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Abstract. In this paper, a research study to discover hidden knowledge in the 
reports of the public release of the Food and Drug Administration (FDA)’s 
Adverse Event Reporting System (FAERS) for erythromycin is presented.  
Erythromycin is an antibiotic used to treat certain infections caused by bacteria. 
Bacterial infections can cause significant morbidity, mortality, and the costs of 
treatment are known to be detrimental to health institutions around the world.  
Since erythromycin is of great interest in medical research, the relationships 
between patient demographics, adverse event outcomes, and the adverse events 
of this drug were analyzed. The FDA’s FAERS database was used to create a 
dataset for cluster analysis in order to gain some statistical insights. The reports 
contained within the dataset consist of 3792 (44.1%) female and 4798 (55.8%) 
male patients. The mean age of each patient is 41.759. The most frequent 
adverse event reported is oligohtdramnios and the most frequent adverse event 
outcome is OT(Other). Cluster analysis was used for the analysis of the dataset 
using the DBSCAN algorithm, and according to the results, a number of 
clusters and associations were obtained, which are reported here. It is believed 
medical researchers and pharmaceutical companies can utilize these results and 
test these relationships within their clinical studies. 

Keywords: Open medical data, knowledge discovery, biomedical data mining, 
bacteria, drug adverse event, erythromycin, cluster analysis, clustering 
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1 Introduction 

Modern technology has increased the power of data by facilitating linking and 
sharing. Politics has embraced transparency and the citizens’ rights to data access; the 
top down culture is being challenged. Many governments around the world now 
release large quantities of data into the public domain, often free of charge and 
without administrative overhead.  
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This allows citizen-centered service delivery and design and improves 
accountability of public services, leading to better public service outcomes [1]. 
Therefore, open data has been of increasingly great interest to several scientific 
communities and is a big opportunity for biomedical research [2], [3], [4].  

The US Food and Drug Administration (FDA) Adverse Event Reporting System 
(FAERS) is such a public database and contains information on adverse events and 
medication error reports submitted to the FDA [5]. The database is designed to 
support the FDA’s post marketing safety surveillance program for drug and 
therapeutic biologic products [6], [7], [8]. Adverse events and medication errors are 
coded using terms from the Medical Dictionary for Regulatory Activities (MedDRA) 
terminology [9]. Reports can be submitted by health care professionals and the public 
through the “MedWatch” program. Since the original system was started in 1969, 
reporting has been markedly increasing. To date, the FAERS is the largest repository 
of spontaneously reported adverse events in the world with more than 4 million 
reports [10], [11].  

The FDA releases the data to the public, and public access offers the possibility to 
external researchers and/or pharmacovigilance experts to explore this data source for 
conducting pharmacoepidemiological studies and/or pharmacovigilance analyses [5].  

This study was carried out to describe the safety profile of erythromycin. This is of 
great importance as erythromycin is one of the main medications for bacterial 
diseases. Bacterial diseases are of particular interest due to the high morbidity, 
mortality, and costs of disease management [12]. Previous work has investigated the 
adverse events of erythromycin. Manchia et al. presented a case of a young man who 
had symptoms of psychotic mania after the administration of erythromycin and 
acetaminophen with codeine on 2 separate occasions [13]. Varughese et al. reported 
antibiotic-associated diarrhea (AAD) associated with the use of an antibiotic such as 
erythromycin [14].  

Bearing the importance of any new insights into erythromycin in mind, the data 
from the FDA’s FAERS was used to discover associations between patient 
information such as demographics (e.g., age and gender), the route of the drug, 
indication for use, the adverse event outcomes (death, hospitalization, disability, etc.), 
and the adverse events of erythromycin were explored. A number of statistically 
significant relations in the event reports were detected. The automated acquisition, 
integration, and management of disease-specific knowledge from disparate and 
heterogeneous sources are of high interest in the data mining community [15].  

In the project which this paper describes, data mining experts and clinicians 
worked closely together to achieve these results.  

