
Identification and Authentication in

Networks enabling Single Sign-On

Thomas Gert Roessler
thomas.roessler@iaik.at

Institute for Applied Information
Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a

A-8010 Graz, Austria

Diploma Thesis

supervised by
O.Univ.-Prof. Dr. Reinhard Posch

October, 2002



i

I hereby declare that the work presented in this thesis is my own
work and that to the best of my knowledge it is original except
where indicated by reference to other authors.

Thomas Gert Roessler



Acknowledgements

The knowledge this thesis is based on has been conducted at the Institute for
Applied Information Processing and Communications (IAIK) of the Graz Uni-
versity of Technology. Therefore, I would like to thank all people of the institute
who instructed me in various topics of IT Security. Furthermore, I would like to
thank Arno Hollosi who gave me a very interesting insight into the concept and
into the difficulties in context with the Austrian e-Government, and Herbert
Leitold for his great support of my work. In particular, I would like to thank
Andrea Pfundner who was a valuable help by polishing my English knowledge.

ii



Abstract

Identification and authentication is every days business for users in todays In-
ternet. Therefore, every user has to tackle with an increasing number of user-
names and passwords. Usually every username and password belongs to an
isolated account which can be considered as a security domain. As a result,
users are stressed with handling so many credentials. On the other hand, to
realize the cooperation of services located in different domains there is a need
to have some authentication mechanism which does not require the user to au-
thenticate and enter his user credentials several times. Single Sign-On is used
therefore. In this thesis, the most important Single Sign-On solutions in use are
discussed depending on their architecture (centralized or federated). In partic-
ular Microsoft Passport and the Liberty Project are viewed closely. As Single
Sign-On systems allow to establish trust relationships between several indepen-
dent security domains, the question arises how to treat trust in a technical
manner. Therefore, one chapter in this work presents a possible approach to
calculate trust in a situation of interoperating security domains. Especially in
e-government applications—where trustworthiness is a major issue—the deter-
mination of trust and the possibilities to react are crucial. The practical part of
this thesis consists of the analysis and the realization of some main components
of a federated Single Sign-On system based on the specifications published by
the Liberty Alliance. Therefore, the last section of the thesis demonstrates a
possible architecture for such a system based on technologies like SAML (Secu-
rity Assertion Markup Language).

Keywords: Single Sign-On, MS Passport, Kerberos, Project Liberty, Trust
Algebra, SAML



Abstract

Identifikation und Authentisierung ist heutzutage tägliches Brot für Internet-
Anwender. Eine Vielzahl von Benutzernamen und Passwörtern müssen vom
Anwender gemerkt oder sicher verwaltet werden. Jedes der Benutzernamen-
Passwort-Paare gehört zu einem meist isoliertem Benutzerkonto, das in einer
meist unabhängigen Domäne angesiedelt ist. Um den Anwender einerseits von
der Flut von Kontodaten zu befreien und es andererseits zu ermöglichen, dass die
verschiedenen Services aus den einzelnen Sicherheitsdomänen zusammenwirken
können ohne dass der Anwender unzählige Male aufgefordert wird einen seiner
Namen und Passwörter anzugeben, werden sogenannte Single Sign-On Lösun-
gen eingeführt. Am Beginn dieser Arbeit werden die gängigsten Single Sign-On
Lösungen vorgestellt und anhand deren Architektur unterschieden (zentralisiert
oder verteilt). So wird zum Beispiel Microsoft Passport und das Project Lib-
erty detailliert betrachtet. Eine der Möglichkeiten die Single Sign-On bietet ist
das Zusammenwirken mehrerer vormals unabhängiger Domänen in Sachen Au-
thentisierung. Deshalb stellt sich die Frage, wie in diesem Zusammenhang tech-
nisch gesehen die Vertrauenswürdigkeit bewertet und berechnet werden kann.
Im zweiten Teil der Arbeit wird deshalb eine Metrik vorgestellt die dies und
darüber hinaus auch die Bewertung verketteter Situationen ermöglicht. Dies ist
besonders in sensiblen Bereichen wie dem e-Government wichtig. Einige der in
diesen Kapiteln vorgestellten Massnahmen und Vorgehensweisen zielen speziell
auf solche Anwendungsbereiche ab, in denen auch Datenschutz eine wesentliche
Anforderung ist. Zum Abschluss wird in einem praktischen Teil die Realisierung
der wichtigsten Komponenten eines Single Sign-On Systems, basierend auf den
Liberty Alliance Spezifikationen und unter Verwendung von Technologien wie
SAML (Security Assertion Markup Language), gezeigt und deren Architektur
demonstriert.

Keywords: Single Sign-On, MS Passport, Kerberos, Project Liberty, Trust
Algebra, SAML



Contents

I Introduction 5

1 Introduction 6
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Introduction to Single Sign-On . . . . . . . . . . . . . . . . . . . 7
1.3 About this Document . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Centralized Single Sign-On Systems 12
2.1 Kerberos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Architecture and Functionality . . . . . . . . . . . . . . . 13

2.2 Microsoft Passport . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Architecture and Functionality . . . . . . . . . . . . . . . 18
2.2.3 Secure Channel Sign-On and Strong Credential Sign-On . 22

2.3 Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Attacking the Core . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 MS Passport related Risks . . . . . . . . . . . . . . . . . . 24

3 Federated Single Sign-On Systems 28
3.1 Liberty Alliance—Project Liberty . . . . . . . . . . . . . . . . . . 28

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Architecture and Functionality . . . . . . . . . . . . . . . 31
3.1.3 Extension by federating identity providers . . . . . . . . . 38

II Privacy and Trust in Distributed Networks 40

4 Privacy and Trust in Distributed Networks 41
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Introductional Example . . . . . . . . . . . . . . . . . . . . . . . 42

5 Trust Algebra 44
5.1 The Opinion Triangle . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Subjective Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Definition: Conjunction . . . . . . . . . . . . . . . . . . . 46
5.2.2 Definition: Recommendation . . . . . . . . . . . . . . . . 47
5.2.3 Definition: Consensus . . . . . . . . . . . . . . . . . . . . 47

1



CONTENTS 2

6 Chained Trust 49

7 Privacy and Re-authentication 52
7.1 Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Re-authentication Requests . . . . . . . . . . . . . . . . . . . . . 54

7.2.1 Out-of-Band Re-authentication . . . . . . . . . . . . . . . 55
7.2.2 Roll-Back Re-authentication . . . . . . . . . . . . . . . . . 55
7.2.3 Ticket-Server Solution . . . . . . . . . . . . . . . . . . . . 56
7.2.4 Communication Server Solution . . . . . . . . . . . . . . . 57

7.3 Practical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

III Practical Work and Implementation 60

8 Introduction and Motivation for this Implementation 61
8.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2 The Liberty Browser Artifact Profile . . . . . . . . . . . . . . . . 62
8.3 The Security Assertion Markup Language (SAML) . . . . . . . . 63
8.4 The Simple Object Access Protocol (SOAP) . . . . . . . . . . . . 65

8.4.1 The SOAP Message Exchange Model . . . . . . . . . . . . 65
8.4.2 The SOAP Message Format . . . . . . . . . . . . . . . . . 65
8.4.3 SOAP RPC and SOAP Messaging . . . . . . . . . . . . . 67
8.4.4 SOAP Binding and SOAP with Attachments . . . . . . . 68

9 The Implementation 71
9.1 Conceptional Design . . . . . . . . . . . . . . . . . . . . . . . . . 71

9.1.1 Protocol Classes . . . . . . . . . . . . . . . . . . . . . . . 71
9.1.2 Provider and Servlet Classes . . . . . . . . . . . . . . . . 76
9.1.3 Exception Classes . . . . . . . . . . . . . . . . . . . . . . 80

9.2 Used Technologies and Packages . . . . . . . . . . . . . . . . . . 81
9.3 Demonstration Scenario . . . . . . . . . . . . . . . . . . . . . . . 83

10 Conclusion 88

A Abbreviations used in this thesis 90

Bibliography 91



List of Figures

1.1 Multiple domains require multiple usernames and passwords . . 8
1.2 Using SSO only one username and password is required . . . . . 9

2.1 Single Sign-On with Kerberos . . . . . . . . . . . . . . . . . . . . 14
2.2 Single Sign-On with Microsoft Passport (Standard Sign-On) . . . 20
2.3 Attack by rewriting and proxying requests [18] . . . . . . . . . . 27

3.1 Network Identity as considered by the Liberty Alliance [10] . . . 30
3.2 Federated network identity and circles of trust [10] . . . . . . . . 31
3.3 Example of Single Sign-On using Project Liberty (SOAP binding)

[10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Example of single logout using Project Liberty (SOAP binding)

[6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Example of federated identity providers housed in different circles

of trust. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Example of distributed services . . . . . . . . . . . . . . . . . . . 42

5.1 Example of chained trust . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Trust levels inserted into the opinion triangle . . . . . . . . . . . 45

6.1 The problem of chained trust . . . . . . . . . . . . . . . . . . . . 49

7.1 Example of errors in distributed services . . . . . . . . . . . . . . 52
7.2 Out-of-band re-authentication . . . . . . . . . . . . . . . . . . . . 55
7.3 Roll-back re-authentication . . . . . . . . . . . . . . . . . . . . . 56
7.4 Re-authentication by using a ticket server . . . . . . . . . . . . . 56
7.5 Re-authentication through a web-server . . . . . . . . . . . . . . 57

8.1 Example of Single Sign-On using Project Liberty’s Browser Ar-
tifact Profile (SOAP binding)[10]. . . . . . . . . . . . . . . . . . . 63

8.2 The SAML domain model (conceptual) [19] . . . . . . . . . . . . 64
8.3 SOAP message structure [26] . . . . . . . . . . . . . . . . . . . . 66
8.4 Example of a SOAP Header block containing two header entries. 66
8.5 Example of a SOAP Body block. . . . . . . . . . . . . . . . . . . 67
8.6 Example of a SOAP RPC. . . . . . . . . . . . . . . . . . . . . . . 69
8.7 SOAP message with attachments [26] . . . . . . . . . . . . . . . . 69

9.1 Hierarchy of the protocol classes. . . . . . . . . . . . . . . . . . . 72

3



LIST OF FIGURES 4

9.2 Structure of classes used to generate a proper assertion. . . . . . 73
9.3 Example of an authentication request. . . . . . . . . . . . . . . . 74
9.4 Example of an authentication response according to the request

of figure 9.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.5 Structure of the identity and service provider classes and their

most important supporting classes. . . . . . . . . . . . . . . . . . 76
9.6 Structure of the servlet classes related to the provider objects. . . 79
9.7 Hierarchy of exception classes. . . . . . . . . . . . . . . . . . . . . 81
9.8 Process flow of a Single Sign-On cycle in this sample implemen-

tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.9 Screenshot of the identity provider’s welcome servlet. . . . . . . . 83
9.10 Screenshot of selecting among various affiliated identity providers. 84
9.11 Screenshot of the sign-on service presented by the identity provider. 85
9.12 Example of a SOAP request containing a SAML artifact. . . . . 86
9.13 Example of a SOAP response containing an authentication asser-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10.1 Screenshot of gaining access to the desired resource of the service
provider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



Part I

Introduction

5



Chapter 1

Introduction

Identification and authentication are a big topic, especially in systems of fed-
erated services and entities. Therefore, there exist many different requirements
depending on the properties of the service where user authentication is needed.
Of course, identification and authentication are also a considerable threat for
the privacy of a user and his behavior. This is why it is crucial to be careful
with identifying an entity everywhere and for any reason. On the other hand,
having a great number of different user accounts for one single person is not
very comfortable regarding convenience. For this aspect it would be a good
practice to initiate only one or a few accounts which are used to log-in at all
services. Furthermore, it is practicable to log in at one portal only once and
automatically all other related services are useable for the authenticated user.
Such a system is called a Single-Sign-On solution. Depending on the technical
realization working in the background, these systems could be split up into cen-
tralized or federated systems. Each of them has some advantages and also some
weak-points, especially under the aspect of harming users’ privacy.

1.1 Motivation

At the beginning of working on this thesis there was the problem of user au-
thentication within an e-governmental scenario. In e-government various au-
tonomous services are cooperating in order to fulfill some task which may be
initiated by a citizen’s request. The idea was that a citizen who enters such
a request has to be identified and authenticated only once and all cooperating
services rely on this initial authentication. As this thesis points out in a later
chapter relying on an authentication result unconditionally is not sufficient, es-
pecially in such a sensitive environment as e-government. In the course of the
investigations on this topic, the possibilities of how to introduce trust in such an
environment were examined. Furthermore, by working through the possibilities
an applicable way to grasp trust and to determine the trustworthiness of such
an authentication result, also called assertion, was gathered. One part of this
work presents a mathematical framework and a possible algebra to calculate
this. Within this part, also possible reactions on the situation of distrusting an
assertion were developed. Thus, mainly some re-authentication mechanisms are
shown as well. Moreover, the risks of harming a user’s privacy by calculating

6



1.2. INTRODUCTION TO SINGLE SIGN-ON 7

the trustworthiness of an assertion are pointed out because keeping the privacy
of a user is mandatory for all tasks and applications in this context.

On the other hand, various existing Single Sign-On solutions were surveyed,
e.g. Microsoft Passport, Kerberos, Project Liberty. Furthermore, the approach
of the Liberty Alliance and of their Project Liberty Single Sign-On solution
fulfills the needs of the requirements given by the introductional problem most
likely. Thus, in the practical part of this work a prototype of a framework en-
abling Project Liberty functionalities were developed in order to gain a deeper
understanding of the Liberty Alliance specifications.

1.2 Introduction to Single Sign-On

The Open Group defines Single Sign-On as [24]:

a mechanism whereby a single action of user authentication and au-
thorization can permit a user to access all computers and systems
where that user has access permission, without the need to enter
multiple passwords

In this chapter, this wide-range definition is focused on domains, services and
applications situated in the web. In this means, a Single Sign-On system (SSO)
supports the user with the advantage of accessing several sites and services
within multiple security domains after authenticating himself only once. The
first log-in happens preferably at a portal-site. From this point, other sites and
other security domains—where normally a separate sign-on is necessary—obtain
the user’s credentials by contacting the portal-site used by the client. Further-
more, user profiles may be supported too by such a portal-service. Without
any further action from the client every service and web-page will be presented
according to the user’s preferences stored in his profile.

The following chapters give an introduction for such systems and they differ
between centralized and federated solutions for these systems, depending on
their architecture. The following sections give also a short survey over the most
important standards and products for Single Sign-On solutions.

Users normally have to sign-on to several distributed systems where user ac-
counts are needed. Many of them are induced for the reason of convenience,
but an increasing number of accounts is used to access services with higher se-
curity restrictions. Recently, distributed systems were built up in a way that
they act independently as isolated security domains. Therefore, each user who
wants to enter one of these domains has to authenticate himself at each of these
security domains by the use of separate credentials (figure 1.1).

Therefore, an end-user who wants to use services and accounts housed in dif-
ferent domains has to sign-on multiple times. This results in the difficulty that
users today have to remember much more than one username and about the
same number of different passwords. Moreover, because of duplicate names a
client is used to select different user names for his accounts. Therefore, up to
now it is necessary either to write the different user data into a secret book,



1.2. INTRODUCTION TO SINGLE SIGN-ON 8

��������� 	�


��
������ ���

��������� ����  !��" #$�

%�& ' & ( ) *�) ' +,-& + & . & / )

0�132�4�5 687

9 : ; < = > ?�; @A > : : BDC < E @

F!G G H I I

J K K L M M

NDODO�P Q Q

R S T U V W X T Y Z [ W
S S \-] U ^ Y

_ ` a b c d e a f g h d ` ` i j b k f

Figure 1.1: Multiple domains require multiple usernames and passwords

or to have an encrypted file or a kind of account-manager on your computer to
handle the various account-information.

A new approach to tackle this problem is to introduce a Single Sign-On mecha-
nism in all different security domains. The introduction of Single Sign-On into
these security domains increases the usability and the security as well. Fur-
thermore, the effort for the management of user accounts may be reduced. A
system which provides an integration and coordination of different accounts, of
this kind brings some benefits for users and providers. For example:

• reduction of time exposure for users if users have to sign-on to different
domains

• improved usability by reducing the number of account information that a
user has to remember

Using this system enables an end-user to access other, secondary security do-
mains after signing-on to a primary domain. Between these domains there
exists a trust relationship. Therefore, the second domain obtains user creden-
tials through the sign-on service from the first domain where the user is already
authenticated. In other words, the primary security domain supports the other
domains by the user’s credentials assumed that the user is logged in correctly



1.2. INTRODUCTION TO SINGLE SIGN-ON 9

����������	�

���
	��
��
�� ���

�������������
���
���
 ���! �#"

$&%('�)+* ,
-�* ./,+0 1�,

2/3 4 3 5 6 786 4 9:;3 9 3 < 3 = 6

>@?�A BDC
?�E
F�G�B�C�A H

I J K L M N O&KP N J J QSR L T

U/V V W X X

Y Z Z [ \ \

]S^S^+_ ` `

Figure 1.2: Using SSO only one username and password is required

(as depicted in figure 1.2). Depending on the architecture there are mainly two
different approaches to SSO-systems:

• centralized architecture

• federated architecture

The centralized architecture uses a central authority and a central user database
working behind. Each domain relying on the authentication decisions of the
authority has to establish a trust-relationship with it. Contrarily the feder-
ated architecture allows to combine several independent authorities, so called
identity providers. The user’s identities distributed across these providers are
collected in one overall identity—the so called network identity. Both of them
have their advantages and disadvantages. In chapter 2 the centralized solution
will be discussed in detail. In this course, the most important established stan-
dards and implementations of centralized SSO-systems are introduced. Chapter
3 describes the federated Single Sign-On technology and its standardized specifi-
cations and implementations. Especially the Liberty Alliance Project is treated
very deeply.



1.3. ABOUT THIS DOCUMENT 10

1.3 About this Document

The result of the work initiated by the motivation stated above is condensed
and summarized in this thesis which is organized as follows:

As the introduction above points out the existing solutions can be separated
into centralized and federated systems. Therefore, chapter 2 goes on with an
examination of systems following the centralized approach. Thus, Kerberos as
one of the first attempts to enable Single Sing-On within networks is introduced.
The functionalities and main components of the Kerberos model are described.
On the other hand, one of the most important representatives of such systems is
Microsoft Passport. That is why Passport’s architecture is treated in the second
section of chapter 2. To round up this introductional chapter, the last section
gives a short overview of some problems concerning central Single Sign-On sys-
tems. Contrarily, chapter 3 deals with the other approach to this problem,
namely the federated Single Sign-On architecture. In this chapter, the quite
new Project Liberty and the Liberty Alliance itself are presented. By examin-
ing an exemplary sign-on process the basics of this architecture are figured out.
At the end of chapter 3, it will be stated that this federated approach deals best
with the scenarios similar to those given in the motivation.

As mentioned above, receiving an assertion based on a previously happened
authentication process is not sufficient. Part II and its chapters deal with the
situation of having various services cooperating in a chain. Moreover, in this
scenario the first service requires an authentication only and all other involved
services are relying onto the assertions of the first service. This situation is sim-
ilar to the situation in a Single Sign-On system. An authentication authority
asks the user to sign on and the other services are consumers of the assertions
provided by the authority. These chapters assume that the trustworthiness will
decrease along such a chain of services. Therefore, to cover this fact by some
metric chapter 5 introduces a so called Trust Algebra mainly based on the work
of Audon Jøsang. Furthermore, at the end of this chapter a possibility is intro-
duced to determine the trustworthiness of such an assertion, or more generally
spoken of a message, by applying a recursive calculation. In chapter 6 various
ways of how to react in the case if an assertion or message is considered as not
trustworthy are drafted. The eventuality of re-authentication is mainly treated.
All results of this part of the thesis are considered and discussed under the as-
pect of a user’s privacy according to the requirements of sensitive environments.

Because of that the federated approach meets the requirements given in the
motivation best, the last part of this thesis covers the description of a sample
implementation of some facilities given by the Liberty Alliance specifications.
A main objective for this implementation is to gain a deeper understanding
of this preferable technology. At first, chapter 8 gives a short motivation for
this implementation. Furthermore, the Liberty Alliance specifications build up
on basic technologies such as the Security Assertion Markup Language (SAML)
and the Simple Object Access Protocol (SOAP). In the introduction an overview
on SAML and SOAP is given as well. Chapter 9 deals with the juicy bits of this
part. It introduces the chosen architecture of Java classes underlaying the im-
plementations, enabling basic functionalities of Project Liberty (Single Sign-On



1.3. ABOUT THIS DOCUMENT 11

by using the Liberty Browser Artifact Profile). Finally, to round up this part
of the thesis a complete Single Sign-On process is demonstrated by the use of
the resulting sample implementation.



Chapter 2

Centralized Single Sign-On
Systems

Due to the way identities and user-credentials are distributed and managed
Single Sign-On solutions can be distinguished between centralized and feder-
ated systems. In the centralized approach user’s authentication information
and his profile are centrally managed, for example by an Internet portal. No
matter if there are more than one portal-sites which are synchronized periodi-
cally, the core behind is still the same. One central database holds the client’s
authentication-, identification- and profile-information, or more generally spo-
ken his identity-information. This approach is a very pragmatical one. Be-
cause of the maintenance and security aspect it is easier to manage one central
database keeping the user data. Also, access-control depending on these data
is quite comfortable and transparent. Therefore, controlling access can be done
by a portal-site where every user has to be identified and authenticated with
the help of his data stored in the database. On the other hand, setting up such
a system implies that every participating system and security domain has to
cooperate with the portal site and its primary security domain.

The first system described in this chapter is Kerberos. Kerberos is using cryp-
tographic algorithms especially symmetric encryption to control access. After
signing on once, the user gets so called tickets to prove that he was authenti-
cated by the central authority. With the help of these tickets the user can enter
a restricted area or use a protected resource. Such a ticket is always dedicated
to a special receiver, e.g. a server, and it is encrypted by using just created ses-
sion keys. The main application area of Kerberos are closed networks. For the
Internet, Microsoft Passport is introduced which is representing a central au-
thority as well. Similar to Kerberos, Passport holds the user’s data in a central
database. Gaining access to protected sites and resources is controlled by the
use of cookies. This means, that the user receives some encrypted cookies after
he was authenticated successfully by the Passport Sign-On server. From this
point, the possession of these cookies is sufficient to gain access to the desired
services and sites. The next two sections give a deeper look into the details and
mechanisms used by these two systems.

12



2.1. KERBEROS 13

2.1 Kerberos

2.1.1 Introduction

Kerberos was developed in the early eighties at the Massachusetts Institute of
Technology (MIT) with the intent to allow users and services to authenticate
themselves to each other unequivocally. With Kerberos, the MIT attempts to
replace the common way of authentication along networks of this time, which
is known as authentication by assertion [30]. With this, the user at first has to
log in at his client-program and from this moment, the client program asserts
to other services that the user is authenticated. Obviously, this solution is not
very secure. Imagine that such a client programm is corrupted and is working
without requesting any password authentication all services and sites inside the
affected net are accessible. Consequently the idea to develop Kerberos was born.
This system was designed to prevent the necessity of proving the possession of
secret data, e.g. the password, by disclosing this private secret itself. This is why
Kerberos works on the basis of key distribution and cryptographic operations,
namely decryption and encryption. Actually, Kerberos is available in its fifth
version and it is widely used and supported by many products.

2.1.2 Architecture and Functionality

Figure 2.1 illustrates the basic information flow used in Kerberos. This archi-
tecture uses the following components:

• Client

• Authentication Server (AS)

• Ticket Granting Ticket (TGT)

• Ticket Granting Service (TGS)

• Requested Service

Very often, the Authentication Server and the Ticket Granting Service are real-
ized as one central system, called Key Distribution Center (KDC). In some pa-
pers the terms Authentication Server and Ticket Granting Service are preferred,
others are talking about the Key Distribution Center only. In this section, the
terms Authentication Server and Ticket Granting Service are used separately.

Credentials

Generally, Kerberos uses the following two types of credentials:

• tickets

• authenticators

A ticket contains various information about the user, such as the name and
the IP-address of the client. Furthermore it includes a time-stamp, a lifetime
value and a random session key which is used for secure communication. Such
a ticket is issued by the Authentication Server and is sent to the desired end



2.1. KERBEROS 14

����� ����� ��	

�� 
 ����� 
 � � � 
 � ��������� �����

� 
����

��� � ���  

!�" #�$ %'&�(�) *�+ & " +�,
-�%�) .�%�)�/ !�(0-21

3�4'5�6�7�8 9 4
:�4�8 ;�4�8

<

=

>

?�@ A B C DE'F�GH�IJHE'F0K

?�@ A B C D

L�M D N

O C�P�M C Q D

O C'P�M C Q D C R
Q C O S @ A C

O C P�M C Q D

L0M D N

H�ITH

O C P�M C Q D

U

V

W

E'FXK

O C P�M'C Q D

?�@ A B C D

E Y Z Z [ \ ]�F Y ^

_ [ ` a Y b

c Y d e Y Z b f g�e b h Y ] b [ ` i b \ j f k k

l ] ` j ^ m b Y n�l o Y p�Y ] b

Figure 2.1: Single Sign-On with Kerberos

server, called the Resource Server. With the help of tickets the receiving server
gets information about the user. They allow the server to prove whether the
user representing the ticket is the user to which the ticket belongs to or not. If
proving was successful, the user gains access to the desired resource. The ticket
has to be encrypted by using the key of the receiving server in order to secure
the content of the ticket. A ticket can be used several times depending on its
lifetime.

