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Abstract

For a single soilbag filled with a cohesionless granular material analytical and numerical models
based on a continuum approach are used to predict the evolution of deformation and stress
under monotonic compression and plane strain conditions. Analytical models with different
assumptions for the stress ratio distribution in the fillingmaterial, a constant volume and a
frictionless interface between the soil and the wrapping bag are studied. In order to evaluate the
simplifications assumed for the analytical model numericalsimulations are carried out with a
micro-polar hypoplastic model for the soil behavior and an elastic-ideally plastic model for the
wrapping material. Particular attention is paid to the influence of the interface behavior between
the soil and the bag material on the evolution of the state quantities. Herein the special cases of a
frictionless interface and an interlocked interface are investigated. In contrast to the frictionless
interface, the tensile stress in the wrapping bag material in the case of the interlocked interface is
not homogeneous from the beginning of loading. Furthermore, the assumed interface behavior
influences the evolution of the state quantities and the location of zones with intense strain
localization of the granular material. The investigation with an initially random distribution of
the void ratio of the granular material only shows an earlieronset of strain localization.

Zusammenfassung

Für eine mit einem Geotextil umschlossene Granulatpackungwird die Entwicklung der Ver-
formungen und Spannungen bei ebener und monotoner Kompression sowohl mit analytischen
wie auch numerischen Kontinuumsmodellen untersucht. Den analytischen Modellen liegen ver-
schiedene Vereinfachungen zugrunde, wie beispielsweise ein konstantes Spannungsverhältnis,
ein konstantes Volumen, sowie Reibungsfreiheit zwischen dem Granulat und der Einhüllung.
Zur Bewertung der getroffenen Vereinfachungen werden numerische Untersuchungen mit ei-
nem mikropolaren hypoplastischen Materialmodell für das Granulat und einem elastisch-ideal
plastisches Materialmodell für das Hüllmaterial durchgeführt. Besonderes Augenmerk wird auf
den Einfluss der Kontakteigenschaften zwischen dem granularen Körper und der Einhüllung auf
die Entwicklung der Zustandsgrößen gelegt. Die Untersuchungen zeigen für den reibungsbehaf-
teten Kontakt eine inhomogene Verteilung der Membranspannung in der Hülle vom Beginn der
Belastung. Darüber hinaus beeinflusst das Interfaceverhalten auch die Entwicklung der Span-
nungen und das Auftreten von Scherlokalisierungen im granularen Körper. Die Untersuchung
mit einer anfänglichen Zufallsverteilung der Porenzahl imgranularen Körper zeigt, dass Deh-
nungslokalisierungen bereits bei einer kleineren Kompression eintreten können.
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1 INTRODUCTION

A soilbag or sandbag is defined as a sack which is made of burlapor polymer materials filled
with granular materials like sand, soil, or recycled concrete. The used filling material depends
on the purpose of the structure and the availability of the filling material. Applications of a
soilbag can either be for temporary or permanent constructions. For temporary constructions
such as flooding barriers (Fig. 1.1(a)), soilbags are made and stacked up to several layers
depending on the predicted flood-water level. After being used for certain period of time they
are removed, emptied and disposed of. While the use of soilbags for temporary purpose has
been established for a long time, its use in permanent constructions is rather new (Fig. 1.1(b) -
1.1(f)). For instance, soilbags can be used as reinforcement for increasing the bearing capacity
of soft soil foundations, as damping layers for the reduction of vibration transmitted from traffic
loads (e.g. Matsuoka & Liu, 2003 [81]), for facings installed in front of geosynthetic-reinforced
soil retaining walls (e.g. Tatsuoka et al., 1997 [105]; Matsuoka & Liu, 2006 [82]), for ballast-
foundations of railway tracks (e.g. Schilder, 1983 [99]; Matsuoka & Liu, 2003 [81]), for access
roads in mountainous areas (e.g. Kimura & Fukubayashi, 2005[69]), and for domes (e.g.
Khalili, 1999 [68]).

The placing of layers of horizontal reinforcements underneath a foundation of a construction
(e.g. footing, as shown in Fig. 1.2) is a well known method forimproving the bearing capacity
of shallow soil foundations. In this case, the reinforcement can take a part of the horizontal
stress acting parallel to the layer of the reinforcement. Thus, with the reinforcement the lateral
motion of soil can also be reduced which leads to smaller settlements. The motion of soil at
the surrounding of the reinforcement is influenced by the developed shear resistance parallel to
the interface between the granular soil and the reinforcement. The maximum shear resistance
mainly depends on the type and surface structure of the reinforcement and the size of the grains.
The maximum shear resistance is reached when either the tensile strength of the reinforcement
is reached or the soil grains slip over the reinforcement. Large slippage of the soil particles
over the reinforcement can lead to a heaving of the soil at thesides of the footing foundation.
This behavior was demonstrated for instance in experimentsby Matsuoka & Liu (2003 [81],
2006 [82]) with aluminium rods and a horizontal reinforcement. In order to reduce the heaving
a closed form reinforcement as a part of the material under the footing was used, as sketched
in Fig. 1.3. Using this closed form reinforcement Matsuoka &Liu (2003 [81], 2006 [82])
could show that under vertical loading the stiffness of the granular material inside the wrapping
bag is higher than that outside. Consequently, the soil foundation can resist higher footing
loads with the closed form reinforcement than with the planelayer reinforcement. Closed form
reinforcements can be produced in an easy way with soilbags.Shape and dimension of the
soilbags depend on their purposes (Fig. 1.4). The failure ofa single soilbag is usually related

1
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Soilbags used for (a) temporary flooding barriers, (b) foundation of building, (c)
retaining walls, (d) foundation of ballast for railway, (e) foundation of road, (f)
dome construction.



3

Figure 1.2: Illustration of the soil foundation reinforcedwith horizontal layer of reinforcement.

Figure 1.3: Illustration of the soil foundation reinforcedwith closed form reinforcement.
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(a) (b)

Figure 1.4: Typical shapes of soilbags for instance for: (a) foundation of buildings and roads,
(b) for dome.

with the tensile rupture of the bag material. Aqil et al. (2006) [2] reported that the shear load
capacity is much lower than the vertical load capacity. Besides experimental results, there are
only few analytical and numerical investigations on the mechanical behavior of soilbags (e.g.
Tatsuoka, 2004 [103]; Matsuoka & Liu, 2006 [82]).

The present doctoral thesis focuses on the evolution of deformation and stress of a vertically
compressed soilbag structure. Analytical and numerical investigations are carried out for plane
strain condition. For the analytical study, similar simplifications are made as proposed by Mat-
suoka & Liu (2006) [82], e.g. the granular material deforms under constant volume, the stress
ratio inside the soilbag is assumed to be constant and the contact between the soil and the bag is
frictionless. The results obtained from the model by Matsuoka & Liu (2006) with a rectangular
shape of the section of the soilbag are compared with that of asoilbag with lateral semicircu-
lar boundaries as proposed in this thesis. In order to validate the analytical results numerical
investigations using the finite element method are also conducted. In the numerical model, par-
ticular attention is paid to the shear localization depending on the vertical displacement, the
assumed interface properties and the initially homogeneous or inhomogeneous distribution of
the void ratio. Furthermore, different interface behaviors between the granular material and the
wrapping bag, i.e. a frictionless interface and an interlocked interface, is taken into account.

In addition, the influence of the interface properties on thedeformation behavior of granular
soil close to a bounding structure under shearing is also numerically studied. To this end, an
infinite granular layer in contact with a rough bounding structure is considered. The influence
of the slide and rotation resistances of the soil grains at the interface, the initial density of the
granular specimen and the mean grain size on the location andthe thickness of the shear band
are investigated. Furthermore, fluctuations of the micro-polar boundary conditions along the
interface are also studied.
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Besides an enforced shear localization close to an interface, a so-called spontaneous develop-
ment of shear bands far from bounding structures was observed, for instance also in a so-called
element tests in the laboratory, e.g. in sand specimens under plane strain conditions (e.g. Oda
et al., 1982 [92]; Desrues et al., 1996 [35]; Oda & Kazama, 1998 [91]; Alshibli & Sture, 2000
[1]; Gudehus, 1994 [50], 1997 [52], 2001 [54]; Oda et al., 2004 [93]) and in axisymetric triaxial
tests (e.g. Drescher & Vardoulakis, 1982 [38]; Hettler & Vardoulakis, 1984 [59]; Frost & Jang,
2000 [44]). With the onset of strain localization the deformation becomes inhomogeneous so
that the test is no longer an element test.

Regarding the mathematical modeling of shear bands in the granular body, it is well known that
the numerical results obtained from finite element calculations with classical continuum models
may show mesh dependencies when shear localization takes place (e.g. Neddleman, 1988 [88];
de Borst et al., 1993 [32]; Brinkgreve, 1994 [25]). Mesh dependency is related to the lack of
an internal length in classical continuum descriptions. Inorder to overcome this shortcoming
of classical continuum models, different enhanced continuum models had been proposed, for
example, Cosserat continuum models (e.g. Mühlhaus & Vardoulakis, 1987 [86]; Mühlhaus,
1989 [84]; Mühlhaus, 1993 [85]; Tejchman & Gudehus, 2001 [114]; Ehlers, 2002 [39]; Huang
& Bauer, 2003 [61]), non-local continuum theories (e.g. Bazant et al., 1987 [17]; Bazant & Lin,
1989 [16]; Bazant & Pijaudier-Cabot, 1989 [18]), and higher order gradient continuum models
(e.g. Vardoulakis & Aifantis, 1989 [123]; de Borst & Mühlhaus, 1992 [31]; Han & Drescher,
1993 [57]; Pamin, 1994 [96]; Vardoulakis, 1999 [122]).

In the present study, a specific micro-polar model by Bauer & Huang (1999) [11] is adopted
to describe the evolution of the non-symmetric stress tensor, couple stress tensor and void ra-
tio of the granular material. The evolution equations for stress and couple stress are nonlinear
tensor valued functions based on the framework of hypoplasticity which was originally devel-
oped within a non-polar continuum description (e.g. Kolymbas, 1978 [70], 1985 [71], 1987
[72], 1990 [73], 1991 [74], 2000 [75]; Darve, 1974 [28], 1991[29]; Chambon, 1989 [26];
Kolymbas & Wu, 1993 [77]; Bauer & Wu, 1993 [14]; Wu & Bauer, 1993 [124]; Bauer, 1995 [3];
Gudehus, 1996 [51], 2006 [55]; Wu et al., 1996 [125]; Kolymbas & Herle, 1998 [76]; Bauer &
Herle, 1999 [9]; Wu & Kolymbas, 1999 [126]). The micro-polarhypoplastic model takes into
account macro-motion and micro-rotations, the current void ratio, the non-symmetric Cauchy
stress tensor, the couple stress tensor and the mean grain size which enters the constitutive
model as the characteristic length. By including the conceptof critical states and with a pres-
sure dependent density factor the model describes the essential properties of initially dense and
initially loose granular soil for a wide range of pressures and densities with a single set of con-
stitutive constants (e.g. Tejchman & Bauer, 1996 [111]; Tejchman & Gudehus, 2001 [114];
Huang & Bauer, 2003 [61]).

Beside a homogeneous distribution of the initial density forthe granular material inside the
soilbag, numerical simulations are also conducted with a random distribution of the initial void
ratio. The inhomogeneity of the initial state may be neglected for certain geotechnical problem,
such as large scale deformation analysis (e.g. Karcher, 2002), however, as shown by Nübel
(2002) some problems related to the evolution of shear localization are sensitive against small
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fluctuation of the initial density. In order to take into account the inhomogeneity of the ini-
tial void ratio different concepts for generating a random distribution of the void ratio have
been proposed in the literature, e.g. Mogami (1965) [83], Shahinpoor (1981) [100], Bhatia &
Soliman (1990) [22], Nübel (2002) [89], Nübel & Huang (2004), Huang et al. (2007) [64]. For
example, Shahinpoor (1981) proposed a probability densityfunction to describe the random
distribution of the void ratio for granular materials with equal-sized hard spheres, which was
also used by Nübel (2002) [89], Nübel & Huang (2004). Experiments carried out by Bhatia
& Soliman (1990) [22] showed that the inhomogeneity of the void ratio for granular material
like sand with different angularities and relative densities can be better represented by a density
function with the so-calledβ-distribution. Huang et al. (2007) used this concept to prepare a
random distribution of the void ratio for numerical simulations of granular materials like sand.
In the present work, the same concept is also used for generating random distribution of the
initial void ratio for the modeling of the filling material inside the soilbags.

For the numerical modeling of the interface properties using the finite element method, there
are mainly two approaches. In the first approach the zones of the granular material close to
the interface surface are modeled using a thin layer of so-called interface elements with pecu-
liar properties which are different from the material properties used from granular material (e.g.
Desai et al., 1984 [34]; Sharma & Desai, 1992 [101]). In this approach the thickness of the inter-
face element needs to be specified and it is usually approximated by the thickness of the shear
band. Experimental results, however, show that the thickness of shear band is not a material
constant and is influenced by the whole boundary value problem. In the second approach, the
contact problem between neighboring structures is solved.In particular, at the interface, kine-
matic discontinuities and tangential and normal displacement jumps (relative displacements)
may take place (e.g. Goodman et al., 1968 [48]; Gens et al., 1988 [47]; Boulon & Nova, 1990
[24]; Day & Potts, 1994 [30]). In the normal direction the bodies are assumed to be in contact,
while for the tangential direction Coulomb’s friction law isusually used in classical finite ele-
ment analysis of the interface. In particular, a constant ratio between the shear resistance and
the normal pressure at the interface is assumed during shearing. However, this assumption only
provides an approximate shear resistance at the interface and does not necessarily reflect the
reality. In fact, according to the experimental results theshear resistance changes during shear-
ing depending on several factors, such as density and mean grain size of the granular material,
stress level, boundary conditions of the problem and type ofthe boundary value problem (e.g.
Tejchman & Wu, 1995 [117]; Tejchman, 1997 [107]; Bauer & Huang, 1999 [11]; Bauer &
Huang, 2004 [12]; Tejchman & Bauer, 2005 [113]). Therefore, in the numerical study, the
actions of the soil particles at the interface such as sliding and rotation which are related to
the surface roughness of the bounding structure and the meangrains size are furnished by the
prescribed micro-polar boundary conditions at the interface. Thus, the shear resistance at the
interface, as well as the occurrence and the thickness of theshear band is obtained as a pre-
diction of the model (e.g. Tejchman & Bauer, 1996 [111]; Huanget al., 2003 [62]; Bauer &
Huang, 2004 [12]).
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The present doctoral thesis is structured as follows

• Chapter 1: Introduction and scope of the work.

• Chapter 2: A brief outline of the Cosserat continuum is given. Aspecific micro-polar
hypoplastic model by Bauer & Huang (1999) [11] and its implementation in the finite
element method for plane strain condition is presented.

• Chapter 3: Numerical simulations of shearing of a granular soil close to the surface of
a bounding structure are conducted. Particular attention is paid to the influences of the
micro-polar boundary conditions, the initial density of the granular body and the mean
grain size on the evolution of the shear deformation and the shear resistance along the
interface.

• Chapter 4: The mechanical properties of a single soilbag under vertical compression is
analytically and numerically studied for different interface properties between the filling
granular material and the wrapping bag. The analytical and numerical results are com-
pared. Furthermore, the influence of an initial inhomogeneity of the void ratio on the
evolution of the shear band patterns is also numerically investigated.

• Chapter 5: Summary of the main results is given.
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2 MICRO-POLAR CONTINUUM MODEL

In this chapter, properties of the micro-polar continuum (e.g. Cosserat, 1909 [27]; Eringen
& Suhubi, 1964 [42, 102]; Eringen, 1965 [40]; Besdo, 1985 [21]; Diebels, 2000 [37]; Ehlers,
2002 [39]; Bauer, 2004 [7]) are briefly described. A specific micro-polar hypoplastic version by
Bauer & Huang (1999) [11] is presented and its implementationinto the finite element program
ABAQUS is outlined according to the procedure proposed by Huang (2000) [60] for plane strain
condition.