2 Glossary and Key Terms 

Bacteria: are living organisms that have only one cell. Under a microscope, they look 
like spheres, rods, or spirals. They are so small that a line of 1,000 could fit across a 
pencil eraser. Most bacteria do no harm - less than 1 percent of bacteria species cause 
any illnesses in humans. Many are helpful. Some bacteria help to digest food, destroy 
disease-causing cells, and give the body needed vitamins [42]. 
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Cluster analysis: is the process of grouping data into classes or clusters so that 
objects within a cluster have high similarity in comparison to other objects in that 
cluster, but are very dissimilar to objects in other clusters [36]. 

 
DBSCAN: a density-based clustering algorithm. A density-based cluster is a set of 

density-connected objects that is maximal with respect to density-reachability. Every 
object not contained in any cluster is considered to be noise [36]. 

 
Drug adverse event: An appreciably harmful or unpleasant reaction, resulting from 

an intervention related to the use of a medicinal product, which predicts hazard from 
future administration and warrants prevention or specific treatment, or alteration of 
the dosage regimen, or withdrawal of the product [43]. 

 
FDA FAERS (Food and Drug Administration Adverse Event Reporting System): is 

a public database that contains information on adverse event and medication error 
reports submitted to the FDA [5]. 

 
Open data: Data that can be freely used, reused and redistributed by anyone – 

subject only, at most, to the requirement to attribute and share alike [44]. 
 
Pharmacovigilance: is the science relating to prevention of adverse effects with 

drugs. 

3 Related Work 

Several studies have been carried out regarding data mining on drug adverse event 
relations in the biomedical domain. Kadoyama et al. mined the FDA’s FAERS for 
side-effect profiles of tigecycline. They used standardized, official pharmacovigilance 
tools using of a number of measures such as proportional ratio, the reporting odds 
ratio, the information component given by a Bayesian confidence propagation neural 
network, and the empirical Bayes geometric mean. They found some adverse events 
with relatively high frequency including nausea, vomiting, and hepatic failure [16]. 

Malla et al. investigated trabectedin related muscular and other adverse effects in 
the FDA FAERS database. Adverse event reports submitted to the database from 
2007 to September 2011 were retrospectively reviewed and the entire safety profile of 
trabectedin was explored. They detected that rhabdomyolysis is a life-threatening 
adverse toxicity of trabectedin [17]. 

Raschi et al. searched macrolides and torsadogenic risk and analyzed cases of drug 
induced Torsade de Pointes (TdP) submitted to the publicly available FDA FAERS 
database. They collected patient demographic, drug, and reaction and outcome 
information for the 2004-2011 period and performed statistical analyses by using the 
statistical package SPSS. They concluded that in clinical practice azithromycin carries 
a level of risk similar to other macrolides; the notable proportion of fatal cases and the 
occurrence of TdP-related events in middle-aged patients strengthen the view that 
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caution is needed before considering azithromycin as a safer therapeutic option 
among macrolides. Appropriate prescription of all macrolides is therefore vital and 
should be based on the underlying disease, patient’s risk factors, concomitant drugs, 
and local pattern of drug resistance [18].  

Harpaz et al. have performed a number of studies on data mining for adverse drug 
events (ADEs). They provide an overview of recent methodological innovations and 
data sources used to support ADE discovery and analysis [19]. Multi-item ADE 
associations are associations relating multiple drugs to possibly multiple adverse 
events. The current standard in pharmacovigilance is bivariate association analysis, 
where each single ADE combination is studied separately. The importance and 
difficulty in the detection of multi-item ADE associations was noted in several 
prominent pharmacovigilance studies. The application of a well-established data 
mining method known as association rule mining was applied to the FDA’s 
spontaneous adverse event reporting system (FAERS). Several potentially novel 
ADEs were identified [20]. Harpaz et al. also present a new pharmacovigilance data 
mining technique based on the biclustering paradigm, which is designed to identify 
drug groups that share a common set of adverse events in the FDA’s spontaneous 
reporting system. A taxonomy of biclusters was developed, revealing that a 
significant number of verified adverse drug event (ADE) biclusters were identified. 
Statistical tests indicate that it is extremely unlikely that the discovered bicluster 
structures as well as their content arose by chance. Some of the biclusters classified as 
indeterminate provide support for previously unrecognized and potentially novel 
ADEs [21]. 