On the other hand, the authenticator is needed to prove that the user pre-
senting a ticket is the same one who the ticket was issued to. This can be
done because the authenticator contains again the user’s name and the Inter-
net address of his workstation as well as the current system time at the user’s
workstation. Therefore, the authenticator is generated at the user’s computer
by the user’s client program. By comparing this additional information with
the information included in the ticket it is possible to ensure that the owner
of the ticket is the same as the owner of the authenticator. Contrarily to the
ticket, the authenticator cannot be used multiple times. The client has to build
up a new authenticator for each usage. The authenticator has to be encrypted,
namely by using the session key related to the session between the client and
the service receiving the authenticator.

Kerberos keeps a client-database working in the background storing the user’s



2.1. KERBEROS 15

data and their associated private keys. The Authentication Server maintains
this database. Kerberos is working with symmetrical keys, which means that
the same key is used for both encryption and decryption. Therefore, the distri-
bution of the secret and symmetric keys is very crucial. In practice, these keys
are generated at one side of the communication channel and they are distributed
using a secure media. First of all these keys are needed for user authentication
when a client wants to use the Kerberos system. Based mainly on the work by
[28] and [30], the following steps describe an authentication process by the use
of Kerberos. For example: Alice wants to authenticate to the Authentication
Server in order to get access to the Ticket Granting Server:

1. Request at the Authentication Server

Alice creates a message containing her name and the current time-stamp
and the request for accessing the Ticket Granting Server and sends it to the
Authentication Server. The Authentication Server receives her message
and tries to resolves Alice’s name and to verify the time-stamp. If veri-
fication was successful and Alice is known to the Authentication Server,
the server is able to get Alice’s secret key from its central database.

The Authentication Server is able to generate temporary keys, so called
session keys, for symmetrical encryption in order to secure messaging be-
tween two parties. Therefore, after the user’s request was proved success-
fully by the Authentication Server, a session key is generated which is
needed for the communication between the user and the requested Ticket
Granting Server. One copy of this key is sent to the user within an en-
crypted message using the user’s secret key. Another copy of this key is
dedicated to the Ticket Granting Server. The Authentication Server has
to create the so called Ticket Granting Ticket for the Ticket Granting
Server as well. The Ticket Granting Ticket contains the name of the user,
e.g. Alice, the name of the desired Ticket Granting Server, a time-stamp
to prevent reply attacks, a lifetime value defining the ticket’s expiration,
the client’s Internet address and the random session key just having been
created. At last, this ticket is encrypted whereby the key has to be known
to Ticket Granting Server and the Authentication Server only.

Kerberos supports also mutual authentication, the Authentication Server
will authenticate itself to Alice by sending an encrypted message con-
taining the server’s name and a time-stamp. The included time-stamps
are very important to prevent replay attacks by hackers whereby a eaves-
dropped authentication message is simply sent to the Kerberos service a
second time. With the introduction of time-stamps, though, each entity
involved in the process is able to determine the time of message creation
and is able to decide about the trustworthiness of a message.

2. Getting a Ticket Granting Ticket

The Authentication Server sends the ticket and the user’s copy of the
session key included in a message which is encrypted with the user’s secret
key back to the user. By using the user’s secret key it is ensured that
only he is able to access the content of this response. Depending on the
implementation, the user’s secret key may be derived from his password



2.1. KERBEROS 16

which he is asked to enter by the login client on the user’s workstation.
Note that the Authentication Server never asks for the user’s password.
The Authentication Server answers to a simple request as described in
the previous step with an encrypted response containing the ticket and
the session key. Only the real user is able to decrypt this response after
having entered his password in order to regenerate his secret key. If the
response could be decrypted the sign-on client stores the received session
key and the Ticket Granting Ticket for later use. From this moment on,
the client’s secret key (master key) is not longer needed during this session.
Just with the help of this Ticket Granting Ticket, the user is allowed to
access the Ticket Granting Server in order to obtain tickets needed for the
access to other services. Therefore, this Ticket Granting Ticket is used
to get specialized tickets during a user session. After a certain time, the
Ticket Granting Ticket will expire.

3. Accessing a Service

So far the user has got the Ticket Granting Ticket which allows access-
ing the service of the Ticket Granting Server. This server is responsible
for issuing separate tickets for accessing other individual sites or services.
Therefore, the user has to send a request to the Ticket Granting Server.
This request has to contain the name of the desired server which the
user wants to access. Furthermore, this request has to include the Ticket
Granting Ticket received introductorily and an authenticator built as de-
scribed above by using the previously generated session key. The Ticket
Granting Server verifies the authenticator and the Ticket Granting Ticket
and if both are valid, the server generates a new session key which has
to be used for the communication between the client and the new desired
server.

4. Obtaining the new Ticket

The Ticket Granting Server generates a new ticket for the desired server.
This ticket contains again the user’s name, his IP address, the name of the
server or service which the ticket is issued for, a time-stamp, the session key
(SK 2) just created and a lifetime value which is limited by the remaining
lifetime of the Ticket Granting Ticket and a predefined maximum lifetime
value for the desired server. This ticket and the new session key is wrapped
into a message which is encrypted by using the first session key (SK 1)
that was generated previously during the first step of the procedure. The
encrypted message has to be sent back to the user.

5. Accessing the desired Server

With the help of the received ticket, the user is now able to access the de-
sired server. Additionally, to prove that the user is really the one who the
ticket was issued to, the client program has to generate an authenticator
as mentioned earlier. This authenticator has to be encrypted by using the
session key (SK 2) received together with the ticket for the desired server
from the Ticket Granting Server as described before. The authenticator
and the previously obtained ticket has to be sent to the desired server
which decrypts the authenticator by using the session key (SK 2) that is
contained inside the ticket. If the user described by the authenticator is



2.1. KERBEROS 17

the same given in the ticket, the server allows the user to access the service.

Finally, if mutual authentication is desired by the client, the server has
to send a response containing a new time-stamp. The value of this new
time-stamp is the value of the time-stamp which was included inside the
client’s authenticator increased by one. This response is encrypted by us-
ing the session key (SK 2). This way, the client is ensured that the server
is genuine too.

Cross Realm Authentication

The previous example is based on the scenario of having one Authentication
Server and one Ticket Granting Server. In other words, the user was authenti-
cated inside one realm only. In “The Moron’s Guide to Kerberos” [30], Brian
Tung states that as long as the number of users and therefore the number of re-
quests remain low, there may be no problem considering the performance of the
Authentication and Ticket Granting Server. As Tung points out, if the number
of requests increases these servers would become a bottleneck in the authentica-
tion process. Therefore he summarizes, that this system does not scale, which
is bad for an authentication system like Kerberos .

Dividing the network into several realms instead of having only one is an at-
tempt to solve this problem. Furthermore, by having more than one realm
authentication across the boundaries of realms is necessary. To allow this, Ker-
beros introduces the so-called Remote Ticket Granting Server (RTGS) into each
realm to allow cross realm authentication. The authentication process described
above has to be extended by one additional step. If a user wants to use a ser-
vice of a foreign realm he has to contact his Authentication Server to obtain
his ticket and to gain access to his local Ticket Granting Server. So far, ev-
erything is similar to a normal authentication process. To access the foreign
service the user has to contact the Remote Authentication Server housed in the
foreign realm. To do so, the user has to request a ticket for this Remote Ticket
Granting Server from his own local Ticket Granting Server. Normally, the user
obtains the ticket and with the help of this the user can access the Remote
Ticket Granting Server in order to request a ticket which is needed for entering
the foreign service. The only step inserted into the normal authentication pro-
cess is to contact the Remote Ticket Granting Server by using a ticket obtained
from the local Ticket Granting Server.

In case there are many realms it is not efficient to register each realm in every
other realm. Therefore, it is advantageous to introduce a hierarchy of realms.
Thus, it is sufficient to contact Remote Ticket Granting Servers in one or more
intermediate realms only. Their names have to be recorded in the tickets. De-
spite the introduction of cross realm authentication, the Kerberos system re-
mains not very scalable.



2.2. MICROSOFT PASSPORT 18

2.2 Microsoft Passport

2.2.1 Introduction

Today’s most popular Single Sign-On solution available is Microsoft Passport.
The Passport model consists of three entities:

• the client

• the merchant

• the Passport Sign-On server

Whereby the client at his browser is usually the consumer who has previously
registered with the Passport service, the merchant is generally an online store.
The merchants respectively the online stores wish to market with the client and
the Passport Sign-On server plays the role of the central authority. This server
handles the user’s authentication information and his profile data, which allows
him to interact with the online merchant. Furthermore, the Passport model
splits up the client’s data into pure profile information and the so called wallet
containing the client’s payment information such as his credit card data. For
correctness, wallet itself is already an application based on Passport. Therefore,
this section deals with the core of Passport only. Over all, Microsoft Passport
was developed to allow Single Sign-On in the web in order to realize a basis for
secure transactions in context with online shopping.

2.2.2 Architecture and Functionality

The core of Passport’s architecture is a centralized database which contains all
the registered users and their according data and credentials. For each user,
Passport generates a unique identifier, the so-called Passport Unique Identifier
(PUID). With the help of this, every user can be identified unambiguously.

Microsoft tries to solve the problems concerning Single Sign-On by using stan-
dard Web technologies such as Secure Socket Layer (SSL), cookies and JavaScript.
Furthermore, Passport allows the administrator of the participating merchant
site to choose among three possible security levels of authentication suiting the
needs:

• Standard Sign-On

• Secure Channel Sign-On

• Strong Credential Sign-On

Standard Sign-On is preferably used for common application cases without ex-
traordinary security restrictions. The Secure Channel Sign-On enhances the
Standard Sign-On profile by using SSL. Strong Credential Sign-On supports
the top level of security by introducing a further sign-on stage in adaptation to
the Secure Channel Sign-On.

Microsoft’s Single Sign-On solution never sends a user’s password to the partic-
ipating merchant sites. Furthermore, the user’s profile information are always



2.2. MICROSOFT PASSPORT 19

sent encrypted. Common to all levels mentioned above is that they do not
require the user to install any client application beside the ordinary Internet
browser such as Microsoft’s Internet Explorer, Netscape Navigator or Opera.
On the server side, the administrator of the participating site has to install Mi-
crosoft’s Passport Manager [20] which is the only additional software Passport
requires. This manager is responsible for encrypting and decrypting cookies. It
is used for user authentication, for handling a user’s profile data, for storing the
user’s authentication and profile information in cookies and finally for treating
cookies in order to reverify a user’s authentication status respectively to manage
the user’s session.

A user follows a link to a web site where authentication by using Passport
is required. For example, this site may be a home page of an e-shop and it al-
lows the client to buy something online. If the user wishes to make a deal with
this online shop, the user has to sign-on using a well known Passport Sign-On
server. Thus, the user’s browser is redirected to this Passport server in order
to login. From this point, each of the three possible security levels provided by
Passport differ a little bit. The following section describes the basics of Passport
by explaining the sign-on procedure using the Standard Sign-On profile.

Standard Sign-On

Standard Sign-On represents the lowest security level available within the Pass-
port model. In this profile, SSL is used only when the username and the pass-
word are transferred to the Sign-On Server. Therefore, sites and services with
higher security restrictions and where the user gains access to sensitive data,
e.g. account information at a home banking service, protection by the Standard
Sign-On level will not be sufficient. Despite of this, to show the principles work-
ing behind Passport this section describes the authentication process (figure 2.2)
of the Standard Sign-On level (according to [20]).

1. Redirection to MS Passport Server

First, the client follows the sign-on link (commonly represented by a stan-
dardized Microsoft Passport symbol) at the participating merchant site to
the Passport Sign-On server.

2. Accessing the Passport Sign-On Server

The user follows the link and his browser is redirected to the sign-on page
of the dedicated Passport server. Within this request a unique identifier
is added, which identifies the participating site from where the user is
redirected. This ID as well as a unique encryption key is initially assigned
to a site when the site registers as a participating site. The return-URL
of the requested resource at the participating site is enclosed within the
request as well, in order to redirect the client’s browser to the desired page
when sign-on was successful.

3. Entering the User’s Credentials

After having checked successfully if the site ID which was sent within the
request corresponds to a registered site, the Passport server asks the user
to enter his username and password in order to sign-on. While there is



2.2. MICROSOFT PASSPORT 20

��� ��� �����
	 ���

��������� ������� �����

��� � ���
�

����� �  !� "
� �  #�$%& � '

(

)

*

+
,

-

.�/

0 1 2 3 0 1 4 5
6 7 8 9 : ;

<

= : > ? < @
0 1 A B

C D A 1

0 1 2 3 0 1 4 5

E F G H E F I J
E F G H E F I J K L M N O P Q
R O S T Q U

V
W X Y Z W [ \ X ]�^ _ ` a b cd a e f c g

0 1 h i 1 A 5

j k X X l m n [o�k p k q \ n

^ c r�s
c t g
u
m m v W \
w \ x y \ X [ z w \ { W n \ | [ z Y Y Y
} p | n ~ l [ \ {&} � \ ��\ p [

� _
_�f a c(-

)

Figure 2.2: Single Sign-On with Microsoft Passport (Standard Sign-On)

no restriction to show the login page of the Passport Sign-On server by
using HTTP or HTTPS, the form to enter the user’s credentials is always
presented by using the POST-method and by using HTTPS to send the
credentials to the server. Therefore, when the user submits his data to
the login server they are always transferred by using the SSL protocol as
mentioned before.

4. Obtaining the Cookies

The Passport Sign-On server proves the received authentication informa-
tion. If they match with the information stored in the server’s database,
the user is considered as signed on. Furthermore, the Passport Manager at
the server retrieves the user’s Passport Unique Identifier and additional
profile information if it is needed. With the help of this, the server’s
Passport Manager is able to create cookies representing the user’s status.
Overall, the Passport SDK documentation [21] states, that there are five
cookies written into the authority domain and two more cookies written
into the participating site domain. For the moment and for explaining the
Passport’s principle it is sufficient to deal with the following three cookies
(according to MS Passport Technical Overview [20]):

• the Ticket Cookie
...containing the PUID and a time-stamp

• the Profile Cookie
...containing the user profile information

• the Visited Sites Cookie
...containing a list of sites the user has signed on to



2.2. MICROSOFT PASSPORT 21

Each of these three most important cookies is encrypted by using the Triple
Data Encoding Standard (3DES) algorithm. The key used for encryption
was initially created and assigned when a site registers to participate with
the Passport system. The server encrypts the content of these cookies and
returns the ticket and profile data by adding them as query string to the
return URL of the participating site which the user wants to access as
declared inside the authentication request. Finally, the client’s browser is
redirected according to this return URL and the Passport Sign-On server
stores the Visited Site Cookie at the client’s browser.

5. Accessing the Participating Site

The user’s browser was redirected back to the desired site which the user
wants to access by following the return URL provided by the Passport
server. The Passport Manager running at the participating site’s server
extracts the return URL in order to obtain the containing ticket and pro-
file information. After the information has been decrypted, the manager
obtains the PUID, the time-stamp and the profile data. This way, the
participating site recognizes that the user is authenticated at the Pass-
port Sign-On server. If desired the site can be configured to enforce re-
authentication after a specific time (when the time elapsed, the Passport
Sign-On server’s login screen is displayed again and the user is asked to
re-enter his password in order to renew the cookies). As a result, the
participating site stores the Ticket and the Profile Cookie containing the
ticket and profile information received within the URL on the client’s
browser.

6. Using the Participating Site

The participating site is now able to display a customized page to the client
by using the profile information coming along with the Profile Cookie.
Furthermore, the site can use this information to add it into its own
profile-database or to create its own cookies. While displaying the de-
sired resource to the client the participating site always supports a link to
a sign-out service. This link is commonly represented by a standardized
Microsoft button.

7. Sign Out

As mentioned above, the user is able to sign out at every time by clicking
on the sign-out symbol displayed on all involved sites. In this case the
client’s browser follows the link behind the symbol and it is redirected to
the Passport server. After having proved the ID of the site originating the
logout request, the server uses the Visited Sites Cookie in order to delete
all cookies created at sign-on for the visited sites. For every cookie to
delete the server launches a script at the corresponding participating site,
which removes the cookie. Due to the fact that only the site which has
created the cookie is able to delete it, every participating site has to pro-
vide the URL of the script which has to be called in order to delete their
cookies. The registration of these URLs happens during the initial partici-
pation process. Additionally, all the Passport cookies are temporary. This
means, that these cookies are deleted anyway when the browser session
is closed without having signed out from the Passport system previously.



2.2. MICROSOFT PASSPORT 22

Furthermore, these cookies are time sensitive and so they expire after a
certain period of time specified by the Passport server or the participating
sites. After a timeout, the user is enforced to re-validate his session at the
Passport server by re-entering his password.

The Passport model does not use direct communication between the Passport
Sign-On server and the participating site. Instead of this, the communication
is realized by the use of cookies and redirects. Only the Passport Manager in-
stalled on the server of the participating site has to retrieve a configuration file
(presented by an XML document) periodically, which is stored at the Passport
Sign-On server. This XML file contains current information of the URLs of the
Passport Sign-On servers available and the actual Passport profile configuration.

In the case that the user is already signed-on and authenticated by the Pass-
port server and he enters another participating site, he will be redirected once
again to the Passport server by clicking onto the sign-on link represented by
the Microsoft symbol. Now the client’s browser is redirected to the login server
by using the participating site ID and the return URL addressing the resource
the user wants to access. Again, the Passport Sign-On server has to prove the
incoming request namely the correctness of the site ID and it also proves the
validity of the user’s ticket data containing the user’s PUID and the time-stamp.
Afterwards, the Passport server creates new cookies and it returns the encrypted
tickets and profile data to the requesting site added to the return URL as query
string. Thus, it is possible to enter another site after an initial authentication at
the Passport Sign-On server. It is possible, though, that the participating site
requires to prove a recent authentication for higher security. In this case the
Passport server is enforced to re-authenticate the user by asking his credentials
again.

2.2.3 Secure Channel Sign-On and Strong Credential Sign-
On

As mentioned in the introduction of this chapter MS Passport supports two
other sign-on profiles suiting the needs of higher security levels. These are
the Secure Channel and the Strong Credential Sign-On profile extending the
Standard Sign-On profile.

Secure Channel Sign-On

As the name of this profile says already, the Secure Channel Sign-On profile
extends the Standard Sign-On profile by the use of a secure end-to-end SSL
channel. This SSL channel is used during the whole authentication process. If
no such channel is used, an attacker is able to eavesdrop the communication
between the client’s browser and the Passport Sign-On server. Of course, the
content of the cookies is encrypted, though, even by stealing these encrypted
cookies an attacker is able to impersonate the owner of this cookies by reply-
ing them to the affected participating site. The Standard Sign-On profile is
vulnerable to such a reply attack because of unprotected transport of cookies
by using ordinary HTTP. To go into detail, while the attacker is eavesdropping
the network traffic he is able to recognize when an encrypted cookie is sent.



2.2. MICROSOFT PASSPORT 23

The content of the cookie is not in danger because of encryption, though, the
attacker can capture the cookie and can use it to send it to the participating site
in behalf of the real user. As a result, the attacker gains access to the protected
site for the life time of the stolen cookie. By using the SSL channel it is not
possible to detect the transmission of cookies either because the whole traffic is
encrypted.

Moreover, this profile defines a new ticket format as well. In order to pre-
vent that a malicious client may change his received cookies to impersonate
another user. Thus, the format used in this profile ensures that the cookies
received by the Passport Server can not be manipulated without detecting the
manipulation at the participating site. Shortly, the Secure Channel Sign-On
is very similar to the Standard Sign-On procedure except that SSL is used to
secure the communication.

Strong Credential Sign-On

Both, the Secure Channel and the Standard Sign-On profile are limiting the
number of incorrect attempts of guessing the client’s password during sign-on.
In other words, if an attacker tries to guess the password of a user’s Passport
account, the Passport Sign-On server will block the affected account for a few
minutes after a certain number of incorrect attempts. Despite this security
mechanism, there remains a risk to crack the password.

To reduce this risk, Microsoft Passport extends the Secure Channel Sign-On
profile by introducing a second stage where the user has to authenticate himself
again. If a user wants to access a resource or site which is protected by the
Passport’s Strong Credential Sign-On profile, he has at first to sign on similarly
such as it is necessary in the Secure Channel Sign-On profile. In other words,
the user is asked for his Passport credentials by using a SSL secured form. If
the user is authenticated successfully, he is allowed to enter the second stage
of authentication. Here the Passport Sign-On server requires to enter an ad-
ditional four-digit security code which the user has to choose during his initial
Passport registration process. All the communication during the authentication
is done through a secure SSL channel as stated in the Secure Channel Sign-On
profile. Contrarily to the first stage of authentication where the user account is
never blocked forever, the number of incorrect attempts to enter the additional
security code is strictly limited with five. After five incorrect attempts, the
Strong Credential Sign-On level is blocked until the according user generates a
new security key by answering three secret questions which were chosen among
ten possible questions during his registration. The counter which is responsible
for blocking the account is restated after every successful sign on process. It
is important to mention, that only the security key necessary for the Strong
Credential Sign-On profile is blocked in the case of five incorrect attempts. The
Standard Sign-On profile still remains usable for the user by using his standard
Passport credentials. Therefore, sites and resources which require lower levels of
Passports Sign-On are still accessible for the user. As a result, this profile sup-
ports the highest level of security a participating site can request from Passport.
With this, the system is no longer vulnerable to a dictionary attack.



2.3. RISKS 24

2.3 Risks

This section gives a short survey of some crucial risks and possibilities for at-
tacks of such centralized Single Sign-On architectures. This section paraphrases
some points out of the work of David Kormann and Aviel Rubin resulting in
their paper “Risks of the Passport Single Signon Protocol” [18] which gives an
interesting overview of some weak points of the Microsoft Passport solution.
Furthermore, this chapter refers to the problems concerning the use of cookies
as described in the article “Microsoft Passport to Trouble” [27] by Mark Slemko.

2.3.1 Attacking the Core

The characteristics common to all solutions which are built up on a central ar-
chitecture are that they are very vulnerable at their central point. Therefore,
Kormann and Rubin state in their paper that the reliance of all participating
resources and sites onto the authoritarian decisions of one central system brings
a potential target for attacks into the architecture. It seems likely that if the
central authority, e.g. the Passport Sign-On server and its database, is vulner-
able to denial of service attacks it cannot be guaranteed that all participating
servers are accessible for users all the time. Beyond this, if a big number of mer-
chant sites rely on the Single Sign-On system and if the central authority fails,
the affected e-shopping sites are no longer in business and they lose their in-
come. This may be also welcomed by a concurrent merchant which enforces the
authority to fail by simply flooding the central authority with bogus requests.[18]

On the other hand, as Kormann and Rubin describe, if the central database
which contains all the user’s data and authentication credentials is compromised
and all the information may be accessible for an attacker, this is tremendous
as well. Therefore, the central approach brings some big disadvantages by its
nature. From the administrator’s point of view, to maintain only one central
authority and only one central database is more easier than handling a dis-
tributed system. However, to tackle the problem of avoiding a denial of service
attack and to reduce the danger of failures of merchant sites it is necessary to
duplicate the central authority and the central database as well. The Kormann-
Rubin paper professes that the replication of the core of such a central Single
Sign-On System is quite difficult. This is because it implies that the crypto-
graphical keys which are stored in the central database have to be replicated
too. By duplicating the secret keys shared between the central authority and
the participating sites the number of existing keys increase, though, the risk to
compromise a key increases with the number of existing copies. After all, the
key replication is another problem by itself.[18]

2.3.2 MS Passport related Risks

In this section, some hot spots and risky points of the Passport protocol and
architecture are spotted. The problems stated here are not only restricted to
Passport. These problems are also valid for several other systems using similar
technologies. As before, even this section bases on the work of Kormann and
Rubin [18] and on the article by Mark Slemko [27].