2.1 Kinematic variables

The material points of the micro-polar continuum can translate and independently rotate. In
general, each point possesses six degrees of freedom, i.e. three translation degrees of freedom
and three rotational degrees of freedom. With respect to theposition vectorX of a material
point of a body in the reference configurationB0 at time t0 and the corresponding position
vectorx in the current configurationB at timet > t0 (Fig. 2.1), the macromotion of the body
is described by :

x = ψ(X, t) or xi = ψi(X, t). (2.1)

wherexi (i = 1, 2, 3) are the coordinates of the Cartesion coordinate system. Thefunction
ψ(X, t) is postulated to be continuously differentiable and to be unique and uniquely invertible
at any time, i.e.

X = ψ−1(x, t) or Xi = ψi
−1(x, t). (2.2)

The transformation of a line elementdX of the body from the reference configurationB0 to the
corresponding line elementdx of the current configurationB is defined as:

dx = F dX, (2.3)

where the two point tensorF is the so-called deformation gradient:

F =
∂x

∂X
or Fij =

∂xi

∂Xj

. (2.4)

9
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0

Reference configuration(t0)

Γ0

B0

Ξ

dX

X

Current configuration (t)

Γ

B

γ
ξ

dx

x

ψ(X, t)

χ(X,Ξ, t)

Figure 2.1: Macromotion and micromotion of a micro-polar continuum body.

In order to fulfil the requirement 2.2 the determinant ofF must be a positive value, i.e.det[F] >
0. The material time derivative of Eq. 2.3 reads:

dx

dt
= ẋ = L dx, (2.5)

with the so-called velocity gradientL, i.e.

L = Ḟ F−1 =
∂ẋ

∂x
=

∂u̇

∂x
or Lij =

∂ẋi

∂xj

=
∂u̇i

∂xj

. (2.6)

In Eq. 2.6 the velocity vectoṙu = ẋ can be obtained from the time derivative of the displace-
ment vectoru = x − X.

The rotation degrees of freedom of points of a micro-polar continuum is described by directors
Ξ of fixed length building a rigid triad attached to the material point X. The micromotion of the
directorsΞ from the reference configurationB0 into the directorsξ of the current configuration
B is described by

ξ = χ(X,Ξ, t) or ξi = χi(X, Ξi, t). (2.7)

The directors do not move like a material line element. The rotation of the directors can be
represented by an orthogonal tensorR̄ with the properties̄R−1 = R̄T anddet[R̄] = 1. Tensor
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R̄ rotates the directorsΞ of the reference configurationB0 into the directorsξ of the current
configurationB, i.e.

ξ = R̄Ξ or ξi = R̄ij Ξi. (2.8)

The micro-rotation tensor̄R can be expressed by the micro-rotation vectorγ = γ ē through the
Euler-Rodrigues formula (e.g. Ehlers, 2002 [39])

R̄ = ē ⊗ ē + (I − ē ⊗ ē) cos γ + (ē × I) sin γ. (2.9)

The material time derivative of Eq. 2.8 yields

ξ̇ = ˙̄RR̄T ξ = Ω̄ ξ. (2.10)

Herein,Ω̄ = ˙̄RR̄T is called micro-polar gyration tensor and is an antisymmetric tensor in the
current configuration. The micro-polar gyration tensorΩ̄ can be represented by the rate of the
Cosserat rotatioṅωc according to

Ω̄ = −ω̇c · ǫ or Ω̄ij = −ǫkij ω̇c
k. (2.11)

or

ω̇c =
1

2
ǫ : Ω̄

T or ω̇c
k =

1

2
ǫkji Ω̄ji, (2.12)

whereǫ denotes the permutation tensor.

The non-symmetric Cosserat strain rate tensor is defined as:

ε̇c = L − Ω̄ = L + ω̇c · ǫ or ε̇c
ij = Lij + ǫkijω̇

c
k. (2.13)

The velocity gradientL can also be represented as the sum ofε̇ andW, i.e.

L = ε̇ + W or Lij = ε̇ij + Wij, (2.14)

with the symmetric tensor

ε̇ =
1

2

(

L + LT
)

or ε̇ij =
1

2
(Lij + Lji) (2.15)

and the skew-symmetric tensor

W =
1

2

(

L − LT
)

or Wij =
1

2
(Lij − Lji). (2.16)
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W is also termed as the macro-spin tensor and it can be represented by the macro-spin vector
ω̇ according to the following relations

W = −ω̇ · ǫ or Wij = −ǫkij ω̇k, (2.17)

or

ω̇ = −1

2
ǫ : W or ω̇k = −1

2
ǫkij Wij. (2.18)

Thenε̇c in Eq. 2.13 can alternatively be represented as

ε̇c = ε̇ − ω̇ · ǫ + ω̇c · ǫ or ε̇c
ij = ε̇ij − ǫkij ω̇k + ǫkij ω̇c

k. (2.19)

From Eq. 2.19 it can be seen that the non-symmetric Cosserat strain rate tensor can be decom-
posed into the symmetric partε̇ and the skew symmetric part
(− ω̇ · ǫ + ω̇c · ǫ). Only for ω̇c = ω̇ the non-symmetric Cosserat strain tensorε̇c in Eq. 2.19
reduces to the symmetric strain rate tensorε̇ of the non-polar continuum.

The rate of gradient of the Cosserat rotation is the so-calledrate of curvature tensor, i.e.

κ̇ =
∂ω̇c

∂x
or κ̇ij =

∂ω̇c
i

∂xj

. (2.20)

2.2 Balance equations

2.2.1 Balance of mass

The principle of conservation of mass requires that the massm of the body does not change
during motion. Thus,Dm/Dt = 0 holds independent of the configuration of the body. With
respect to a scalar fieldρ, called mass density, the conservation of mass requires:

m =

∫

B0

ρ0(X, t0)dV0 =

∫

B

ρ(x, t)dV, (2.21)

whereρ0 is the mass density of the body in the reference configurationandρ denotes the mass
density in the current configuration.

For the continuously differentiable scalar functionρ(x, t) and using Reynold’s transport theo-
rem the material time derivative of Eq. 2.21 yields the following global form of conservation of
mass (e.g. Fung, 1994 [45])

D m

D t
=

D

Dt

∫

B

ρ dV =

∫

B

[

Dρ

Dt
+ ρ div(u̇)

]

dV = 0. (2.22)
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Since the equation holds for an arbitrary choice of the volume V within the continuous body,
the integrand in Eq. 2.22 must vanish. Hence

Dρ

Dt
+ ρ div(u̇) = 0 or ρ̇ + ρ

∂u̇j

∂xj

= 0 or ρ̇ + ρ ε̇c
kk = 0 (2.23)

holds for each point in the body. Relation 2.23 is the local form of conservation of mass in the
spatial description. For the special case of an incompressible material or an isochoric deforma-
tion, i.e. a deformation under constant volume˙εc

kk = 0, the mass density remains constant.

2.2.2 Balance of linear momentum

Following Newton’s second law of motion, in an inertial frame of reference, the material time
derivative of the linear momentump of a body in the current configurationB is equal to the
resultant forceF to the body

Dp

Dt
=

D

Dt

∫

B

ρ u̇ dV = F . (2.24)

The forces acting on the body can be obtained by integration of the surface tractiont per unit
area over the surface boundaryΓ and the integration of the body forceρb per unit volume over
the volume of a body in the current configurationB. Hence

D

Dt

∫

B

ρ u̇ dV =

∫

Γ

t dΓ +

∫

B

ρb dV. (2.25)

Applying Reynold’s transport theorem to the integral on the left hand side of Eq. 2.25 gives:

D

Dt

∫

B

ρ u̇ dV =

∫

B

[

D

Dt
(ρ u̇) + div(u̇) ρ u̇

]

dV.

Using the product rule of derivatives for the first term and rearranging the terms,

D

Dt

∫

B

ρ u̇ dV =

∫

B

[

ρ
Du̇

Dt
+ u̇

(

Dρ

Dt
+ ρ div(u̇)

)]

dV.

By substituting the balance equation of mass (Eq. 2.23) to thesecond term of the above equa-
tion, one obtains:

D

Dt

∫

B

ρ u̇ dV =

∫

B

ρ
Du̇

Dt
dV =

∫

B

ρ ü dV.
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Applying Gauss’ theorem to the first term of the right hand side of Eq. 2.25
∫

Γ

t dΓ =

∫

Γ

σ · n dΓ =

∫

B

div(σ) dV.

Then, the conservation equation of linear momentum can be written as
∫

B

ρ ü dV =

∫

B

[

ρb + div(σ)
]

dV,

or
∫

B

ρ üi dV =

∫

B

[

ρ bi +
∂σij

∂xj

]

dV.

For quasi-static problems,Du̇/Dt = ü = 0, so that the conservation of linear momentum
reduces to the equilibrium equation

∫

B

[

ρb + div(σ)
]

dV = 0 or
∫

B

[

ρ bi +
∂σij

∂xj

]

dV = 0.

Since the above equation holds for arbitrary volumeV within the body, one obtains the local
form as:

ρb + div(σ) = 0 or ρ bi +
∂σij

∂xj

= 0. (2.26)

2.2.3 Balance of moment of momentum

The balance of moment of momentum states that the material time derivative of moment of
momentum is equal to the total torque acting on the body. Following e.g. Eringen & Kafadar
(1976) [41], Diebles (2000) [37], Ehlers (2002) [39], the balance of moment of momentum for
the micro-polar continuum can be expressed as

D

Dt

∫

B

[x × ρ u̇ + ρΘ ω̇c] dV =

∫

B

[x × ρb + ρ c] dV +

∫

Γ

[x × t + m] dΓ. (2.27)

Herein,ρΘ represents the tensor of micro-inertia andc is the body couple per unit mass. With
the Gauss’ theorem the second term in the right hand side of Eq. 2.27 can be written as

∫

Γ

[

x × t + m
]

dΓ =

∫

Γ

[

x × σ n + µn
]

dΓ =

∫

B

[

div(x × σ) + div(µ)
]

dV

=

∫

B

[(

grad(x)
)

× σ + x × div(σ) + div(µ)
]

dV .
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In the following only quasi-static problems are considered, so that the balance of moment of
momentum reduces to

0 =

∫

B

[

x × ρb + ρ c +
(

grad(x)
)

× σ + x × div(σ) + div(µ)
]

dV

=

∫

B

[

x ×
(

ρb + div(σ)
)

+ ρ c +
(

grad(x)
)

× σ + div(µ)
]

dV .

With respect to(grad(x)) × σ = I × σ = ǫ : σT = −ǫ : σ and by substituting the balance
equation of linear momentum (Eq. 2.26) to the first term of theright hand side of the above
equation, one obtains

0 =

∫

B

[

ρ c − ǫ : σ + div(µ)
]

dV. (2.28)

The local form of Eq. 2.28 reads

ρ c − ǫ : σ + div(µ) = 0 or ρ ci − ǫijk σjk +
∂µij

∂xj

= 0. (2.29)

It follows from Eq. 2.29 that the stress tensor in a micro-polar continuum is non-symmetric, i.e.
ǫ : σ 6= 0, with the exception of states where∂µij/∂xj = 0 andci = 0 vanishes simultaneously
(Huang & Bauer, 2003 [61]).

2.3 Micro-polar hypoplastic model

2.3.1 Evolution equation for the void ratio

For the numerical modeling of cohesionless granular materials the assumption is made that the
volume of the solid grains does not change during any arbitrary deformation of the granular
body. Therefore, a volume change of the body is equal to the volume change of the void space
between the solid grains. Furthermore, if the void space is empty the massm of the body is
equal to the massms of the solid grains, i.e.

m = ms or equivalent to ρ V = ρs Vs,

whereρ is the mass density of the granular body andρs denotes the mass density of the solid
grains. For a representative volume element of a granular body, the total volumeV can be
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decomposed into the volumeVs of the solid grains and the volumeVv of the void space. With
respect to the definition of the void ratioe = Vv/Vs, the mass densityρ can be expressed as:

ρ =
ρs Vs

V
=

ρs Vs

Vv + Vs

=
ρs

1 + e
. (2.30)

Substituting the above relation forρ to the balance equation of mass (Eq. 2.23), one obtains

D

D t

(

ρs

1 + e

)

+
ρs

1 + e
ε̇c

kk = 0. (2.31)

With the assumption that the volume of the solid grains does not change and also the mass
densityρs of the grains remains constant, Eq. 2.31 can be rewritten into

ρs

[ −ė

(1 + e)2
+

1

1 + e
ε̇c

kk

]

= 0. (2.32)

Sinceρs 6= 0 the following evolution equation for the void ratioe is obtained

ė = (1 + e) ε̇c
kk. (2.33)

It is worth noting that with the assumption of an empty void space andρs = const., the granular
body can be treated as a single-component continuum (Bauer, 2005 [8]).

2.3.2 Constitutive relations for the stress and the couple stress

The evolution equations for the stressesσij, the couple stressesµij and the void ratioe of the
micro-polar hypoplastic model by Bauer & Huang (1999) [11], Huang & Bauer (2003) [61]
read

σ̊ij = fs

[

â2 ε̇c
ij + (σ̂klε̇

c
kl + µ̂klκ̇

∗

kl) σ̂ij + fd â
(

σ̂ij + σ̂d
ij

) √

ε̇c
klε̇

c
kl + κ̇∗

klκ̇
∗

kl

]

, (2.34)

µ̊ij = d50 fs

[

a2
m κ̇∗

ij + (σ̂klε̇
c
kl + µ̂klκ̇

∗

kl) µ̂ij + 2 fd am µ̂ij

√

ε̇c
klε̇

c
kl + κ̇∗

klκ̇
∗

kl

]

, (2.35)

ė = (1 + e)ε̇c
kk. (2.36)

Herein,̊σij is the objective stress rate given by Jaumann-Zaremba

σ̊ij = σ̇ij + σikWkj − Wikσkj, (2.37)
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andµ̊ij is the objective couple stress rate

µ̊ij = µ̇ij + µikWkj − Wikµkj. (2.38)

The constitutive equations 2.34 and 2.35 use tensor valued functions depending on the current
void ratioe, the non-symmetric stress tensorσ, the couple stress tensorµ, the non-symmetric
strain rate tensoṙεc and the rate of curvature tensorκ̇, where the normalized quantitiesσ̂ij, σ̂d

ij,
µ̂ij andκ̇∗

ij have the following meaning

σ̂ij = σij/σkk, σ̂d
ij = σ̂ij − δij/3, µ̂ij = µij/(d50 σkk), κ̇∗

ij = d50 κ̇ij.

Herein,δij is the Kronecker delta andd50 denotes the mean grain diameter, which enters the
constitutive model as the characteristic length. The scalar factorsfs andfd are called stiffness
and density factors, respectively. Factorsâ andam are related to the limit stress and limit couple
stress at critical states.

The stiffness factorfs and the density factorfd in Eqs. 2.34 - 2.35 are functions of relative void
ratios which are pressure dependent. In particular, the stiffness factorfs is proportional to the
granular hardnesshs and depends on the current void ratioe, the maximum void ratioei and the
stressσkk, i.e. (Bauer, 1995 [3])

fs =
(ei

e

)β hs (1 + ei)

nhi (σ̂kl σ̂kl) ei

(

−σkk

hs

)1−n

, (2.39)

with

hi =
8 sin2 ϕ

(3 + sinϕ)2
+ 1 − 2

√
2 sinϕ

3 + sinϕ

(

eio − edo

eco − edo

)α

.

Hereinβ > 1, hs, n are constitutive constants.

