: Information Theory, IEEE Transac-
tions on 56.1 (2010), pp. 455–461. issn: 0018-9448. doi: 10.1109/TIT.2009
.2034881 (cit. on pp. 27–29).

[Vol13] Inc. Voltage Security. Identity-Based Encryption: Information Encryption for
Email, Files, Documents, and Databases. Aug. 2013. url: http : / / www .

voltage.com/technology/identity-based-encryption/ (cit. on p. 42).

119

http://dx.doi.org/10.1007/3-540-39568-7_5
http://books.google.at/books?id=Z90CA_EUCCkC
http://books.google.at/books?id=Z90CA_EUCCkC
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-44709-1_11
http://dx.doi.org/10.1007/3-540-44709-1_11
http://dx.doi.org/10.1007/3-540-44709-1_11
http://dx.doi.org/10.1007/978-3-642-38980-1_20
http://dx.doi.org/10.1007/978-3-642-38980-1_20
http://dx.doi.org/10.1007/978-3-540-77690-1_19
http://doi.acm.org/10.1145/1514274.1514276
http://www.risec.aist.go.jp/project/sasebo/
http://dx.doi.org/10.1109/TIT.2009.2034881
http://dx.doi.org/10.1109/TIT.2009.2034881
http://www.voltage.com/technology/identity-based-encryption/
http://www.voltage.com/technology/identity-based-encryption/

Bibliography

[Wat05] Brent Waters. “Efficient identity-based encryption without random oracles”.
In: Springer-Verlag, 2005, pp. 114–127 (cit. on pp. 35, 38).

[Wat09] Brent Waters. “Dual System Encryption: Realizing Fully Secure IBE and
HIBE under Simple Assumptions”. In: Proceedings of the 29th Annual Inter-
national Cryptology Conference on Advances in Cryptology. CRYPTO ’09.
Santa Barbara, CA: Springer-Verlag, 2009, pp. 619–636. isbn: 978-3-642-
03355-1. doi: 10.1007/978-3-642-03356-8_36. url: http://dx.doi.org/1
0.1007/978-3-642-03356-8_36 (cit. on p. 35).

[WH12] Johannes Winter and Daniel Hein. Cortex-M0 Simulator. 2012 (cit. on p. 62).

[WS06] Claire Whelan and Mike Scott. “Side Channel Analysis of Practical Pairing
Implementations: Which Path Is More Secure?” In: Progress in Cryptology
- VIETCRYPT 2006. Ed. by PhongQ. Nguyen. Vol. 4341. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2006, pp. 99–114. isbn: 978-
3-540-68799-3. doi: 10.1007/11958239_7. url: http://dx.doi.org/10.10
07/11958239_7 (cit. on p. 2).

[WUW13] Erich Wenger, Thomas Unterluggauer, and Mario Werner. “8/16/32 Shades
of Elliptic Curve Cryptography on Embedded Processors”. In: Progress in
Cryptology - INDOCRYPT 2013. 2013 (cit. on p. 63).

[YJ00] Sung-Ming Yen and M. Joye. “Checking before output may not be enough
against fault-based cryptanalysis”. In: Computers, IEEE Transactions on 49.9
(2000), pp. 967–970. issn: 0018-9340. doi: 10.1109/12.869328 (cit. on p. 47).

120

http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/11958239_7
http://dx.doi.org/10.1007/11958239_7
http://dx.doi.org/10.1007/11958239_7
http://dx.doi.org/10.1109/12.869328

	Introduction
	Identity-Based Encryption
	Introduction
	Symmetric Cryptography
	Asymmetric Cryptography
	Concept of Identity-Based Encryption
	Drawbacks of Identity-Based Encryption
	Conclusion

	Mathematical Background
	Groups, Rings and Fields
	Groups
	Rings and Fields
	Extension Fields

	Elliptic Curves over Finite Fields
	Group Laws
	Group Structure

	Bilinear Maps
	Diffie-Hellman Problem
	Bilinear Diffie-Hellman Problem

	Pairing Definition
	Divisors
	Group Definition
	Tate Pairing
	Miller Algorithm
	(Optimal) Ate Pairing

	Pairing-friendly curves
	Barreto-Naehrig Curves

	Conclusion

	Identity-Based Encryption Schemes
	Security Defintion
	Chosen Plaintext Attack (CPA) Security
	Chosen Ciphertext Attack (CCA) Security
	Selective-Identity and Adaptive-Identity Models

	(Historic) Overview
	Boneh-Boyen IBE-KEM
	Prerequisites
	Setup
	Derive
	Encapsulate
	Decapsulate
	Security

	Kiltz IBE-KEM
	Prerequisites
	Setup
	Derive
	Encapsulate
	Decapsulate
	Security

	Comparison
	Conclusion

	Side-Channel Attacks
	Overview
	Passive Attacks
	Timing Attacks
	Simple Power Analysis
	Template Attacks
	Differential Power Analysis
	Comparative Side-Channel Attacks
	Refined Power Analysis
	Electromagnetic Attacks

	Active Attacks
	Safe-Error Analysis

	Conclusion

	Implementation in an Embedded Environment
	Architecture
	Hardware
	Software

	Implementation Aspects
	Prime Field Arithmetic
	Extension Field Arithmetic
	Elliptic Curve Arithmetic
	Pairing Realization

	Testing
	Optimization
	Prime Field Arithmetic
	Extension Field Arithmetic
	Pairing Computation

	Instruction-Set Extension
	MAC-1
	MAC-2

	Conclusion

	Side-Channel Analysis
	Encapsluate
	Decapsulate
	Differential Power Analysis Attack
	Other Attacks

	Conclusion

	Evaluation
	Finite Field Arithmetic
	Pairing
	Software
	Hardware

	Identity-Based Encryption Scheme
	Software
	Hardware

	Related Work
	Conclusion

	Conclusion
	Point Multiplication Formulas
	Pairing Evaluation Formulas
	Bibliography