2.3. RISKS 25

Problems concerning Cookies

As the papers mentioned above state, the Microsoft Passport solution has an
additional disadvantage, namely the use of cookies. These cookies are in other
words encrypted credentials belonging to a user. The risk of gaining the content
of a cookie is quite low because of the 3DES encryption Passport is using. There
exists the possibility to steal a cookie, though. This can be done by imperson-
ating the Microsoft Passport Sign-On server. Then it is possible for an active
attacker to delete all cookies which relate to the Passport server’s domain. This
attack leads to a denial of service for the affected user.[18][27]

As Rubin and Kormann declare, it is obvious that only non-persistent cookies
are used by Passport. As long as a user can close the browser session without
having signed out before, there is a need for a way to delete the Passport cook-
ies after the browser window has been closed. This can be ensured by the use
of non-persistent cookies because they are deleted in the same moment as the
affected browser window is closed automatically. If the user leaves his computer
without having closed all the browser sessions, though, every other person who
has access to the computer is able to abuse the Passport account of the user
without any effort. In this situation, the use of non-persistent cookies will not
improve the situation either. The unclosed user session keeps alive until the
time out of the cookies expires. This is more a human problem, though, the
problem of having a careless user is not limited to Passport.[18]

The Use of Persistent Cookies

As the previous section advises, only non-persistent cookies should be used.
Kormann, Rubin [18] and Mark Slemko [27] affirm this in their papers as well.
They describe the following risks concerning the usage of persistent cookies. Mi-
crosoft Passport allows the user to choose whether to use persistent cookies for
storing his credentials or not in order to remain signed on even when the user’s
computer is turned off. This should bring the convenience of never being asked
for the Passport’s password. By the way, to ask a user this security relevant
question and assuming that a normal user knows the difference between the
usage of persistent cookies and non-persistent ones is quite hard. Nevertheless,
if the user answers to this question with “yes”, the Passport Sign-On server will
use persistent cookies to leave the user’s authentication data on his machine.
This affects especially to the Ticket Cookie, the Visited Sites Cookie and the
Profile Cookie. Without any further action, every person who has access to the
user’s computer has access to the user’s Passport account and to the participat-
ing sites as well. Moreover, every person can access the user’s wallet account
and may get the user’s credit card data if they are available. Therefore, the only
cookies which should be used are non-persistent cookies. Persistent cookies are
too dangerous for the reasons mentioned above.[18][27]

Kormann and Rubin’s paper points out one fundamental weakness of Microsoft
Passport, namely the lacking of authenticators as they are used in Kerberos.
Thus, in Passport the possession of the cookie is sufficient to access a Passport
account or the participating sites. As described in section 2.1.2, the authenti-
cator contains mainly a time-stamp which is encrypted using the clients secret



2.3. RISKS 26

key. If the authenticator can be decrypted correctly at the server, it is proved
that the client has to have the correct key. In Passport there exists no further
evidence to ensure the binding between the user and the owner of the cookie.[18]

Other Attacks and Risks

In [18] there are very interesting attacks described concerning a bogus merchant,
rewriting and proxying requests and DNS attacks. The principles of these of-
fences are not limited to Passport only. Furthermore, the bogus merchant attack
is possible because of the social behavior of the today’s users concerning the In-
ternet. On the other hand, the other two attacks described in [18] confess that
of course the environmental technologies are points of attacks as well. These are
very interesting points and worth to mention. Thus, this section paraphrases
the ideas of Kormann and Rubin [18].

The fundamental problem behind a bogus merchant is that the user is redi-
rected to a faked Passport site with the characters of the original Passport login
page. This may be possible by offering some service on a website which requires
to sign-on using a Passport account. By following a faked login link, the user is
then redirected to a bogus login page at a faked site. Additionally the user may
be confused by using pasport.com (note the type) for the name of this bogus
login site. But as Kormann and Rubin state in their paper, users tend to in-
herently trust the web and so the name is not the big point. The pasport.com
page displays all conventional symbols and images like the original Passport
site. Furthermore, to get the certificate used by pasport.com to establish the
SSL connection is not a problem either since there are so many root certifica-
tion authorities, that the existence of one vulnerable to deception seems likely.
Beyond this, the knowledge of certificates and SSL of a normal user is quite lim-
ited and so representing any valid certificate will work as well. At the end, the
user is entering his Passport username and the password which will be stored
on the attacker’s server. Now the attacker can use this information to enter the
user’s real Passport account and furthermore, after logging in to Passport, the
attacker may also enter the user’s Microsoft Wallet account in order to get his
credit card details.[18]

The active attack described in the Kormann-Rubin paper presupposes that a
hacker is able to compromise for example a routing device of a Internet service
provider in order to detect when a user is redirected to a Passport Sign-On
server. If such a redirection is detected, the compromised device rewrites the
target URL of the redirection in order to guide the user’s browser to a faked
Passport Sign-On server which is controlled by the attacker. This is possible,
because this redirection is not yet protected by a SSL channel assuming the
Standard Sign-On profile is used. Again the intruder may create a faked Pass-
port server as described above. As a result, the attacker’s faked sign-on server
acts as a proxy between the user and the real Passport Sign-On server (as de-
picted in figure 2.3). Therefore, the user is asked for his authentication data
by the proxying server like the real Passport Sign-On server would do. Behind
the scenes, this server contacts the real Passport server in order to establish the
session in the behalf of the user. But the user’s authentication information is
known by the attacker already and so he can get access to sensitive information



2.3. RISKS 27

such as the user’s credit card data.[18]

� � � �
� � � � ��� � � 	


�
�

� � � � � � � � � � �� � � � � � � � � � ��� � � � � �
�����! " # $ $ " % & '  ( % )

*+,-
*+.
/

# 0 0 & 1 2 3 1 $ ' $54 & % )76 & % �8$ 1 &
" & % 9 : 1 ; < =?>�@ $ A & 1 ; : & 1 ( ' $�& 1 �8& : ' ' 1 B

CDD
EF
GHD

*+
I*-/
/ +J
*+K
L- +M

& 1 2 3 1 $ ' " # N 1

O J
/ *P
, +*

QR +
I*-/ +
*S & 1 ; : & 1 ( ' ' %
�����! " # $ $ " % & '  ( % )

& 1 ; : & 1 ( ' ' %
���?�! " $ " % & '  ( % )

���?�! 1 TVU % "  ( % )

( % )!" & % )8: $ 1 ;81 T U % "�$ 1 & W 1 &

X Y Y Z [ \ ] [ ^ _ ^V`
Z a bdc Z a e ^

[ Z

f Z a g h [ i j
kVlVm ^ n Z [ i h Z [ o _

^ Z [ e Z h _ _
[ p

Figure 2.3: Attack by rewriting and proxying requests [18]

The same problem arises when an intruder knows how to control the Domain
Name System (DNS) record of a compromised DNS server. Because of the
fact that the target of a redirection is given in form of a DNS name, aliasing
the IP address of the Passport login server to another bogus server will result
in redirecting the user to a faked login page. Again, the attacker gains the
username and the password as described above. As the paper [18] states, the
use of digitally signed DNS entries (DNSEC) will improve this situation.



Chapter 3

Federated Single Sign-On
Systems

Contrarily to the centralized Single Sign-On approach using a central authority,
the federated approach tends to deal with several identity fragments maintained
by various services, the so called identity providers (the term “identity provider”
was introduced by the Liberty Alliance [10]). Such an identity provider may be
the Internet service of a user’s employer or for example any other Internet por-
tal, various communities or business services. Furthermore, a user’s identity
consists not only of one user account which contains all information necessary
for all possible authentication tasks. A user today possesses many identities
represented by different accounts fragmented over several identity providers.
This approach suits more the needs and the philosophy of today’s networks,
especially of the Internet.

The information of a user such as his personal profile data, his buying habits
etc. are considered as very sensitive. Therefore, users want to decide by them-
selves how to share which information with the organization of their choice.
The global identity of a today’s user has to be considered as consisting of sev-
eral independent identities represented by a number of user accounts located
at different identity providers. This way the user can decide to store critical
information only at appropriate and trusted providers and has not to trust one
single central authority uncompromisingly. A federated Single Sign-On system
such as the Liberty Alliance Project [10] as described in the next sections is used
to combine these distributed identities. Moreover, the user has the opportunity
to decide which identity fragment is used with a dedicated service or merchant
site to login.

3.1 Liberty Alliance—Project Liberty

The Liberty Alliance is a cooperation of various organizations and companies
that aims to realize a new level of trust and a new approach to introduce trust
in the Internet by using the existing infrastructures. Therefore, the Liberty
Alliance Project realizes to enable business interactions based on trust rela-
tionships among various services which are so far working independently. As

28



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 29

a result, the Liberty Alliance targets to establish open technical specifications
([6],[25]) which delivers the basis for the following considerations. The Liberty
Alliance states their Mission as follows [10]:

• A basis for new revenue opportunities that economically lever-
age their relationships with consumers and business partners.

• A framework within which the businesses can provide consumers
with choice, convenience and control when using any device con-
nected to the Internet.

3.1.1 Introduction

To understand the motivation and the idea behind the Liberty Alliance Project
it is necessary to introduce some new aspects concerning identities and trust.
Therefore, this section gives introductorily the objectives stated by the Liberty
Alliance and describes some new aspects and terms given by the Liberty Alliance
specifications, namely Network Identity and Circles of Trust.

Liberty Objectives

The Liberty Alliance defines in its specifications the goals and main objectives
as follows [10]:

• Enable consumers to protect the privacy and security of their
network identity information.

• Enable businesses to maintain and manage their customer re-
lationships without third-party participation.

• Provide an open Single Sign-On standard that includes decen-
tralized authentication and authorization from multiple providers.

• Create a network identity infrastructure that supports all cur-
rent and emerging network access devices.

Network Identity

Today, sites and services on the Internet often personalize their appearance
suiting the needs of the user. Therefore, the user gets an account with an
according username for storing his profile. Furthermore, for e-commerce it may
be convenient to store the user’s credit card data, his shipping address and
his telephone number too. Shortly, the overall global set of these attributes
distributed over various accounts all over the net represents a user’s network
identity (figure 3.1) as defined in Liberty Alliance specifications [10].

Circles of Trust

The specifications of the Liberty Alliance defines so called Circles of Trust which
cover a number of services whereby a user has several isolated accounts. One or
maybe more services inside a circle act as a kind of central authority because
the other services have trust relationships established with them. The authori-
ties housed in such a circle are called Identity Providers. The other remaining



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 30

� � ��� � � � � � 	 � 
 � � � 
 
 � 
 � � 
 � 	
� � ��� � 	 � ��� � � ��� ��
 � � 
 � 
 � � � � � 	

� � � 
 � � 	�� � � � � � 
 � 	 �

��� � � 
 
 � � � ��� � ��� � �
� � � 
 � � 	 � � � � 
 
 ��� � ��� � �
� � 
 � � � 	�� 
 � � � 	 �
! � 	 	 � � � 


" � 
 � � 
 � 
 � ��� � 
 � � � � � � � � � � 	
# � 
 
 � 
 � � 
 
 � ��� � � � � � � � � � 	
" ��� � � � � ��$�� 
 � � � 
 % � 
 
 � �
& � 	 
 � � 	 	�� � � � � � � �
� 
 � 
 � ��� � � � � � � � � � 	
$ � � 
 � 
 
 ��� � � � � � �
' � 
 � � � 	(� � ��� 	 	 � � 
 � 
 � 	
" � � � � 
 
 � ��) 
 	 
 � � �
' 
 � � � � 
 � � $ 	 	 � 
 	 *

+-, . / 0 132 4 5 6 132�7 2 8 9 8 : 0 ; <3= 1?> / ; @
A 136 > B 6 C C 4 2 . . D�7 2 8 9 8 E . 13> / ; F GIH 4 2 2 136 > B 8 J 0 13@
K L 5-D�7 2 8 9 8 E . GM2 < 9 8 . , < 8 J 0 13@

N3O�P�QSRMT3UWV X3O�N3P(V P Y

Figure 3.1: Network Identity as considered by the Liberty Alliance [10]

services are called Service Providers. The idea of the Project Liberty is to com-
bine and affiliate the various normally independent user accounts—known as the
user’s local identity—inside the circle and allow to use the services inside such a
circle after having signed on at an identity provider. In other words, an identity
provider acting as authority provides the user’s identity to the affiliated services.
To sum up, the Liberty architecture consists of three main components:

• Service Providers

• Identity Providers

• Users

Service Providers are entities that simply offer services. Nearby all services
offered in the web today can be considered as service providers, such as Internet
portals, merchant sites, online banking services, governmental services, etc. [10]

Identity Providers are special service providers. An identity provider and
the other affiliated providers build a circle of trust based on established trust
relationships as illustrated in figure 3.2. The task of such a provider is to pick the
fragmented identities of a user in a circle of trust to a single network identity.
Therefore, the identity provider enables network identities. For example, as
depicted in figure 3.2 there are two circles of trust. The first one covers services
which belong to my business activities. The identity provider of the user’s
company acts as the identity authority within this circle. The second cluster of
services is affiliated with the identity provider which is supported by the user’s
bank institution. All services within these two circles have established trust
relationships with the according identity provider.[10]



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 31

����� �
��� ��� 	 
 �

� 
���� � � � �
��� � ��� 
����
� ����� � �� ! " � #

$&%�' ��� 
�%��

��% � %�(�' �
)+*�*�,

-.%�� '
/���� � � 0 �

� 
���� � � � �
��� � ��� 
����
� ����1 ! " 2 #

-3��� 0 4 %�� �
/5� � � 6

7���%�(�' � 

/���� ��� 0 � 6

��%�� 89��� �
/���� � � 0 �

: ;   < = > ?
@

:�;   < = > ?
A

: ;   < = > ?
B

C&��DE�
��� ��� 	 
 �

F�G&H�I

:�> ? J = � >&K ? � J = L > ? M

: > ? J = � >&K ? � J = L > ? M

N�O P N�Q RTS�U&V P W�X�V

N�O P N�Q RYS�U5V P W�X�V

Figure 3.2: Federated network identity and circles of trust [10]

3.1.2 Architecture and Functionality

Actually, the Liberty Alliance Project has two main intentions [10]:

• Identity Federation

• Single Sign-On

The federation of identities allows the user to affiliate his accounts at his iden-
tity and service providers which are normally isolated. This linkage of accounts
is called Identity Federation. This happens based on agreements between the
affected providers. The user of the federated identities has to consent this
agreement before his account is federated with other providers. Furthermore,
the user’s agreement has to be recorded and has to be auditable. The Liberty
Alliance specifications require the implementors of service and identity providers
to ensure this. The second objective of this project is to enable Single Sign-On
by signing on to one provider only once which is situated inside a circle of trust.
Thus, the user is allowed to use all other providers inside this circle of trust.

The following user experience example gives a deeper look in to the interac-
tions and in to the architecture of Project Liberty’s federated identities and
Single Sign-On solutions. In this example, which bases on the examples given
in the Liberty Alliance specifications [10], the following entities and actors are
used:



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 32

• John Do: the user

• National Bank Portal: the Internet portal of a bank institute (acts as
Identity Provider)

• eMerchant: the merchant site of some e-store (acts as Service Provider)

At the beginning of this example scenario, the user John Do has two separate
user accounts. One at the National Bank Portal and the other one at the eMer-
chant site. Each of these accounts has got an own username and password.
Through the following example, these two accounts are instructed to federate
John Do’s identities.

According to figure 3.3 and to the Liberty Alliance specifications [10], the Single
Sign-On process including the federation of identities step by step is presented:

1. User Accesses his Identity Provider
The user (John Do) enters the National Bank’s Internet portal by using
his local username, e.g. jodo2308. After his password has been proved,
the user gets access to this site. The identity provider may ask the user
if he wishes to federate his local identity with another service provider,
e.g. eMerchant site. After a short notice about identity federation, the
user has to agree explicitly to federate his local account with the other
provider. The local identity provider has to record this agreement.

2. User Accesses a Service Provider
After a while, the user follows a link which redirects him to the website
of an affiliated provider, for example to the eMerchant site which is also
a member of this circle of trust. The eMerchant website recognizes that
the user was redirected by the National Bank Portal and that the user
is signed-on to this identity provider. Therefore, this service provider
offers the user to federate the eMerchant’s identity with the National Bank
Portal. Assuming that the user agrees again, the eMerchant site asks him
to sign on by using his local eMerchant identity (e.g. by using the local
username johnnyd).

3. Federation of Identities
As a result, the eMerchant service and the National Bank Portal service
federate the user’s identity. This does not happen by interchanging the lo-
cal usernames, but by exchanging a locally unique and opaque user handle
(for the user) generated by both providers. As illustrated in figure 3.3, the
eMerchant service provider generates djkjiwu2we2 as local name identi-
fier for the user. Vice versa, x4dsdic2 is the name identifier which was
determined by the identity provider, namely by the National Bank Portal
service. If the service provider and the identity provider do communicate,
they always have to use the foreign name identifier that is used by the
affiliated service provider to identify a federated identity. Of course, if
any error during the federation process arises, the provider has to inform
the user.

4. Using the Service Provider
After the providers have established the federation of the user’s iden-



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 33

� � � � � � � � � � � �
	 � � 
 � � 
 � � � � � � �


 ��
 � � � � � �

��� � �

��� � �

� � � � � � � ��� � �  � � � ! " � � # $
� % 
 � $'& � � �)(��
� % 
 � � � *+
 $�, � - � . / 0 1
2 � % % 3�� � - $54 4 4 4
6 
 - 
 � � �  � � % $
7 � !  � %�! � � � ! 8 (:9 ; < = > ? > @ A B ;
- � *+�  � 9 ; 
 ��
 � � � � � � C � � *+;
� � *+
 8 (�9 ; D E F E G H�I J H�K J ; L
C C C

� � � � � � � $ �M
 �N
 � � � � � �
� % 
 � $'& � � �)( �
� % 
 � � � *�
 $:, � � � � O -
2 � % % 3�� � - $5P P P P
6 
 - 
 � � �  � � % $
7 � !  � %�! � � � ! 8 (�9 ; D E F E G HNI J HNK J ;
- � *��  � 9 ; � � �  � � � ! " � � # C � � *�;
� � *�
 8 (�9 ; < = > ? > @ A B ; L
C C C

Q R:S�T�U)R

%  V � W � �

� % 
+ - 
 � �  � O)2 � � X  - 
 �

� 
 -  � 
 � � � �) - 
 � �  � O)2 � � X  - 
 �

� 
 -  � 
 � � � �+% 
 � X  � 
Y2 � � X  - 
 �

Z [\�\] � 
 ^ � 
 % �

Z [:�\] � 
 % 2 � � % 



 � � 
 � - 
 %  � 
 -)� 
 % � � � � 


_

� � � � � � � % 
 � X  � 
)2 � � X  - 
 �

` a\b:T c d c egf+h R i�d a:b:h j+b:h i�d k b�f+h R i�d a\b:h

/
/

_

.

l

m

n

1

o

p�q r p+s tvu\w)x r y�z:x

{

Figure 3.3: Example of Single Sign-On using Project Liberty (SOAP binding)
[10].

tity, the eMerchant site notices when the user has signed on to the Na-
tional Bank Portal service. Therefore, if the user signs on to the identity
provider, e.g. to the National Bank Portal site, he may have access to the
affiliated service provider, e.g. the eMerchant site, without any further
sign on activity. Both providers still use their local user account infor-
mation. Therefore, the user at the National Bank service is welcomed as
jodo2308 and for the eMerchant site the user is known as johnnyd.

Assuming that the user in this example follows a link to the affiliated eMer-
chant service provider, the service provider contacts the identity provider
for information about his authentication status, based on the knowledge of
the federated identity. For this communication the Liberty Alliance speci-
fies in its Project Liberty Specifications a response-request protocol which
is based on the Security Assertion Markup Language (SAML) [19] [23].
Thus, the eMerchant site which is acting as the requesting service provider
generates an authentication request based on this specifications. Such an
authentication request is basically an XML document including the user’s
name identifier that was generated for the federation of the user’s identity
with the National Bank Portal, e.g. x4dsdic2. This request must be dig-



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 34

itally signed by using some XML digital signature algorithm. Finally, the
eMerchant site redirects the user to the Single Sign-On URL specified by
the National Bank Portal identity provider. The authentication request is
added to this URL string.

5. Requesting the Identity Provider
On the other hand, the identity provider receives the authentication re-
quest and after proving the signature and the content of this request it
prepares an according authentication response. The provider has to prove
if the included user’s name identifier corresponds to an existing user and
whether the requesting service provider is known by the identity provider
or not. Assuming that the request is correct and the user is signed on
already, the identity provider can start to prepare the according response.
The main part of this response is the so called assertion. This assertion
element within the authentication response contains beside other details
the following information:

• Audience Restrictions
. . . defining the audience for whom the assertion is dedicated

• Authentication Statement
. . . declaring the type of authentication, e.g. based on the password
or by the use of digital signatures. This element also defines when
the service provider has to force the user for re-authentication.

• Subject information
. . . the subject element holds the name identifiers from the user to
identify whom this assertion belongs to

Of course, this authentication response has to be digitally signed by the
identity provider, e.g. the National Bank Portal. Now, based on the Lib-
erty profile one uses, there are several possibilities to send this authentica-
tion response to the service provider. In the very simple case, the identity
provider answers to the requesting provider with an HTTP-response that
contains this authentication response. An alternative is to send this re-
sponse to the service provider by using a SOAP (Simple Object Access
Protocol) [7] message. The scenario in this example uses the SOAP based
communication as defined in the Liberty Alliance bindings [25].

Depending on the implementation, the identity provider may store the
prepared response. According to the stored response, the identity provider
generates a so called artifact that refers to this prepared authentication
response. An artifact is a unique text string which allows the identity
provider to identify such an authentication response. Therefore, this ar-
tifact is returned to the service provider by redirecting the user’s browser
(the artifact is attached to the return-URL as parameter) to the service
provider (eMerchant).

6. Request an Assertion
Back at the eMerchant service, the provider extracts the incoming artifact
from the URL. The received artifact can be fragmented into three parts.
The first part is constant and defines the type of artifact. The second



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 35

fragment is an identifier of the sending identity provider, namely a hash
value of its name identifier. The third part is the previously created handle
for the authentication response. With the help of the second fragment,
the service provider can identify the identity provider sending this artifact.
Thus, the eMerchant service knows the corresponding URL which it has
to contact by sending a SOAP request. This SOAP request contains a
digitally signed SAML request that carries the received artifact in order
to request the prepared authentication response.

7. Provide an Assertion
The identity provider, namely the National Bank Portal service in our
example, receives the SOAP request including the SAML request. It has
to prove the validity of the signature and if the artifact which is contained
inside the SAML request points to a prepared authentication response. If
there is no problem concerning the incoming request the identity provider
resolves the included artifact in order to regenerate the prepared authen-
tication response. This digitally signed response is wrapped into a SOAP
response message and this SOAP message is returned to the requesting
service provider.

8. Service Provider processes the Assertion
The eMerchant service which acts in the role of the service provider in this
example, extracts the authentication response from the incoming SOAP
message. After the authentication response which contains the assertion
has been proved and evaluated successfully, the service provider accepts
the user as authenticated. There is no difference between signing on in
this way and logging in by using the local authentication mechanism of
the service provider. The result is the same. Depending on the local user
management at the service provider, the user will be welcomed with his
local username, e.g. as mister johnnyd at the eMerchant service.

9. Gain Accesses
Finally, the user gains access to the desired resource.

This example describes a standard situation within one circle of trust only. The
used technologies like SAML and SOAP and the Liberty Alliance Project itself
base on interchanging of XML documents. Moreover, the usage of XML based
protocols allows to integrate this Single Sign-On solution into existing web ser-
vices and web applications very smoothly. In comparison with the Microsoft
Passport model, the specifications of the Liberty Alliance Project do not deal
with questions of how the user remains signed on and how to handle Single
Sign-On after this request-response-communication. It depends on the provider
implementation how to keep track of the user session. It is likely that the session
management is realized by the use of cookies, especially non-persistent cookies.

The third part of this thesis deals with the practical implementation of some
parts of the Liberty Alliance Project. Particularly, this implementation covers
the Single Sign-On procedure based on the Liberty Browser Artifact Profile as
defined in [25]. Therefore, more details about the protocol and the specification
of the XML requests and responses which were mentioned above are covered by
the implementation’s chapters 8 and 9.



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 36

Logout Mechanism

Even for logging out, the Liberty Alliance specification concentrates on describ-
ing the protocol which is necessary for the communication between the affected
providers. Here too, there are some possibilities to sign-out depending on the
implementation of the providers and depending on where the sign-out process
has been started [25]. This logout procedure can be started either at the identity
provider or at any of the service providers which have received an authentication
assertion of the particular identity provider. As a result, after having started
the logout procedure the affected identity provider has to contact every service
provider that maintains a user session based on the identity provider’s assertion.
To each of them, the identity provider has to send a logout notification which
contains the name identifier of the user who wishes to logout and the identifier
of the provider who receives this notification. The profiles available as defined
in the Project Liberty’s specifications [25] for this mechanism are:

• Single Logout initiated at the Identity Provider

– HTTP-Redirected-Based:
The identity provider uses HTTP redirects to deliver logout
notifications to the service providers.

– HTTP-GET-Based:
This is using HTTP Get requests to communicate logout
notifications from an identity provider to the service providers

– SOAP/HTTP-Based:
Relies on SOAP over HTTP messaging to distribute the
logout notifications.

• Single Logout initiated at the Service Provider

– HTTP-Redirected-Based:
The identity provider uses HTTP redirects to deliver logout
notifications to the service providers.

– SOAP/HTTP-Based:
Relies on SOAP over HTTP messaging to distribute the
logout notifications.