The density factorfd is related to the current void ratioe, the minimum void ratioed and the
critical void ratioec

fd =

(

e − ed

ec − ed

)α

. (2.40)

Herein,α < 0.5 is a positive constant. In Eq. (2.39) and Eq. (2.40) the void ratiosei, ed andec

are pressure dependent. These limit void ratios decrease with an increase of pressureσkk, i.e.
(Gudehus, 1996 [51])

ei

ei0

=
ed

ed0

=
ec

ec0

= exp

[

−
(

−σkk

hs

)n]

, (2.41)
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ln(−σkk/hs)

e
ei0

ec0

ed0

ed

ei

ec

(a)

σ̂33

σ̂22σ̂11

âc

θ

(b)

Figure 2.2: (a) Pressure dependence of the limit void ratios, (b) critical stress surface by Mat-
suoka Nakai (1977) in deviatoric plane.

where ei0, ed0, ec0 are the corresponding values forσkk ≈ 0 (Fig. 2.2(a)). From Eq. 2.40, it
follows that independent of the magnitude of pressureσkk:

for e = ec −→ fd = 1,

for e > ec −→ fd > 1,

for e < ec −→ fd < 1.

It was shown by Bauer (1999) [5] that for monotonic shearing and fd > 1 the non-polar hy-
poplastic model describes contractancy while forfd < 1 dilatancy becomes dominant.

In the model by Bauer & Huang (1999) [11], factoram is assumed to be constant. Factorâ is
adapted to the limit condition by Matsuoka-Nakai (1977). For arbitrary stateŝa reads (Bauer,
2000 [6])

â =
sin ϕc

3 − sin ϕc

[
√

8/3 − 3(σ̂sd
kl σ̂sd

kl ) +
√

3/2 (σ̂sd
kl σ̂sd

kl )
3/2 cos(3θ)

1 +
√

3/2 (σ̂sd
kl σ̂sd

kl )
1/2 cos(3θ)

−
√

σ̂sd
kl σ̂sd

kl

]

.

(2.42)

In Eq. 2.42ϕc denotes the critical friction angle,̂σsd
kl = (σ̂d

kl + σ̂d
lk)/2 andθ represents the

so-called Lode angle which is defined as

cos(3θ) = −
√

6
σ̂sd

kl σ̂
sd
lmσ̂sd

mk

(σ̂sd
kl σ̂sd

kl )
3/2

. (2.43)

When the limit stress condition is met the value ofâ = âc. Then Eq. 2.42 represents the limit
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condition by Matsuoka-Nakai (1977), as sketch out in the deviatoric plane in Fig. 2.2(b). It can
be noted that for the special case of purely coaxial and homogeneous deformations starting from
an initially symmetric stress tensor or ford50 → 0 there are no polar effect, i.e.µij = µ̇ij = 0,
ε̇c

ij = ε̇ij andσij = σji, so that the present micro-polar hypoplastic model reducesto the non-
polar one given by Gudehus (1996) [51] and Bauer (1996) [4], i.e.

σ̊ij = fs

[

â2ε̇ij + σ̂ij (σ̂klε̇kl) + fd â
(

σ̂ij + σ̂d
ij

)

‖ε̇ij‖
]

. (2.44)

It follows from Eq. 2.44 that the functionsfs, â andfd are the same for the micro-polar and non-
polar version. Therefore coaxial and homogeneous deformation is sufficient for the adaptation
of the constants involved in this functions as outlined in details by Bauer (1996) [4], Herle &
Gudehus (1999) [58] and Huang & Bauer (2003) [61].

2.3.3 Calibration of the constitutive constants

The micro-polar hypoplastic model includes the following 10 constants:ϕc, hs, n, ei0, ed0, ec0,
α, β, d50 andam. They can be determined from simple index and element test (Bauer, 1996 [4];
Herle & Gudehus, 1999 [58]). The critical friction angleϕc is defined for a triaxial compression
test in the critical state and, approximately, it corresponds to the angle of repose. The void ratios
ed0 andec0 are related to the minimum and the maximum void ratio in a nearly stress free state,
respectively. The maximum void ratioei0 can be approximated by a scaling factor toec0, for
instanceei0 ≃ 1.2 ec0 (e.g. Herle & Gudehus, 1999 [58]). Parametershs andn can be related to
an isotropic compression test starting from a loose specimen with a void ratio of≃ ei0. α andβ
are related to the peak friction angle in triaxial compression tests with initially loose and dense
specimens (Bauer, 1996 [4]). The mean grain diameterd50 can be estimated from the grain size
distribution. The micro-polar constantam is related to the rotation resistance of particles and it
can be related to the shear band thickness using back analysis (Huang, 2000 [60]).

The values for the constitutive constants obtained for quartz sand (Huang & Bauer, 2003 [61])
are used for numerical simulations in the following chapters:

ei0 = 1.20, ed0 = 0.51, ec0 = 0.82, ϕc = 300, am = 1.0,

hs = 190 MPa, α = 0.11, β = 1.05, n = 0.4, d50 = 0.5 mm.
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2.4 Implementation into the finite element method

2.4.1 Virtual power equation

For establishing the finite element formulation the virtualpower equation is used. By taking
the product of the virtual variations of the velocity fields,i.e. δu̇i andδω̇c

k, with the equilib-
rium equations 2.26 and Eq. 2.29 and integrating over the volume of the body in the current
configuration leads to the following weak form

∫

B

[

δu̇i
∂σij

∂xj

+ δu̇i ρ bi + δω̇c
k

∂µkj

∂xj

− δω̇c
k ǫkij σij + δω̇c

k ρ ck

]

dV = 0. (2.45)

Applying the Gauss’ theorem to the first term of Eq. 2.45,
∫

B

δu̇i
∂σij

∂xj

dV =

∫

Γ

δu̇i σij nj dΓ −
∫

B

∂(δu̇i)

∂xj

σij dV,

and to the third term of Eq. 2.45
∫

B

δω̇c
k

∂µkj

∂xj

dV =

∫

Γ

δω̇c
k µkj nj dΓ −

∫

B

∂(δω̇c
k)

∂xj

µkj dV,

Eq. 2.45 becomes
∫

B

[δu̇i ρbi + δω̇c
k ρck] dV +

∫

Γ

[δu̇i σijnj + δω̇c
k µkjnj] dΓ

−
∫

B

[

ǫijkδω̇
c
kσij +

∂(δu̇i)

∂xj

σij +
∂(δω̇c

k)

∂xj

µkj

]

dV = 0. (2.46)

In the current configuration, the surface tractionti = σijnj is prescribed on the partΓt of the
body surface while the surface couplemk = µkjnj is prescribed onΓm. The virtual velocity
fieldsδu̇i andδω̇c

k are independent from each other, small and arbitrary, except on the surface
Γu whereu̇i is prescribed andδu̇i is zero, and on the surfaceΓωc

whereω̇c
k is prescribed andδω̇c

k

is zero. In addition,Γu, Γωc
, Γt andΓm are mutually exclusive, i.e.Γu ∪ Γt = Γωc ∪ Γm = Γ

andΓu ∩ Γt = Γωc ∩ Γm = 0.

With respect ofti = σijnj on Γt, mk = µkjnj on Γm, δu̇i = 0 on Γu, δω̇c
k = 0 on Γω and the

definitions of

δε̇c
ij = δLij − δΩ̄ij =

∂(δu̇i)

∂xj

+ ǫijkδω̇
c
k and δκ̇kj =

∂(δω̇c
k)

∂xj

,
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the weak form of the virtual power equation can be written as
∫

B

[

δε̇c
ij σij + δκ̇kj µkj

]

dV =

∫

Γt

δu̇iti dΓt +

∫

Γm

δω̇c
kmk dΓm +

+

∫

B

[δu̇i ρbi + δω̇c
k ρck] dV. (2.47)

2.4.2 Adaptation to plane strain condition

For plane strain condition, a point in a Cosserat continuum possesses two translational degrees
of freedom, i.e.u1, u2, and one rotation degree of freedomωc

3. The non-zero stress and couple
stress components for plane strain condition are shown in Fig. 2.3. For plane strain the local
equilibrium equations 2.26 and 2.29 become:

∂σ11

∂x1

+
∂σ12

∂x2

+ ρb1 = 0,

∂σ21

∂x1

+
∂σ22

∂x2

+ ρb2 = 0, (2.48)

∂µ31

∂x1

+
∂µ32

∂x2

− (σ12 − σ21) + ρc3 = 0.

With respect to the following matrix representation of the generalized quantities

Ė = [ε̇c
11, ε̇

c
22, 0, ε̇

c
12, ε̇

c
21, d50κ̇31, d50κ̇32]

T ,

S = [σ11, σ22, σ33, σ12, σ21, µ31, µ32]
T ,

u̇ = [u̇1, u̇2, ω̇
c
3]

T ,

t̄T = [t̄1, t̄2, m̄3],

fT = [ρb1, ρb2, ρc3],

the corresponding virtual power equation for plane strain may be written as
∫

B

δĖT .S dV =

∫

Γ

δu̇T .̄t dΓ +

∫

B

δu̇T .f dV. (2.49)

The constitutive equations 2.34 and 2.35 can be representedin matrix notations as

S̊ = H . Ė, (2.50)
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x1

x2 u1

u2

ωc
3 σ11

σ21

µ31

σ22

σ12

µ32

σ33

Figure 2.3: Kinematic variables (u1, u2, ωc
3), stress components (σ11, σ22, σ33, σ12, σ21) and

couple stress components (µ31, µ32) in Cosserat continuum for plane strain condi-
tion.

whereH is the constitutive matrix with the dimension (7 × 7) given by

H =





Hσσ Hσµ

Hµσ Hµµ



 . (2.51)

Hσσ, Hσµ, Hµσ, Hµµ are nested matrices of matrixH with different dimensions (Huang, 2000
[60]):

Hσσ = fs

(

â2 I5 + Ŝσ.Ŝ
T
σ +

fd â

‖Ė‖

(

Ŝσ + Ŝd
σ

)

.ĖT
σ

)

,

Hσµ = fs

(

Ŝσ.Ŝ
T
µ +

fd â

‖Ė‖

(

Ŝσ + Ŝd
σ

)

.ĖT
µ

)

,

Hµσ = d50 fs

(

Ŝµ.Ŝ
T
σ +

fd 2 am

‖Ė‖
Ŝµ.Ė

T
σ

)

,

Hµµ = d50 fs

(

a2
m I2 + Ŝµ.Ŝ

T
µ +

fd 2 am

‖Ė‖
Ŝµ.Ė

T
µ

)

,

where:
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I5 =





















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





















, I3 =









1 0 0

0 1 0

0 0 1









, I2 =





1 0

0 1



,

Ŝσ =

[

σ11

σkk

,
σ22

σkk

,
σ33

σkk

,
σ12

σkk

,
σ21

σkk

]T

, Ŝµ =

[

µ31

d50σkk

,
µ32

d50σkk

]T

,

Ŝd
σ =

[

σ11

σkk

− 1

3
,
σ22

σkk

− 1

3
,
σ33

σkk

− 1

3
,
σ12

σkk

,
σ21

σkk

]T

,

Ėσ = [ε̇c
11, ε̇

c
22, 0, ε̇

c
12, ε̇

c
21]

T , Ėµ = [d50κ̇31, d50κ̇32]
T ,

σkk = σ11 + σ22 + σ33, ‖Ė‖ =
√

ĖT
σ .Ėσ + ĖT

µ .Ėµ.

The Jaumann-Zaremba objective stress ratesσ̊ij and couple stress rates̊µ3j are related to the
time derivative of the corresponding stress components, i.e. σ̇ij, and to the time derivative of
the corresponding couple stress components, i.e.µ̇3j as

σ̇11 = σ̊11 + W12 (σ12 + σ21)

σ̇22 = σ̊22 − W12 (σ12 + σ21)

σ̇33 = σ̊33

σ̇12 = σ̊12 − W12 (σ11 − σ22)

σ̇21 = σ̊21 − W12 (σ11 − σ22)

µ̇31 = µ̊31 + W12 µ32

µ̇32 = µ̊32 − W12 µ31



24 2 Micro-polar continuum model

with

σ̊11 = fs

[

â2 ε̇c
11 + P σ̂11 + fd â (2σ̂11 − 1/3)

√
R

]

,

σ̊22 = fs

[

â2 ε̇c
22 + P σ̂22 + fd â (2σ̂22 − 1/3)

√
R

]

,

σ̊33 = fs

[

P σ̂33 + fd â (2σ̂33 − 1/3)
√

R
]

,

σ̊12 = fs

[

â2 ε̇c
12 + P σ̂12 + 2 fd â σ̂12

√
R

]

,

σ̊21 = fs

[

â2 ε̇c
21 + P σ̂21 + 2 fd â σ̂21

√
R

]

,

µ̊31 = d50 fs

[

a2
m d50κ̇31 + P µ̂31 + 2 fd am µ̂31

√
R

]

,

µ̊32 = d50 fs

[

a2
m d50κ̇32 + P µ̂32 + 2 fd am µ̂32

√
R

]

,

where

P = σ̂11 ε̇c
11 + σ̂22 ε̇c

22 + σ̂12 ε̇c
12 + σ̂21 ε̇c

21 + µ̂31 d50 κ̇31 + µ̂32 d50 κ̇32,

R = ε̇c 2
11 + ε̇c 2

22 + ε̇c 2
12 + ε̇c 2

21 + d2
50 κ̇2

31 + d2
50 κ̇2

32 .

2.4.3 Element formulation and finite element procedure

Following Huang (2000) [60] a four node quadrilateral isoparametric finite element with two
translational degrees of freedom, i.e.u1, u2, and one rotational degree of freedom, i.e.ωc

3,
at each node is used. Thus, the same interpolation for the displacements and the coordinates
is applied. Within the finite element the interpolation forX = [X1, X2]

T , x = [x1, x2]
T ,

the generalized displacementu = [u1, u2, ω
c
3]

T , the generalized velocitẏu = [u̇1, u̇2, ω̇
c
3]

T , the
generalized strain ratėE = [ε̇c

11, ε̇
c
22, 0, ε̇

c
12, ε̇

c
21, d50κ̇31, d50κ̇32]

T , the generalized virtual velocity
δu̇ = [δu̇1, δu̇2, δω̇

c
3]

T and the generalized virtual strain rateδĖ = [δε̇c
11, δε̇

c
22, 0, δε̇

c
12, δε̇

c
21,

d50δκ̇31, d50δκ̇32]
T is given by

u =
4

∑

α=1

NαI3u
α, (2.52)

X =
4

∑

α=1

NαI2X
α, x =

4
∑

α=1

NαI2x
α, (2.53)
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u̇ =
4

∑

α=1

NαI3u̇
α, δu̇ =

4
∑

α=1

NαI3δu̇
α, (2.54)

Ė =
4

∑

α=1

βαu̇α, δĖ =
4

∑

α=1

βαδu̇α, (2.55)

where:Nα is a standard bilinear shape function with respect to the nodeα, i.e. (α = 1, 2, 3, 4)
and

βα T =
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. (2.56)

In particular, the shape function for the nodeα reads

Nα =
1

4
(1 + ξα

1 ξ1) (1 + ξα
2 ξ2) , (2.57)

and(ξα
1 , ξα

2 ) denotes the local coordinates of nodeα in the master element as shown for example
in Fig. 2.4.

ξ2
ξ1

α = 1 2

34
α 1 2 3 4

ξα
1 −1 1 1 −1

ξα
2 −1 −1 1 1

Figure 2.4: Nodes in the master element.

According to Nagtegaal et al. (1974) [87], a selective reduced integration technique can be used
to avoid volumetric locking. In the selective reduced integration technique, only a one-point
Gauss integration is used to compute the volume change whilea four-point Gauss integration is
applied for the stresses and couple stresses. Following Hughes (1980) [65] the selective reduced
integration technique can be implemented by changing matrix βα in Eq. 2.56 with the following
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matrix β̄
α
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α
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, (2.58)

where

∂Nα

∂xi

=
1

V e

∫

V e

∂Nα

∂xi

dV.