Vilar et al. developed a new methodology that combines existing data mining 
algorithms with chemical information through the analysis of molecular fingerprints. 
This was done to enhance initial ADE signals generated from FAERS to provide a 
decision support mechanism to facilitate the identification of novel adverse events. 
Their method achieved a significant improvement in precision for identifying known 
ADEs, and a more than twofold signal enhancement when applied to the 
rhabdomyolysis ADE. The simplicity of the method assists in highlighting the 
etiology of the ADE by identifying structurally similar drugs [22]. 

The creation and updating of medical knowledge is challenging. Therefore, it is 
important to automatically create and update executable drug-related knowledge bases 
so that they can be used for automated applications. Wang et al. suggest that the drug 
indication knowledge generated by integrating complementary databases was 
comparable to the manually curated gold standard. Knowledge automatically acquired 
from these disparate sources could be applied to many clinical applications, such as 
pharmacovigilance and document summarization [23]. 

4 Methods 

4.1 Data Sources 

Input data for our study was taken from the public release of the FDA’s FAERS 
database, which covers the period from the third quarter of 2005 through to the 
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second quarter of 2012. The data structure of FAERS consists of 7 datasets: patient 
demographic and administrative information (DEMO), drug/biologic information 
(DRUG), adverse events (REAC), patient outcomes (OUTC), report sources (RPSR), 
drug therapy start and end dates (THER), and indications for use/diagnosis (INDI). 
The adverse events in REAC are coded using preferred terms (PTs) from the Medical 
Dictionary for Regulatory Activities (MedDRA) terminology. All ASCII data files 
 are linked using an ISR, a unique number for identifying an AER. Three of seven 
files are linked using DRUG_SEQ, a unique number for identifying a drug for an ISR 
[24], [25].  

Table 1. Characteristics of dataset 

Attribute Type 

 
 

Age 

Numeric 
Minimum: 6 

Maximum: 91 
Mean: 41.759 

StdDev: 23.409 
 
 

Gender 

Nominal 
Male, 

Female, 
NS 

 
 
 

Route 

Nominal 
Oral, 

Transplacental, 
Ophthalmic, 
Intravenous, 

Topical, 
Parenteral, 
Disc, Nos 

 
Indication for use 

 

Nominal 

48 distinct values (MedDRA terms) 

 
 
 

Adverse event outcome 

Nominal 
HO-Hospitalization, 

OT-Other, 
DE-Death, 

DS-Disability, 
LT-Life threatening, 

RI- Required Intervention to Prevent 
Permanent Impairment/Damage, 

CA- Congenital Anomaly 
 

Adverse event 
 

Nominal 

220 distinct values (MedDRA terms) 

 
The data in this study was created from the public release of the FDA’s FAERS 

database by collecting data from the DEMO, DRUG, REAC, OUTC and INDI 
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datasets [17]. The data, in ASCII format, were combined and stored in a database 
using Microsoft SQL Server 2012. Erythromycin related records were then selected to 
create a dataset for cluster analysis. In total, 8592 patients involved in adverse event 
reports for erythromycin were collected from the FDA database [25]. 

The dataset contains patient demographics such as age, gender, route, indication 
for use, adverse event outcome, and adverse event (Table 1). The attributes of the 
dataset were directly collected from the database. The dataset consists of 8592 
instances. 

4.2 Cluster Analysis by DBSCAN Algorithm 

Cluster analysis is one area of unsupervised machine learning of particular interest for 
data mining and knowledge discovery. Clustering techniques have been applied to 
medical problems for some time and there are many different algorithms available, all 
with very different performances and use cases [26], [27], [28], [29].  

Cluster analysis provides the means for the organization of a collection of patterns 
into clusters based on the similarity between these patterns, where each pattern is 
represented as a vector in multidimensional space [30], [31]. 

In clustering schemes, data entities are usually represented as vectors of feature-
value pairs. Features represent certain attributes of the entities that are known to be 
useful for the clustering task. In numeric clustering methods, a distance measure is 
used to find the dissimilarity between the instances [32]. The Euclidean distance is 
one of the common similarity measures and is defined as the square root of the 
squared discrepancies between two entities summed over all variables (i.e., features) 
measured. For any two entities A and B and k=2 features, say, X1 and X2, dab is the 
length of the hypotenuse of a right triangle. The square of the distance between the 
points representing A and B is obtained as follows:  

 
d2

ab = (Xa1-Xb1)
2 + (Xa2 - Xb2)

2  [1] 

The square root of this expression is the distance between the two entities  
[33], [34].  