To illustrate a basic single logout procedure, the following example uses the
SOAP/HTTP based profile (figure 3.4) according to the Liberty Alliance spec-
ifications [25]. The process is initiated at the service provider.

1. User Accesses the Single Sign-Out Service
At first, the user follows a sign-out link displayed on the service provider’s
site. The user’s browser accesses the single logout service at the service
provider he is currently using.

2. Sending a Notification
As a consequence of this, the service provider generates a logout-notification
according to the Project Liberty specifications [6]. This notification is
wrapped into a SOAP message which the service provider sends to the
SOAP endpoint address of the affected identity provider.



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 37

� � � � � � � � � � � �
	 � � 
 � � 
 � � � � � � �


 ��
 � � � � � �

� ���������

� � � 
 � ���  � ! " 
�" # ! # $ � � 
 � %  � 


& '�(*)+) ',& - � #� . 
 � �  � /�0 � # %  . 
 �

'21 � 
 � 0 # � � 
�3 � # 45 . 
 � �  � /20 � # %  . 
 �

6 # � 3  � 4�� �  # �24�
 � � � ! 


7

8 # ! # $ � 9 # �  3  � � �  # �,� #2� 
 � %  � 
�0 � # %  . 
 �

: ;�<�� = > = ?A@2B � C�> ;*<�B
D2<�B C�> E <F@�B ��C > ;�<�B

G

H

I

J K J L M N O J

P Q R S T

U�VXW P Y T S Z Y P2[ W S \FY P W ] ^ _ P�T W S ] ^ ` P W

U�VaW P Y T S Z Y P2[ W S \FY P W ] ^ _ P2T W S ] ^ ` P W

b S c S d e f S e ^ [ ^ _ g e ^ S Z,e S2Y P W ] ^ _ P�T W S ] ^ ` P W

h

i

i

i

^ e P W g e ^ ] P

j�k l j2m npo,q�r l s,t�r

Figure 3.4: Example of single logout using Project Liberty (SOAP binding) [6].

3. Processing the Notification
The identity provider receives the notification inside the incoming SOAP
message and has to prove the signature on the notification. Furthermore,
the identity provider has to check if an authentication assertion was sent
to the service provider which was sending the notification. If the valida-
tion was successful, the identity provider has to send a logout notification
to each service provider as well that the identity provider has provided
an authentication assertion to, belonging to the affected user during this
session. Thus, this step is iterative because the identity provider has to
contact several service providers by using the logout-profile which the af-
fected service provider prefers. Thus, it may be possible that the identity
provider has to send various logout messages by using SOAP messages
or by using HTTP-redirections. As a result, all sessions of the current
user on the other service providers should be closed. Finally, the identity
provider terminates the session for the user and stops providing authenti-
cation assertions for him.

4. Response to Notification
The identity provider answers to the SOAP message of the service provider
with an according HTTP-204 OK response, unless no error occurs during



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 38

the session termination.

5. Confirmation
At last, the service provider which has initiated the logout process receives
the OK response and has to notify the user about the successful logout
process. Now, this service provider can terminate its session with the user
as well. The user’s browser receives an HTTP response which confirms
that the requested action of single logout was completed.

Of course, beside the provider communication drafted above, each of the in-
volved providers has to make an effort to terminate the user’s session depending
on the local environment, namely depending on how the user and session man-
agement is implemented. Therefore, the providers have to delete cookies or have
to take other adequate measures in order to ensure that the user’s session is ter-
minated irrevocably. The Project Liberty specifications make no restriction in
this question either.

3.1.3 Extension by federating identity providers

So far, the previous example deals only with the federation of the user’s identity
among one identity provider and several service providers. Because the cores
of an identity provider and a service provider are similar, identity federation
among various identity providers is possible too. Only with this feature, the
term Network Identity gets its full meaning. Thereby it is possible to combine
identities across several circles of trust. Furthermore, even if there exist more
than one identity provider within one circle of trust, the user has to sign-on
only once assuming that there exists an adequate trust relationship between the
participating identity providers.

In other words, it is possible to combine and federate identities among all
providers no matter if it is a service or an identity provider. Thus, it is possible
to link several identity providers to one service provider. For example, in the
case that a user is registered at the identity provider supported by his company
and the same user is a member of a second identity provider as well which is
primarily used for private purposes. Though, if the user switches from his office
to his home he switches his identity provider too. The service providers he is
using are still the same. Furthermore, by using different identity providers it is
easy to differ between a user’s business identity and his private identity. The
Project Liberty specifications do not put any limits to the federation of identi-
ties. The basis for all federations are the business and relationship agreements
and the circle of trust policies. Based on this and on the federation of the
user’s local identities the providers of a circle of trust can communicate with
each other about or on behalf of the user [10]. There is no limit for creating
long chains of identity and service providers. On account of this, even if two
circles of trust or especially two identity providers have no direct relationship
based on federation, there may exist a path between them involving some other
providers. Along this path, the user’s identity is federated in each link of the
chain. Thus, there is no need for a global unique user identifier of the kind
Microsoft Passport requires. This is a substantial advantage of this federated
architecture in comparison with the Passport approach.



3.1. LIBERTY ALLIANCE—PROJECT LIBERTY 39

� � � � � � � �
� � 	 
 � � � �
� �
��� � � � �

��� � � � � � �
��� � � �

� � � � � � �
� � � 
 � � � �

� � � ��� � �
� � � 
 � � �

� � � � � � � �
� � 	 
 � � � � �

� � � 
 � � ���

� � � 
 � � ���

� � � 
 � � �! 

� � � � � � � �
� � 	 
 � � � � "

� � � � � � � �
� � 	 
 � � � �
� �#��	 $ $ � � � �

��� � � � � � �

� � � � � � �
�#% % &

��� � �
� � � 
 � � �

� � � � � � � �
� � 	 
 � � � �
� ���
��� � & �

	 � � � �
� � � 
 � � �

��� � ' � � � � �
� � $ 	

(*) ) + , -/.0+ 1 , 2 -

3�4 4�5�1 687 , -/.0+ 1 , 2 -

9
6#78:*.*+ 1 , 2 -

;�1 + < 6 = -/.*+ 1 , 2 -
> )8?�1 5 4 =

Figure 3.5: Example of federated identity providers housed in different circles
of trust.

By linking multiple providers housed in several circles of trust it is possible to
cover all accounts of a particular user. As depicted in figure 3.5, there exist
several identity providers, but not all of them are affiliated with all the other
ones. This is not necessary because it is possible to construct a chain of fed-
erated providers from any identity provider through other identity providers to
every desired service provider. For example, there does not exist any direct
relationship between the identity provider of “my office” and the second iden-
tity provider placed in the “private” circle of trust. Even though it is possible
to authenticate the user with his office identity provider across the “my bank”
identity provider to the desired second identity provider in the “private” circle
of trust. By using this principle it is possible to summarize all accounts and
local user identities of a particular person. This model suits more the needs and
condition of today’s Internet than a centralized solution.



Part II

Privacy and Trust in
Distributed Networks

40



Chapter 4

Privacy and Trust in
Distributed Networks

Today distributed service frameworks play an ever more important role. Tran-
sitive trust is of great importance in such frameworks and is well researched.
Although there are many solutions for building and transmitting trust in dis-
tributed networks, impacts on privacy are often neglected. In the following
chapters various privacy issues, threats, and possible solutions to these prob-
lems are analyzed. Based on trust metrics it will be shown why insufficient trust
is eventually inevitable if a request or message pass through a chain of services.
Depending on the reaction of the service, privacy critical information may leak
to other entities in the chain. It is shown that even simple error messages pose
a privacy threat and that proper re-authentication methods should be used in-
stead. Several methods of re-authentication and their impacts on privacy are
discussed.

4.1 Motivation

In the course of working on this thesis the question arises of how to deal with
trust in situations of Single Sign-On. In other words, if a user has been authen-
ticated to a service provider by the use of some authority this authority asserts
that the user is authenticated correctly. In terms of the Liberty Alliance, an
identity provider offers assertions to affiliated service providers. If such an asser-
tion is used for authentication purposes several times along a chain of services
(e.g. if several providers are affiliated as depicted in figure 3.5) it is likely that
the trustworthiness of the assertion decreases with each step by which this asser-
tion is used. This question becomes a hot topic in sensitive environments such
as e-government. In this context, to keep a user’s privacy is very substantial as
well. Thus, motivated by such scenarios this part of the thesis deals with a math-
ematical framework which allows to calculate trustworthiness of an assertion or
more generally spoken of a message or a request which is processed along a chain
of services. Assuming there are various affiliated identity providers as depicted
in figure 3.5 a user has to be authenticated at one of them only. Furthermore,
relying on the assertions supported by the identity provider authenticating the
user the other identity providers generate assertions as well. It is conceivable

41



4.2. INTRODUCTIONAL EXAMPLE 42

that a service provider has to rely on an assertion which bases on various other
assertions. In other words, the affected service provider has to trust a chain of
assertions. This part of the thesis states that the trustworthiness along such
a chain is not unconditionally transitive and the resulting assertion may not
be as trustworthy as the first one because of the increasing number of involved
providers. With an increasing number of providers it is more likely that one of
them may be compromised. The following chapters show a more abstract and
generic approach to this problem. There, not only assertions and providers are
considered but also generic requests and messages processed along a chain of
services and entities. At the end of this part, there are some possibilities drafted
describing how to react if a service in this chain considers an incoming request
or assertion as not trustworthy.

The following example shall illustrate the problems concerning privacy and trust
relationships in a distributed network of services once more. Here, in order to
process a special task, the cooperation of several autonomous services is needed.

4.2 Introductional Example

Assume the following situation: A client would like to buy something
which is offered by an online shop where the client is registered in the customer
data base. Therefore, the buyer signs a purchase order through the shop’s online
portal. The process involves several services of other instances such as a service
for checking the inventory of the chosen product or a service for doing the
payment. Figure 4.1 depicts the constellation of services used in this example.

� � �
�

�

�

�

�

� � 	 
 � � 
 � � � � � ��� � � � � � 
 � � � � � 
�� � � � �
	 ��� � � 
 � � � 
 � � � � ��� � � � � ��� 
 � � � � � 
�� � � �  
� � � ! � � 	 
 � ��
 � � � � � ��� � � � � � 
 � "�� 
 � 	 �
� � � 
 � � � 
 � � � � ��� � ��� � ��� 
 � � � � � 
 � � � �  
� � � � � � � 
 � � � ��� 
 � � � � � ��� 
 � ��� ��
 � � � � � 

� � 
 � 
  

Figure 4.1: example of distributed services

After the user has been authenticated to the portal of the online shop (service
A), he has to fill in some forms and enter some personal data. When this first
step is completed, service A contacts the service which processes a new order
(service B). This service validates and verifies the content of the order. First,
it checks if the desired product is still available for sale. This will be done by
sending a request to the inventory service (service F ). This is an “anonymous”
request, as service B does not need to personalize this request with the client’s
or the agent’s data. Next, service B initiates the payment service (service C )
to process the payment of the product. The payment is preferably done by



4.2. INTRODUCTIONAL EXAMPLE 43

the client’s customer account which allows the client to buy products within a
certain credit line. Thus, service C contacts a service of the internal account
system (service D). Assuming, that the user has not enough money on his ac-
count, the payment service tries to make the payment by a direct debit to the
client’s credit card institution by requesting the corresponding service E.

At this point, some problems concerning privacy and transitive trust will arise:

• Because of too low security restrictions in the chain of services, it might
be possible that service E does not accept the request.

• Depending on how service E reacts to this situation, private data about
the client may be disclosed to other services and the client’s privacy may
be harmed.

If service E does not trust the request from service C, it is likely that an er-
ror message is sent back to the client. Passing this message back to the user
through the service chain harms the user’s privacy because each service learns
about the error. In the worst case, the error message contains the information
of its origin, service E. Thus, every service in the chain gains knowledge that
the client has not enough money and needs to use his credit card. Otherwise it
would not have been necessary to involve service E into the process. Moreover,
by recording a client’s habit it would be possible for instance to recognize that
his customer account is overdrawn every end of month. Instead of sending an
error message in response to insufficient trust into the authentication, service
E can request a re-authentication of the client. Again, similar problems and
privacy threats arise in this case.

In the next section a trust model and applicable trust algebra is described.
This is based on the work of Audun Jøsang ([12],[13],[14],[15]). Based on this
a metrics for determining the trustworthiness of a request inside a chain of ser-
vices is discussed. By introducing and adapting trust values ([1],[2]) based on
established criteria ([11],[9]) it is possible to decide either to trust or distrust
an incoming request. This will lead to the necessity of re-authenticating re-
quests if a service does not trust the incoming request. In the last chapter,
privacy and threats on privacy are described and categorized. Error messages
and re-authentication requests are considered critical to privacy and so they are
discussed in detail. In this context, several re-authentication mechanisms are
possible. They can be divided into synchronous and asynchronous mechanisms.
For example, contacting the user through an asynchronous way can happen by
sending an e-mail. Such an asynchronous re-authentication causes some delay
which is undesirable in most cases. Therefore, a synchronous re-authentication
is preferable, for example through a trusted web server or with the help of en-
crypted messages. Several mechanisms will be discussed under the aspect of
privacy.



Chapter 5

Trust Algebra

Determining trust and how to calculate resulting trustworthiness of coupled en-
tities is crucial for distributed services. It suits the needs to determine whether
to trust or distrust a chain of services. Therefore, some mechanism is neces-
sary to evaluate the trustability of a message or a request processed successive
through a row of services whereby each entity has an according level of security,
an according level of trustworthiness, respectively. The algebra introduced in
this chapter gives a possible solution for this problem. In this chapter, first a
metrics which allows to assign some level of trust to some entity is defined. This
is the base for calculations later on. In the second part, the so called trust alge-
bra [14] is introduced. Within this algebra the subjective logic allows to examine
joined entities under the aspect of trust. Finally, with the result of consider-
ations using this trust algebra, it is possible to express the trustworthiness of
coupled entities by a resulting trust value.

5.1 The Opinion Triangle

5.1.1 Definitions

� � � �

�

� � �� � 	 
� � 
 ��

Figure 5.1: an example of chained trust

Assuming the situation illustrated in figure 5.1. Here, an initial request was
started at service A. This leads finally to a request to service D. Service D, due
to its high security requirements, has to decide if the request and the chain of
services associated with this request is trustworthy or not. In [14], an applicable

44



5.1. THE OPINION TRIANGLE 45

trust model and an algebra for calculating trust in chained trust relationships
is given.

Initially, the trustworthiness of each service has to be determined. Therefore,
every entity can be divided in two parts. On the one hand, the connection
between two services has to be evaluated under the aspect of security. For ex-
ample, a normal TCP/IP connection will result in a lower level of security than
an SSL-connection with client certificates. On the other hand, the service itself
has to be evaluated. For this purpose, some established criteria already exist,
e.g. the Common Criteria [11]. Such criteria not only consider the technical
infrastructure and the system itself. They also take the technical and nontech-
nical environment into account. After evaluating each service, the level of trust
must be expressed in an applicable metrics. Therefore, in [15] and [14] the term
opinion (ω) was defined as:

t + d + u = 1, {t, d, u} ∈ [0, 1]3 (5.1)

Definition Opinion: Let ω = {t, d, u} be a triplet satisfying (5.1)
where the first, second and third component correspond to trust, dis-
trust and uncertainty respectively. Then ω is called an opinion.

Corresponding to this definition, several levels of trustworthiness are mapped
accordingly to different opinions. Equation 5.1 defines a triangle which is de-
picted in figure 5.2. Every opinion ω can be described as a point {t, d, u} in
the triangle. For example, there are five trust levels to distinguish (according
to table 5.1) and each trust level can be found in the opinion triangle (fig. 5.2).

�� �

� �

�

�

�

�
� �

� � � � �� 	 � � � � � �

� 
 � � � � 
 	 
 � �

�

Figure 5.2: trust levels inserted into the opinion triangle

The advantage of using the opinion based trust model instead of a simple trust
level based model is that there are three parameters expressing trust instead of
only one value. As it will turn out in the next section, these three separate values
are not treated equally. For example, it is possible to weigh the uncertainty-
value more than the others. This will result in a real world adequate model for
distributed trust relationships.



5.2. SUBJECTIVE LOGIC 46

t d u trust level
0.00 0.95 0.05 distrust (-1)
0.10 0.10 0.80 ignorance (0)
0.40 0.10 0.50 minimum trust (1)
0.70 0.15 0.15 medium trust (2)
0.95 0.00 0.05 maximum trust (3)

Table 5.1: example of mapping between trust levels and opinions ω = {t, d, u}

5.2 Subjective Logic

The algebra for determining trust will be based on a framework for artificial
reasoning called Subjective Logic, which has already been described in Audun
Jøsang’s papers [13] and [14]. It defines various logical operators for combining
opinions. In this section, only the most important definitions will be quoted,
e.g. the Recommendation and Consensus operator. Firstly, this section gives
only a formal definition of them. Afterwards this algebra will be applied on the
problem of distributed web services mentioned in the introduction of this part
of the thesis.

5.2.1 Definition: Conjunction

If some entity has two different opinions about another entity, then the conjunc-
tion (∧) of these opinions may be useful.

Let ωA
p = {tAp , dA

p , uA
p } and ωA

q = {tAq , dA
q , uA

q } be entity A’s opinions
about two distinct binary statements p and q. Then the conjunction
of ωA

p and ωA
q , representing A’s opinion about both p and q being

true is defined by [14]:

ωA
p∧q = ωA

p ∧ ωA
q

= {tAp∧q, d
A
p∧q, u

A
p∧q} (5.2)

where
tAp∧q = tAp tAq ,
dA

p∧q = dA
p + dA

q − dA
p dA

q ,
uA

p∧q = tAp uA
q + uA

p tAq + uA
p uA

q .
(5.3)

Later in this chapter, a special case of the conjunction operator is used—the
conjunction of two similar opinions:

ωA
p∧p = ωA

p ∧ ωA
p

= {tAp∧p, d
A
p∧p, u

A
p∧p} (5.4)

where

tAp∧p = (tAp )2,
dA

p∧q = 2dA
p − (dA

p )2,
uA

p∧q = 2tAp uA
p + (uA

p )2.
(5.5)



5.2. SUBJECTIVE LOGIC 47

5.2.2 Definition: Recommendation

Recommendation (⊗) is needed if an entity A decides about the trustworthiness
of something (p) based on trust-recommendations given by a third party B.
More formally:

Let A and B two entities where ωA
B = {tAB , dA

B , uA
B} is A’s opinion

about B’s recommendation, and let p be a binary statement where
ωB

p = {tBp , dB
p , uB

p } is B’s opinion about p expressed in a recommen-
dation to A. Then A’s opinion about p as a result of the recommen-
dation from B is defined by [14]:

ωAB
p = ωA

B ⊗ ωB
p

= {tAB
p , dAB

p , uAB
p } (5.6)

where

tAB
p = tABtBp ,

dAB
p = tABdB

p ,
uAB

p = dA
B + uA

B + tABuB
p .

(5.7)

It must be mentioned that ωB
p is actually only the opinion that B recommends

to A and it is not necessarily B’s real opinion. The opinion about an entity’s
recommendation, e.g. ωA

B , results of the conjunction of two separate opinions.
On the one hand, there is entity A’s opinion about the trustworthiness of entity
B by itself, called ωA

KA(B). On the other hand, entity A’s opinion about the
trustworthiness of the recommendations (recommendation trust) made by entity
B has to be considered, given as ωA

RT (B). Applying the conjunction operator as
defined above results in:

ωA
B = (ωA

KA(B) ∧ ωA
RT (B)) (5.8)

This term is also known as the conjunctive recommendation term [14].

5.2.3 Definition: Consensus

The consensus (⊕) operator is used to combine several independent opinions
about the same statement. As a result the certainty should increase.

Let ωA
p = {tAp , dA

p , uA
p } and ωB

p = {tBp , dB
p , uB

p } be opinions respec-
tively held by entities A and B about the same statement p. Then
the consensus opinion held by an imaginary entity [A,B] representing
both A and B is defined by [14]:

ωA,B
p = ωA

p ⊕ ωB
p

= {tA,B
p , dA,B

p , uA,B
p } (5.9)



5.2. SUBJECTIVE LOGIC 48

where

tA,B
p = (tAp uB

p + tBp uA
p )/(uA

p + uB
p − uA

p uB
p ),

dA,B
p = (dA

p uB
p + dB

p uA
p )/(uA

p + uB
p − uA

p uB
p ),

uA,B
p = (uA

p uB
p )/(uA

p + uB
p − uA

p uB
p ).

(5.10)

The effect of the consensus operator is to reduce the uncertainty. Opinions
containing zero uncertainty can not be combined.

Equipped with these three basic operation, it is possible to form a model for
determining distributed trust in the web service scenario.



Chapter 6

Chained Trust

As a basis for any calculation, each service must already have assigned an opinion
ω about its security level—preferable by an independent authority. This opinion
will be determined initially, during setting up the service, and has to be kept up-
to-date. With some precautions, for example wrapping the opinion value into
a signed certificate, the trust value could be sent within the requests. Anyway,
trust values, opinions about the trustworthiness of an entity, respectively, have
to be propagated in the network.

� � � �
� � � � � � 	 � � � � � � 	 � � � � � � 	




� � 
� � � �� � � ��

Figure 6.1: the problem of chained trust

Figure 6.1 depicts the stated problem: a request originating from service A will
be propagated through service B, C to D. Because of the security requirements
of service D, there must be a mechanism to decide whether the request is trust-
worthy or not. This question is similar to determining service D’s opinion about
the trustworthiness of service A. Because of the indirect relationship between
service A and D, the principle of recommendation is used. Let us consider the
chained situation step by step. At first, service B has to decide about the trust-
worthiness of service A. This can easily be done by evaluating the opinion of
service A’s trustworthiness ωA

t , which preferable was attached to the request.
Because of the direct trust relationship between A and B, ωA

t is the value which
enables a decision. In the next step, assuming that service B considers A’s
request as trustworthy, service B sends a request to service C. At this point,
service C has to decide whether to trust or distrust the whole chain. Therefore,
the subjective logic is needed. A direct trust relationship exists between B and
C and the opinion ωB

t is received by service C through the request. However,

49



50

between service A and C there is no such direct relationship. In order to decide
about the trustworthiness of the chain, respectively about the trustability of
service A, the recommendation operator is applied. In this case, the opinion ωA

t

about service A’s trustworthiness is recommended to service C by the preceding
service B.

In the definitions stated by Audon Jøsang [14] there is a difference between
the opinion ωA

t about the trustability of an entity A and the opinion about
recommendations of an entity. Therefore, the recommendation operator as in-
troduced in section 5.2.2 requires the so called conjunctive recommendation
term (equation 5.8), e.g. ωA

B , which combines the opinion of the trustworthiness
about a service itself and the opinion about its recommendation by applying
the conjunction operator (as stated in 5.2.2). In this work, these two opinions
are considered as equal. This assumption is legitimate in this context because
in this scenario, if a service is not trustworthy and its trust value is respectively
low, then the recommendations of this service should also be considered as not
trustworthy and vice versa. Thus, the conjunctive recommendation term is built
by the use of only one opinion and the term can be reduced to (equ. 6.1):

ωA
B = (ωA

KA(B) ∧ ωA
KA(B)) = (ωB

t ∧ ωB
t ) = ωB

t∧t (6.1)

Therefore, it is not necessary to define a separate opinion for recommendations
which simplifies the application of the recommendation operator. With this
assumption, the trust relationship at service C can be calculated as follows:

ωCB
t(A) = ωC

B ⊗ ωA
t

= (ωB
t ∧ ωB

t )⊗ ωA
t

= ωB
t∧t ⊗ ωA

t

(6.2)

In (6.2), C’s opinion about the trustworthiness of service A consists of:

• the conjunction (∧) of C’s opinion about B’s recommendations and B’s
authenticity. In this matter, they are the same, namely ωB

t .

• B’s opinion about the trustworthiness of service A (ωA
t )

With this result, service C is able to decide about the trustability of the chain.
The same problem arises in the next step. Then, service D receives the request
from the preceding service and it has to decide whether to trust or to distrust
the chain of services. Based on recommendations as mentioned above, service D
will calculate the opinion ωDCB

t(A) in order to determine the trustability of service
A through the chain of recommendations.

