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ABSTRACT

Since many decades, positron annihilation experiments (lifetime,
angular correlation, and Doppler broadening spectroscopy) play an
important role for investigations of the electronic structure of both
crystalline and amorphous materials. In this context, thekey quan-
tity to be studed is the momentum-dependent annihilation rate of
electron-positron (e-p) pairs in electron gases. In this contribution,
we present - at first time - a theory of annihilating e-p pairs in jel-
lium whereboththe electron and positron propagators are treated on
a GW level.

INTRODUCTION

Themomentum-dependent two-photon annihilation rateof e-p pairs
is given by [1]

R2γ(p) = 2
r2
0πc

Ω
ρep(p) ,

with r0 andc as the classical electron radius and the velocity of light,
andΩ as the volume of the system.ρep(p) means thetwo-particle
momentum densityof the annihilating pairs [2]

ρep(p) = −

∫

d3xd3y e−ip·(x−y) Gep(xt,xt;yt+,yt+) , (1)

where the first and the third arguments in thetwo-particle electron-
positron (ep) Green’s functionGep belong to the electron and the
second and forth arguments belong to the positron, respectively, and
t+ − t means an infinitesimally small step foreward in time.

Gep(xt,xt;yt+,yt+) = Ge(xt,yt+) Gp(xt,yt+) +

+ GD
ep(xt,xt;yt+,yt+) (2)

reflects the physical situation of an e-p pair embedded in an elec-
tron gas: The first term, a product of theone-particleelectron and
positron Green’s functionsGe andGp, describes the two fermions
interacting with the surrounding electrons but without taking into ac-
count anydirect (D) interaction between the annihilating particles.
These effects are treated by the second term of Eq. (2) and include
all so-calledenhancement effectsof the e-p annihilation. In this pa-
per, we focus our interest on the first term of Eq. (2) which is called
theindependent-particle(IP) approximation of the electron-positron
Green’s function:

GIP
ep (xt,xt;yt+,yt+) = Ge(xt,yt+) Gp(xt,yt+) . (3)

In the case of a spatially and temporallyhomogenouselectron gas
(jellium), a combination of Eqs. (1) and (3) leads to

ρIP
ep (p) = −

∫

d3xd3y e−ip·(x−y) Ge(x−y; t−t+) Gp(x−y; t−t+) ,

and after having Fourier-transformedG(r, t) → G(k, ω), one ob-
tains

ρIP
ep (p) =

(−i)2

(2π)2

∑

k

∫ +∞

−∞

dω1 eiω1η Ge(k, ω1)

×

∫ +∞

−∞

dω2 eiω2η Gp(p − k, ω2) , (4)

the momentum density of a system ofN− electrons andN+

positrons with the corresponding Fermi radii

k3
F = 3π2 N−

Ω
and (k+

F )3 = 3π2 N+

Ω
. (5)

Now it is important to notice that, from the experimental point of
view, one always has the situation

N− >> N+ ,

i.e., each positron is surrounded by a huge number of electrons, and
there is no measurable interaction between the positrons. This sit-
uation of ”one positron inN− electrons”. is taken into account by
changing Eq. (4) into

ρIP
ep (p) = lim

N+→0

2

N+

(−i)2

(2π)2

∑

k

∫ +∞

−∞

dω1 eiω1η Ge(k, ω1)

×

∫ +∞

−∞

dω2 eiω2η Gp(N+;p − k, ω2) . (6)

This equation describes the electron-positron momentum density
per positronin the limit of an extremely small positron density.
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ELECTRON GREEN’ S FUNCTION

The electron one-particle Green’s functionGe describes the propa-
gation of an electron within the the surrounding electrons.
Due to the experimentally caused fact ofN− << N+, the behavior
of the electrons is not at all influenced by the positrons (thedirect
interactionbetween the annihilating partners is neglected in the IP
model studied in this paper). Therefore, one has an unperturbed
many-electron problem as it is intensively treated in the literature
[3]: The Green’s function including electron correlationsis given
by Dyson’s formula [4]

Ge(k, ω) =
1

[

G0
e(k, ω)

]−1
− Σe(k, ω)

(7)

whereG0
e means the Green’s function of the non-interacting particle

G0
e(k, ω) =

Θ(kF − k)

ω − ω0
k
− iη

+
Θ(k − kF )

ω − ω0
k

+ iη
with ω0

k =
~k2

2m
.