In this study, we used the DBSCAN algorithm to analyze adverse events reports. 
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-
based clustering algorithm. A density-based cluster is a set of density-connected 
objects that is maximal with respect to density-reachability. Any object not contained 
in a cluster is considered to be noise. The DBSCAN algorithm grows regions with 
sufficiently high density into clusters and discovers clusters of arbitrary shape in 
spatial databases, even those that contain noise. It defines a cluster as a maximal set of 
density-connected points. The basic principles of density-based clustering involve a 
number of definitions, as shown in the following:  
 

• The neighborhood within a radius ε-neighborhood of the object. 
• If the ε-neighborhood of an object contains at least a minimum number, 

MinPts, of objects, then the object is called a core object. 
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• Given a set of objects, D, we say that an object p is the directly density-
reachable from object q if p is within the ε-neighborhood of q, and q is a core 
object. 

• An object p is density-reachable from object q with respect to ε and MinPts 
in a set of objects, if there is a chain of objects p1,…,pn, p1=q and pn=p such 
as pi+1 is directly density-reachable from pi with respect to ε and MinPts, for  

. 
 

Density reachability is the transitive closure of direct density reachability, and this 
relationship is asymmetric. Only core objects are mutually density reachable. Density 
connectivity, however, is a symmetric relation. 

DBSCAN searches for clusters by checking the ε-neighborhood of each point in 
the database. If the ε-neighborhood of a point p contains more than MinPts, a new 
cluster with p as a core object is created. DBSCAN then iteratively collects directly 
density-reachable objects from these core objects, which may involve the merger of 
some density-reachable clusters. The process terminates when no new point can be 
added to any cluster [37]. If a spatial index is used, the computational complexity of 
DBSCAN is O(nlogn), where n is the number of database objects. Otherwise, it is O 
(n2). The algorithm is therefore sensitive to the user-defined parameters [38]. 

The DBSCAN algorithm was used to perform cluster analysis on the dataset. Table 
1 show the attributes used in the dataset. Weka 3.6.8 was used for the analysis. Weka 
is a collection of machine learning algorithms for data mining tasks and is open 
source software. The software contains tools for data pre-processing, classification, 
regression, clustering, association rules, and visualization [38]. The application of the 
DBSCAN algorithm on the dataset generated 336 clusters (Fig. 3). Some of these are 
shown in Table 6. The results of the application of the DBSCAN algorithm when run 
in Weka is as follows: 

Clustered data objects: 8592 
Number of attributes: 6 
Epsilon(ε): 0.9;   minPoints(MinPts) : 6 
Number of generated  clusters: 336 
Elapsed time: 34.97 

5 Experimental Results and Discussion 

We investigated the DrugBank database to get detailed information regarding 
erythromycin, which is shown in Table 2. The DrugBank database is a bioinformatics 
and cheminformatics resource that combines detailed drug data (i.e. chemical, 
pharmacological, and pharmaceutical data) with comprehensive drug target 
information (i.e. sequence, structure, and pathway data) [39]. In the database, each 
drug has a DrugCard that provides extensive information on the drug’s properties.  

The majority of the adverse event reports in the dataset are for males (55.8%) 
(Table 3) with an average age of 41.759 years (Table 1) [14]. The most frequent  
indication for erythromycin use was for ill-defined disorders, followed by rosacea, 
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rhinitis allergic, and diabetes mellitus (Table 4). Oral use occurs with the highest 
frequency (Table 5). 

The ten most frequent adverse events associated with erythromycin are shown in Fig 
1. Oligohtdramnios is at the top of the list, followed by intra-uterine death, gestational 
diabetes, and C-reactive protein increase. Fig. 2 shows the graphical representation of the 
top ten co-occurrences of adverse event outcomes with erythromycin. According to Fig. 
2, the most observed outcome is OT(Other) (47%), followed by HO(Hospitalization) 
(25.4%), DE(Death) (16%), LT(Life-Threatening) (5%), DS(Disability) (3%), 
RI(Required Intervention to Prevent Permanent Impairment/Damage) (1%), 
CA(Congenital Anomaly) (0.8%), and Unknown(0.01%) in this order.   