ωDCB
t(A) = ωD

C ⊗ ωC
B ⊗ ωA

t

= (ωC
t ∧ ωC

t )⊗ (ωB
t ∧ ωB

t )⊗ ωA
t

= (ωC
t ∧ ωC

t )⊗ ωCB
t(A)

= ωC
t∧t ⊗ ωCB

t(A)

(6.3)

The pattern of calculation is always the same. Moreover, it can be shown that
this determination is recursive. With the opinion about the trustability of the
chain so far, which was determined at the preceding service, and with the opin-
ion about the trust relationship between the actual and the previous service,



51

the chain can be evaluated. This recursive approach to this calculation is stated
in the following lemma (6.4):

Lemma: Recursive Trust Let A1 . . .An be a chain of services, where
service An−1 makes some request to service An. An−1’s opinion about the trust-
worthiness of the chain so far is given by ω

An−1...A2

t(A1)
and it is attached to the

request. An’s opinion about the trustworthiness of the whole chain is:

ωAn...A2
t(A1)

= ωAn

An−1
⊗ ω

An−1...A2

t(A1)

= ω
An−1
t∧t ⊗ ω

An−1...A2

t(A1)

(6.4)

Tracing the components of the opinion about the trustworthiness of the whole
chain during its propagation (based on recommendation) leads to the conclu-
sion that the trust-component will never increase and the uncertainty generally
becomes higher. Furthermore, at the end of the chain, depending on the partic-
ular opinions during the propagation, the uncertainty about a request may be
too high for a service with sophisticated security restrictions. This is the reason
why services either decline to act on the request and return an error message,
or need the possibility to re-authenticate the client. In the next section we are
going to look at the privacy threats that arise from this situation.



Chapter 7

Privacy and
Re-authentication

As described in the previous chapter, insufficient trust leads to either declining
a request or forcing a re-authentication. In this section we are going to look at
the impact of these actions on the user’s privacy. Webster’s dictionary defines
privacy as “freedom from unauthorized intrusion” which is also an adequate
definition for this situation. Here, privacy means that the involved services
should not gain more knowledge than it is necessary.

� � �
�

�

�� � � � � � � 	 
 � � 
 �

Figure 7.1: errors in distributed services

In the example given in the introduction, the error message disclosed enough
information to conclude about the customer’s financial situation. Therefore, er-
ror messages can act as side-channels. By analyzing similar processes initiated
by different people it is possible to establish the standard workflow. But some
client’s request causes an error message or a re-authentication request due to a
too low security level in the chain of services (service E in our example). With
this information and with enough knowledge about the process it is possible to
conclude about the involved services. In addition it is possible to gain informa-
tion about user’s request and about the user himself. This is why it is crucial
to react carefully in such a situation. There are two possible reactions:

• replying with an error message

• starting a re-authentication procedure

52



7.1. ERROR MESSAGES 53

Chain history The question arises how and when information is propagated
in order to reach previous services or the original client directly. One possibility
is adding a chain history of preceding services to every request. The benefits of
this approach are obvious: the original client is known to every service and each
service can decide to trust the request based on the history of the request instead
of calculating a level of trust. But adding a history of all involved services to
every message not only increases the header of such messages, it also harms the
user’s privacy. Every involved service learns about all preceding services. In our
example, service E (credit card institute) would learn about the user’s contact
to the online shop portal represented by service A, and that the user is going
to buy something but does not have enough money (service B and service C
respectively.) It seems that harming privacy is a too high price for the benefits
of a chain history. Thus, a request or message should contain information of the
sending and the receiving service only. No service should get more information
about the process automatically, or more generally: a service should get as much
information as needed but not more than absolutely necessary.

Generic services vs. personalized services The behavior and privacy im-
pact of each service depends on its properties. For example, a generic service
like a time-service, which simply sends back a message containing the current
time, does not need any personal data of the original client. Thus, such a service
only generates an error message if an internal error occurs. If the fact, that the
generic service has been called does not disclose any information about the user,
generic services pose no threat to the user’s privacy.

On the other hand, personalized services may and should act differently de-
pending on whom is requesting their service. These differences leak information
about the user to other services in the chain. A benefit of personalized, well
informed services is that they can react in more sophisticated ways, for example
with a re-authentication request. In this chapter we will focus on personalized
services, as generic services usually are not a privacy threat as they do not
process personal data.

7.1 Error Messages

The minimum reaction is to return an error message to the preceding service.
In the situation depicted in fig. 7.1, service E rejects the request from service
C due to security considerations. Therefore, service C will receive an according
message. Depending on how detailed the error message is, the receiving service
will react. In the worst case, the error will be reported backwards through the
whole chain to the original client. On the one hand, in order to give the user as
much help as possible, the error message should be very detailed. On the other
hand, a detailed error message, which in the worst case passes through every
entity in the chain, gives all desirable information about the whole process and
the user himself. For this reason, such messages should be encrypted with the
client’s public key. This prevents disclosing detailed information to any third
party. But already the occurrence of an error message brings enough informa-
tion. Nevertheless, there must be at least a message about the unsuccessfully
terminated process that has to be sent to every involved service in order to



7.2. RE-AUTHENTICATION REQUESTS 54

stop the process. It is preferable to use a solution where services try to fulfill
the request without rejecting an error message. The usage of re-authentication
is an attempt to do so. In same cases it may be the only practical way in a
distributed service framework.

7.2 Re-authentication Requests

A re-authentication request is sent to the user in order to authenticate the
request for a dedicated service. It is also possible that instead of the user
himself a trusted third party is allowed to sign the request on behalf of the user.
A re-authentication request has to contain at least the following data:

• a pseudo-random stream or a digital finger-print of the sending service
(hash-value)

• a time-stamp or nonce to prevent replay-attacks

• an explanation of the receiving service and the purpose of this service in
plain text (readable for the user who has to sign it)

• a signature over the request with the private key of the sending service in
order to prove the origin of this request

The time-stamp or nonce is needed to prevent manipulation of a service with
a replayed re-authentication request in order to gain confidential information
about a client. This component is essential for security and is common prac-
tice in security technologies. The additional text of the request has to contain
detailed information about the service which wants the user to re-authenticate
himself. The user must be able to recognize the circumstances of this request
in order to decide correctly. Furthermore, the explanation in the request must
point out the consequences and results of signing and executing the request. At
last, the whole re-authentication request has to be signed by the sending service
in order to prove the origin of the message. With such a detailed request, the
client will be well informed and will be able to decide whether to grant the
permission by re-authenticating or not to grant permission.

Re-authentication requests can be split up into synchronous and asynchronous
requests. In a synchronous request, the re-authentication request has to be
fulfilled in time. That means that the requesting service is waiting until the
request is sent back. This is a viable option only if it can be assumed that this
will happen within a certain time frame. Contrarily, the asynchronous request
leads to a temporary interruption of the process, because it is not predictable
when the re-authentication request will be sent back. If too much time elapsed
between starting the process and answering to the re-authentication request,
some problems may arise concerning time restrictions for some outstanding re-
quests in the chain. Therefore, a re-authentication through a synchronous way
should be the first choice.

The following mechanisms and possibilities are discussed in the following sec-
tion. The re-authentication can be carried out by four means, as follows:



7.2. RE-AUTHENTICATION REQUESTS 55

• an out-of-band mechanism

• a roll-back mechanism

• using a ticket-server

• using a trusted web server

7.2.1 Out-of-Band Re-authentication

When using this method, every service contacts the user directly. It implies the
requirement that every service has to get information about how to reach the
user in an out-of-band way. Therefore, it is necessary to add some information
like the client’s e-mail address to the request.

� � � �

� � � � � � 	 � � � � � � 	 � � � � � � 	

Figure 7.2: An example of an out-of-band re-authentication

From the point of view of privacy this is the best solution, as personalized ser-
vices do not gain any more information by adding (possibly temporary) contact
information to the requests. And in case of errors or re-authentication no infor-
mation is disclosed to other services in the chain (see figure 7.2.) Assuming that
the client signs the request immediately, no other service in the chain will rec-
ognize the re-authentication. The drawback is that a re-authentication in this
way will most likely be asynchronous (for example using e-mail). It is not very
likely for all users to have their own server running which services can contact
for re-authentication.

The re-authentication request itself has to contain at least the fields mentioned
above. Also, the request should be encrypted by the sending service with the
public key of the user.

7.2.2 Roll-Back Re-authentication

Using this method the re-authentication request is passed step by step back to
the client. Beginning from the last service, e.g. service D, a re-authentication
request will go through the whole chain backwards until a trustworthy service
or the user itself is reached. The request is then signed and sent back. (fig.7.3).
Each entity in the chain will learn that something is going on, and depending
on the content of the request private information may be disclosed.
Using this method it is very important to encrypt the content of the
re-authentication request. Otherwise, every involved service which transmits



7.2. RE-AUTHENTICATION REQUESTS 56

� � � �

� � � � � � 	 � � � � � � 	 � � � � � � 	

� � 
 � � 	 �� � 
 � � 	 �� � 
 � � 	 �� � 
 � � 	 �

Figure 7.3: Roll-back re-authentication

the request will gain additional information about the process. But even if the
content of the request is encrypted and the identity of the requesting service
is masked through some session-id privacy is threatened. In our introductory
example, when service E issues service A an encrypted and “anonymous” re-
authentication request, service A can reason that the request originated from
service E, as no other service in the workflow would issue such a request. Thus,
service A learns that the user has to have some problems in context with his
financial situation. From the aspect of privacy roll-back re-authentication is not
the best solution.

Contrarily to the out-of-band mechanism, this re-authentication is a synchronous
possibility to get in contact with the user. This is because, the client is already
logged in to service A and the re-authentication request is eventually presented
to the user through service A.

7.2.3 Ticket-Server Solution

Similar to MS-Passport or the Kerberos authentication system ([20],[17]), this
solution uses an additional ticket server (TS). As depicted in figure 7.4, in
parallel to accessing the agent’s portal (service A) the user signs in at the ticket
server. Whenever an authentication is needed the service in question contacts
the ticket server.

� � � �

� � � � � � 	 � � � � � � 	 � � � � � � 	


 �

Figure 7.4: Re-authentication by using a ticket server

After the user is successfully signed in at the ticket server, the ticket server is al-
lowed to perform re-authentication requests by signing these requests on behalf
of the user. Therefore, the server replies with tickets to the requesting services.
The re-authentication request that is sent to the ticket server should look like
the other requests described earlier. The ticket itself is signed by the ticket



7.2. RE-AUTHENTICATION REQUESTS 57

server using its private key. In order to prevent unrelated services requesting
an authentication ticket from the server, the server has to generate a session-id
which the user will tie to his request to service A by using cryptographic tech-
niques. Otherwise the ticket server would have to make plausibility checks on
the re-authentication requests which is impractical in most but the trivial cases.
Furthermore, the ticket server would need more information than a session-id.
This in turn may create new privacy problems.

The main advantage of this solution is that in the case of a required
re-authentication no other service will learn about it. Also, the ticket server
itself has no idea about the other involved services which do not require re-
authentication or the whole process as such. Moreover, this solution is very
comfortable for the user because he is not burdened with the re-authentication.
This is why there will be no additional time-delay caused by the client while
answering the request. And so, this re-authentication can be made synchronous.
The drawback is that the user has to have absolute trust in the ticket server
itself. After all, the ticket server acts on his behalf. Therefore this server must
be maintained by a trustworthy independent party. Of course, such a server will
be a prime target for attacks.

7.2.4 Communication Server Solution

This solution is similar to the ticket server solution. However, here the so-called
communication server (CS) does not act on behalf of the user but is only used
as contact and communication point (fig.7.5). This scenario does not suffer the
drawbacks of the previous solution.

� � � �

� � � � � � 	 � � � � � � 	 � � � � � � 	


��

Figure 7.5: Re-authentication through a web-server

The user contacts the CS and is reachable through the CS during the time of
the process. For example, if the services have web-interfaces the communica-
tion server can be a special website. If a service wants to communicate with
the client, e.g. because a re-authentication request is needed, it sends a request
to the communication server. This implies that the services need to be aware
of the IP-address of this web server. Thus, its address has to be propagated
within the requests. Beside the IP-address, the requests may also contain some
session-id in order to make it easier for the communication server to classify
incoming requests. Both information do not provide additional private infor-
mation about the user and are thus not privacy critical. The communication



7.3. PRACTICAL ASPECTS 58

server passes on the request to the user who then signs the re-authentication
request. The signed response is sent back directly to the requesting service.

This solution is similar to the out-of-band re-authentication. Here, the request
is sent to a communication server instead of the client’s mailbox. The request
will be displayed directly through for example a web-page and the client can
sign the request immediately. Therefore, the re-authentication is synchronous
which is the difference to a common out-of-band solution. Apart from this dif-
ference, the content of the re-authentication request itself will be quite similar to
the other solutions. The communication server could also be used to inform the
client about the actual status of the process or to send him error messages. Gen-
erally, the communication server allows to communicate with the client without
harming his privacy. The only precondition is that the communication server is
trustworthy and is run by some reliable party.

7.3 Practical Aspects

The models and problems described in this chapter are crucial for applications
in an e-governmental environment. Here too, distributed services are used to
process transactions initiated by a client. Furthermore, because of the sensitive
data involved with governmental transactions, protecting the client’s privacy is
of paramount importance.

From the discussed solutions in the previous chapter, out-of-band
re-authentication cannot be used as some services require a synchronous re-
authentication possibility. Roll-back re-authentication discloses too much infor-
mation and should not be used in a privacy sensitive environment. That leaves
the ticket server and communication server methods as options. However, such
a server acts as central authentication authority for whichever governmental
service the user accesses. Thus, such a server could be used to profile the user’s
actions. In addition, data protection laws may forbid running such a service
in the context of governmental processes. How can this situation be resolved?
Depending on the circumstances three solutions exist:

1. using a private communication server

2. using different authentication authorities

3. minimize the need for re-authentication

Ad. 1) If it can be assumed that the user has access to a private communi-
cation server (possibly run by a third party), this server can be used to solve
the problem. Again, this is a central approach, but the point is that this server
is unrelated to the accessed services and it is a conscious decision on the user’s
part to use and trust that server.

Ad. 2) The second solution is using many different authentication authorities,
instead of only one. For example, the first service in a process could act as an
authority. Furthermore, the user might choose different authorities for accessing



7.3. PRACTICAL ASPECTS 59

different services as it is intended by the Liberty Alliance specifications and the
federated Single Sign-On approach. This stands out against a central approach
clearly, but has the drawback of possible privacy violations mentioned earlier.

Ad. 3) The third solution is to minimize the need for re-authentication. This
can be achieved by digitally signing the request and binding it to the current
session. The signature can be verified by every service in the chain and thus
the user can reliably be authenticated at each service. To prevent sending the
complete request and disclosing too much information to each service the re-
quest could be split into separate signed parts. Alternatively, the parts could
be partially encrypted with the targeted service’s public key. However, signing
and splitting the request is not possible in all cases.

To sum up, every solution has its benefits and drawbacks and should be ap-
plied according to the situation at hand. Based on our experience, a sensible
combination of the proposed solutions may solve most problems.



Part III

Practical Work and
Implementation

60



Chapter 8

Introduction and
Motivation for this
Implementation

The practical part of this thesis deals with the implementation of some main
functionalities as defined in the Liberty Alliance specifications. Especially the
core functions for the Single Sign-On mechanisms using SOAP are realized.
Therefore, the following chapters introduce the related technologies used for the
implementation of Project Liberty, e.g. SAML and SOAP. Moreover, chapter
9 summarizes the chosen architecture which underlays the implementation and
illustrates with the help of a Single Sign-On process the functionalities of the
resulting sample implementation.

8.1 Objectives

The objectives of this implementation are to get a better understanding of the
Project Liberty specifications [6] and try to handle the needed technologies, e.g.
SAML, SOAP, etc. The whole implementation should be developed by using the
Java programming language and Java related technologies. The conceptional
design of the Java class hierarchy is very important. Because of the structure
of the protocol and the messages defined in the Project Liberty specifications
which is merely an extension of the SAML specification, the resulting class hi-
erarchy should represent this fact. Therefore, a SAML class framework should
be the basis for all other classes. The Project Liberty related classes have to
extend the SAML basic framework. At the end, the Liberty Alliance classes
are on top of the SAML related class hierarchy and both, the SAML framework
and the resulting Project Liberty framework can be used independently. Of
course, not all functionalities can be realized. The resulting Liberty Alliance
implementation should allow to demonstrate one Single Sign-On cycle. For this
demonstration it is necessary to implement some identity and service providers.
These providers are used for demonstration purpose only. Thus, they are im-
plemented by using some trivial servlets. Once again, the main objective of
this implementation is to gain a better understanding of the Liberty Alliance

61



8.2. THE LIBERTY BROWSER ARTIFACT PROFILE 62

specifications and its surrounding technologies. Therefore, the product of the
implementation is a class framework and a sample application demonstrating
the Single Sign-On functionalities of the resulting framework.

To sum up, here the objectives of this practical work in catch phrases:

• aims:

– realization of the Single Sign-On process as defined in the Liberty
Browser Artifact Profile—the main functionalities are: [25],[16]

∗ generation of a digitally signed authentication request
∗ processing of an incoming authentication request
∗ generation of an assertion corresponding to a request
∗ generation of SAML artifacts
∗ obtaining an assertion by the use of a SAML artifact
∗ processing an incoming authentication response including an as-

sertion

– gaining a deeper experience with underlaying technologies such as
SAML, SOAP, etc.

– creation of a class framework which can be separated into SAML and
Project Liberty related classes

• requirements:

– use Java programming language

– use Java related technologies

8.2 The Liberty Browser Artifact Profile

Chapter 3 gives an outlining generic introduction of the Project Liberty specifi-
cations. Moreover, the stepwise description of the application given in chapter
3 deals with the Browser Artifact Profile as stated in the Liberty Alliance spec-
ifications. In short, the use case in figure 8.1 illustrates the application of the
Browser Artifact Profile. The characteristic of this profile is that the identity
provider does not wrap an assertion into an authentication response which is
sent to the requesting service provider by adding it to the return URL. In this
profile, the service provider which requests for an authentication assertion re-
ceives a SAML artifact instead of the authentication response. By using this
SAML artifact within a SAML request encapsulated into a SOAP request, the
service provider may receive the according authentication assertion wrapped into
a SOAP response from the requested identity provider. Therefore, the Browser
Artifact Profile is an adaption of the “Browser/artifact profile” for SAML as
specified in [23],[22].

As mentioned earlier, the main technologies used for the implementation of
this Browser Artifact Profile are SAML and SOAP. Therefore, the rest of this
chapter gives a brief introduction into both standards. For more details on
these technologies beyond the following introduction refer to the specifications
supported by the according organizations.



8.3. THE SECURITY ASSERTION MARKUP LANGUAGE (SAML) 63

� � � � � � � � � � � �
	 � � 
 � � 
 � � � � � � �


 ��
 � � � � � �

��� � �

��� � �

� � � � � � � ��� � �  � � � ! " � � # $
� % 
 � $'& � � �)(��
� % 
 � � � *+
 $�, � - � . / 0 1
2 � % % 3�� � - $54 4 4 4
6 
 - 
 � � �  � � % $
7 � !  � %�! � � � ! 8 (:9 ; < = > ? > @ A B ;
- � *+�  � 9 ; 
 ��
 � � � � � � C � � *+;
� � *+
 8 (�9 ; D E F E G H�I J H�K J ; L
C C C

� � � � � � � $ �M
 �N
 � � � � � �
� % 
 � $'& � � �)( �
� % 
 � � � *�
 $:, � � � � O -
2 � % % 3�� � - $5P P P P
6 
 - 
 � � �  � � % $
7 � !  � %�! � � � ! 8 (�9 ; D E F E G HNI J HNK J ;
- � *��  � 9 ; � � �  � � � ! " � � # C � � *�;
� � *�
 8 (�9 ; < = > ? > @ A B ; L
C C C

Q R:S�T�U)R

%  V � W � �

� % 
+ - 
 � �  � O)2 � � X  - 
 �

� 
 -  � 
 � � � �) - 
 � �  � O)2 � � X  - 
 �

� 
 -  � 
 � � � �+% 
 � X  � 
Y2 � � X  - 
 �

Z [\�\] � 
 ^ � 
 % �

Z [:�\] � 
 % 2 � � % 



 � � 
 � - 
 %  � 
 -)� 
 % � � � � 


_

� � � � � � � % 
 � X  � 
)2 � � X  - 
 �

` a\b:T c d c egf+h R i�d a:b:h j+b:h i�d k b�f+h R i�d a\b:h

/
/

_

.

l

m

n

1

o

p�q r p+s tvu\w)x r y�z:x

{

Figure 8.1: Example of Single Sign-On using Project Liberty’s Browser Artifact
Profile (SOAP binding)[10].

8.3 The Security Assertion Markup Language
(SAML)

As mentioned above, the Liberty Alliance protocol bases heavily on the Security
Assertion Markup Language. As the SAML specifications [19] state, SAML uses
XML to build up a framework which is intended for exchanging security related
information. Such an information which is wrapped into a SAML document is
called an assertion and it belongs to an entity, which may be a human person
or a computer or any other subject as well. According to the specifications an
assertion may carry information about [19]:

• authentication acts performed by the subject

• attributes of the subject

• authorization decisions relating to the subject

Since SAML builds up on XML, assertions are XML documents whereby an
assertion’s structure can be nested. An assertion itself is built up from several
so called statements. Such a statement may carry data about an entity’s au-
thentication acts, attributes or authorization decisions whether the subject is



8.3. THE SECURITY ASSERTION MARKUP LANGUAGE (SAML) 64

allowed to enter a special resource or not. These assertions are issued by so
called SAML authorities. Figure 8.2 depicts three different kinds of authorities
which are defined in the SAML specifications [19].

��� � � � � � � � 	 � � 
 �
��� � � 
 � � 
 �

��� � � 
 
 � � 	 � � 
 �
� � � � � � 
 ����� � � 
 � � 
 �

��� � 
 � � � � �
��� � � 
 � � 
 �

��� � � � � � � � 	 � � 
 �
��� � � 
 
 � � �

��� � 
 � � � � �
��� � � 
 
 � � �

� 
 � � � ��� � � � � � 
 �
� 
 � � �

�������

� 
 � � � � � 
 � � � � � 
 � � � �

� 
 � � � �
� � � 
 
 � �  !� � � � 
 � � �

��" " � � � 	 � � 
 �
# � $ � � � �

%�
 � & � � � � 	 � �
%�
 � � � � � 
 


' � � � �  (� � � � � �
) ' � � * � � � +

Figure 8.2: The SAML domain model (conceptual) [19]

SAML was mainly intended to allow building up Single Sign-On solutions by
reducing the effort of realizing the necessary communication between the author-
ities and the assertion consuming services. Thus, the authentication authority
provides assertions of authentication processes of the user. In figure 8.2, the
authentication authority is supported with the entity’s credentials by the so
called credentials collector. Based on these credentials, the authority is able
to generate authentication assertions according to the result of the authentica-
tion. With the help of the authentication assertion an attribute authority or
the policy decision point can succeed to generate their assertions. For example,
assuming that the authentication assertion is presented by an authentication
authority, the attribute authority is allowed to provide an attribute assertion
containing some further information about the subject belonging to the authen-
tication assertion. The third authority, the policy decision point, acts in the
same way. Based on an authentication assertion or on an attribute assertion
this authority provides an authorization decision assertion stating whether the
entity is allowed to access a certain resource or not. On the one hand, SAML
authorities are producers of such an assertion based on various sources such
as an external policy store. On the other hand, the authorities may generate
an assertion based on a received assertion an authority can act as an assertion
consumer as well.

Beside the definition of message formats namely the format of the assertion
the SAML specifications constitute an XML based request-response protocol



8.4. THE SIMPLE OBJECT ACCESS PROTOCOL (SOAP) 65

for interchanging the assertions. By the use of this protocol an assertion con-
suming service can request a specified assertion belonging to a given subject or
entity. This protocol can be based on various existing transport protocols, such
as HTTP or SOAP over HTTP. Because of that the Liberty Alliance specifi-
cations are extensions of the SAML specifications, the requests and responses
depicted in chapter 9 can be considered as examples for SAML messages. Thus,
the process flow in the demonstration scenario corresponds to the Browser Ar-
tifact Profile as stated in the SAML specifications. For more details on SAML
refer to the specifications and documents provided by the OASIS organization
[19].

8.4 The Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol is recommended by the World Wide Web
Consortium (W3C) and it is intended to give an XML based framework for inter-
application communication [7]. Therefore, within SOAP an encoding format and
a communication protocol are defined in order to potentiate to realize simple
messaging and to support Remote Procedure Calls (RPC) as well. The SOAP
definitions include [26]:

• Message Envelope

• Encoding Rules

• RPC Convention

• Binding with underlaying transport protocols

8.4.1 The SOAP Message Exchange Model

SOAP bases on a simple request-response dialogs between entities which are
also called nodes. Each of these nodes can act as an Initial SOAP Sender
or an Ultimate SOAP Receiver or an Intermediary. A node which receives a
SOAP message has to process the incoming message. Depending on the result of
processing the incoming message, the receiving node has to generate an adequate
SOAP response or an appropriate SOAP Fault message if some error occurs.

8.4.2 The SOAP Message Format

A SOAP message is encapsulated within a SOAP envelope which contains an
optional header part and a mandatory body block (figure 8.3).

SOAP Header

The optional header is built by one or more header entries. Each of these entries
is addressed to a node. The information inside the header entries inform the
receiving node how to handle the message. These entries data may be used
to enable intermediate nodes to transport the message to the ultimate receiver
correctly. Beside the other header entries one header entry element may be
dedicated to the ultimate SOAP receiver itself.