∂Nα/∂xj in β
α

andβα needs to be computed based on the following relation

∂Nα

∂xj

=
∂Nα

∂ξ1

∂ξ1

∂xj

+
∂Nα

∂ξ2

∂ξ2

∂xj

. (2.59)

∂Nα/∂ξ1 and∂Nα/∂ξ2 can be derived from Eq. 2.57 to

∂Nα

∂ξ1

=
1

4
ξα
1 (1 + ξα

2 ξ2) and
∂Nα

∂ξ2

=
1

4
ξα
2 (1 + ξα

1 ξ1). (2.60)

∂ξi/∂xj is the inverse of the isoparametric transformation from thecurrent configuration of the
finite element to the master element

∂ξi

∂xj

=

[

∂xi

∂ξj

]−1

, (2.61)
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where

∂xi

∂ξj

=
∂

∂ξj

(Xi + ui) =
∂Xi

∂ξj

+
∂ui

∂ξj

.

With respect to the element interpolation forX (Eq. 2.53) andu (Eq. 2.52) the following
relation can be obtained

∂xi

∂ξj

=
4

∑

α=1

Xα
i

∂Nα

∂ξj

+
4

∑

α=1

uα
i

∂Nα

∂ξj

. (2.62)

By substituting Eqs. 2.52 - 2.55 into the virtual power equation 2.49, it follows for the single
finite element

4
∑

α=1

δu̇αT

∫

Ve

βα T .S =
4

∑

α=1

δu̇αT





∫

Se

(NαI3)
T .t̄ dS +

∫

Ve

(NαI3)
T .f dV



 , (2.63)

whereVe andSe are the volume and surface area of an element, respectively.

Following the standard procedure in finite element programming (e.g. Hinton & Owen, 1977),
the summation of Eq. 2.63 through all elements of the discretized global structure can be written
in the terms of the global node sequence as

NNODE
∑

K=1

RK δu̇K = 0 with RK = RK(uL), (2.64)

where the upper case lettersK andL indicate nodes in the global node sequence,NNODE
is the total node number (K,L = 1, 2, ..., NNODE), RK is the residual force at nodeK
depending on the generalized displacementu andδu̇K is the generalized virtual velocity.RK

is computed from the summation of relevant contributions tothe nodeK from the surrounding
elements of the global system, where the element contribution Rα

e for RK can be computed
according to

Rα
e =

∫

Se

(NαI3)
T .t dS +

∫

V e

(NαI3)
T .f dV −

∫

V e

βα T .S dV. (2.65)

As δu̇K in Eq. 2.64 are independent variables which can be set to zeroexcept for one degree of
freedom in the system, the equilibrium equation obtained for each node is as follows

RK(uL) = 0. (2.66)
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Due to strong nonlinearity of the equation system, the Newton-Raphson iteration method is
adopted. If the equilibrium equation 2.66 is satisfied byuL

t0 at timet0, the new equilibrium for
a load increment with respect to the increment of the nodal variable∆uL = uL

t0+∆t − uL
t0 can

be written as

RK (uL
t0 + ∆uL) = 0. (2.67)

With respect to the global tangential stiffnessKKL the Newton-Raphson iteration can be written
as

KKL
i ∆uL

i+1 = RK
i , (2.68)

with KKL
i = (δRK)/(δuL) (uM

i ) and uL
i+1 = uL

i + ∆uL
i+1. Herein, the subscripti (i =

0, 1, 2, ...) denotes the number of iterations withuL
0 = uL

t0 andRK
0 = RK(uL

t0).

The initial guess can be computed according toKKL
0 ∆uL

1 = ∆RK , where∆RK can be ob-
tained from Eq. 2.65 with

∆Rα
e =

∫

Se

(NαI3)
T .tt0+∆t dS +

∫

V e

(NαI3)
T .ft0+∆t dV −

∫

V e

β
αT

.St0 dV.

The global tangential stiffness matrixKKL in Eq. 2.68 can be computed from the element
stiffness matrixKαβ

e according to the sequence of the degree of freedom in the discrete system:

Kαβ
e =

∫

V e

β
αT

Hβ
β
dV +

∫

V e

δβ
αT

δuβ
S dV +

∫

V e

β
αT

S
δJ

δuβ

1

J
dV

−
∫

Se

(NαI3)
T Qβ

s dS −
∫

V e

(NαI3)
T Qβ

v dV. (2.69)

Herein,Qβ
s andQβ

v denote the load contribution to the global stiffness:

Qβ
s =

δt

δuβ
+

1

Ar

t
δAr

δuβ
,

Qβ
s =

δf

δuβ
+

1

J
f

δJ

δuβ
,

with J = dV/dV0 andAr = dS/dS0 are the ratio of a volume element and the ratio of a surface
element, respectively.



2.4 Implementation into the finite element method 29

2.4.4 Time integration scheme

For a rate independent material behavior, a fictitious time scale can be introduced for quasi-
static loading process. A loading step is divided into increments which corresponds to the
division of the time domain into time increments. For a generalized displacement increment
computed for a time interval [t0, t1 = t0 + ∆t], the stressesσij, couple stressesµ3j and void
ratio e are to be updated by integrating the constitutive equationsat Gauss points within each
element. Following Huang (2000) [60] the detail updating process with a one-step implicit time
integration method and sub-time stepping scheme can be explained as follows:

Providing the void ratioet0 at time t0 is known, the void ratio at timet1 can be computed
according to

et1 = (1 + et0) exp[∆ǫv] − 1, (2.70)

where∆ǫv = ∆ǫc
11 + ∆ǫc

22 is the increment of the volumetric strain.

With respect to the known value of the generalized stressSt0 at timet0, the generalized stress
at timet1 is updated according to

St1 = St0 + ∆S. (2.71)

Herein, an iteration procedure for the evaluation of the general stress increment∆S is required.
The (j + 1)th estimation for the generalized stress increment reads

∆Sj+1 = H

(

S
j
t0+θ∆t, et0+θ∆t,

∆E

‖∆E‖

)

.∆E, (2.72)

S
j+1

t1 = St0 + ∆Sj+1, (2.73)where

St0+θ∆t = (1 − θ)St0 + θSt1 = St0 + θ∆S,

et0+θ∆t = (1 − θ)et0 + θet1,

with θ ∈ [0, 1]. According to Buchanan and Turner (1992) the integration scheme is uncondi-
tionally stable forθ ≥ 0.5. The iteration stops if the following condition is fulfilled

R =
‖∆Sj+1 − ∆Sj‖

‖∆Sj‖ ≤ ǫTOL, (2.74)

with a prescribed toleranceǫTOL. When the total number of iteration is reached, i.e.j = niter,
and the requirement 2.74 is not yet fulfilled, the sub-time stepping is initiated by reducing the
time increment by a half. In order to prevent the infinite sub-stepping, a lower bound is defined,
i.e. the integration scheme fails for the sub-time increment less than(εtime ∗∆t), with εtime is a
prescribed positive scalar (e.g. Huang, 2000 [60]). The flowchart of the algorithm is shown in
Fig. 2.5.
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Figure 2.5: Flowchart of time integration scheme for the micro-polar hypoplastic model (after
Huang, 2000 [60]).



3 SOIL STRUCTURE INTERACTION

The mechanical properties of the interface behavior between soil and the bounding structures
under shearing can be of great importance in many geotechnical applications such as shallow
foundations, retaining walls, tunnels and reinforced soilstructures (e.g. Gudehus, 1994 [50],
1999 [53]). Therefore, the investigations of the soil-structure interface have attracted great
attentions of many researchers. Field observations, laboratory experiments and numerical sim-
ulations have been conducted in order to gain insights into the complex phenomena in the soil
body close to the surface of the bounding structure. Experiments such as direct shear test (e.g.
Potyondy, 1961 [97]; Jewell & Wroth, 1987 [67]; Paikowsky et al., 1995 [94]; Tejchman & Wu,
1995 [117]; Frost et al., 2002 [43]; DeJong & Frost, 2002 [33]) simple shear test (Uesugi &
Kishida, 1986a [119]; Uesugi & Kishida, 1986b [118]; Uesugiet al., 1988 [120]), pullout test
(e.g. Ingold, 1983 [66]; Bauer & Mowafy, 1988 [15]; Palmiera &Milligan, 1989 [95]; Bergado
et al., 1996 [19]) and ring torsional test (e.g. Yoshimi & Kishida, 1981 [127]; Garga & Sedano,
2002 [46]) had been carried out to investigate the deformation behavior of the soil close to the
interface and the shear resistance between granular materials and bounding structures with dif-
ferent surface roughness. The surface roughness is usuallydefined as the difference between
the highest peak and the lowest trough along the surface profile.

Experiments show an evidence of the influence of the mean grain size, the density of the gran-
ular material, the surface roughness and the stiffness of the bounding structure (e.g. Potyondy,
1961 [97]; Uesugi & Kishida, 1986a [119]; Boulon, 1989 [23]; Paikowsky et al., 1995 [94];

(a) (b)

Figure 3.1: Shearing of granular materials on the (a) smooth surface and (b) rough surface
(After DeJong & Frost, 2002 [33]).

31
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Figure 3.2: Interlocking of soil particles within the cellsof geogrid reinforcement.

Tejchman & Wu, (1995) [117]; DeJong & Frost, 2002 [33]; Frostet al., 2002 [43]) and the
type of the tests (e.g. Uesugi & Kishida, 1986b [118]; Tejchman & Wu, 1995 [117]; Tejchman,
2004 [110]) on the shear resistance at the interface and on the corresponding displacement field
inside the granular body.

In particular, the influence of the surface roughness of the bounding structure on the deformation
behavior of the granular body can be clearly observed in Fig.3.1. In this experiment, the
shear tests were conducted on compacting alternating layers of dyed/non-dyed sub-rounded
sand which were placed on top of the interchangeable steel-alloy sleeve. After a certain shear
displacement the deformations of the sand specimens are shown in Figs. 3.1(a) - 3.1(b) for
the smooth and the rough surfaces of a steel-alloy sleeve, respectively. In Fig. 3.1(a) shear
deformations in the sand body cannot be detected. Thus, the sand specimen behaves like a rigid
body during shearing. This also means that the slippage occurs at the interface, and the shear
resistance at the interface is lower than in the granular body (e.g. Potyondy, 1960 [97]; Jewell
& Wroth, 1987 [67]; Bauer & Mowafy, 1988 [15]; Bergado et al., 1996 [19], 2003 [20]). On the
contrary, when a textured steel-alloy sleeve is sheared against the granular body, a part of the soil
particles are interlocked by the rough surface of the steel-alloy sleeve (Fig. 3.1(b)). Therefore,
the displacement of soil particles at the interface is mainly dictated by displacement of the
bounding structure. The distribution of the shear deformation across the height of the granular
body is nonlinear (e.g. Garga & Infante Sedano, 2002 [46]). After large shearing the shear
deformation is localized within a zone in the granular body close to the surface of the bounding
structure, as shown in Fig. 3.1(b). This zone is called shearband. The granular body outside
of the shear band is almost not affected. Furthermore, the occurrence of the interlocking of soil
particles at the interface is mainly related with the interaction between the surface roughness
of the bounding structure, the grain size and the surface roughness of the grains. The shear
resistance at the interface is not constant during shearing(e.g. Tejchman & Wu (1995) [117]).
With the increase of shearing the shear resistance at the interface first increases up to the peak
and then it can decrease toward a stationary value. In addition to the sliding of the soil particles
at the interface, Uesugi et al. (1988) [120] reported that the soil particles at the interface may
also rotate.

The aim of this chapter is to investigate the deformation behavior of a granular soil close to
a bounding structure under shearing. Due to shearing parallel to the bounding structure the
soil grains at the interface between the granular body and the bounding structure can generally
translate relatively to the surface of the bounding structure and they can also rotate. In the
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present study, only cases where the grains at the interface are captured by the rough surface
of the bounding structure are considered. An example for such rough bounding structures is
a geogrid in a reinforced soil structure. As sketched in Fig.3.2 the interlocking of the soil
grains within the geogrid cells are dominant (e.g. Bauer & Mowafy, 1988 [15]; Konietzky et
al., 2004 [78]). Although the displacement of the grains at the interface is mainly dictated by the
displacement of the bounding structure, the soil grains canrotate. In this context it is important
to distinguish between rotation of the particles with and without a relative displacement of the
center of the mass of the particles (e.g. Bauer & Huang, 2004 [12]). The rotation resistance
of the grains at the interface is related to some factors suchas the shape and surface roughness
of the grains and the ratio between the grain size and the surface roughness of the bounding
structure. For instance along the interface of a geogrid (Fig. 3.2) the rotation resistance of the
grains located within the geogrid cells may be different as the rotation resistance of grains in
contact with the smooth surface of the members of the geogrid. Analytical investigations (e.g.
Unterreiner et al., 1994 [121]; Bauer, 2005 [8]) and numerical simulations (e.g. Tejchman, 1997
[107]; Bauer & Huang, 1999 [11]; Huang & Bauer, 2003 [61]; Bauer &Huang, 2004 [12]) with
a micro-polar continuum model show a strong influence of the assumed boundary conditions on
the deformation within the shear layer. Tejchman (1997) [107] proposed a constitutive model
with a linear relation between the displacement and Cosseratrotation of the soil particle at
the interface. Herein, the assumed factor of the particle translation which is transmitted to the
rotation shows a strong influence on the deformation of the granular soil close to the interface.
The main results obtained from analytical and numerical studies with micro-polar hypoplastic
models and a homogeneous distribution of the prescribed interface boundary conditions are:

• the displacement field is nonlinear from the beginning of shearing (e.g. Tejchman & Wu,
1993 [116]; Tejchman, 1994 [106]; Tejchman, 1997 [108]; Tejchman & Bauer, 1996
[111], 2004 [112], 2005 [113]; Bauer et al., 2006 [13]),

• for an initially dense material shear strain localization appears before the peak stress ratio
is reached (e.g. Bauer & Huang, 1997 [10]),

• for large shearing the deformation is localized within a narrow zone while outside this
localized zone the granular soil behaves rigidly for continuous shearing (e.g. Tejchman
& Gudehus, 2001 [114]; Huang & Bauer, 2003 [61]; Gudehus & Nübel, 2004 [56]),

• Cosserat rotations are only pronounced within the localizedzone (e.g. Tejchman, 1997
[108], [107]; Tejchman, 2000 [109]),

• the thickness of the localized zone can be detected from the distribution of the Cosserat
rotation, the void ratio, the gradients of the curvatures and the shear strain rate, based on
their pronounced values (e.g. Tejchman & Gudehus, 2001 [114]; Huang et al., 2002 [63];
Nübel, 2002 [89]; Huang & Bauer, 2003 [61]; Nübel & Huang, 2004[90]),

• while the distribution of the void ratio reflects the historyof dilatancy or contractancy,
the distribution of the shear strain rate is related to the current active thickness of the
localized zone (e.g. Huang & Bauer, 2003 [61]; Bauer et al., 2006 [13]),
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• the thickness of the localized zone is almost proportional to the mean grain size and also
influenced by the void ratio, the pressure level and the micro-polar boundary conditions
(e.g. Tejchman, 1997 [107]; Tejchman et al., 1999 [115]),

• for monotonic shearing the state quantities within localized zones tend towards a station-
ary state for which a coupling between the norm of the deviatoric stress and the norm of
the couple stress tensor may exist depending on the type of the micro-polar model (e.g.
Huang, 2000 [60]; Nübel, 2002 [89]; Huang & Bauer, 2003 [61]).

In particular, for shearing of a granular layer between parallel walls with symmetric micro-
polar boundary conditions at the top and the bottom surfacesthe shear localization occurs in
the middle of the layer. When non-symmetric micro-polar boundary conditions are considered
the localization is closer to the surface boundary with higher prescribed Cosserat rotation. In
the following section further numerical studies with different interface properties and different
initial states are carried out.