Table 2. Erythromycin in the DrugBank database  

Drugbank ID DB00199 

Drug name Erythromycin 

Some synonyms Erythromycin oxime, EM, Erythrocin Stearate 

Some brand names Ak-mycin, Akne-Mycin, Benzamycin, Dotycin 

Categories Anti-Bacterial Agents, Macrolides 

ATC Codes D10AF02, J01FA01, S01AA17 

Table 3. The number of reports by gender 

Gender The number of reports 

Female 3792 (44.1%) 

Male 4798(55.8%) 

NS(Not Specified) 2(0.2%) 

Table 4. Top ten indications for use 

No Indication for use The number of co-
occurrences (N) 

1 Ill-defined disorder 2948(39%) 
2 Rosacea 1887(25%) 
3 Rhinitis allergic 579(7.7%) 
4 Diabetes mellitus 528(7%) 
5 Drug use for unknown indication 500(6%) 
6 Lower respiratory tract infection 420(5%) 
7 Infection 205(2%) 
8 Prophylaxis 144(1.9%) 
9 Enterobacter infection 126(1.6%) 
10 Acne 101(1.3%) 
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Table 5. Route of drug administration 

Route The number of reports 
Oral 7875(91%) 

Transplacental 279(3%) 
Ophthalmic 270(3%) 
Intravenous 96(1%) 

Topical 42(0.4%) 
Parenteral 18(0.2%) 
Disc, Nos 12(0.1%) 

 

    

Fig. 1. The number of co-occurrences of adverse events (MedDRA terms) with erythromycin 

 

Fig. 2. The number of co-occurrences of adverse event outcomes with erythromycin 
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Fig. 3. Visual clusters of the DBSCAN algorithm on the erythromycin dataset 

Table 6. Some clusters obtained by the DBSCAN algorithm 

Attributes Cluster1 Cluster2 Cluster3 Cluster4 

Age 41.758 52 20 83 

Gender Male Male Female Male 

Route Oral Oral Topical Intravenous 

Indication for use Rosacea Lower 
Respiratory 
Tract 
Infection 

Acne Pneumonia 
Primary 
Atypical 

Adverse event 
outcome 

Other Life 
threatening 

Hospitalization Life 
threatening 

Adverse event  Intra-
Uterine 
Death 

Cardiac 
Failure 

Rash Pruritic Weight 
Decreased 
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Erythromycin has some well-known adverse events such as vomiting, diarrhea, and 
mild skin rash [40]. According to our results, some events such as intra-uterine death, 
cardiac failure, rash pruritic, and weight decrease, are also seen in the clusters 
obtained by the DBSCAN algorithm. For example, intra-uterine death has a 
relationship with middle aged and male patients who are diagnosed with rosacea 
disease (cluster 1). In addition, young female patients form a cluster and the rash 
pruritic adverse event is seen with acne disease in the same cluster (cluster 3). 
Clinicians and researchers can search our results and perform clinical studies to find 
new hypotheses for the evaluation of drug safety of erythromycin. 

The FDA’s FAERS database is an important resource, but it has some limitations. 
For example, the database has many missing attribute values such as age and adverse 
events.  We therefore omitted some records containing missing values.  In addition, 
we faced some data quality and compatibility problems with the datasets created 
during different time periods. We therefore merged the datasets that covered the third 
quarter of 2005 through to the second quarter of 2012. Apart from the FDA’s FAERS 
database, medical records that are created in hospital information systems are also an 
important resource for determining drug adverse events and their outcomes. Wang X 
et al analyzed narrative discharge summaries collected from the Clinical Information 
System at New York Presbyterian Hospital (NYPH). They applied MedLEE, a natural 
language processing system, to the collection in order to identify medication events 
and entities which could be potential adverse drug events. Co-occurrence statistics 
with adjusted volume tests were used to detect associations between the two types of 
entities, to calculate the strengths of the associations, and to determine their cutoff 
thresholds. Seven drugs/drug classes (ibuprofen, morphine, warfarin, bupropion, 
paroxetine, rosiglitazone, and angiotensin-converting-enzyme inhibitors) with known 
ADEs were selected to evaluate the system [41]. Medical records can therefore be 
used to reveal any serious risks involving a drug in the future [25]. 

