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ABSTRACT'

Since many decades, positron annihilation experimenfiti(tie,
angular correlation, and Doppler broadening spectroscplay an
important role for investigations of the electronic sturetof both
crystalline and amorphous materials. In this context kifyequan

tity to be studed is the momentum-dependent annihilation ratg

electron-positron (e-p) pairs in electron gases. In thrgrdoution,
we present - at first time - a theory of annihilating e-p pairgei-
lium whereboththe electron and positron propagators are treate
aGW level.
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|NTRODUCTION|

Themomentum-dependent two-photon annihilation rHte-p pairs
is given by [1]

e
Ryy(p) = 2=5~ pep(P) ,
with rp andc as the classical electron radius and the velocity of lig

and(2 as the volume of the system,,(p) means théwo-particle|
momentum densitf the annihilating pairs [2]

pep(P) = — /ri“}.’mlgy TP (x=y) Gep(xt, xt;ytt yt™), (1)

where the first and the third arguments in the-particle electron|

positron (ep) Green’s functiofi’., belong to the electron and th)

second and forth arguments belong to the positron, respégtand

t* — ¢t means an infinitesimally small step foreward in time.
G,,,(xz‘,xt:yt*,yt*) = G,J(xt.ytf)G,,(xf,ytﬂ +

+ GD(xt,xt;ytt, yt") v}

reflects the physical situation of an e-p pair embedded inleat|q
tron gas: The first term, a product of thee-particleelectron and
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positron Green’s function&'. andG), describes the two fermion:
interacting with the surrounding electrons but withouirgkinto ac-

count anydirect (D) interaction between the annihilating particlgs.

ELECTRON GREEN'S FUNCTION]

The electron one-particle Green'’s functi6i describes the prop.
gation of an electron within the the surrounding electrons.

Due to the experimentally caused fact’éf << N, the behavio
of the electrons is not at all influenced by the positrons linect|
interactionbetween the annihilating partners is neglected in th
model studied in this paper). Therefore, one has an unjexd
many-electron problem as it is intensively treated in therdture
[3]: The Green’s function including electron correlatiassgiven
by Dyson'’s formula [4]
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whereGY means the Green’s function of the non-interacting particle
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with o = 5.
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The total occupation probability function reads as
FHe) = v o(g) + fia(a), (12)

wherer™ means the amplitude of the central delta distribution:

&9 \
v == [Cdag).

By combining Egs. (8), (11) and (12), we are able to write day
compact formula for the independent-particle part of theztedn+
positron momentum density where both annihilation pastreee
GW described (see FIG.2 and FIG.3):
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Y. in Eq. (7) is theelectron self-energy function in the GW appr

imation[4,5]
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whereV (q) means the Fourier coefficients of the bare Coulomh
tential, and:/1F4(q, w)) is the dielectric function of the electron g
in therandom phase approximatidiRPA) [4].

For the pure electronic system, the momentum distributiothe
interacting electrons is then given by

R
pell) = - / oy

T™J—00

SEe(kwr)
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(8)

Corresponding results are shown in FIG. 1.
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These effects are treated by the second term of Eq. (2) ahatia)c

all so-calledenhancement effecté the e-p annihilation. In this pa:
per, we focus our interest on the first term of Eq. (2) whicheitec!
theindependent-particl@éP) approximation of the electron-positrp
Green'’s function:

®3)

In the case of a spatially and temporailgmogenousglectron gas
(jellium), a combination of Egs. (1) and (3) leads to

GIP(xt, xt: yt T, yt") = Ge(xt, yt™) Gp(xt, ytT).

p{ff(p) = —/ PrdPy e P XY G (x—y: t—t") Gp(x—y;t—th),

and after having Fourier-transforméér,t) — G(k,w), one ob
tains

(i 2 +00
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(4)

the momentum density of a system of_ electrons andV.
positrons with the corresponding Fermi radii
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Now it is important to notice that, from the experimental gobf
view, one always has the situation

N_>> N,

i.e., each positron is surrounded by a huge number of etes;tend
there is no measurable interaction between the positrohis sit-|
uation of "one positron inV_ electrons”. is taken into account p|
changing Eq. (4) into

1P/ 2 (i) e o fuma
pep (P) = Nliliuﬁ(?ﬁ)zg —c0 e )

00 )
X / dwy e Gp(Ny;p —k,wo) . (6)
-

This equation describes the electron-positron momentunsitje
per positronin the limit of an extremely small positron density.
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What concerns the role of the positron, we start with a contizin
of Egs. (6) and (8) including the transformatipn- k — q:

2
P, :
pep (P) = \Jim =~ ; pe(p — )
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X (E) /7x dwy e Gp(Ny; q,wo) .

Equivalent to the electron case, the integral avereads as

—i +00 .
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and using the relations (5) ang,/l = ﬁ,(k;f,)j/(Zm), Eq. (9)
changes to
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where|- - - | meanghe radial occupation probability of a positron

o ng ~h(kf)?/(2m)
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The interaction of the positrons with the electron gas ghisesto g
probability tail for ¢ > k.. By performing some non-trivial matl
ematical manipulations, it can be shown that this tail alssts in|
the limit k} — 0, leading to the relatively simple expression
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RESULTSl

ELECTRON MOMENTUM DENSITY G

FIG. 1.: Electron momentum densities in jellium, calcutabsing a1
approximation.

ELECTRON-POSITRON MOMENTUM DENSITY GW

FIG. 2.: Electron-positron momentum densities in jelliumthe 1P
proximation. Both the electron and the positron Green'cfioms
calculated according the GW approximation.
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FIG. 3.: Electron-positron momentum-density in jellium«3.79) in the
IP approximation. The solid line presents our new GW resastell on
Eqg. (13), and the dashed line shows results obtained by rpeirfg a
calculation offirst orderwith respect of the electron and positron self
ergies. Such calculations have been done by Carbotte arahégh965).|
Results from this paper are given as circles.
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