Σe in Eq. (7) is theelectron self-energy function in the GW approx-
imation[4,5]

~Σ
(RPA)
e (k, ω) =

i

(2π)4

∫

d3q V (q)

×

∫

dω1

κRPA(q, ω1)
ei(ω−ω1)η G0(k − q, ω − ω1)

whereV (q) means the Fourier coefficients of the bare Coulomb po-
tential, andκRPA(q, ω1) is the dielectric function of the electron gas
in therandom phase approximation(RPA) [4].
For the pure electronic system, the momentum distribution of the
interacting electrons is then given by

ρe(k) =
1

π

∫ ǫF/~

−∞

dω1
ℑΣe(kω1)

[

ω1 − ω0
k
−ℜΣe(k, ω1)

]2
+ [ℑΣe(k, ω1)]

2
.

(8)

Corresponding results are shown in FIG. 1.

POSITRON OCCUPATION PROBABILITYI
What concerns the role of the positron, we start with a combination
of Eqs. (6) and (8) including the transformationp − k → q:

ρIP
ep (p) = lim

N+→0

2

N+

∑

q

ρe(p − q)

×

(

−i

2π

)
∫ +∞

−∞

dω2 eiω2η Gp(N+;q, ω2) . (9)

Equivalent to the electron case, the integral overω2 reads as
(

−i

2π

)
∫ +∞

−∞

dω2 eiω2η Gp(N+;k, ω1)

=
1

π

∫ ǫ+

F/~

−∞

dω2 ℑGp(N+;k, ω2) ,

and using the relations (5) andǫ+F/~ = ~(k+
F )2/(2m), Eq. (9)

changes to

ρIP
ep (p) =

1

4π

∫

d3q

q2
ρe(p − q)

×

[

lim
k+

F→0

3q2

π(k+
F )3

∫

~(k+

F )2/(2m)

−∞

dω2 ℑGp(k
+
F ;q, ω2)

]

where[· · · ] meansthe radial occupation probability of a positron

f+(q) = lim
k+

F→0

3q2

π(k+
F )3

∫

~(k+

F )2/(2m)

−∞

dω2 (10)

×
ℑΣ+(k+

F ; q, ω2)
[

ω2 − ω0
q −ℜΣ+(k+

F ; q, ω2)
]2

+
[

ℑΣ+(k+
F ; q, ω2)

]2
.

The interaction of the positrons with the electron gas givesrise to a
probability tail for q ≥ k+

F . By performing some non-trivial math-
ematical manipulations, it can be shown that this tail also exists in
the limit k+

F → 0, leading to the relatively simple expression

f+
tail(q) = −

2e2

~π2

∫ 0

−∞

dω

(

ℑ
1

κ(q,−ω)

)

×

[

ω − ω0
q −ℜΣ+(c)(0; q, ω)

]−2
(11)

with

ℜΣ+(c)(0; q, ω) = −
e2

2~π3

∫

d3k

k2

×

∫ ∞

0
dσ

(

ℑ
1

κ(k, σ)

)

1

ω − σ − ω0
q−k

.

POSITRON OCCUPATION PROBABILITYII
The total occupation probability function reads as

f+(q) = ν+δ(q) + f+
tail(q) , (12)

whereν+ means the amplitude of the central delta distribution:

ν+ = 1 −

∫ ∞

0
dq f+

tail(q) .

By combining Eqs. (8), (11) and (12), we are able to write downa
compact formula for the independent-particle part of the electron-
positron momentum density where both annihilation partners are
GW described (see FIG.2 and FIG.3):

ρIP
ep (p) = ν+ρe(p) +

1

4π

∫

d3q

q2
f+
tail(q) ρe(p − q) . (13)

RESULTS
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FIG. 1.: Electron momentum densities in jellium, calculated using aGW
approximation.
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FIG. 2.: Electron-positron momentum densities in jellium in the IP ap-
proximation. Both the electron and the positron Green’s functions are
calculated according the GW approximation.
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FIG. 3.: Electron-positron momentum-density in jellium (rs=3.79) in the
IP approximation. The solid line presents our new GW result based on
Eq. (13), and the dashed line shows results obtained by performing a
calculation offirst orderwith respect of the electron and positron selfen-
ergies. Such calculations have been done by Carbotte and Kahana (1965).
Results from this paper are given as circles.
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