3.1 Shear localization close to a bounding structure

Plane shearing of an infinite extended granular strip in contact with a rough surface of a bound-
ing structure is simulated using the finite element method and a micro-polar hypoplastic model.
The bounding structure is assumed to be rigid and it moves parallel to the granular strip. Due to
the symmetry of the problem, only a small section of the infinite layer is considered as shown
in Fig. 3.3(a). In particular, a section with an initial height of h0 = 4 cm and a width ofb = 10
cm is discretized with finite elements with a size of1.25 mm× 1.25 mm. The finite element
mesh and the boundary conditions are shown in Fig. 3.3(b). Inorder to model the behavior
of a lateral infinite layer constraints to the side nodes of the elements along section I and sec-
tion II are introduced (e.g. Bauer & Huang, 1999 [11]). In particular, each node on the left
boundary (x1 = 0) is controlled to have the same displacements and Cosserat rotation as the
corresponding node with the same vertical co-ordinate on the right boundary (x2 = b):

x1 = 0 : u1(0, x2) = u1(b, x2), u2(0, x2) = u2(b, x2), ωc
3(0, x2) = ωc

3(b, x2),

x1 = b : u1(b, x2) = u1(0, x2), u2(b, x2) = u2(0, x2), ωc
3(b, x2) = ωc

3(0, x2).

These prescribed lateral constraints also imply that arbitrary field quantitiesΦ are independent
of the coordinate in the direction of shearing, i.e.∂Φ(x1, x2)/∂x1 = 0.

For the top surface of the granular soil layers the followingboundary conditions are assumed:

x2 = h : u1 = 0, σ22 = −p0 = −100 kPa,ωc
3 = 0.
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Figure 3.3: Modeling the interaction between a plane infinite granular layer under constant
vertical pressurep0 and the rough surface of the bounding structure under shearing:
(a) section of the granular layer with the heighth and the widthb,
(b) initially undeformed finite element mesh with prescribed boundary conditions.
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Herein the vertical pressurep0 at the top surface is kept constant. Thus, the height of the
specimen can change as a result of contractancy or dilatancywithin the specimen. The Cosserat
rotation of the soil particle at the top boundary is assumed to be zero.

At the bottom surface of the granular soil layer it is assumedthat the grains are captured by
the rough surface of the rigid bounding structure so that at the boundaryx2 = 0 neither rela-
tive displacement nor strain takes place. Therefore, the displacements of the particles along the
interface are equal to the prescribed horizontal shear displacementu1B of the bounding struc-
ture. In order to study the influence of particle rotation at the interface two different micro-polar
boundary conditions are considered: a homogeneous distribution and a periodic fluctuation of
the Cosserat rotation. A periodic fluctuation of the Cosserat rotation may be motivated for
instance by a different rotation resistance of particles along the interface of a geogrid with a
periodic cell structure as sketched out in Fig. 3.2. It can beimagined that the rotation resistance
for particles in contact with the smooth surface of the grid members is smaller than the rotation
resistance of particles located within the cells of the grid.

The prescribed boundary conditions at the bottom surface ofthe granular soil for the homoge-
neous distribution of the Cosserat rotation reads:

x2 = 0 : u1 = u1B, u2 = 0, µ32(x1 ∈ b) = 0,

and for the periodic fluctuation of the Cosserat rotation:

x2 = 0 : u1 = u1B, u2 = 0, ωc
3(x1 ∈ b1) = 0 andµ32(x1 ∈ b2) = 0,

with b1+b2 = b. In addition to the influence of the Cosserat rotation, the influences of the initial
density of the granular body and the mean grain size on the evolutions of the shear deformation
and the shear resistance at the interface are also investigated.

The material properties of the granular material used here is the same as those mentioned in
Section 2.3.

3.2 Homogeneous distribution of the micro-polar boundary condition

For the case that the rotation resistance along the interface can be neglected the couple stresses
are assumed to be zero along the interface, i.e.µ32(x2 = 0) = 0. In Fig. 3.4 the deformed
granular soil strip together with the contour plot of the void ratio is shown after a horizontal
displacement of the bounding structure ofu1B/h0 = 1.4. It can be seen that the distribution of
the displacement across the height of the layer is non-linear. The deformation localizes within
a zone close to the surface of the bounding structure. The lighter strip indicates a higher void
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Figure 3.4: Deformed shape of the granular body and contour plot of the void ratio within a
granular layer after a horizontal displacement of the bounding structure ofu1B =
1.4 h0 (homogeneous initial void ratioe0 = 0.6, mean grain diameterd50 = 1 mm
and zero interface couple stresses) - lightest strip:e ≃ ec = 0.76, darkest strip:
e ≃ e0 = 0.6.

ratio which reflects a strong dilatancy within the localizedzone. The granular soil outside the
shear band remains almost unaffected. Thus, the initially homogeneous distributed void ratio
becomes inhomogeneous with stratified structure as a resultof strain localization. The predicted
thickness of the shear band is about7× d50, which is smaller than the shear band thickness ob-
served in a granular body far from a bounding structure. For instance, in the biaxial compression
test a shear band thickness of10 × d50 up to20 × d50 is reported from the experiments by Het-
tler & Vardoulakis (1984) [59], Oda et al. (2004) [93] and from the numerical simulations by
Tejchman & Bauer (1996) [111], Tejchman (1997) [108], Gudehus & Nübel (2004) [56], Nübel
& Huang (2004) [90].

3.2.1 Effect of the initial void ratio and the mean grain size

In order to investigate the influence of the initial void ratio e0 and the mean grain diameterd50

calculations with the following four combinations are performed:

e0 0.6 0.6 0.55 0.72

d50 0.5 1.0 0.5 0.5

A comparison of the normalized horizontal displacements across the height of the layer is shown
in Fig. 3.5(a). It is obvious that the thickness of the localized zone is larger for a higher
initial void ratio and a larger mean grain diameter. The Cosserat rotationωc

3 is extremal at the
interface, where the amount is larger for a lower initial void ratio e0 and a lower mean grain
diameterd50 as shown in Fig. 3.5(b). At the beginning of shearing the normalized quantity
ϕm = arctan(σ12/σ22) , which is called mobilized friction angle, increases and reaches a peak
state which is higher for an initially denser material (Fig.3.6). It can be observed that for the
same initial void ratioe0 = 0.6 the peak value is not influenced by the mean grain diameter.
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Figure 3.5: Influence of the initial void ratioe0 and the mean grain diameterd50 on the dis-
tribution of (a) the normalized horizontal displacementu1/h0 (b) of the Cosserat
rotationωc

3.

After the peak the mobilized friction angleϕm decreases and for large shearing it tends towards
a stationary value which is close to the critical friction angle of the granular soil. The deviation
of the stationary value from the critical friction angle is related to the amount of the shear
deformation and may also be affected by the special version of the polar hypoplastic model as
discussed in Appendix B. It is worth mentioning thatσ12 andσ22 are stress components parallel
and perpendicular to the rough rigid bounding structure. From the equilibrium in the vertical
direction it follows thatσ12 andσ22 are independent on the co-ordinatex2.

3.2.2 Effect of the vertical pressure

The influence of the vertical pressure, i.e.p0 = 100, 200 and400 kPa, on the deformation
behavior of the granular body is shown in Figs. 3.7 - 3.8 for the initially homogeneous specimen
with e0 = 0.6 andd50 = 1 mm and the horizontal displacement of the bounding structure of
u1B/h0 = 1.4. In particular, the amount ofωc

3 at the interface is higher for a lower vertical
pressure (Figs. 3.7(b)). It can also be observed that the higher the vertical pressurep0 the
larger the thickness of the shear band (Figs. 3.7(a)-(b)). Fig. 3.8(a) clearly shows that a higher
vertical pressurep0 leads to a higher horizontal shear stressσ12. However, under large shearing
the mobilized friction angleϕm tends to a stationary value which is independent of the vertical
pressurep0 (Figs. 3.8(b)). This stationary value is close to the critical friction angle of the
granular soil. The reason of the deviation is related to the amount of the shear deformation and
may also be affected by the special version of the polar hypoplastic model (Appendix B). It can
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ϕm
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u1B/h0

Figure 3.6: Influence of the initial void ratioe0 and the mean grain diameterd50 on the evolution
of the mobilized friction angleϕm .

also be observed from Fig. 3.8(b) that a lower vertical pressurep0 leads to higher peak value of
the mobilized friction angleϕm .

3.3 Periodic fluctuation of the micro-polar boundary condition

In this section the shear resistances due to a fluctuation of the micro-polar boundary conditions
at the interface is investigated. Two special cases with a periodic change of the Cosserat rotation
or the couple stress within prescribed distances are considered. The fluctuation is modeled by a
bit-by-bit locking of Cosserat rotationωc

3 along the boundaryx2 = 0 as follows:

- Small bit-by-bit locking:
Zero Cosserat rotation, i.e.ωc

3 = 0, is prescribed within a distance of5 mm followed by
zero couple stress, i.e.µ32 = 0, within a distance of20 mm (Fig. 3.9(a)).

- Large bit-by-bit locking:
Zero Cosserat rotation, i.e.ωc

3 = 0, is prescribed within a distance of12.5 mm followed
by zero couple stress, i.e.µ32 = 0, within a distance of12.5 mm (Fig. 3.9(b)).

The numerical calculations are carried out for an initial void ratio of e0 = 0.6, a mean grain
diameter ofd50 = 1 mm and a constant vertical pressure ofp0 = 100 kPa. For a prescribed
horizontal displacement of the bounding structure ofu1B = 2 h0 the numerical results obtained
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Figure 3.7: Influence of the vertical pressurep0 on the distribution of (a) the normalized hori-
zontal displacementu1/h0 and (b) the Cosserat rotationωc

3.

-350

-300

-250

-200

-150

-100

-50

0
0 0.5 1.0 1.5

p
0
= 100 kPa

p
0
= 200 kPa

p
0
= 400 kPa

(a)

σ12

[kPa]

u1B/h0

0

10

20

30

40

0 0.5 1.0 1.5

p
0

= 100 kPa
p

0
= 200 kPa

p
0

= 400 kPa

(b)

ϕm

[deg.]

u1B/h0

Figure 3.8: Influence of the vertical pressurep0 on the evolution of (a) the mean horizontal
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Figure 3.9: Fluctuation of the Cosserat rotationωc
3 along the interface: (a) small bit-by-bit

locking of the Cosserat rotation, (b) large bit-by-bit locking of the Cosserat rotation.

for the small bit-by-bit locking of the Cosserat rotation areshown in Figs. 3.9(a) - 3.12(a) while
those for the large bit-by-bit locking of the Cosserat rotation are shown in Figs. 3.9(b) - 3.12(b).

In particular, Figs. 3.9(a) and 3.9(b) show the distribution of assumed-values of the Cosserat
rotationωc

3 along an interface section of10 cm. The deformed shapes of the granular body as
well as the contour plots of the void ratioe are shown for the small and for the large bit-by-
bit locking of the Cosserat rotation in Figs. 3.10(a) and 3.10(b), respectively. A comparison
indicates that the location and the thickness of the shear band strongly depend on the micro-
polar boundary conditions at the interface. It can be seen inFig. 3.10 that the location of the
shear band is at the bottom in the middle of the granular layerfor both cases. In particular,
compared to the large bit-by-bit locking of the Cosserat rotation the location of the shear band
is closer to the surface of the bounding structure for the small one. The thickness of the shear
band is10 × d50 for both cases. The lighter strip shows strong dilatancy in the localized zone
while the material outside of the shear band remains almost unaffected. For the corresponding
stress state a critical void ratio ofec = 0.76 can be calculated via Eq. 2.41. Figs. 3.11(a) and
3.11(b) show the distribution of the Cosserat rotation across the height of specimen for the small
and the large bit-by-bit locking of the Cosserat rotation, respectively. Figs. 3.12(a) and 3.12(b)
show that a fluctuation of the rotation resistance leads to a fluctuation of the mobilized friction
angleϕm. However, under large shearing the average value of the mobilized friction angleϕm is
independent of the assumed fluctuation of the micro-polar boundary conditions and it is almost
equal to the critical friction angle of the granular soil forplane shearing. The small deviation is
again related to the amount of the applied shear deformationand may also be influenced by the
specific polar hypoplastic version (Appendix B).
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(a)

(b)

Figure 3.10: Deformed shape of the granular body and contourplot of a granular layer after
a horizontal displacement ofU1B = 2h0 with (a) Small bit-by-bit locking of the
Cosserat rotation, (b) Large bit-by-bit locking of the Cosserat rotation (homoge-
neous initial void ratioe0 = 0.6, mean grain diameterd50 = 1mm) - lightest strip:
e ≃ ec = 0.76.

3.4 Effect of a stratified soil

While in the foregoing investigations the granular specimenwith a homogeneous distributed
initial void ratio is investigated the influence of a thin layer with a slightly different initial void
ratio is considered in this section. In particular, an initially rather high void ratio ofe0 = 0.62
within the layer0.375 ≤ x2 ≤ 0.5 cm is assumed. Along the bottom surface of the granular
soil a small bit-by-bit locking of the Cosserat rotation is prescribed.

The resulting displacement field and Cosserat rotation across the specimen’s height are com-
pared to that obtained for a homogeneous initial void ratio of e0 = 0.6 after u1B = 2h0, as
shown in Fig. 3.13. In particular, the location of shear localization shifts closer to the layer with
the initially higher void ratio, as shown by the dashed curvein Fig. 3.13(a). The same tendency
can be observed for the distribution of the Cosserat rotation(Fig. 3.13(b)).
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Figure 3.11: Distribution of the Cosserat rotationωc
3 across the height of the granular layer

with: (a) small and (b) large bit-by-bit locking of the Cosserat rotation along the
interface after a horizontal displacement of the bounding structureu1B = 2h0.
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Figure 3.12: Fluctuation of the mobilized friction angleϕm (solid curve) and its average value
(dotted line) for a granular layer with: (a) small and (b) large bit-by-bit locking
of the Cosserat rotation along the interface after a horizontal displacement of the
bounding structureu1B = 2h0.
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Figure 3.13: Influence of the distribution of the initial void ratioe0 for a mean grain diameter
d50 = 1 mm, and a fluctuation of the micro-polar interface boundary conditions:
(a) normalized horizontal displacementu1/h0,
(b) Cosserat rotationωc

3 across the height of the layer.

3.5 Comparison of the numerical results

From the numerical results obtained for the particular prescribed micro-polar boundary condi-
tions along the interface:

• zero couple stress (Case 1),

• small bit-by-bit locking of Cosserat rotation (Case 2),

• large bit-by-bit locking of Cosserat rotation (Case 3),

the following main conclusions can be drawn:

The location of the shear band is:

• for Case 1: close to the interface,

• for Case 2: farther from the interface,

• for Case 3: close to the middle of the granular layer.
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The predicted thickness of the shear band is:

• for Case 1:7 × d50,

• for Case 2:10 × d50,

• for Case 3:10 × d50.

Furthermore, the shear band is located closer to a layer withslightly higher initial void ratio
when a stratified soil is considered.
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4 MECHANICAL BEHAVIOR OF A SOILBAG UNDER VERTICAL
COMPRESSION

In this chapter, the mechanical behavior of a single soilbagunder vertical compression is inves-
tigated using analytical and numerical approaches. For theanalytical approach, several simpli-
fications are assumed. In particular, it is assumed that fromthe beginning of compression the
stress ratio in the soil material is constant and the volume of the soil does not change during
deformation. Depending on the assumed shape of the section,the stress in the granular material
inside the soilbag is assumed to be either piecewise or entirely homogeneous distributed. For
the soilbag structure a plane strain condition and a frictionless interface behavior between the
soil and the bag are considered. Thereby, the tensile stressof the bag is uniformly distributed
along the circumference of the soilbag. In addition to the analytical model by Matsuoka & Liu
(2006) (in the following called M&L) where a rectangular section is assumed, also a soilbag
model with lateral semicircular boundaries is investigated. In contrast to the model by M&L
the local equilibrium in the soilbag is generally fulfilled with the proposed soilbag model.