The SOAP Header XML element has two important attributes, namely the



8.4. THE SIMPLE OBJECT ACCESS PROTOCOL (SOAP) 66

��������� 	�
���
�� ����


��������� ��
�����
��

��������� 	���� � !�����"

#�$�%�&�$�'�(�)+* ' ,

#�$�%�&�$�'�(�)+* ' ,

Figure 8.3: SOAP message structure [26]

�����������
	
�
�
�
���
��� ��� �������
�
	
�
��� ���
�
	
�
��� 	������
� ��� 	��
�
��! "
#
#���� $
$�%
%
%�� %�&�� � ��'
$�( �
�
�
$
��(
$
���
)���*
	��
�
	
�
��� 	
������� ��� )���! " #
#���� $
$
�
� ��	�+ ���,� -
� ��$ � )
. ��	��
#�!/�����
� ��� 0
��! " #
#���� $
$
������	�+ ���,� -
� ��$
-��
��#�+���	
� !
������� ��� -���! " #
#���� $
$
�
� ��	�+ ���,� -
� ��$
��� ��	
#�"
���
'�! �
� 	��
��� 1
	
)�2 	
���

�
),� � )
.���	��
#
	��
��� )
-
#
�
����! "
#
#���� $
$ %
%
%3� %�&�� �
��' $�( �
�
��$
��( $
���
)�� *
	
�
�
	
�
��� 	
$
)
-�#
�
�
$�� 	��
#�!
	��
��� � +���#�4
�
2
	
�
��#
)��
2
��! # ��+
	�! �
�
),� �
2
	��
#
� 5��
	
����� )
.
��2�� �
��&
&�( 6
&
&
7
�
��* �
��*
8�� $�),� �
2
	��
#
� 5��
	 ���
�
),� � )
�
��2
�
( �
��(
* ��(
*
&
��9
(
&�� :
7�� :
7�� 7
7
7�* �
:�� �
� � $�)�� �
)
�
��2
�

� $�),� � )
. ��	��
#
�
��0�� -��
�
#�+���	
�
	��
��� )
-
#
�
����! "
#
#���� $
$ %
%
%3� %�&�� �
��' $�( �
�
��$
��( $
���
)�� *
	
�
�
	
�
��� 	
$
)
-�#
�
�
$�� 	��
#�!
	��
��� � +���#�4
�
2
	
�
��#
)��
2
��! # ��+
	�! �
��0�� �
2
�
( ��;
6
�
&
��( 7�(�� $ 03� ��2
�
��0�� � ) ��	
�
<���"
�>=
��� $ 0�� �
) ��	
�

� $ 0�� -�� ��#�+���	
���
� $�	��
��� 1
	
)�2
	
���
�
	��
��� ?
��2 .
�

�
�
�
� $�	��
��� ?
�
2
.
�

� $
	��
��� ���
�
	
�
��� 	
�

@ AB
C AD
AE
F D
G

@ AB
C AD
AE
F D
G

@ AB
C AD
HI J
KL

Figure 8.4: Example of a SOAP Header block containing two header entries.

mustUnderstand and the actor attribute. Depending on the mustUnderstand-
attribute, the receiving node has to process all SOAP Header blocks addressed to
the node and the mustUnderstand-attribute is set to true. If the node cannot
handle it, it must generate a SOAP Fault message. Other blocks without a
mustUnderstand attribute may be processed or ignored. On the other hand,
the actor attribute indicates the receiver of a SOAP Header entry. The value of
this attribute is presented by a Uniform Resource Identifier (URI). There may
exist one header block without an actor attribute. This block is dedicated to
the ultimate receiver of the SOAP message as described above. An example of
a SOAP Header which consists of two header entries is given in figure 8.4.

SOAP Body

The SOAP Body is made of several body blocks. Body blocks may contain
application data, RPC methods and RPC parameters or SOAP Fault messages.



8.4. THE SIMPLE OBJECT ACCESS PROTOCOL (SOAP) 67

Figure 8.5 gives an example of a SOAP Body element which contains some
simple messaging data.

� �
� �
�� �
��

�	� 
��	
������������������ ��� � �!��"
�������$# %�������
���&	�'
��	
��(� # ��������) *�+�+�&�# ,�, -�-�-.� -	/ � ����0(,�1(������,���1(,�����2�&(3���������
���&(�

��	
��(�4# 2���) *�+�+�&�# ,�,���� �	��5(��
4� 6�� � , &(2�7 �	����+�)!
��	
��(�4# 8���) *�+�+�&.# ,�,���� �	��5(��
4� 6�� ��,�6�����+�5��	�(�()

��	
��(�4# 6���) *�+�+�&�# ,�,���� �	��5(��
4� 6�� � ,���� �	��+�*�����0	) "
�������$# 9���2�:��(��"
�����

�(,������$# 9���2�:(����"
�������$# ;���:�7�"
�	6 # 2�6�6���5���+�"
�(6 # ��+����	"
�(6 # 2(��+���6�
���"�;�����<��(,�6 # 2���+���6�
���"
�(6 # &�����6���"�/�= �	,�6 # &	����6���"

�(,�6 # ��+�� �	"
�(6 # ��+����	"
�(6 # 2(��+���6�
���"�>�?�3�@�� �(�(,�6 # 2���+���6�
���"
�(6 # &�����6���"(��1��	,�6 # &	����6���"

�(,�6 # ��+�� �	"
�	,�6 # 2�6�6���5���+�"

�(,������$# ;���:�7�"
�(,�������# %�������
���&(��"

Figure 8.5: Example of a SOAP Body block.

The body block is dedicated to the ultimate receiver only (that is the reason
why it is called an ultimate receiver). This ultimate receiver has to be able to
understand the body block and for this receiver processing the body content
is mandatory as well. For the implementation task described in this chapter
only the messaging capability of SOAP is used. Therefore, the body element
contains either application data or, if necessary, a SOAP Fault block. Such a
SOAP Fault block is used to convey error information, status information, or
both. It consists of four sub-elements: the faultcode element, faultstring element,
failtactor element and detail element. Moreover, the SOAP specification pre-
defines the following five faultcode values [7]:

• Client

• Server

• MustUnderstand

• VersionMismatch

• DataEncodingUnknown

The Client and the Server faultcode indicate that the error was caused either on
the server side or on the client side. A MustUnderstand fault code is sent if the
receiver is not able to handle a mandatory header block. The VersionMismatch
faultcode indicates that there are some troubles concerning the namespaces or
element names inside the SOAP envelope. And for completeness, the DataEn-
codingUnknown faultcode value informs that the faulting node could not process
the header block, body block or both because of an unsupported data encoding
format.

8.4.3 SOAP RPC and SOAP Messaging

SOAP was specified for RPC and it can be used for messaging purposes as well.
As mentioned before, in context with SAML, SOAP is used for messaging only.



8.4. THE SIMPLE OBJECT ACCESS PROTOCOL (SOAP) 68

For completeness, though, this section spots the differences between these two
techniques.

Remote Procedure Calls using SOAP can be characterized as follows [26]:

• used for procedure calls

• synchronous

• marshaling and unmarshaling of parameters between Java ob-
jects and XML

• used for simple point-to-point calls

Remote Procedure Calls are essential for web services. The client calls a function
of a web service by sending a SOAP request containing the name of the function
and additional parameters. This XML SOAP message is easily generated by the
client software. There exist some automatic development tools which are able to
generate appropriate Java classes based on the so called Web Service Descrip-
tion Language (WSDL) file describing the functionalities and methods of a web
service, in order to use the remote procedures very conveniently. The param-
eters transported by SOAP can be simple, built-in datatypes such as string,
integer, decimal and several derived datatypes. Beyond this, even complex
Java objects can be passed by SOAP. To do this, SOAP marshals the object
into an according XML block. This is done merely by some automatically gen-
erated classes. The result of the procedure called remotely is sent back to the
client within a SOAP response. The response may contain a single data value
using the SOAP datatypes or a whole object marshaled as described. Figure 8.6
depicts an example of remote procedure calls. It illustrates the SOAP messages
needed to use a simple Java function to concatenate two given text strings by a
remote procedure call initiated at the client.

On the other hand, messaging by using SOAP can be characterized as follows
[26]:

• document-driven

• asynchronous and synchronous

• used when data is large and fluid

To send an XML document wrapped into a SOAP message the XML document
has to be packed into the body content. Contrarily to SOAP RPC where only
a synchronous communication is possible, SOAP messaging allows asynchronus
communication as well. This means, that the requesting node must not block
until the according response is received. Figure 8.5 illustrates an XML document
which is transmitted by using SOAP messaging.

8.4.4 SOAP Binding and SOAP with Attachments

Actually, the SOAP specifications define a binding for HTTP in their request-
response model. Beyond it the usage of other transport protocols such as Simple
Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), etc. is possible
as well [26]. In this implementation, SOAP is used in context with its HTTP
binding as required in the SAML and Project Liberty specifications.



8.4. THE SIMPLE OBJECT ACCESS PROTOCOL (SOAP) 69

��� �������
	
�
���
���
��� ��� �������
�
	��
��� ���
�
	
�
��� 	����������!� 	��
�
��" # $
$���� %
% &
&
&�� &�'!� � ��(
%�) �
�
��% ��)
%
���
*���+
	��
�
	
�
����	,�
�
� �
� 	��
��� -
	
*�. 	
���

�
�
�
��%�	��
��� -
	
*
.
	
���
� 	��
��� /
��.
0
�
� 1���� 1�*
$
	��
*
$
	2	
�
��� 	�� 1���. ���
(
3�$
0
�
	���" #
$
$��4� %
% &
&
&�� &�'!� �
��(
%�)��
�
��%
�
5�%
�
�
*�� +
	�� 1
��.
���
(�" �
��� *
��*���67� ����� $
0�� 	���"��
$
�����
(�" �
8
��� 1�*
$
	�� *
$
	2$�#
�
��� % � *
��*���6!�
��� *
��*���/�� ����� $
0�� 	���"���$ �����
(�" �
*
�
.9$�#
�
��� � % � *
��* ��/
�

� %
1���� 1�*
$
	��
*
$
	
�
��%�	��
��� /
��. 0
�

� %�	
�
��� ���
�
	
�
��� 	
�

��� �������
	
�
���
���
��� ��� �������
�
	��
��� ���
�
	
�
��� 	����������!� 	��
�
��" # $
$���� %
% &
&
&�� &�'!� � ��(
%�) �
�
��% ��)
%
���
*���+
	��
�
	
�
����	,�
�
� �
� 	��
��� -
	
*�. 	
���

�
�
�
��%�	��
��� -
	
*
.
	
���
� 	��
��� /
��.
0
�
� 1���� 1�*
$
	��
*
$
	
:
	 � � ��� ��	
	��
��� 	�� 1
��.
���
(
3�$
0
�
	���" #
$
$���� %
% &
&
&4� &�'!� �
��( %�) �
�
��%
�
5
%
���
*�� +
	
� 1���.
���
(�"��
� ��	
$�;����2� ����� $
0�� 	���"��
$
�����
(�" �
8
��� 1�*
$
	�� *
$
	2$�#
�
�2*��
.9$�# �
�!� � %
��	
$
; ���
�

� %
1���� 1�*
$
	��
*
$
	
:
	
� � ��� ��	
�
��%�	��
��� /
��. 0
�

� %�	
�
��� ���
�
	
�
��� 	
�

<=
> ?
@AAB C

DE
F GEH
IJ ?E

HE
GKC
LGE
M HC
N

DE
F GEH
IJ ?E

O!P P Q
R S
T U VXW Y Z Y\[\] ^ _ Q S
` 3�$
���
�
(91���� 1
*
$
	��
*
$
	4a 3�$
�����
(�� *
��* ��6�b�3�$
�����
(�� *
��* ��/�c

Figure 8.6: Example of a SOAP RPC.

SOAP also defines some security measurements. On the one hand, there is
the possibility to secure SOAP by using transport level security such as SOAP
over HTTPS. On the other hand, the W3C defines some SOAP level security as
well (SOAP SEC, [8]). The so called SOAP Security Extension secures SOAP
messages by using XML Digital Signatures (XML-DSig) which are wrapped into
special header entries. These new Signature header entries are inserted into the
conventional SOAP Header. Thus, depending on the application it is possible
to sign one or more arbitrary elements of the SOAP envelope.

���������
	��
�
����	��
� � ����� � �������
	���� �

��� � ����� �
�! �!"#�$��� �&% � 	�'�� ( '��*) +

, -
.�/ 0 1 2 3 4 5 6 7 4

, -
.�/80 984 : ; 4 <

, -
.�/80 1 =8>
? @86 ; A

��� � ��������	&���

��� � ��������	&���

Figure 8.7: SOAP message with attachments [26]

Finally mentioned for completeness, the Simple Object Access Protocol allows
to extend a simple SOAP message by attachments. It uses the Multipurpose



8.4. THE SIMPLE OBJECT ACCESS PROTOCOL (SOAP) 70

Internet Mail Extensions (MIME) type “multipart/related” as container for the
SOAP envelope and arbitrary attachments. The envelope and payload can refer
to the attachments via relative Uniform Resource Locators (URL) in the SOAP
envelope (fig. 8.7).



Chapter 9

The Implementation

9.1 Conceptional Design

As mentioned in the previous chapter, the architecture of the class hierarchy is
one of the important objectives in this implementation. Therefore, this section
gives an introduction in the chosen design and outlines the concept of the result-
ing framework. In the course of this chapter, for the Liberty Alliance Project
the abbreviated form “LAP” is introduced. Therefore classes and packages re-
lated to the Liberty Alliance Project are prefixed with LAP. On the other hand,
classes and packages related to the SAML specifications are prefixed with the
term SAML.

9.1.1 Protocol Classes

Project Liberty is an adaption of the SAML. Thus, the class hierarchy of the
protocol related classes were drafted in order to represent these two layers. Fig-
ure 9.1 depicts the chosen hierarchy. These protocol classes enable to generate
requests and responses of the kind the SAML and Liberty Alliance specifica-
tions define. In other words, the methods and members of these classes enable
to create SAML-requests and SAML-responses—respectively LAP-requests and
LAP-responses.

The base of all classes is the SAMLProtocolBase class. This abstract class holds
the underlaying XML document which presents the resulting object, e.g. a
SAML-request or a SAML-response. Furthermore, some basic functionalities
are implemented by this class as well, e.g. a display-function to output the un-
derlaying XML document. Calling the basic constructor of this class by the use
of derived constructors, the basic XML document will be initialized and several
namespaces are defined. The primary settings and configurations such as the ac-
cording namespace-URIs and the namespace-prefixes are loaded from a so called
properties-file. This file contains pairs of keys and values defining the configu-
ration settings needed. Derived from this base class, the SAMLAbstractRequest
class and the SAMLAbstractResponse class go more into detail. They insert
into the basic XML document generated by the super class more specified el-
ements and attributes according to the specifications of the desired request or

71



9.1. CONCEPTIONAL DESIGN 72

SAMLProtocolBase
(from protocol)

SAMLAbstractRequest
(from  protocol)

SAMLAbstractResponse
(from protocol )

SAMLRequest
(from protocol )

SAMLResponse
(from protocol )

LAPAuthnRequest
(from  protocol)

LAPAuthnResponse
(from protocol )

Figure 9.1: Hierarchy of the protocol classes.

response. Finally, the SAMLResponse and the SAMLRequest classes which are ex-
tending the underlaying abstract classes allow to generate proper requests and
responses. Therefore, the methods offered by these classes supply the user with
all functions needed to insert all required and optional elements and attributes.
During the implementation of theses classes special attention was given to pre-
vent the user of building incorrect requests and responses. Despite of this it is
necessary to have sufficient knowledge about the SAML specifications in order
to understand how to use this framework comprehensively. As mentioned in the
introduction of these implementation’s chapters, the intention was to implement
some parts of Project Liberty. Once again, these parts are:

• generation of a digitally signed authentication request

• processing of an incoming authentication request

• generation of an assertion corresponding to a request

• generation of SAML artifacts

• obtaining an assertion by the use of a SAML artifact

• processing an incoming authentication response including an assertion

Thus, the SAML classes were realized only with functionalities needed to gener-
ate LAP-requests and LAP-responses. Further definitions covered by the SAML
specifications are not considered and therefore the corresponding functionalities
are not supported.

Based on the SAML framework realized by the classes mentioned above the LAP
functionalities are possible. Thus, the LAPAuthnRequest class is derived from
the SAMLAbstractRequest class. In a similar way such as used by construct-
ing a SAMLRequest object, this class allows to generate authentication requests



9.1. CONCEPTIONAL DESIGN 73

SAMLAssertionBase
(from  assertion)

SAMLAssertion
(from  assertion)

SAMLAuthenticationStatement
(from assertion)

SAMLSubject
(from  assertion)

LAPSubject
(from  protocol)

LAPAuthenticationStatementFactory
(from protocol)

LAPAuthenticationStatement
(from protocol )

LAPAssertionFactory
(from  protocol)

LAPAssertion
(from protocol)

Figure 9.2: Structure of classes used to generate a proper assertion.

according to Liberty Alliance specifications. Beside the basic functionalities sup-
ported by the SAML framework additional methods are used to construct well
formed requests. On the other hand, the LAPAuthnResponse class does not base
on the SAMLAbstractResponse class but on the SAMLResponse class for reasons
of implementation. The idea behind this class is the same as before namely to
set up an authentication request very comfortably. Therefore, beside the basic
functions of the underlaying classes this class offers methods to the user to allow
to generate and to custom a proper authentication response. Contrarily to the
authentication request, an authentication response contains elements which are
more complex and therefore not very easy to generate. One of these complex
components of an authentication response is the assertion element containing
an authentication statement which contains a subject element. Thus, a kind of
tool is needed which allows to construct such an assertion easily. This tool is
represented by the class structure surrounding the LAPAssertionFactory class
(depicted in figure 9.2).

As stated in the SAML and Liberty Alliance specifications one main element in
an assertion is the authentication statement element containing a so called sub-
ject element. Therefore, this aiding framework of classes contains a hierarchy
of subject related classes. The basis is the SAMLSubject class which covers the
main functionalities corresponding to the SAML specifications. Based on this,
the LAPSubject class extends the underlaying SAML subject by adding the re-
quired IDPProvidedNameIdentifier element. With the help of the resulting
subject element describing the entity which the assertion belongs to the de-
sired authentication statement can be generated. The whole work of generating
a subject element and inserting them to a resulting authentication statement
is done by using the LAPAuthenticationStatementFactory class. By using
the methods of this class it is possible to create a subject element. After the
subject element is finalized by the LAPAuthenticationStatementFactory the
user has to call corresponding methods to set the remaining elements and
attributes of the authentication statement. As a result, the factory deliv-
ers a LAPAuthenticationStatement object corresponding to the specifications.
The object itself is derived from the SAML authentication statement and ex-
tends this base object by adding further attributes and elements as stated in



9.1. CONCEPTIONAL DESIGN 74

��� � ������	 
�� 
�� ����� ��� ����	 ����� ��
 ��� ��� ����������� � �
�  �!�" #���$�	 % !�	�� "'& � ��� 
�	 % !�	�� "��(& ��� !�	�& ��� " ) ��" ��� * ��� *������ ��� + ��� ,.- + /0- + * 1�� *0- �����32�) 4�� 
 5.	�
�� 
 � ����� ���
2�
 ��� 
 5.	�
�� 
 � ����� ����$�	�% !�	�� "�& 6 ��� � 6 7�8 � � ��% ��
 9�� 9�,  :� 2�#�; / % ��<�� ,���� ����� ��� ��� ��� #�"�" =:- >�> 7�7 7?� =�
 ��4 	�� "�� 
 @�	�
 "�8.� � 
���>
� � #�	 ��)���> ��� 
�	�> *���� *�> � /�� �
� ����- A 
�� ��) " !�
�	(� ��� ����- ��� ��� #�"�" =:- >�> 7�7 7?� 7�,.� � 
���> *���� ��> ��B > � ��� ��� 
���C�� �
�����.- A�
 � ��	���& ��D�� �
� ����- E�) ��� ��
�� )�� 
�F )�" 
�� � 2�	�" #�� �G 0� ��� 
�
 " # ����� #�"�" =:- >�> 7�7 7?� 7�,.� � 
���> � $�> *�� ��� > $ H�E�� � ��� ������+ ��� *�� ��� � ,�� /�� > �
� ����- A 
�� ��) " !�
�	 2�	 " #����G .��� ��
 
�" # ����� #�" " =I- > > 7 7�7:� 7�,0� ��
 ��> *�� ��� >�� B�> � ��� ��� 
 ��C ��� )���� #�)���� > �
� ����- $�	�D 	�
 	 ����	���$�& �.� � �
�����.- ��
 ) ��� D ��
 �.� �
� ����- ��
�) ��� D�� 
 �� .��� ��
 
�" # ����� #�" " =I- > > 7 7�7:� 7�,0� ��
 ��> *�� ��� >�� B�> � ��� ��� 
 ��C 	 � ��	 ��� =�	 ����� 
 � ��)�" !�
 	�� > �
� ����- ��
�) ��� D�� 
 �� .��� ��
 
�" # ����� #�" " =I- > > 7 7�7:� 7�,0� ��
 ��> ��$�> *���� ��> $�H E�� � ����� ��� + ����*���� ��� ,�� /�� > �

��> ����- ��
�) ��� D�� 
 ��� �
�����.- 6�
 ��	�� " 2�	 " #�� �G .��� ��
 
�" #������ #�" " =I- > > 7 7�7:� 7�,0� ��
 ��> *�� ��� >�� B�> � ��� ��� 
 ��C � #�)���� > �
�����.- 6�
 ��	�� " 50) � !�	���; $�8 J�"�B 
�	 
�> 1 K =�L 4�� <�M 9 5�6�N E�+ A�/�� � ��> ����- 6�
�� 	�� " 5.)�� !�	 �

��> ���.- $�	 D�	 
�	 ��� 	��
��> ����- A 
�� ��	 ��& ��D ���
�����.- A�
 � ��)�" !�
 	 5.)�� !�	 � E�F � #�4�;�� 
 O�� @�F P Q�% 6�� / < O�R ��D R S.T =���4 A M �.� 
�> Q 2�9�< #�� * <�� 2�B 2�> � 	�/�� 1 U�� ����>

����- A 
�� ��) " !�
�	 50) � !�	��
��> ���.- A�
 � ��)�" !�
 	��
��P�
 � ��
 ��	�
�& 6�� #�"�" =:- >�> A�	 
 ��
�� 	�P 
�� ��
 ��	 
0� ��� ����> P 
�� ��
 ��	 
�& 6��
��&�� P�)���� 
 ��	���� ��>�& � P )�� � 
 ��	 �
����� 
�� 	  �!�" #������ ��> ��� 
�� 	  �!�" #����
����	 ��	 
�) "�	 ��� ��> ��	 ��	 
�) "�	 �
��P�
 ��" ��� ��� P�
 ��D 
�� 	�� #�" " =I- > > =�
�� 4�	 ��" ��
 @�	 
�" 80� ��
 ��> =�
 ��D 
�� 	�� > @�
 7�� � )�
 " ��> P 
�� "�� ��� ��P 
�� D�
 ��	 �
�  .!�" # ��E�� ��"�	 ��" �
�  �!�" #���E�� ��" 	 ��" 2�
 ��
 ��! ��E�� )�� � $�	�D � #�"�" =:- >�> =�
 ��4 	�� "�� 
 @�	�
 "�8.� � 
���> =�
�� D�
 ��	���> @�
 7.� � =���� " ��>

 �!�" # ��E�� ��"�	 ��" 2�
 ��
 ��! ��E���)���� $�	 D��
��>  �!�" #���E�� ��" 	 ��"��
� $�	 ��) 8�A "�) "�	 ��* ,�/�N + ��> $�	 ��) 8�A "�) "�	 �

��>  �!�" # ��$�	�% !�	�� " �

Figure 9.3: Example of an authentication request.

the Liberty Alliance specifications, such as the SessionIndex attribute or the
ReauthenticateOnOrAfter attribute. On the basis of this authentication state-
ment object the rest of the assertion can be created. For this task another factory
is introduced, namely the LAPAssertionFactory. The resulting LAPAssertion
object represents the desired assertion element which is the core of an au-
thentication response. Even the structure of the LAPAssertion class follows
the two level architecture. The basis for the assertion classes is given by the
SAMLAssertionBase class and the SAMLAssertion class which is derived from
this base class. Again, the LAPAssertion class extends the assertions supported
by SAML but this derivation does not bring any further functionalities.

Figure 9.3 and 9.4 show an authentication request and the according authenti-
cation response generated by using the framework as described in this section.
The data in these examples are purely fictive.