6 Conclusion 

Pharmacovigilance aims to search for previously unknown patterns and automatically 
detect important signals, such as drug-associated adverse events, from large databases 
[17]. The FDA’s FAERS is a large resource for pharmacovigilance and can be used to 
detect hidden relationships between drugs and adverse events. In this study, the 
adverse event profile for erythromycin was analyzed and a research study based on 
patient demographics, route for drug administration, indication for use, adverse events, 
and adverse event outcome relationships in the FAERS reports was carried out. 
Erythromycin is commonly used for the treatment of bacterial diseases and bacterial 
diseases are one of the most serious causes for health problems in the world. Therefore, 
the prevention and treatment of these diseases is an important research issue in the 
medical domain.  

We analyzed FAERS reports through the use of computational methods, and 
subsequently applied the DBSCAN algorithm to the dataset in order to discover 
clusters. The clusters highlighted that patient demographics can have some  
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relationships with certain adverse events and event outcomes of erythromycin use. 
Medical researchers must be made aware of these results and the information obtained 
in this study could lead to new research studies for the evaluation of erythromycin  
drug safety. 

7 Open Problems 

The FDA FAERS database offers a rich opportunity to discover novel post-market 
drug adverse events. However, the exploration of the FDA Adverse Event 
Reporting System’s data by a wider scientific community is limited due to several 
factors.  

 
Problem 1. FAERS data must be intensively preprocessed to be converted into 
analyzable and unified format [45]. While preprocessing is common for the effective 
machine learning analysis of any data, for complex medical datasets this can often 
require domain-specific medical expertise. This is especially true during, for example, 
the feature selection phase of data preprocessing. Open datasets, without proper 
preprocessing, can also be extremely large. Running times for quadratic machine 
learning algorithms can grow quickly, and when working with medical data that have 
been made available with no particular research question in mind, proper data 
preprocessing is especially important to reduce their size. 

 
Problem 2. The data has some data quality issues. For example, the data has many 
missing attribute values such as age and adverse events. Missing data and noise are 
two hindrances to using machine learning methods on open data. Open data sets, 
while free and publicly available, mean no possibility of retroactive refinement by the 
authors. They must be taken as is, and cannot normally be expanded, refined, or 
corrected. In the case of medical data, open data is almost always de-identified, 
which—depending on the research question—can result in too much missing data to 
make it useful or usable. However, missing values and noise are a reality of any data 
analysis or collection process. Machine learning techniques and algorithms that are 
especially designed for data that contain missing values is an active area of research, 
and specific solutions have been developed in the past.  

 
Problem 3. There are few existing methods and tools to access the data and improve 
hypothesis generation with respect to potential drug adverse event associations. Those 
that exist are usually based on limited techniques such as proportional reporting ratios 
and reporting adds ratios. A generalized method or piece of software for the analysis 
of adverse event data is not yet available. Whether such a generalized approach would 
even be feasible, considering for example the level of dataset fragmentation, is fertile 
ground for future research. With the numbers of datasets that are being made 
available constantly increasing, novel approaches to properly and more easily analyze 
this data are sure to increase alongside it.  
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8 Future Outlook 

The FDA FAERS database is used to analyze the safety profiles of several drugs. A 
number of commercial tools, such as query engines, are now available to analyze the 
FDA FAERS. These tools provide free-text search query abilities that allow for the 
primary safety profile of drugs to be viewed. Other tools calculate the probability of 
an adverse event being associated with a drug. They also allows searching the FDA 
FAERS database by providing interpretable graphics for the adverse events reported 
over time, stratified by relevant category, ages, and gender, thus allowing for 
clinicians to quickly check drug safety information. This would be of benefit for the 
entire drug safety assessment [46]. However, these tools offer limited statistical 
techniques and data mining algorithms. Therefore, the automatic preprocessing of 
data, temporal analysis, and interactive data mining [47], [48] of drug adverse events 
through the use of state of the art data mining techniques is sorely needed. By 
increasing access to, and through the analysis of such drug-safety data new insights 
into ADEs will be discovered, but only when novel approaches in searching, mining, 
and analysis are discovered and implemented. 
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