In order to validate the assumptions made for the analyticalmodel the corresponding numer-
ical investigations using the finite element method are alsoconducted. Particular attention is
paid on the shear localization depending on the vertical displacement, the assumed interface
properties and the initially homogeneous or heterogeneousdistribution of the void ratio. As
already discussed in Chapter 3, the interface behavior is dictated by the slide and the rotation
resistances of soil particles in contact with the wrapping bag. The following interface properties
are investigated: a frictionless interface (no slide and rotation resistance) and a fully interlocked
interface (translation and rotation of the soil particles at the interface coincides with the motion
of the bag).

4.1 Analytical approach

4.1.1 Soilbag model by Matsuoka - Liu

The mechanical behavior of a single soilbag under monotonicvertical compression (Fig. 4.1)
is investigated based on a simplified analytical model proposed by M&L (2006). In this model
the following assumptions are made:

• The soilbag with a rectangular cross section, i.e. with the width B and the heightH,

47
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u2
Top platen

Bottom platen

Soilbag

x

y
H

B

σv

σh

Figure 4.1: Section of a vertically compressed single soilbag.

is completely filled with a cohesionless granular material and vertically compressed be-
tween parallel rigid platens. In the M&L model, a constant horizontal pressure is pre-
scribed at the lateral plane boundaries of the soilbag whichis not taken into account in
the present study. In this context, it can be noted that a constant lateral pressure does
not guarantee that the lateral boundaries remain plane during compression. Thus, an al-
ternative shape of the soilbag section with lateral semicircular boundaries is discussed in
Subsection 4.1.2.

• The weight of the granular material inside the bag is neglected. Thus, for the initially
uncompressed soilbag a stress free state is assumed for both, the wrapping bag and the
granular materials.

• Plane strain condition (with the unity depthl perpendicular to the plane) is considered.

• The surfaces of the top and bottom platens are frictionless and the normal pressurepv in
the contact zone is homogeneously distributed over the contact areaB x l.

• The material behavior of the wrapping bag is linear elastic-ideally plastic, where the used
elastic modulusE and the limit tensile stressσlimit is defined for a tensile test under plane
strain condition. The change of the thickness of the membrane of the bag is neglected.

• The interface between the granular material and the bag is frictionless. As relative dis-
placements between the granular material and the bag are notrestricted, the tensile stress
in the membrane is uniformly mobilized. Although a rectangular section is considered,
the edges are smoothed out as shown in Fig. 4.1.

• The vertical stressσv and horizontal stressσh of the granular material is homogeneously
distributed. Independent of the amount of the compression the stress ratioσv/σh is as-
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sumed to be constant and equal to the limit stress ratio of thegranular material. Thus, the
limit stress ratio can be related to the critical friction angle of the granular material. In
this context, it is worth noting that during vertical compression the soilbag system is not
in the so-called critical state. Although the volume changeis assumed to be zero and the
limit stress ratio is reached, the magnitude of the stress components in the soil can still
increase.

In the following, it will also be assumed that the soilbag hasalmost a rectangular section with
initial dimension of (B0 × H0) so that the initial quantities can be approximated as

initial perimeter : L0 = 2(B0 + H0),

initial volume : V0 = B0 H0 l.
(4.1)

For a vertical compressionu2 the initial heightH0 of the soilbag reduces to:

H = H0 − u2. (4.2)

As the volume of the soilbag is assumed to be constant during compression, thus

V = B H l = V0 = B0 H0 l. (4.3)

With respect to Eq. 4.2 and Eq. 4.3 one obtains the widthB depending on the initial dimensions
and the vertical displacementu2 as

B =
H0B0

H0 − u2

. (4.4)

Then the current perimeterL = 2(B + H) can be represented as a function ofu2, i.e.

L = 2

(

H0 − u2 +
B0 H0

H0 − u2

)

, (4.5)

and the change of perimeter∆L = L − L0 is defined as

∆L =
2 u2 (B0 − H0 + u2)

H0 − u2

. (4.6)

The normalized quantity,∆L/L0, reads:

∆L

L0

=
u2 (B0 − H0 + u2)

(H0 − u2) (B0 + H0)
, (4.7)
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Figure 4.2: Relation between the normalized change of perimeter of the soilbag and the nor-
malized prescribed vertical displacement for (a) a higher range ofu2, (b) a lower
range ofu2.

with the following extreme values:

∆L

L0

→ ∞ for u2 → H0

∆L

L0

= 0 for the initial state withu2 = 0 and forū2 = H0 − B0 > 0.

The latter only has physical meaning for vertically oriented soilbags with the initial dimension
H0 > B0. In this case the change of perimeter is negative at the beginning of vertical compres-
sion, i.e.∆L < 0 for u2 < ū2 so that no tensile stress is activated in the wrapping material. In
the following only soilbags with the initial dimensionB0 ≥ H0 are considered. As an example
for B0/H0 = 4, the nonlinear increase of the normalized quantity∆L/L0 with the normal-
ized prescribed vertical displacementu2/H0 is shown in Fig. 4.2. From Fig. 4.2(b) it can be
observed that∆L/L0 is also nonlinear for the small compression range.

With the assumption that the influence of the transverse contraction for plane strain condition
is taken into account with the value of the elastic modulus and with respect to the definition of
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engineering strain, the tensile stressσbag and the consequently tensile forceT of the bag read

σbag = E
∆L

L0

, T = E
∆L

L0

t l, (4.8)

whereE andt are elastic modulus and the thickness of the bag, respectively. It should be noted
that the elastic modulusE in Eq. 4.8 already takes into account the influence of the transverse
contraction for plane strain condition. With respect to thedefinition of engineering strain and
the real elasticity modulusEreal, the relation betweenE andEreal can be obtained as:

E =
Ereal

1 − ν2
, (4.9)

whereν denotes the Poisson’s ratio. When the limit stressσlimit
bag in the wrapping material is

reached the corresponding quantities(∆L/L0)flow andTlimit are:
(

∆L0

L0

)

flow

=
σlimit

bag

E
, Tlimit = σlimit

bag t l. (4.10)

Substituting Eq.4.10 into Eq. 4.7,

(

∆L

L0

)

flow

=
σlimit

bag

E
=

(

u2

H0

)

flow

(

B0

H0

− 1 +

(

u2

H0

)

flow

)

(

1 +
B0

H0

)

(

1 −
(

u2

H0

)

flow

) (4.11)

leads to a quadratic equation for the normalized vertical displacement(u2/H0)flow. Eq. 4.11
has the following real and only positive solution:

(

u2

H0

)

flow

=
1

2

[

1 − B0

H0

−
(

1 +
B0

H0

)

σlimit
bag

E

]

+

+
1

2





√

√

√

√

(

1 − B0

H0

)2

+

(

1 +
B0

H0

)2
(

2 +
σlimit

bag

E

)

σlimit
bag

E



.

(4.12)

Then, the corresponding dimension of the soilbag reads:

Hflow = H0 − u2 flow,

Bflow =
H0B0

H0 − u2 flow

.

(4.13)
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Figure 4.3: Free-body diagram of (a) the left part of the soilbag ’cut’ at cross section1-1, (b)
the upper part of soilbag ’cut’ at cross section2-2; B is the current width andH is
the current height of the soilbag;pv is the applied vertical pressure;T is the tensile
force of the bag;σh andσv are the horizontal and vertical stresses of the granular
material, respectively.

In order to analyze the stress state developed in the soilbag, the free-body diagrams of a soilbag
with the unity depthl perpendicular to the plane in Fig. 4.3 are considered. With respect to Fig.
4.3(a) the equilibrium for the horizontal forces requires:

σh H l − 2T = 0. (4.14)

With respect to Fig. 4.3(b) the equilibrium for the verticalforces reads:

σv B l − pv B l − 2T = 0. (4.15)



4.1 Analytical approach 53

From Eq. 4.14 and Eq. 4.15 the horizontal stressσh and the vertical stressσv of granular
material inside the soilbag can be represented as

σh =
2T

H l
, σv = pv +

2T

B l
. (4.16)

With the tensile force of the bagT = σbag t l Eq. 4.16 can be re-written:

σh =
2t

H
σbag, σv = pv +

2t

B
σbag. (4.17)

As long as the wrapping material is in an elastic state and with respect of Eq. 4.7 and Eq. 4.8
one obtains forσh andσv:

σh = 2E t
u2 (B0 − H0 + u2)

(B0 + H0) (H0 − u2)
2
, (4.18)

σv = pv + 2E t
u2 (B0 − H0 + u2)

B0 H0 (B0 + H0)
. (4.19)

From Eq. 4.19 it can be concluded that for the analytical model by M&L (2006) the local
equilibrium close to the top and bottom is not fulfilled because the vertical stressσv in the soil
material is not equal to the vertical compression pressurepv.

In the relations 4.18 and 4.19 the only unknown is the vertical pressurepv acting on the contact
surface. Thus, an additional constitutive relation is needed which has to be related to the mate-
rial property of the filling material. To this end, it is convenient to consider in the following the
stress ratioK, i.e.

K =
σv

σh

.

It can be noted that for an incompressible (the Poisson’s ratio ν → 0.5) and linear elastic
material the stress ratioK is independent of the elastic modulus:

K =
σv

σh

=
νεh + (1 − ν)εv

νεv + (1 − ν)εh

= 1.

Moreover, withK = 1 the stress ratio of an isotropic stress state is represented. In general,
however, the stress ratioK is not constant and it strongly depends on the loading history be-
cause the material behavior of granular material is non-linear and inelastic. Only for special
boundary conditions, simplified material properties and special states, an analytical relation for
K can be derived. For example, under monotonic oedometric compression, i.e. one dimen-
sional compression under zero lateral strain, the stress ratio is almost constant and it can be
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Figure 4.4: Different stress states in the Mohr-Coulomb diagram for triaxial compression under
an axisymmetric lateral stressσh < σv.

approximated using Jaky’s formula:1/K = 1 − sin ϕ, whereϕ is the friction angle of the
cohesionless granular material. Assin ϕ < 1, the horizontal stressσh is lower than the vertical
stressσv under oedometric compression. Another element test is the triaxial compression of a
granular material under a lateral constant axisymmetric stress. In the Mohr diagram an increase
of the vertical stressσv can be demonstrated with an increase of the diameter of the Mohr circle
from circle A to B to C as illustrated in Fig. 4.4. By using the tangent to the circle passing the
origin of the diagram the stress ratio can be expressed as a function of the so-called mobilized
friction angleϕm as:

K =
1 + sin ϕm

1 − sin ϕm

, (4.20)

wheresin ϕm is the ratio between the radius of the Mohr circle, which is formed by the major
stressσv and minor stressσh, and the abscissa of the center of the corresponding Mohr circle,
i.e.

sin ϕm =
(σv − σh) /2

(σv + σh) /2
=

K − 1

K + 1
.

The increase of the mobilized friction angleϕm is limited by the so-called failure state (Mohr
circle C in Fig. 4.4). In the case that the failure state coincides with the critical stress state the
corresponding mobilized friction angle is called criticalfriction angleϕc. For such states the
stress ratioK can be expressed as a function ofϕc:

K =
1 + sin ϕc

1 − sin ϕc

. (4.21)
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It is worth mentioning that in the homogeneous triaxial compression test there is no interme-
diate principle stress, the vertical stress and horizontalstress are the major principle stress and
the minor principle stress, respectively. For more generalstress states, when the intermediate
principle stress is not the same as the minor principle stress there exists three different Mohr
circles. In the present model the assumption is made that thestress ratio is related to the critical
friction angle as defined in Eq. 4.21. According to Eq. 4.21, lower values ofK are related to
lower critical friction anglesϕc as demonstrated in the following table

K 1 2 3 4 5

ϕc (degree) 0.00 19.50 30.00 36.87 41.81

With the definition of the stress ratioK = σv/σh the following relation for the vertical pressure
pv can be deduced from the representation of the vertical and horizontal stresses in Eq. 4.16:

pv =
2T

B l

[

B

H
K − 1

]

. (4.22)

As an alternative, Eq. 4.22 can also be represented as a function of the vertical compressionu2:

pv = 2 E t
u2 (B0 − H0 + u2)

B0 H0 (B0 + H0)

[

B0 H0

(H0 − u2)
2

(

1 + sin ϕc

1 − sin ϕc

)

− 1

]

. (4.23)

With respect of Eq. 4.22 the resulting vertical forceFv = pv B l acting on the soilbag reads:

Fv = pv B l = 2 T

[

B

H
K − 1

]

. (4.24)

For different stress ratiosK the ratioFv/T linearly increases with the increase of the size ratio
B/H of the soilbag (Fig. 4.5(a)). It can be observed that for constantK the ratioFv/T is higher
for the rectangular shape of the soilbag, i.e.B/H > 1, than for the square shape of the soilbag,
i.e. B/H = 1.

In addition, Fig. 4.5(b) shows that for constant size ratioB/H the ratioFv/T linearly increases
with the increase of the stress ratioK.

When the limit stress in the wrapping bag is reached, the corresponding vertical pressurepv flow

can be calculated as

pv flow =
2 σlimit

bag t

Bflow

[

Bflow

Hflow

K − 1

]

, (4.25)

and the corresponding vertical compression forceFv flow reads

Fv flow = pv flow Bflow l. (4.26)
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Figure 4.5: Evolution of the normalized compression forceFv/T depending on the: (a) stress
ratio coefficientK, (b) size ratioB/H.

Herein,Bflow andHflow are the corresponding dimension of the soilbag according toEq. 4.13.
For continuing loading:

p̄v =
2 σlimit

bag t

B

[

B

H
K − 1

]

. (4.27)

and

F̄v = p̄v B l. (4.28)

From Eq. 4.27 and Eq. 4.28, it follows that for continuing compression the resulting reaction
force can increase.

For an initial perimeter ofL0 = 100 cm, a constant stress ratio ofK = 3, a limit stress of the
wrapping material ofσlimit

bag = 70 MPa, a thickness of the wrapping material oft = 0.3 mm,
an elastic modulus of the wrapping material ofE = 533 MPa, and for the initial size ratios of
B0/H0 = 1, 3, 4 and5, the following specific values can be obtained:
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B0

H0

B0 H0 (u2)flow Hflow Bflow pv flow Fv flow

cm cm cm cm cm kPa kN

5 41.7 8.3 1.3 7 49.6 1714 849

4 40 10 1.7 8.3 48.3 1434 692

3 37.5 12.5 2.4 10.1 46.5 1159 538

1 25 25 6.4 18.7 38 565 214

Figs. 4.6(a) - 4.6(d) show the evolution of the normalized change of perimeter,∆L/L0, the
normalized tensile stress of the bag,σbag/σ

limit
bag , the normalized vertical pressure,pv/pv flow, and

the normalized vertical compressive force,Fv/Fv flow, for different initial size ratiosB0/H0. It
can be seen that for the same normalized vertical displacement u2/H0 the increases of∆L/L0,
σbag/σ

limit
bag , pv/pv flow andFv/Fv flow are higher for a higher initial size ratioB0/H0. While the

increase of∆L with u2 is unlimited (Fig. 4.6(a)) the increase of the stressσbag in the wrapping
material is limited byσlimit

bag (Fig. 4.6(b)). In particular,∆L/L0 can still increase even though
the limit tensile force in the wrapping material is reached as shown in Fig. 4.7(a). From Fig.
4.6(b) it can be observed that the limit tensile stress in thewrapping material is reached earlier
for a higher initial size ratioB0/H0. A continuous increase of the vertical displacementu2 leads
to a further increase of the vertical pressurepv and, consequently, also to a further increase of
the resulting vertical forceFv (Figs. 4.6(c) - 4.6(d)). The increase ofpv andFv, however, is
much smaller than in the linear elastic range of the soilbag material. This behavior was also
observed in experiments by Lohani et al. (2006) [80].

From relations 4.22 and 4.24 it follows that foru2 → H0 or equivalent forH → 0 the vertical
pressurepv and the resulting vertical forceFv tend to infinite. However, for real soilbag mate-
rialspv andFv are restricted either by the maximum flow strain of the wrapping material or the
destruction of the wrapping material caused by the penetration of grains with sharp edges, at
which the soilbag breaks.