9.1. CONCEPTIONAL DESIGN 75

��� � �����
	 �
� ��� �
��� ��� ����	 �
��� �
� ��� ��� �
�������
� �  
� !�"�# $���%�	�� &
� ��� 	(' ��� "�	�' ��� # ) �
# ��� *���� *������ �
� + �
� ,
- + ./- .
+ 0�� */- �����21�) 3�� � 4
	���� � � ����� �
�51�� �
��� 4/	 �
� ��� �
��� ���
%
	�� &
� ����	�' 6 ��� 	�, ���
� 7 %
� �
8��
+ . 9
#
� � :�6�; <�< � ��7�7 =������ ��� ��� ��� $
#�# &>- ?
? @�@ @A� &�� ��3 	�� #�� � :
	�� #�B
� � ����?�� � $
	 ��)
� ? � ��� 	
? *
� � *�?
� .
��� ��� ���
- � ) ��� ��� $�# # &C- ? ? @ @�@>� � )
� �
� ��� &�	 �>� ��� �
? ��� ������# #�	 	
� ?�� 	
� "�� ��# B
? �
� �
� ? ��� ����� #�� �
� � $
	 ��)�� )
� � 	 ��# ��� ��������� �
� ���
� ��� ���
- ��) ��� &
��� $
#�# &>- ?�? @�@ @A� ��)�� ��� � � &
	 �C� � ����? � � � ��� #�# 	�	���? � 	 � "
�
� #�B�? ��������? �
� �
� � # ����� � $�	 ��) � &
��� #�� ��� ��������� �
� ���  
� ����- D ��� ��) # "
��	E� ��� ����- �
� ��� $
#�# &>- ?�? @�@ @A� @�,
� � ����? *���� ��? ��F ? � ��� ��� ����G
�  
���
�
- D�� � �
	 �
' �
H��  
� ����- I�) �
� �
��� )�� �
J )�# ��� � 1�	�# $�� �2!/� �
� ��� # $ ����� $
#�# &>- ?�? @�@ @A� @�,
� � ����? � %�? *
� ��� ? % K�I�� � ��� ������+ ��� *�� ��� � ,�� .
� ?  
� ����- D ��� ��) # "
��	 1�	 # $
� �2!
��� ��� ��# $ �
�
� $�# # &C- ? ? @ @�@>� @�,/� ��� �
? *
� ��� ?�� F�? � ��� �
� � �
G ��� )���� $
)
��� ?  
� ����- %�	�H 	�� 	 �
��	���%�' ��� �  
���
�
- �
� ) ��� H ��� �
�  
� ����- ����) ��� H�� � ��!
��� ��� ��# $ �
��� $�# # &C- ? ? @ @�@>� @�,/� ��� �
? *
� �
� ?�� F�? � ��� �
� � �
G 	 � ��	 ��� &�	 �
��� � � �
)�# "�� 	�� ?  
� ����- ����) ��� H�� � ��!
��� ��� ��# $ �
��� $�# # &C- ? ? @ @�@>� @�,/� ��� �
? ��%
?�*���� ��? %�K I
� � ����� �
� + �
��*���� ��� ,
� .�� ?  

��? ����- ����) ��� H�� � ���  
���
�
- 6
� ��	�� # 1�	 # $
� �2!
��� ��� ��# $ �
��� $�# # &C- ? ? @ @�@>� @�,/� ��� �
? *
� ��� ?�� F�? � ��� �
� � �
G � $
)
��� ?  
���
�
- 6
� ��	�� # 4/) � "
	� 4/)�� =�	
? 3�* L�< K
� !
L
' M ���
< L I &
B ��	�)�; � ��? ����- 6���� 	
� # 4
)�� "�	  

�
? �
�
- %
	 H�	 ��	 ��� 	� 
��? ����- D ��� ��	 ��' ��H �� 
���
�
- D�� � �
)�# "�� 	 4
)�� "�	  !
B�� �
, *�H :�M �
+ L�=�B 6 =
	 =
� ��� I�� N !�O�. ��P L
B D
< � :
# � Q�R�< ) " 1 @�S�� ��< ��&
P ����� � ���
?

����- D ��� ��) # "
��	 4/) � "
	� 
�
? �
�
- D�� � �
)�# "�� 	
 
�
� ) ��� &>- D�# )�# "��  
��� ) ��� &C- D #�) # "�� I�� ��	54/) � "
	���� � ) ���/- D "
��� 	
� �
��� ��� ��� ��� $�# # &C- ? ? @ @�@>� &
��� 3�	 ��# ��� :�	 ��# BC� ��� �
? � � $�	 ��)���? ��� ��	�?

*
� � *�?�� .���� ��� ����- � ) ��� ��� $
#�# &>- ?�? @�@ @A� ��)�� ��� � � &
	 �C� � ����? � � � ��� #�# 	
	���? � 	 � "
��� #�B�? ��������? �
� �
� � # ����� � $�	 ��) ��)���� 	�� #�� � �
�
����� �
� ����� ��� ���
- � ) ��� &
��� $
#�# &>- ?�? @�@ @A� ��)�� ��� � � &
	 �C� � ����? � � � ��� #�# 	
	���? � 	 � "
��� #�B�? ��������? �
� �
� � # ����� � $�	 ��) � &
��� #�� ��� ���
����� �
� ����?  
�
?�� ) ��� &C- D #�) # "��� 
�
� ) ���
- !/��� 	�� #�� � ��!/��� 	�� #�� � ��' 6 ��� � %���.�� )�< )�F K 8 ��?�? K Q�7 :�8 � T��
%�U & ��� ���

' ��%
	�� &
� ��� 	 �
� ��� � 6 @�B � � ��S ��� Q�� Q�, !C� 1
$�< . S ��P�� ,���� ���V'�� � "
	
' ��� #�) ��# ��� *
� � * �
� � ����+ ��� ,/- + .
- .�+ 0
� *
- � �
�
'�� � "
	�� �
� @�@ @A� � ��	 �
#�� #�B &�� � ��� ��	��
� � � �
�51�) 3�� � 4
	���� � � ����� �
�51�� �
�
� 4/	 �
� ��� �
��� ������� �/- #�B &�	 ��� !C� � 	 ��# ��� �
��B &
	��  

��� ) ���/- I
� �
����# ��� ���  
�
� ) ���
- !�"
����	 ��� 	 %�	
� #�� ��� #�� � ��I
� �
���
# ��� �� 
��� ) ���/- !�"��
� 	 �
��	  $
#�# &>- ?�? D�	 � ����� 	�R ��� ��� �
	 �/� �
� ���
?�� ) ���/- !�"��
� 	 �
��	  

�
?�� ) ���/- !�"��
� 	 �
��	 %
	�� # ��� ��# ��� �
I�� ����� #�� � �
 
��? � ) ���
- I�� ���
� #�� � ���  
��� ) ���/- !�"
# $
	 �
#�� ��) #�� � �
D�# )
# 	 ��	 �
#5!�"
# $
	 �
#�� ��) #�� � ��' ��� # ) �
# ��� *���� *������ �
� + �
� ,
- + ./- .�+ 0�� */- �����

!�"
# $
	 �
#
� ��) #�� � � 1�	 # $
� � ��� "�� �>- ��)�� ���
- ��) ��	��
- #��
- D !�1
LC- �
� �
- ) �>- &
)�� � @���� ����%�	�) "�# $�	 ��# ��� )�# 	 7 �
7�� !
H�# 	�� ��� *
� � * �
� � �
��+ ��� ,/- +�.
- .�+ 0
� *
- � �
���
� �
- # B &
	 ��� !�"�# $�	 ��# ��� )�# ��� ��D #�) #�	 ��	 ��# �
B &�	
�  

�
� ) ���
- D "�:
3�	 ��#V�
� �
- # B &
	 ��� D "�:
3�	 �
# �
B &�	
�  
��� ) ���/- O�) ��	�' ��	 �
#�� H�� 	��  �
; ,�+�F H
; 3�. B�� ��? � ) ���
- O
) ��	
' �
	 ��# ��H ��	 �� 
��' 6
R R�� � ��� ��	 � O�) ��	�' ��	 �
#�� H�� 	��  ������; *�; 	 @�S B�* , ��S �
?�' 6
R R�� � ��� ��	 � O�) ��	�' ��	 �
#�� H�� 	��  

�
?�� ) ���/- D " :�3 	�� #� 
��? � ) ���
- !�"�# $�	 ��# ��� )�# ��� ��D #
) #�	 ��	 ��#  

�
?�� ) ���/- !C� � 	 ��# �
� �� 
��? !�"
# $ ��%�	
� &�� ��� 	� 

Figure 9.4: Example of an authentication response according to the request of
figure 9.3.



9.1. CONCEPTIONAL DESIGN 76

9.1.2 Provider and Servlet Classes

By using the framework described in the previous section an identity and a
service provider are able to generate the messages needed for this implementa-
tion. Figure 9.5 illustrates the framework of classes required for building some
primitive providers.

LAPProvider
(from provider)

LAPIdentityProvDesc
(from  m eta)

LAPIdentityProvider
(from  provider)

LAPFederatedUsers
(from  m eta)

LAPServiceProvDesc
(from  m eta)

LAPMetaDataStore
(from m eta)

LAPMetaData
(from meta)

Document
(from  dom )

LAPServiceProvider
(from provider)

LAPResourceConfig
(from  m eta)

Figure 9.5: Structure of the identity and service provider classes and their most
important supporting classes.

The basic class for both the identity provider and the service provider is the
LAPProvider class. This class implements basic methods such as loading the
configuration file (properties file) and loading other necessary XML files deter-
mining the characteristics of the provider itself and holding a list of affiliated
other providers.

Identity Provider

The whole identity provider used for this implementation is given by an object
instantiated of the LAPIdentityProvider class. The LAPIdentityProvider is
derived from the basic LAPProvider class. The behavior of the identity provider
object is mainly determined by the given configuration file which contains set-
tings such as the location and name of some XML files or of the keystore-file. As
illustrated in the schema of the classes (fig. 9.5), the identity provider refers to
a so called LAPIdentityProvDesc object which contains the identity provider’s
descriptor. This LAPIdentityProvDesc object is an extension of the common
LAPMetaData class which is used to access information stored in an underlaying
XML file very conveniently. Therefore, the identity provider descriptor bases
on an XML file containing all properties of the provider, such as:



9.1. CONCEPTIONAL DESIGN 77

• type of provider (identity provider or service provider)

• name identifier of the provider (e.g. http://www.IdentityProvider.com)

• accepted profiles

• various URLs
(e.g.: SingleSignOnServiceURL, SingleLogoutServiceURL, etc)

• signed requests are required or not

In other words, the XML file containing the provider’s description holds XML-
entries the kind of Identity Provider Descriptors as defined in the Liberty Al-
liance specifications [6]. Therefore, the content of this file respectively the result-
ing LAPIdentityProvDesc object determines the configuration of the identity
provider from the Liberty Alliance’s point of view. The second very important
supporting object for the identity provider is the LAPFederatedUsers object.
This class enables to handle all known users and their according information of
affiliated accounts at other providers. Therefore, this class supports the identity
provider with the local and foreign name identifier of a user if the user’s identity
is federated. Actually for this implementation an XML file is used for storing
the users information. In a real world application a professional database would
be used instead. Similarly, the LAPMetaDataStore object used by the identity
provider stores information about all affiliated providers. As indicated by the
name, the LAPMetaDataStore class is built up similar to the LAPMetaData class.
Even the meta data store is using a XML file to manage the information about
the affiliated providers. Contrarily, the LAPMetaDataStore holds an XML file
containing a sequence of several provider descriptor entries. These descriptor
entries are based on the provider descriptors as defined in the Liberty Alliance
specifications. Thus, the meta data store allows the identity provider to gain
information about an affiliated service provider very easily by using the func-
tionalities given by the LAPMetaDataStore.

The resulting identity provider object performs the following main tasks in
order to fulfill the basic steps needed for Single Sign-On:

• receiving and processing of authentication requests

• generating an according authentication response

• generation of a SAML artifact and temporary storing of authentication
responses

• returning of authentication responses by the use of a given SAML artifact

This all happens depending on the given configuration file (properties file) and
the given identity provider descriptor. A whole Single Sign-On cycle is demon-
strated in the last section of this chapter, thus a qualitative description of these
tasks is given as well.



9.1. CONCEPTIONAL DESIGN 78

Service Provider

As shown in figure 9.5, the LAPServiceProvider class is based on the
LAPProvider class similar to the LAPIdentityProvider class. Again, the be-
havior of the provider object is determined by both the configuration file and
the service provider descriptor. Very similar to the identity provider the service
provider descriptor is hold by the LAPServiceProvDesc object which is derived
from the LAPMetaData class. Also the service provider descriptor is loaded from
an XML file containing the descriptor data. This descriptor holds the same en-
tries as the descriptor of the identity provider beside one URL entry, namely the
SingleSignOnServiceURL entry is omitted. This is not the only similarity be-
tween a service provider and an identity provider. The LAPServiceProvider is
supported by a LAPMetaDataStore object as well. This time the meta data
store contains descriptor entries of affiliated identity providers. Thus, the
LAPMetaDataStore is used similar as it is done by the identity provider. The
LAPResourceConfig class is needed to handle the information about the re-
sources of the service provider which requires an authentication by an identity
provider. Each site and service a user can request is listed in the underlaying
XML file. Therefore, this file or an entry in this file defines the restrictions for
accessing the specified resource. Thus, it is possible to define that every user has
to be authenticated by some specified Liberty Alliance profile or that it is re-
quired to ask for re-authentication, e.g. every hour. This information is needed
to generate a corresponding authentication request and to prove if an incoming
authentication response achieves the requirements and whether the assertion
contained in the response fulfills the restrictions of the desired resource or not.

The resulting service provider object performs the following main tasks in order
to support the basic steps needed for Single Sign-On:

• generation of authentication request

• requesting for an authentication response by the use of a SAML artifact

• receiving and processing an incoming authentication response

Servlet Framework

The identity and service provider classes drafted above are responsible for the
main work and for processing the Liberty Alliance protocol. Beyond this, there
is a need to deploy these providers into the Internet. For the demonstration of
this implementation a few very simple servlets are used. As depicted in figure
9.6, there exist two circles of servlets. One is related to the identity provider
and the other one to the service provider.

The servlets belonging to the service provider have one central
LAPServiceProvider object which supports the core functionalities. In the
same way, the servlets dedicated to the identity provider integrate a
LAPIdentityProvider object. The following list describes the basic function-
alities of these servlets:



9.1. CONCEPTIONAL DESIGN 79

���

� � ��� � 	 
 ��� 
 � � � � � �� � � � ��� � � � � � � � � � � � � � � � �

���

� �   
 
 � � � ! 	 � 
 � � � � � �� � � � �"� � � � � � � � � � � � � � � � �

���


 � �"� � 	 
 � � 
 � � � � � �� � � � ��# � � � � $ � � � � � � � � � �

���


 � 
 � � � 	 � � � 
 � � � � � �� � � � �"# � � � � $ � � � � � � � � � �

���


 � % 
 � &(' � ) 
 � � � � � �� � � � �"# � � � � $ � � � � � � � � � �

���


 � * + � , - . � / 
 � � � � � �� � � � ��# � � � � $ � � � � � � � � � �

0 * � � ) � - � ! � 1 � � 
 � ! ) � �
� � � � ��� � � � � � � � �

0 * � 
 � � � ! 	 � � � 
 � ! ) � �
� � � � ��� � � � � � � � �

���


 � . � / + �  � 
 2 * � 
 � � � � � �� � � � ��# � � � � $ � � � � � � � � � �

���

� � *   � � � ! 
 - 
 � � � � � �� � � � �"� � � � � � � � � � � � � � � � �
� � . �  3 
 -  � 
 2 * � 
 � � � � � �
� � � � ��� � � � � � � � � � � � � � � � �

���

Figure 9.6: Structure of the servlet classes related to the provider objects.

• Service Provider Servlets:

– SPWelcomeServlet
This servlet welcomes a user at the service provider. At this point
the user can chose among several resources to access by following a
link. The access to this servlet does not require any authentication.

– SPForwardServlet
If the user wants to access a restricted resource which is presented
by a corresponding link at the welcome-servlet, this servlet checks if
the user is authenticated already. Actually, this servlet is not in use
in this sample implementation.

– SPSelectIPServlet
Assuming that the user has to be authenticated for accessing a re-
source of this service provider this servlet asks the user to chose one
of the affiliated identity providers for authentication purpose.

– SPAuthnRequestServlet
Depending on the result of the SPSelectIPServlet this servlet is
responsible for generating an according authentication request. This
servlet sends this request to the Single Sign-On service of the chosen
identity provider.

– SPRequestSOAPServlet
This servlet is contacted by an identity provider and receives a SAML
artifact. This artifact is later used in order to request an assertion by
the service provider. Therefore, this servlet generates an according
SAML request and sends this request by the use of the SOAP proto-
col to the identity provider. On the other hand, this servlet is waiting
for the SOAP response corresponding to the SOAP request. Further-



9.1. CONCEPTIONAL DESIGN 80

more, this servlet processes the incoming SOAP response containing
an assertion or a fault message.

• Identity Provider Servlets:

– IPWelcomeServlet
This servlet presents a standard welcome screen and it is accessi-
ble without authentication. It informs a user about the affiliated
providers and allows him to sign-on for later use.

– IPssoServiceServlet
This servlet is accessed by an affiliated provider in order to request an
assertion. Therefore, this servlet processes incoming authentication
requests and verifies it according to the processing rules stated in
the Liberty Alliance specifications. If the request does not match the
requirements and rules the servlet does not proceed and provides an
according error message.

– IPAssertionServlet This servlet is directly called by the
IPssoServiceServlet. If no error occurs during the procession of
the incoming request the servlet prepares a corresponding assertion.
As a result, this servlet returns a SAML artifact. With the help
of this artifact, an affiliated provider can ask for the prepared as-
sertion by the use of a SOAP request. Note that this servlet and
the IPssoServiceServlet may be realized in one servlet only, but
for convenience processing the incoming request and preparing an
assertion is separated in this sample implementation.

– IPResponseSOAPServlet
This servlet implements the SOAP endpoint where an affiliated provider
may request an assertion by the use of a SAML artifact. If the in-
coming SOAP request containing a SAML request which includes
the artifact corresponds to a prepared assertion this servlet returns
a SOAP response including the desired assertion. Otherwise this
servlet answers with an error message.

The last section 9.3 of this chapter describes a complete Single Sign-On authen-
tication cycle by using this implementation. During this stepwise description
the usage of the servlets is illustrated in a more detailed way.

9.1.3 Exception Classes

Exception classes have been implemented in order to react in the case of errors
or faults. Figure 9.7 depicts the hierarchy of exception classes used in this
implementation. All exception classes are derived from the Exception class
as defined in the Java framework. Even the exception classes are separated in
SAML related exceptions and exceptions dedicated to Project Liberty according
classes. As the names of the exceptions state they are thrown in the following
situations:



9.2. USED TECHNOLOGIES AND PACKAGES 81

SAMLException
(from saml)

SAM LAssertionException
(from assertion)

SAM LRequestException
(from protocol)

SAM LResponseException
(from protocol)

LAPException
(from lap)

LAPProtocolException
(from protocol)

LAPProviderException
(from provider)

SAMLProtocolException
(from protocol)

Exception
(from lang )

Figure 9.7: Hierarchy of exception classes.

• SAMLException
This exception class is the base class of all exceptions used in the SAML
framework. All SAML exceptions are derived from this exception.

– SAMLProtocolException
These exceptions are used by all protocol classes such as the
SAMLProtocolBase class.

– SAMLRequestException
This class of exceptions covers new exceptions occurring in connection
with the generation of SAML requests.

– SAMLAssertionException
This class of exceptions covers new exceptions occurring in connection
with the generation of SAML assertions.

– SAMLResponseException
This class of exceptions covers new exceptions occurring in connection
with the generation of SAML responses.

• LAPException
This is the base class for all Project Liberty related exceptions such as the
following two.

– LAPProtocolException
These exceptions are thrown from all LAP classes which are involved
in the creation of authentication requests, authentication responses
and assertions.

– LAPProviderException
These exceptions are used by provider classes only namely by the
LAPProvider class, LAPIdentityProvider and LAPServiceProvider
class.

9.2 Used Technologies and Packages

For this implementation, a number of Java packages and technologies are used.
The environment used to implement this example was the Java Development



9.2. USED TECHNOLOGIES AND PACKAGES 82

Kit (JDK) version 1.4.0. Based on this, the following supportive packages are
in use:

• Apache Xerces 2 Java Parser
This parser supports a convenient interface for working with XML docu-
ments. [4]

• Apache Tomcat 4.0 Servlet Engine
The providers in this implementation are realized by the use of servlets.
Thus, the Tomcat servlet engine and their related packages are used to
implement these servlets. The sample implementation uses the built-in
session and user management facilities offered by Tomcat.[3]

• Apache XML Security 1.0.4
This package provides the interface and functionalities desired in order to
sign and verify XML documents such as requests and responses.[5]

• SUN Java Webservice Developer Pack 1.0
The JAXM package included in this pack supports convenient functions to
realize SOAP messaging as required in this implementation.[29]

These technologies build the underlaying basis for this sample implementation.
For more information about these packages refer to the documentation offered
by the corresponding references.

������� � � � � � 	 � 
 � � 
 � 	 � � � � � 
 �

������� � � � � � � � � � � � � � � � � � � �

� � ! �

� � ! �

"$# %'&

(

) *�%�+ , - , .0/$& 1 2 - *�%�& 3$%�& 2 - 4 %5/$& 1 2 - *�%'&

6

7

8:9 ; 8:< =?>A@�B ; C:D�B

EAF EAF EAF E:F

EAF EAF EAF EAF E$F

G � � � H HAH � � � � � ��I � � � � � � � J H��:� K � � �$��I G L �

L � M � � G N ��G M$G O N P � M N � � G N � � M�� � Q O � H N

� R�S'�T� � H I � M H �

O H � � J HA� � � � � M N � G K H

H � K � � N G M$� � � M N � N U$I � � � � � � �

G � � � H HAH � M L K �$H � L M V � M$H � � � � � �
G H W'X � � G O N P � M N � � G N � � M

L � M � � G N �$G H H � � N � � M Y

Y
Y

� � � � � � � N O H � � N �$H � � � � � ��I � � � � � � �A�$� N P:G�� S�Z�[:G � N � X G � N
� R�S'��� � Q O � H N

L G � M:G � � � H HAN �$� � H � � � ��� � H � O � � �

Y
\

\
]

Figure 9.8: Process flow of a Single Sign-On cycle in this sample implementation.



9.3. DEMONSTRATION SCENARIO 83

9.3 Demonstration Scenario

To complete this chapter, this section presents a complete Single Sign-On au-
thentication process by the use of this sample implementation. It shows the
main tasks of the SAML and LAP framework and it illustrates the cooperation
of the servlets used for this demonstration scenario. This description assumes
that a user accesses the welcome-page of a service provider and wants to ac-
cess some resources with restricted access conditions at this provider. Therefore
the user is engaged to authenticate himself by the use of an affiliated identity
provider. Figure 9.8 and the following enumeration illustrate this process step
by step. This example follows the basic Liberty Alliance profile as described in
chapter 3.1.2. The explanation in this section is limited to some technical details
in order to complete the understanding of the concept of this implementation.

1. User Accesses the Service Provider
First, the user accesses the welcome site of the service provider
(www.serviceprovider.com), which is realized by the SPWelcomeServlet.
If the user follows the link to the restricted area of the service provider,
which is displayed on the right margin of the page, the user’s browser
is redirected to the SPSelectIPServlet running on the service provider’s
server (servlet engine). If this is the very first action calling a servlet of the
service provider, within this servlet the underlaying LAPServiceProvider
object is initialized for the first time. All the other servlets are using this
object. Figure 9.9 depicts a screen shot of this welcome page.

Figure 9.9: Screenshot of the identity provider’s welcome servlet.

2. Chose an affiliated Identity Provider
At the SPSelectIPServlet the user is enforced to chose among several
affiliated identity providers. In this example, the federation of identi-



9.3. DEMONSTRATION SCENARIO 84

ties and the affiliation of providers are assumed to having been estab-
lished already. This means that the identity providers displayed in order
to select one of them are affiliated already and that both, the identity
and the service provider have a unique name identifier associated with
the current user. In other words, the provider affiliation and the iden-
tity federation are not touched by this sample implementation. After the
user has selected one of the displayed identity providers the user’s selec-
tion and his chosen resource which he wants to access are passed to the
SPAuthnRequestServlet. Figure 9.10 depicts a screen shot of the page
displayed by the SPSelectIPServlet.

Figure 9.10: Screenshot of selecting among various affiliated identity providers.

3. Generate an Authentication Request
The SPAuthnRequestServlet running at the service provider’s servlet
engine is responsible for generating an authentication request according
to the selections of the user. Thus, the content of this request depends
on the authentication requirements of the requested resource. Therefore,
elements such as ForceAuthn, ProtocolProfile and AuthnContext are
given by the properties defined in the resource XML file of the current
service provider. Figure 9.3 depicts such a request. Finally, the request has
to be signed digitally by the use of the service provider’s private key. The
whole request generation process is done by calling the genAuthnRequest
and signing method of the underlying service provider object. The created
request is sent to the well known identity provider’s Single Sign-On service
URL by using a SSL connection.