4.1.2 Soilbag model with lateral semicircular boundaries

In this section, the soilbag with lateral semicircular boundaries is considered as sketched out
in Fig. 4.8. The same assumption as mentioned in the previoussection are considered except
for the shape of the lateral soilbag boundaries and the distribution of the stress ratio of the
granular material. In particular, in the middle part of the soilbag a stress ratio ofK = 3, and in
the semicircle area a stress ratio ofK = 1 is assumed. The latter is required for semicircular
boundaries and it means thatσ∗

v2 = σ∗

h in these areas (Fig. 4.9(b)). For the present model the
stressσ∗

bag in the wrapping material, the stress componentsσ∗

v andσ∗

h in the soil material and
the vertical pressurep∗v can be derived in a similar manner as shown in the forgoing section. In
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Figure 4.6: Evolution of (a) the normalized change of perimeter∆L/L0, (b) the normalized
tensile stress of the bagσbag/σ

limit
bag , (c) the normalized vertical pressurepv/pv flow,

(d) the normalized vertical forceFv/Fv flow for different ratiosB0/H0 = 1, 3, 4, 5,
K = 3, L0 = 100 cm, t = 0.3 mm,σlimit

bag = 70 MPa,E = 533 MPa.
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Figure 4.7: Evolution of (a) the normalized tensile forceT/Tlimit of the bag, (b) the normalized
vertical pressurepv/pv flow of the soilbag with regards to the normalized change of
perimeter∆L/L0 of the soilbag foru2/H0 = 0.2 andB0/H0 = 4.

particular, the following relations can be obtained:

initial perimeter : L∗

0 = 2B∗

0 + πH0,

initial volume : V ∗

0 = B∗

0 H0 l + π

(

H0

2

)2

l.
(4.29)

For the vertical displacementu2, the corresponding quantities read:

H = H0 − u2, (4.30)

B∗ =
4B∗

0H0 + 2πH0u2 − πu2
2

4(H0 − u2)
, (4.31)

L∗ =
4B∗

0H0 − 2πH0u2 + 2πH2
0 + πu2

2

2(H0 − u2)
, (4.32)

∆L∗ = L∗ − L∗

0 =
u2(πu2 + 4B∗

0)

2(H0 − u2)
, (4.33)

∆L∗

L∗
0

=
u2(πu2 + 4B∗

0)

2(H0 − u2)(2B∗
0 + πH0)

. (4.34)
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Figure 4.8: Section of a vertically compressed soilbag withsemicircular boundaries and differ-
ent stress ratiosK.

The equilibrium of the horizontal forces for the left part ofthe soilbag (Fig. 4.9(a)) requires:

σ∗

h H l − 2 σ∗

bag t l = 0, (4.35)

and for the upper part of the soilbag (Fig. 4.9(b)) the equilibrium of the vertical forces reads:

p∗v B∗ l − σ∗

v B∗ l − 2 σ∗

v2

H

2
l + 2 σ∗

bag t l = 0. (4.36)

By substituting Eq. 4.35 into Eq. 4.36 and with respect toσ∗

v2 = σ∗

h, it follows

σ∗

v = p∗v. (4.37)

A comparison of Eq. 4.19 with Eq. 4.37 shows that in contrast to the model by M&L (2006)
also the local equilibrium in the vertical direction is fulfilled for the present model, i.e.σ∗

v = p∗v.

Forσ∗

bag = E(∆L∗/L∗

0), Eq. 4.35 can be written as:

σ∗

h =
2 t E

(H0 − u2)

u2(πu2 + 4B∗

0)

2(H0 − u2)(2B∗
0 + πH0)

=
2 t E u2(πu2 + 4B∗

0)

(H0 − u2)2(2B∗
0 + πH0)

.

(4.38)
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Figure 4.9: Free-body diagram of (a) the left part of the soilbag with lateral semicircular bound-
aries ’cut’ at cross section1-1, (b) the upper part of soilbag with lateral semicircular
boundaries ’cut’ at cross section2-2.

With respect to the stress ratioK = σ∗

v/σ
∗

h, the vertical pressurep∗v reads:

p∗v = K σ∗

h

=

(

1 + sin ϕc

1 − sin ϕc

)

E t u2(πu2 + 4B∗

0)

(H0 − u2)2(2B∗
0 + πH0)

.

(4.39)

In order to compare the present model with the model proposedby M&L (2006) the following
three different initial states are assumed:

A : the initial volumeV ∗

0 is the same as the initial volumeV0 for the M&L model, i.e.V ∗

0 =
V0 = B0H0l,

B : the initial perimeterL∗

0 is the same as the initial perimeterL0 for the M&L model, i.e.
L∗

0 = L0 = 2(B0 + H0),
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Figure 4.10: Evolution of (a) the normalized tensile stressσbag/σ
limit
bag of the bag, (b) the nor-

malized vertical pressurepv/pv flow of the soilbag for different analytical models,
B0/H0 = 4, t = 0.3 mm,σlimit

bag = 70 MPa,E = 533 MPa.

C : the initial total width, i.e. (B∗

0 + H0), is the same as the initial widthB0 for the M&L
model, i.e.B∗

0 = B0 − H0.

Figs. 4.10(a) - Fig. 4.10(b) show the evolutions of the normalized stressσbag/σ
limit
bag of the

wrapping material and the normalized vertical pressurepv/pv flow for different analytical mod-
els. From both figures, it can be seen that for the same vertical compressionu2 the stress in the
soilbag and also the vertical pressure is slightly higher for model B than for model A and C.
These small differences between models A, B and C are relatedto the differences in the mag-
nitude of the perimeterL∗. The values ofσbag/σ

limit
bag andpv/pv flow obtained from the models

A, B and C are significant higher than that from the M&L model. This can be explained by the
different assumptions made for the distribution of the stress ratioK.

4.2 Numerical simulations

For the following numerical simulations with the finite element method, it is assumed that
the soilbag is completely filled with a cohesionless granular material and compressed between
parallel stiff and frictionless platens which are wider than the final deformed width of the soilbag
(Fig. 4.11). The vertical compression is applied on the top of the soilbag by the prescribed
vertical displacementu2. For the soilbag structure, a plane strain condition is assumed. The
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Figure 4.11: Master surfaces and slave surfaces for simulation of the interface.

weight of the soilbag is neglected. Particular attention ispaid to the influence of the interface
behavior between the granular soil and the bag on the evolution of stress and strain.

The mechanical behavior of the granular material is described with the micro-polar hypoplastic
model outlined in Section 2.3. A four nodes quadrilateral iso-parametric element with bilinear
shape function and rotational degree of freedom is used for plane strain conditions as proposed
by Huang (2000) [60]. The wrapping bag is discretized with linear truss elements and for the
mechanical behavior the same elastic-ideally plastic material model is used as for the analytical
investigations in Section 4.1. The incapability of the bag to resist compression is taken into ac-
count. In contrast to the analytical approach, an updated cross section area of the truss elements
is taken into account by assuming an incompressible material.

The contact between the granular material and the bag and thecontact between the bag and
the top and bottom platens are described with the use of the concept of master surface and
slave surface, which allows to model relative displacements as well as a separation or closing
of the contact between two bodies. In particular, for the interface between the bag and the top
and bottom platens, the master surface is attached to the stiffer elements of the top and the
bottom platens while the slave surface is attached to the elements of the bag (Fig. 4.11). The
same frictionless interface behavior, i.e. the friction coefficient is zero, is assumed as for the
analytical investigation.

For the interface between the bag and the granular material,the master surface is attached to
the elements of the wrapping bag while the slave surface is attached to the elements of the
granular soil (Fig. 4.11). The following two different interface behaviors between the bag and
the granular material are investigated:

1. Frictionless interface: the outer nodes of the bounding finite soil elements and the bag
nodes are allowed to have relative displacements and rotations. These properties are
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Figure 4.12: Undeformed shape of the soilbag.

achieved with a friction coefficient of zero and zero couple stresses prescribed at the
interface.

2. Interlocked interface: the outer nodes of the bounding finite soil elements are connected
with the nodes of the bag elements, thus, no relative displacements and Cosserat rotations
between soil nodes and bag nodes take place.

In the following, a soilbag with a dimension ofB0 = 40 cm andH0 = 10 cm is considered. In
contrast to the analytical approach, the perimeter of the soilbag can be computed without any
restriction of the shape of the deformed soilbag. In particular, the current perimeter is computed
from the summation of the lengths of the individual bag elements. For the undeformed shape
(Fig. 4.12), the initial perimeter isL0 = 96.6 cm. The initial size of an element is0.2 cm×
0.2 cm with the exception of elements in the area close to the curved boundaries. For the filling
material, the constitutive constants for quartz sand as mentioned in Section 2.3 is used with an
initial void ratio of e0 = 0.60. The following elastic properties are used for the thin wrapping
bag with a thickness oft = 0.3 mm (Liu, 2006 [79]):

elastic modulus E = 533 MPa,

tensile limit stressσlimit
bag = 70 MPa.

As the vertical pressure at the top and bottom surface of the granular soil is not uniformly
distributed and the volume change is not homogeneous, theirmean values are taken for the
representation of the numerical results shown in the following sections.
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Figure 4.13: Frictionless interface: distribution of tensile stressσbag in the wrapping material
for different vertical displacementsu2.

4.2.1 Frictionless interface behavior

For the frictionless interface the tensile stress in the wrapping bag uniformly increases along
the circumference of the soilbag with the increase of the vertical displacementu2, where the
limit stress is reached foru2 = 1.9 cm (Fig. 4.13). Figs. 4.14(a) - 4.14(b) show the evolution
of the normalized perimeter of the bag∆L/L0 and the tensile stress in the wrapping bagσbag,
respectively. It can be observed that∆L/L0 as well asσbag nonlinearly increases withu2. The
evolution of the mean value of the volume strain is shown in Fig. 4.15(a). After an overall
compaction small dilatancy can be observed atu2 = 1.0 cm. However, foru2 = 1.9 cm the
soilbag generally experiences compression where∆V < 0.01 × V0. The local volume change,
however, significantly varies as discussed in more details later on. A similar small volume
change was also reported by Matsuako & Liu (2006) [82] for theunconfined compression test
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Figure 4.14: Frictionless interface: evolution of the (a) normalized change of perimeter
∆L/L0, (b) tensile stressσbag in the wrapping material.

of soilbags with different granular materials. Fig. 4.15(b) shows the nonlinear increase of the
vertical pressurepv with an increase of the prescribed vertical displacementu2.

In the following the distribution of the state variables of the granular soil across sections 0-0,
1-1 and 4-4 are shown in Figs. 4.16 - 4.19 for the vertical displacements ofu2 = 0.2, 0.5
and1.9 cm. In particular, Fig. 4.16(a) shows the distribution of the void ratioe at section 0-0
(in the middle of the soilbag), section 1-1 and section 4-4 (at the side of the soilbag). For the
small prescribed vertical displacements ofu2 = 0.2 cm andu2 = 0.5 cm the distribution of
the void ratioe are almost the same across sections 0-0 and 1-1 while a stronger variation can
be observed for section 4-4. The maximum void ratio is observed in the middle of section 4-4.
When the bag material reaches the limit stress atu2 = 1.9 cm a higher value of the void ratio
is also observed in the middle of section 0-0 and at the top of section 1-1. The strong local
variation ofe indicates strain localization in the zones with a highere. With an increase of the
prescribed vertical displacement the location of the highest value ofe shifts from the middle to
the bottom in the middle of section 4-4. Thus, the location ofshear strain localization changes
with continuous compression (Fig. 4.16(c)).

Fig. 4.16(b) shows the distribution of the Cosserat rotationωc
3. At the beginning of compression,

i.e. for u2 = 0.2 cm andu2 = 0.5 cm, ωc
3 is very small in all sections. For the vertical

displacementu2 = 1.9 cm, ωc
3 is pronounced at the middle of section 0-0, at the top part of

section 1-1 and at the bottom in the middle of section 4-4. Thelocation of the extremal values
of ωc

3 is similar as that for the extremal values of the void ratio (Fig. 4.16(a)) and the deviatoric
strain rate (Fig. 4.16(c)).
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Figure 4.15: Frictionless interface: evolution of (a) the average value of the normalized volume
change∆V/V0, (b) the average value of the vertical stresspv.

Fig. 4.17 shows the distribution oḟκ31 and κ̇32 in different sections. Foru2 = 1.9 cm the
micro-curvature rates,̇κ31 andκ̇32, are pronounced at the middle part of section 0-0, at the top
part of section 1-1 and at the bottom of the middle part of section 4-4.

The distribution of the normal stress components and the shear stress and couple stress com-
ponents are shown in Fig. 4.18 and Fig. 4.19, respectively. For small prescribed vertical
displacements, the normal stress, the shear stress and the couple stress components are almost
constant across the sections of the soilbag. Foru2 = 1.9 cm the values ofσ22, σ12 andσ21

varies little stronger. A nonlinear distributions ofµ31 andµ32 can be detected in Figs. 4.19(c) -
4.19(d).

For different states, the deformed mesh is shown in Fig. 4.20. Although there is no friction
resistance in the contact zones between the soilbag and the platens the deformation is not ho-
mogeneous. In particular, the lateral sides of the soilbag become more curved with an advanced
vertical displacement. Furthermore, foru2 = 1.9 cm a zig-zag pattern of zones with intense
localization of the deformation is clearly seen. Figs. 4.21- 4.23 show the contour plots of the
void ratio e, the volumetric strain ratėεkk and the norm of the deviatoric strain rate‖ε̇d‖ for
different vertical compression. It can be seen that the shear band becomes more pronounced
with an increase ofu2. In particular, at the beginning of the compression, i.e. for u2 = 0.2
cm, the granular material in the middle part of the soilbag experiences compression, i.e. the
volumetric strain ratėεkk is negative (Fig. 4.22), and it is almost uniformly distributed within
the soilbag (Fig. 4.21). At the left and right sides of the soilbag dilatancy, i.e. the volumetric
strain rate is positive, already develops for small vertical displacements. In the filling material
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Figure 4.16: Frictionless interface: distribution of the (a) void ratioe, (b) Cosserat rotationωc
3

(c) norm of the deviatoric strain rate‖ε̇d‖ of the granular soil atu2 = 0.2 cm (solid
curve),u2 = 0.5 cm (long dashed curve) andu2 = 1.9 cm (short dashed curve)
across sections 0-0, 1-1 and 4-4.
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Figure 4.17: Frictionless interface: distribution of the normalized micro-curvature rates (a)
d50κ̇31, (b) d50κ̇32 of the granular soil atu2 = 0.2 cm (solid curve),u2 = 0.5 cm
(long dashed curve) andu2 = 1.9 cm (short dashed curve) across sections 0-0, 1-1
and 4-4.

the localizations of the volumetric strain rateε̇kk (Fig. 4.22) and the deviatoric strain rate‖ε̇d‖
(Fig. 4.23) are clearly seen from the beginning of loading. However, the shear band is not
clearly observed in the contour plot of the void ratioe (Fig. 4.21). Foru2 = 0.5 cm two zig-zag
patterns of shear bands develop (Figs. 4.22 - 4.23). With further compression, only one zig-zag
pattern becomes dominant (Fig. 4.20).

From the distributions oḟεkk (Fig. 4.22) and‖ε̇d‖ (Fig. 4.23), the inclination angles of the shear
bands can be estimated. In particular, the line which passesthrough the middle points of the
shear band at the top and the bottom surfaces is taken as a reference. It shows that foru2 = 0.2
cm the inclination angle to the horizontal surface is about510 - 520. It increases foru2 = 0.5
cm up to570 - 590. Then, with further increase of the vertical displacement the inclination angle
decreases and it becomes520 - 530 for u2 = 1.9 cm.