4. Access the Identity Provider’s SSO Service
At the identity provider, the incoming request is checked for correctness
and if the signature of the authentication request is valid and whether the



9.3. DEMONSTRATION SCENARIO 85

requesting provider is affiliated with the identity provider or not. This
task is performed by the processAuthnRequest method of the underlaying
LAPIdentityProvider object. If the request has been accepted the user is
asked for his authentication information. Actually in this implementation,
very rudimentary providers are realized only. Thus, the session and user
management are done by the Tomcat servlet engine. Therefore, verifying
the incoming request is done by the IPssoServiceServlet and creating
the assertion is done by the IPAssertionServlet which is protected by
a security realm requiring user authentication. Thus, for processing the
incoming request no authentication is required. Only if the request is
valid, the user is asked for his credentials because the user is redirected to
the IPAssertionServlet. By using a random index which refers to the
temporarily stored request this servlet generates an assertion. If the user
is already authenticated the generateAssertion method of the identity
provider is used to generate an assertion according to the request and
to the user’s authentication profile. Moreover, this assertion is stored at
the identity provider and the according SAML artifact is returned to the
requesting service provider. Figure 9.11 shows the Single Sign-On servlet
of this implementation.

Figure 9.11: Screenshot of the sign-on service presented by the identity provider.

5. Request for an Assertion
The generated SAML artifact is sent to the
SPRequestSOAPServlet of the requesting service provider. As described
in chapter 3.1.2 the second part of the received artifact presents a hash
value of the name identifier of the sending identity provider. Therefore,
by the use of this fragment of the artifact the service provider is able to
identify the corresponding identity provider. Thus, this serlvet generates
a SOAP request including a SAML request which contains the SAML ar-



9.3. DEMONSTRATION SCENARIO 86

��� � �����
	 �
� ��� �
��� ��� ����	 �
��� �
� ��� ��� �
�������
� �  
��� ��! "�� 	 � �$# % � ��	 ��� "�	&� ��� ����# � ��! "�� 	 � ����� '
(�( ")# *�* � � '�	 ��!��
� � ���
� �
! ")� ��� �
* � � ! "�* 	 � ��	�� � "
	
*��  
��� ��! "�� 	 � �$# +�	 ! ��	���*  
��� ��! "�� 	 � �$# ,
� �
-  
��� ! ��� ".# /�	�0 1�	�� (&� ��� ����# � ! ��� "���� '�( ( ".# * * 2 2�2)� � !
� �
� ��� "�	 �)� �
� �
* ��� ������( (�	 	
� *�� 	�� 1�� ��( -
* �
� �
� * ��� ����� (�� �
� � '
	 ��!��

"�� ��( ��� �
� �
� �
� ��� ���&3 ��� 1�	�3 ��� ( ! �
( ��� 4���� 4������ �
� 5 �
����# 6 57# � 6 8�� 47# �
���:9�! ;�� � <
	���� � � ����� �
�:9�� �
��� <7	 �
� ��� �
��� ���
/
	 0 1
	
� (�3 =���� >
? 1 @�� 9�, A
> B �
5
� +
8���� C = D�E�+�- � F
G D����  

�
�
�
# H�� � �
!�( 1�� 	&� ��� ���
# ��� ��� '�( ( ".# * * 2 2�2)� 2�C7� ��� �
* 4
� ��� *�� G
* � ��� �
� � �
I��  
���
�
# H�� � �
	 �
3 �
>��  
���
�
# J
! ��� ��� ��! ����K ! (�� � � 9�	 ( '
� �LD
��� ��� ��( ' �
��� '�( ( ".# * * 2 2�2)� 2�C7� ��� �
* ��/
* 4���� ��* /�% J
� � ����� �
� M �
��4���� ��� C
� 6�� *  
���
�
# H�� � �
!�( 1�� 	 9�	�( '�� �LD7� ��� ��� ( ' ����� '
(�( ")# *�* 2�2 2$� 2�C
� � ����* 4���� ��* ��G * � ��� ��� ����I �
� ! �
� '�!��
� *  
���
�
# /
	 >�	 ��	 ��� 	��
/
3 �����  
���
�
# �
� ! ��� > ��� �
�  

� ����# ����! ��� >�� � ��D
��� ��� ��( ' �
��� '�( ( ".# * * 2 2�2)� 2�C7� �
� �
* 4
� ��� *�� G�* � ��� �
� � �
I 	 � ��	 ��� "�	 �
��� � � �
!�( 1�� 	�� *  
� ����# ����! ��� >�� � ��D
��� ��� ��( ' �
��� '�( ( ".# * * 2 2�2)� 2�C7� �
� �
* ��/
* 4���� ��* /�% J
� � ����� �
� M �
��4���� ��� C
� 6�� *  

��* ����# ����! ��� >�� � ���  
���
�
# =
� ��	�� ( 9�	 ( '
� �LD
��� ��� ��( ' �
��� '�( ( ".# * * 2 2�2)� 2�C7� �
� �
* 4
� ��� *�� G�* � ��� �
� � �
I � '
!
��� *  
���
�
# =
� ��	�� ( <7! � 1
	� ,
N
? C���O N�� F�P /
� ��Q
! P�� �
3�* R
H 1
S E
, ��� ��* ����# =���� 	
� ( <
!�� 1�	  

��* ����# /�	�> 	�� 	 �
��	  
��* ����# H ��� ��	 ��3 ��> �� 
���
�
# H�� � �
!�( 1�� 	 <
!�� 1�	  B B�R '�� T '�� � B
- (�6 % '�% Q 1 <7* P +
��4 � D�<
	
��* S�4
O T ��> F�6 �
J
� B '��
� �
"�=
> > '
;
� � � ���
*

����# H ��� ��! ( 1
��	 <7! � 1
	� 
��* ����# H ��� ��! ( 1
��	  
��� ! ��� ".# D7��� 	�� (�� � � D7� (�� >�! ��(  D D�9
J
� <7U 4�� H�6 � +�A '
6�	�G � ��� �
� �7� ��! C�5 � � F�J �
A V
S�U�4 ,
� ����O C =
� V�W ��4�W�M ��� R
4 � Q E
�
*

� ! ��� ")# D)� � 	 ��( ��� � D
��( ��> !�� (� 
��* ��! ��� ")# /
	 0 1
	
� (� 

��* � � ! "
��	 � �)# ,�� ��-� 
��* � � ! "
�
	 � �)# % � ��	�� � "
	� 

Figure 9.12: Example of a SOAP request containing a SAML artifact.

tifact in order to ask for the prepared assertion. After having signed the
request it is sent to the SOAP node of the identity provider. Figure 9.12
depicts a SOAP request containing a SAML artifact wrapped into a SAML
request. At the identity provider, the IPResponseSOAPServlet reacts to
an incoming SOAP request by calling the onMessage method of the under-
laying SOAP-servlet class. Therefore, the incoming request is proved and
if the included artifact can be resolved into a corresponding temporarily
stored assertion this assertion is wrapped into a SOAP response. This
response is sent back to the requesting SPRequestSOAPServlet. If an
error occurs during the processing of the request or if the requested asser-
tion can not be found, a fault message is returned to the asking service
provider.

6. Processing an Incoming Assertion
Back at the service provider, the SPRequestSOAPServlet is waiting for the
SOAP response. If the received response is not a SOAP Fault message,
this servlet has to process the assertion included in the response (figure
9.13 depicts an incoming SOAP response containing an assertion). This
task is done by the processReceivedAssertion method of the service
provider object working in the background. Within this method various
proofs can be made, e.g. signature validation, proving various elements
wrapped in the assertion etc. If the incoming assertion suits the needs in
order to access the required resource the user gains access (figure 10.1).

If the user wants to access another site requiring an authentication the user may
not be asked to enter his authentication information at the identity provider once
again. The user is authenticated already and if the affiliated service provider
requests for an assertion the user is not involved in the process of assertion
generation. Requesting for a new assertion will be done silently in the same
way.



9.3. DEMONSTRATION SCENARIO 87

��� � ������	�
�� 
 � ����� ��� ����	 ��� � ��
 ��� ��� ����� �������  
��� � ! "���	 � �$# % � ��	�� � "�	&� ��� ���'# � � ! "���	 � ����� (�) ) "*# + +�� � (�	 ��!��'� � ����� ��! "$� ��
 ��+ ��� ! "�+ 	 � ��	�� � "�	�+��  
��� � ! "���	 � �$# ,�	�! ��	 
�+  
��� � ! "���	 � �$# -�� ��.� 
��� ! ��� "$# /�	�� "�� ��� 	&� ��� ����# � ! ��� "���� (�) ) "*# + + 0 0�0$� � !�� 
�� � � "�	 �*� � 
���+ � � � �'
 )�) 	�	���+ � 	 � 1�
�
 )�.�+ ��������+ ��� ��� � ) ���

� � (�	 ��!�� "�
 ��) ��� ��� ��� �'� ��� ����� ��� ����# � ! ��� ��� (�)�) "$# +�+ 0�0 02� ��!�� 
�� ��� "�	 �$� ��
 ��+ ��� ����
�) )�	 	�� +�� 	�� 1�
 
�) .�+ ��� ��� + ��� ����� )�� �
� � (�	 ��!�� !�� � 	 
�) 
�� ��������� ��� ���&3�� � 1�	�3 ��� )�! ��) ��� 4�� � 4 ��� � ��� 5 ������# 6 5�# ��7 8�� 4�# ��� �:9�! ;�� 
 <'	�
�� 
 � ����� ���
9�
 ����
 <�	 
�� 
�� ����� ����/�	�� "�� ��� 	�3 = ��� > 9���	 ? <*@ ��4�A ������
 ; , B�; ��	�� ��) 6�� !�3 ���  

� ����# C 
�� ��! ) 1�
�	&� ��� ����# ��� ��� (�)�) "$# +�+ 0�0 02� 0�A'� � 
���+ 4�� ��� +�� D�+ � ��� ��� 
 ��E �  
� ����# C 
�� ��	 ��3 ��F �� 
� ����# G�! ��� ��
�� !�� 
�H !�) 
�� � 9�	�) (�� �:I�� ��� 
�
 ) ( ����� (�) ) "*# + + 0 0�0$� 0�A�� ��
 ��+ ��/�+ 4���� ��+ /�% G�� � ����� ��� 7 ����4���� ��� A�� 6�� +  
� ����# C 
�� ��! ) 1�
�	 9�	 ) (�� �:I'��� ��
 
�) ( ����� (�) ) "*# + + 0�0 02� 0�A'� � 
���+ 4���� ��+ ��D + � ��� ��� 
���E ��� ! ��� (�!���� +  
� ����# /�	�F 	�
 	 ����	���/�3 ��� �  
� ����# ��
�! ��� F�� 
 ���  
� ����# ��
�! ��� F�� 
 ��I'��� ��
 
�) ( ����� (�) ) "*# + + 0 0�02� 0�A'� � 
���+ 4���� ��+ ��D + � ��� ��� 
���E 	 � ��	�� � "�	 ����� 
�� ��! ) 1�
�	�� +  
� ����# ��
�! ��� F�� 
 ��I'��� ��
 
�) ( ����� (�) ) "*# + + 0 0�02� 0�A'� � 
���+ � /�+ 4�� ��� + / %�G�� � ��� ������7 ��� 4�� ��� � A�� 6�� +  

��+ ����# ��
 ! ��� F ��
 �'�  
� ����# =�
�� 	�� ) 9�	�) (�� �:I�� ��� 
�
 ) ( ����� (�)�) "$# +�+ 0�0�0$� 0�A�� ��
 ��+ 4�� ��� +�� D�+ � ��� ��� 
 ��E � (�!���� +  
� ����# =�
�� 	�� ) <'!�� 1�	  ��8�J 9�6 A / � <�K�� =���L M >���7 9�7 C�3 N >�7 . � � ��+ ����# =�
�� 	�� ) <'!�� 1�	  

��+ ���'# /�	 F�	 
�	 ��� 	� 
��+ ���'# C�
 � ��	 ��3 ��F��  
� ����# C 
�� ��! ) 1�
�	 <�! � 1�	� �3 ?�
 K�%�! K 0�H ��
 O�7�3 ; P���� N�3 -�7�� /�%�5 I�9�� ��	 <�, ��9���N N�C . � "�,�/�� 3 A ) 8�H�Q J�D J�� ����+

���'# C�
 � ��!�) 1�
 	 <'!�� 1�	  
��+ ���'# C�
 � ��!�) 1�
 	� 
��� ! ��� "$# C�) !�) 1��  
��� ! ��� "$# C�) !�) 1�� G�� ��	R<'!�� 1�	 ��� � ! ���'# C 1�� ��	������ +  

��+�� ! ��� "*# C )�! ) 1��  
��� ! ���'# I���� 	�
 )�
 � ��I���� 	�
 )�
 � ��3 = ��� M�5 .�6 � I�-�	 
 ����.�7 
 8�� 1 � 0 I�B�L�6 "�� 1�3 �'�&3 ��/�	�� "�� ��� 	 ��� ��� ��8 ����� ��S J�%�@ Q + ) 6�+

� 9�P�� =�� - ? "�S�5 � ���&3�� � 1�	�3 ��� )�! ��) ��� 4�� � 4 ��� � ��� 5 ��� �'# 6�5'# � A 8�� 4�# �����&3�� � 1�	�
 �'� (�) ) "*# + +�3 ��	 ��) 
�) .�S 
�� ��
 ��	 
�� ��� ���
9�!�; ��
 <�	 
�� 
�� ����� ���:9�
 ��� 
 <'	�
�� 
 � ����� ����� ��� ����# ��� 
 ��� (�) ) "$# +�+ 0�0 02� ��!�� 
�� � � "�	 �*� � 
���+ � � � ��
 )�) 	�	���+ � 	 � 1�
�
 )�.�+ ��������+
��� ����� )�� ��� � (�	 ��!�� !�� � 	 
�) 
�� ��������� ��� ������� 
�# )�. "�	 ��� I*� � 	 
�)�
 � ����. "�	��  

��� ! ���'# G�� ����
 )�
 � ���  
��� ! ���'# I�1���
�	 ��� 	 /�	�� )�
 
�� )�
 � ��G�� ����
�) 
�� �� 
��� ! �'�'# I�1���
�	 ��� 	� (�) ) "*# + + C 	�
 ��
 ��	 S�
 � ��
 ��	�
�� ��� ����+�� ! ����# I�1���
 	 ����	  

��+�� ! ���*# I�1���
 	 ����	 /�	�� ) 
�
 ��) 
�� ��G�� ����
 )�
 � �� 
��+�� ! ����# G�� ����
�) 
�� ���  
��� ! ���'# I�1�) (�	 ��) 
�� !�) 
�� ��C )�! )�	 ��	 ��)RI�1�) (�	 ��) 
�� !�)�
 � ��3 ��� ) ! ��) ��� 4���� 4������ ��� 5 ������# 6 5�# � 4 8�� 4�# �����

I�1�) (�	 ��) 
�� !�) 
�� � 9�	�) (�� ����� 1�
 �*# � !�� 
���# ��! ��	���# ) ��# C I�9�M�# ��� �'# ! �$# "�!�� � 0���
 ����/ 	�! 1�) (�	 ��) 
�� !�) 	 ? ��?�
 I'F�) 	�
 ��� 4�� � 4 ��� � �
� 5 ��� 4'# 6 5�# � 4 8�� 4�# ��������� 
�# )�. "�	 ��� I�1�) (�	 ��)�
 ��! )�
 � ��C�) !�) 	 ��	 ��) ��. "�	��  

��� ! ���'# C 1�K�;�	 ��)&��� 
'# ) . "�	 ��� C 1�K�;�	 ��) ��. "�	��  
��� ! �'�'# T�! ��	�3 ��	 ��) 
�F 
�	 
� ��F ��� ��� ��F�Q ��Q � ��� ��+�� ! ����# T�! ��	�3 ��	 ��)�
 F�
 	�
  
��3 =�S�S 
�� ��
 ��	 � T�! ��	�3 ��	 ��) 
�F 
�	 
&� ��� ��� ��� (�)�) "*# + + 0 0�0$� "�
�� ;�	 ��) ��
 K�	 
�) .�� ��
 ��+ � � (�	 ��!���+ ��� 
�	�+ 4���� 4�+

� 6��  ���Q ; 	�
 ��	�Q � �'Q � ��F�	 
 ��+�3 =�S S�
 � ��
 ��	 � T�! ��	�3 ��	 ��)�
 F�
 	�
  
��+�� ! ���*# C 1 K�; 	�� )� 
��� ! ���'# C 1�K�;�	 ��) M�� ��! ��
 )�.�+  

��+�� ! ����# I'1�) (�	 ��)�
 ��! )�
 � ��C�) !�) 	 ��	 ��)� 
��+�� ! ����# I*� ��	 
�) 
�� �� 

��+�� ! ��� "*# /�	�� "�� ��� 	� 
��+�� ��! "�� 	 � �2# -�� ��.  

��+�� ��! "�� 	 � �2# % � ��	 ��� "�	  

Figure 9.13: Example of a SOAP response containing an authentication asser-
tion.



Chapter 10

Conclusion

In this thesis, I gave an introduction to authentication systems enabling Single
Sign-On. I categorized them into centralized and federated systems. Therefore,
in chapter 2 of this thesis there was an overview on existing solutions which are
following the centralized approach, such as Kerberos and Microsoft Passport.
Moreover, section 2.3 outlined some weak points of the centralized architecture.
By paraphrasing the work of Kormann and Rubin [18], especially some weak
points in context with Passport were pointed out. In this section, the use of
cookies was discussed as well. There I summarized, that only non-persistent
cookies are usable in matters of security. Contrarily, chapter 3 dealt with Single
Sign-On solutions corresponding to the federated architecture. In course of this,
the Liberty Alliance and their Project Liberty was introduced. I gave a detailed
description of what is a federated identity and I showed how to establish iden-
tity federations between various so called providers. Moreover, the details and
principles of this federated architecture were presented by explaining a Single
Sign-On process using Project Liberty.

In the second part of this thesis the question arose how to deal with trust in
situations of Single Sign-On. In other words, the question was how to determine
the trustworthiness of an assertion or a request, which is handled along a chain
of services. Therefore, in chapter 5 I introduced a metrics to calculate trust and
security in such frameworks. The term opinion was defined and an algebra which
is based on recommendation relationships was given. With this it was possible
to determine the trustworthiness of an assertion or a request without having
information of all involved services as shown in chapter 6. Determining trust
stepwise through a chain of services led to the conclusion that the trustworthi-
ness of a request will decrease while the value of uncertainty will become higher.
Thus, eventually a request may be considered as not trustworthy. In order to
complete the request successfully, the necessity for some re-authentication mech-
anism arose. Furthermore, I have shown how the user’s privacy can be harmed
by simple error messages. The mere fact of the existence of error messages
combined with a knowledge of the workflow may disclose private information
to others. Next, in chapter 7 several methods of re-authentication and their
impact on privacy have been discussed. A consequence of this analysis was that
messages should only contain the absolute minimum information necessary for
the services to function correctly. Any more data may harm the client’s privacy.

88



89

Furthermore, encryption should be used wherever sensible, so that information
can be passed to services further down the chain without disclosing it to inter-
mediate nodes. It has also been shown that introducing a trusted third party
may have substantial benefits from the point of view of privacy.

Finally, in the third and last part of this thesis I described a sample imple-
mentation of some parts of the Liberty Alliance specifications, especially of the
Browser Artifact Profile. Thus, I developed a Java framework which allows to
generate some simple requests and responses in order to process a whole Single
Sign-On procedure. Moreover, after a short introduction to the underlaying
technologies such as SAML and SOAP given in chapter 8, chapter 9 drafted
the chosen class architecture. To round up, a demonstration scenario given in
section 9.3 showed the usage of the resulting implementation by demonstrating
a simple Single Sign-On cycle which hopefully results in a successful authen-
tication (figure 10.1). In the course of this implementation, I gained a better
understanding of this architecture and of the federated Single Sign-On approach
in order to conclude, that the federated architecture is the better solution for
the realization of a Single Sign-On systems. Thus, even Microsoft is currently
working on a federated authentication system called ”TrustBridge”.

Figure 10.1: Screenshot of gaining access to the desired resource of the service
provider.



Appendix A

Abbreviations used in this
thesis

3DES Triple Data Encoding Standard
AS Authentication Server

DNS Domain Name System
DNSEC Domain Name System Security Extension

FTP File Transfer Protocol
HTTP Hyper Text Transfer Protocol
KDC Key Distribution Center
MIME Multipurpose Internet Mail Extension
PUID Passport Unique Identifier
RPC Remote Procedure Call
RTGS Remote Ticket Granting Server
SAML Security Assertion Markup Language
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol

SOAP SEC SOAP Security Extension
SSL Secure Socket Layer
SSO Single Sign-On
TGS Ticket Granting Service
TGT Ticket Granting Ticket
URI Uniform Resource Identifier
URL Uniform Resource Locators
W3C World Wide Web Consortium

WSDL Web Service Description Language
XML Extensible Markup Language

XML-DSig XML Digital Signatures

90



Bibliography

[1] A. Abdul-Rahman and S. Hailes. A distributed trust model. In Proceedings
of the New Security Paradigms 97, 1997.

[2] A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities.
In Proceedings of the Hawaii Int. Conference on System Sciences 33 , Maui,
Hawaii, 2000.

[3] The Apache Software Foundation. The Jakarta Project-Apache Tomcat,
2002. (http://jakarta.apache.org/tomcat/index.html).

[4] The Apache Software Foundation. Xerces2 Java Parser 2.2.0 Release, 2002.
(http://xml.apache.org/xerces2-j/).

[5] The Apache Software Foundation. XML Security, 2002.
(http://xml.apache.org/security/index.html).

[6] J.D. Beatty et al. Liberty Protocols and Schemas Specification 1.0. Liberty
Alliance, 2002.

[7] D. Box et al. Simple Object Access Protocol (SOAP) 1.1. World Wide Web
Consortium Note, May 2000.

[8] A. Brown et al. SOAP Security Extensions: Digital Signature. World Wide
Web Consortium Note, February 2001.

[9] ECSC-EEC-EAEC. Information Technology Security Evaluation Criteria
(ITSEC), 1991.

[10] J. Hodges et al. Liberty Architecture Overview 1.0. Liberty Alliance, 2002.

[11] International Standardization Organisation (ISO). Evaluation criteria for
IT security (ISO/IEC 15408:1999), 1999.

[12] A. Jøsang. The right type of trust for distributed systems. In C. Meadows,
editor, Proceedings of the 1996 New Security Paradigms Workshop, 1996.

[13] A. Jøsang. Artificial reasioning with subjective logic. In Abhaya Nayak,
editor, Proceedings of the Second Australian Workshop on Commonsense
Reasioning, 1997.

[14] A. Jøsang. An algebra for assessing trust in certification chains. In
J.Kochmar, editor, Proceedings of the Network and Distributed Systems
Security (NDSS’99) Symposium, 1999.

91



BIBLIOGRAPHY 92

[15] A. Jøsang. Trust-based decision making for electronic transactions. In
L.Yngstrm and T.Svensson, editors, Proceedings of the Fourth Nordic
Workshop on Secure IT Systems (NORDSEC’99), Stockholm, Sweden,
1999.

[16] L. Kannappan et al. Liberty Architecture Implementation Guidelines 1.0.
Liberty Alliance, 2002.

[17] J. Kohl and C. Neuman. The Kerberos Network Authentication Service
(V5). RFC 1510, 1993.

[18] D. Kormann and A. Rubin. Risk of the passport single signon protocol. In
Computer Networks, Elsevier Science Press, volume 33, 2000.

[19] E. Maler, P. Hallam-Baker, et al. Assertions and Protocol for the OASIS
Security Assertion Markup Language (SAML) 1.0. OASIS, May 2002.

[20] Microsoft Corporation. Microsoft .NET Passport - Technical Overview,
2001.

[21] Microsoft Corporation. Microsoft Passport Software Development Kit Doc-
umentation, 2002. (http://msdn.microsoft.com).

[22] P. Mishra et al. The SOAP Profile of the OASIS Security Assertion Markup
Language (SAML) 1.0. OASIS, March 2002.

[23] P. Mishra et al. Bindings and Profiles for the OASIS Security Assertion
Markup Language (SAML) 1.0. OASIS, May 2002.

[24] Open Group. Introduction to Single Sign-On, 2002.
(http://www.opengroup.org/security/sso/).

[25] J. Rouault et al. Liberty Bindings and Profiles Specification 1.0. Liberty
Alliance, 2002.

[26] S. Shin. SOAP (presentation at the SUN TECH DAYS 2001/2002). SUN
Microsystems.

[27] M. Slemko. Microsoft Passport to Trouble, 2001.
(http://alive.znep.com/ marcs/passport/).

[28] J. Steiner, C. Neuman, and J. Schiller. Kerberos: An authentication service
for open networks systems. In Usenix Conference Proceedings, 1988.

[29] SUN Microsystems. Java Web Services Developer Pack, 2002.
(http://java.sun.com/webservices/webservicespack.html).

[30] B. Tung. The Moron’s Guide to Kerberos, 1996.
(http://www.isi.edu/gost/brian/security/kerberos.html).