Due to the zigzag patterns it is not reliable to measure the thickness of the shear band from
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Figure 4.18: Frictionless interface: distribution of the normal stress (a) σ11, (b) σ22 and (c) σ33

of the granular soil atu2 = 0.2 cm (solid curve),u2 = 0.5 cm (long dashed curve)
andu2 = 1.9 cm (short dashed curve) across sections 0-0, 1-1 and 4-4.
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Figure 4.19: Frictionless interface: distribution of the shear stresses (a) σ12, (b) σ21 and the
couple stresses (c) µ31, (d) µ32 of the granular soil foru2 = 0.2 cm (solid curve),
u2 = 0.5 cm (long dashed curve) andu2 = 1.9 cm (short dashed curve) across
sections 0-0, 1-1 and 4-4.
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Figure 4.20: Frictionless interface: deformed shape of thesoilbag for different vertical dis-
placementsu2.

the section profile of the distributions of the void ratio, the Cosserat rotation, the strain rates or
the micro-curvature rates. Therefore, it is convenient to measure the shear band thickness for
instance from the contour plots of the void ratio or the strain rates. From Fig. 4.21 one can
obtained at thickness of about12.5× d50 to 16× d50. It should be mentioned that the thickness
of localized zones is also influenced by the initial density and the mean pressure (e.g. Tatsuoka
et al., 1986 [104]). The experimental results by Mokni (1992) and Hammad (1991) showed
that the thickness of the localized zone under shearing decreases as the confining pressure and
the initial density increase (Desrues & Viggiani 2004 [36]). The mean pressure increases in
the filling material with an increase of the vertical displacementu2. At the beginning of the
compression the mean pressure at the left and the right sidesof the soilbag, e.g. in EL.C, is
lower than those at the middle part, e.g. in EL.A and EL.B (Fig. 4.24(a)). At the left and right
sides of the soilbag, e.g. in EL.C in Fig. 4.24(b), dilatancyappears almost from the beginning
of loading. It can be observed that strain localization starts from the area at the sides of the
soilbag (Fig. 4.21, Fig. 4.22 and Fig. 4.23).

Fig. 4.24(b) shows the evolution of the void ratio at EL.A, EL.B, EL.C, EL.D and EL.E with
the vertical displacementu2. It can be seen that at the beginning of loading only compression
occurs. It is followed by dilatancy shown at EL.B, EL.C and EL.E while at EL.A and EL.D
only compression occurs. However, for larger vertical displacements dilatancy also occurs at
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u2 = 0.2 cm
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Figure 4.21: Frictionless interface: contour plot of the void ratio e for different vertical dis-
placementsu2.
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Figure 4.22: Frictionless interface: contour plot of the volumetric strain ratėεkk for different
vertical displacementsu2.
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u2 = 0.2 cm

u2 = 0.5 cm

u2 = 1.0 cm

u2 = 1.5 cm

u2 = 1.9 cm

u2 = 2.0 cm

Figure 4.23: Frictionless interface: contour plot of the norm of the deviatoric strain rate‖ε̇d‖
for different vertical displacementsu2.
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Figure 4.24: Frictionless interface: evolution of the (a) mean pressurep = −σkk/3 at EL.A,
EL.B and EL.C. (b) void ratioe at EL.A, EL.B, EL.C, EL.D and EL.E.

EL.B. The elements EL.B, EL.C and EL.E are inside a localized zone while the elements EL.A
and EL.D are located outside the localized zone (Fig. 4.20).

4.2.2 Comparison with the analytical results

Figs. 4.25(a) - 4.25(b) and Figs. 4.26(a) - 4.26(b) show the comparison between the results from
the finite element calculation and from the analytical method for the evolutions of the quantities
∆L/L0, T/Tlimit, pv andK, respectively.

In particular, the nonlinear increase of∆L/L0 andT/Tlimit with an increase of the normalized
prescribed vertical displacement,u2/H0, are shown in Figs. 4.25(a) - 4.25(b), where the in-
crease of∆L/L0 andT/Tlimit obtained from the analytical model is higher than that for the
finite element calculation. These can be explained by the initial compaction of the granular
soil predicted with the hypoplastic material model, while aconstant volume is assumed in the
analytical model. The tensile stress of the bag increases upto the limit value ofT/Tlimit = 1
which is reached for a smaller vertical compression with theanalytical method than with the
finite element method (Fig. 4.25(b)). The corresponding vertical pressure predicted with the
numerical model shows a good agreement with the analytical model (Fig. 4.26(a)). When the
limit tensile stress in the wrapping material is reached themean value of the vertical pressure
pv can further increase with an increase ofu2.

From Fig. 4.26(b) it can be seen that in contrast to the analytical model, the predicted stress ratio
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Figure 4.25: Comparison between the analytical and the finiteelement model for the evolution
of (a) the normalized change of perimeter∆L/L0 and (b) the normalized tensile
forceT/Tlimit in the wrapping material.
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Figure 4.26: Comparison between the analytical and the finiteelement model for the evolution
of (a) the applied vertical pressurepv and (b) the stress ratioK = σv/σh.
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K obtained from the hypoplastic material model is not constant during the compression and it is
not homogeneously distributed. For example the stress ratio K in the middle of the soilbag, e.g.
in elements EL.A, EL.B, EL.C, is higher than that close to the lateral boundaries, e.g. EL.G.
In EL.A, EL.B and EL.C the stress ratio increases from the initially isotropic condition up to
the peak value which is higher in EL.C than in EL.A and EL.B. After the peak, the stress ratio
decreases and it tends towards a stationary value ofK = 3. The asymptotic value, however, is
not clearly detected. Close to the lateral part of the boundary with an initially circular shape,
the stress ratio is close to one, e.g.at EL.G (Fig. 4.12). This indicates that for the analytical
model proposed in Section 4.1.2 the assumption ofK = 1 is rather realistic for the part of the
soilbag close to a boundary with the circular shape. For EL.Fwhich is located in the middle of
the soilbag close to the lateral boundary with a small curvature, the stress ratio decreases to a
value of less than one.

Furthermore, the numerical simulation shows that the volume change during compression is
rather small, e.g. it is about1% for the vertical compression of2 cm (Fig. 4.15(a)). Thus, the
assumption of a constant volume for the analytical model seems to be reasonable.

From the above comparisons it can be concluded that for the same vertical compression the
predicted∆L/L0 andT via the analytical model is slightly higher than that for thenumerical
model. The differences are due to the simplifications assumed for the analytical model.
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Figure 4.27: Interlocked interface: evolution of (a) the normalized change of perimeter∆L/L0

and (b) the tensile stressσbag at Bag.0, Bag.3 and Bag.4.
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u2 = 0.2 cm

u2 = 0.5 cm

u2 = 1.4 cm

5.3 MPa

19.5 MPa

70.0 MPa

0.4 MPa

3.0 MPa

13.0 MPa

Figure 4.28: Interlocked interface: distribution of tensile stress in the wrapping material for
different vertical displacementsu2.

4.2.3 Interlocked interface behavior

In the following the evolution of the stress and strain is investigated for the case that no relative
displacements and Cosserat rotations along the interface between the soil and the wrapping
bag take place. Fig. 4.27(a) shows that for an increase of thevertical displacementu2 the
normalized perimeter of the soilbag,∆L/L0, as well as the tensile stressσbag in the wrapping
material nonlinearly increases. The distribution of the tensile stress in the wrapping material is
not uniform, as shown in Fig. 4.28. In particular for the sameprescribed vertical displacement
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Figure 4.29: Interlocked interface: evolution of the (a) average value of the normalized volume
change∆V/V0, (b) average value of the vertical pressurepv.

u2 the tensile stress in the middle of the soilbag is higher thanon the sides. Foru2 = 1.4 cm the
limit tensile stress is reached in the middle of the soilbag (Bag.0 in Fig. 4.27(b)). Fig. 4.29(a)
and Fig. 4.29(b) show the evolutions of∆V/V0 and ofpv, respectively. The soilbag experiences
only compression up to aboutu2 = 1.0 cm (Fig. 4.29(a)), with a maximum volume change of
less than1% of V0. The mean vertical pressurepv nonlinearly increases with the increase ofu2,
as shown in Fig. 4.29(b).

Fig. 4.30, Fig. 4.31, Fig. 4.32 and Fig. 4.33 show the distributions of the void ratioe,
the Cosserat rotationωc

3, the norm of the deviatoric strain rate,‖ε̇d‖, the normalized micro-
curvature rates (d50κ̇31, d50κ̇32), the normal stresses (σ11, σ22, σ33), the shear stresses (σ12, σ21)
and couple stresses (µ31, µ32) in different sections and for the prescribed vertical displacements
of u2 = 0.2, 0.5 and1.4 cm. The state variables across sections 0-0 and 1-1 for the vertical
displacements ofu2 = 0.2, 0.5 cm are rather homogeneously distributed while state variables
across section 4-4 are nonlinearly distributed for a highervertical displacements. While in
section 0-0 and section 1-1 the void ratio decreases, it increases in section 4-4 and shows the
maximum value in the middle. Fig. 4.30(b) shows that Cosseratrotations,ωc

3, are only signif-
icant in section 4-4, where the particles rotate clockwise,i.e. ωc

3 > 0, in the upper part and
anti-clockwise, i.e.ωc

3 < 0, in the lower part of the soilbag. In Fig. 4.30(c), the distribution of
the norm of the deviatoric strain rate,‖ε̇d‖, across section 4-4 is heterogeneous while its dis-
tributions across the sections 0-0 and 1-1 are rather homogeneous. The micro-curvature rates,
κ̇32, are only pronounced in section 4-4 (Fig. 4.31). From Fig. 4.30 and Fig. 4.31 it can be con-
cluded that strain localization accompanied with dilatancy, micro-curvature rates and Cosserat
rotation is only significant in the lateral parts of the soilbag. In contrast to the frictionless inter-
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Figure 4.30: Interlocked interface: distribution of (a) the void ratioe, (b) the Cosserat rotation
ωc

3 and (c) the norm of the deviatoric strain rate‖ε̇d‖ for u2 = 0.2 cm (solid
curve),u2 = 0.5 cm (long dashed curve) andu2 = 1.4 cm (short dashed curve)
across sections 0-0, 1-1 and 4-4.
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Figure 4.31: Interlocked interface: distribution of the normalized micro-curvature rates (a)
d50κ̇31, (b) d50κ̇32 for u2 = 0.2 cm (solid curve),u2 = 0.5 cm (long dashed curve)
andu2 = 1.4 cm (short dashed curve) across sections 0-0, 1-1 and 4-4.

face, the deformation in the middle part of the soilbag is rather homogeneous, also for higher
vertical compressions.

Fig. 4.32 shows a homogeneous distributions ofσ11, σ22 andσ33 across sections 0-0, 1-1 and
4-4 for u2 = 0.2 cm and also foru2 = 0.5 cm. Foru2 = 1.4 cm the distributions becomes
heterogeneous across section 4-4. Across section 0-0 and section 1-1 the distributions ofσ12,
σ21 and µ31, µ32 are very close to zero (Figs. 4.33). Across section 4-4, a heterogeneous
distribution of the state quantities becomes more pronounced for higher vertical compression.

For the vertical displacements ofu2 = 0.2, 0.5 and1.4 cm the deformed mesh, the contour plot
of the void ratio and the contour plot of the deviatoric strain rate are shown in Figs. 4.34, 4.35
and 4.36, respectively. With an increase ofu2 the area of intense shear strain rate expands to the
middle part of the soilbag. It is obvious that also for highervertical compressions no discrete
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Figure 4.32: Interlocked interface: distribution of the normal stress (a) σ11, (b) σ22 and (c) σ33

for u2 = 0.2 cm (solid curve),u2 = 0.5 cm (long dashed curve) andu2 = 1.4 cm
(short dashed curve) across sections 0-0, 1-1 and 4-4.
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Figure 4.33: Interlocked interface: distribution of the shear stress (a) σ12, (b) σ21 and the couple
stress (c) µ31, (d) µ32 for u2 = 0.2 cm (solid curve),u2 = 0.5 cm (long dashed
curve) andu2 = 1.4 cm (short dashed curve) across sections 0-0, 1-1 and 4-4.
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Figure 4.34: Interlocked interface: deformed shape of the soilbag for different vertical dis-
placementsu2.
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Figure 4.35: Interlocked interface: contour plot of the void ratio e for different vertical dis-
placementsu2.
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Figure 4.36: Interlocked interface: contour plot of the norm of the deviatoric strain rate‖ε̇d‖
for different vertical displacementsu2.
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Figure 4.37: Interlocked interface: evolution of the (a) void ratio e, (b) mean pressurep =
−σkk/3 at EL.A, EL.B and EL.C.
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shear band occurs. While in the middle part densification is dominant dilatancy can only be
detected at the sides part of the soilbag (Fig. 4.35 and Fig. 4.37(a)). For the same vertical
displacementu2 the mean pressurep in the filling material at EL.C is lower than at EL.A and
EL.B (Fig. 4.37(b)).

4.2.4 Influence of random distribution of the initial void ratio

In this section the influence of a random distribution of the initial void ratio on the soil defor-
mation inside the soilbag is investigated. For generating arandom distribution of the initial
void ratio a density functionf(e) with the so-calledβ-distribution is used (e.g. Grimmett &
Stirzaker, 1992 [49]). From basics of statistics a probability density functionf(e) of the void
ratio e must fulfil the following requirements:

f(e) ≥ 0, (4.40)

and
∞

∫

−∞

f(e) de = 1. (4.41)

The density function withβ-distribution for the void ratioe reads:

f(e) =
1

B (p, q) (b − a)p+q−1
(e − a)p−1 (b − e)q−1 for a ≤ e ≤ b,

f(e) = 0 for e < a or e > b.

(4.42)

Herein,a is the lower bound ofe which can be related to the minimum void ratio andb is the
upper bound ofe which can be related to the maximum void ratio. In contrast tothe pressure
dependent relation 2.41 for the limit void ratios, the corresponding values are assumed here to
be constant, i.e.a = ed0, b = ei0. The parametersp andq are defined as:

p =
em − a

b − a

[

(em − a) (b − em)

s
− 1

]

, q =
b − em

b − a

[

(em − a) (b − em)

s
− 1

]

. (4.43)

In Eq. 4.43em is a given mean value of the void ratio ands is a given variance, which is the
square of the standard deviationd, i.e. s = d2. With the magnitude ofs the range of random
void ratios can be chosen. In order to fulfil the requirementsp > 0 andq > 0 the value ofs
is restricted bys < (em − a)(b − em). The constantB(p, q) in Eq. 4.42 is obtained from the
so-calledβ-function: (e.g. Grimmett & Stirzaker, 1992 [49])

B(p, q) =

1
∫

0

ep−1 (1 − e)q−1 de. (4.44)
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Figure 4.38: (a) Frequency distributionf(e) of the void ratioe, (b) cumulative frequency dis-
tributionF (e) of the void ratioe

It is worth mentioning that the requirement in Eq. 4.41 will be fulfilled with B(p, q) defined in
Eq. 4.44 as shown in detail in Appendix C.

The cumulative probability distributionF (e) can be obtained by integration of the density func-
tion f(e), i.e.

F (e) =

e
∫

a

f(e)de. (4.45)

The cumulative probability distribution lies in the range betweenF (e = a) = 0 andF (e =
b) = 1, as shown in Fig. 4.38(b).

A uniform random number generator, i.e. a random number generator which generates random
numbers of uniform deviation (e.g. Press et al., 1992 [98]),is used to generate random values
between[0, 1]. In order to relate the random valuex to the desired void ratioe the cumulative
frequency densityF (e) is used, i.e.

x(e) = F (e). (4.46)

This means that the random variablex has probability densityf(e). Eq. 4.46 allows an im-
mediate geometric interpretation as sketched in Fig. 4.38.A chosen random valuex is related
to the corresponding void ratioe via the shaded areaAx in Fig. 4.38(a). The value ofAx is



4.2 Numerical simulations 89

Figure 4.39: Contour plot of the initial random distributionof the void ratio.

equal toF (e) as shown by the dashed line in Fig. 4.38(b). In Eq. 4.46 the parametere is
unknown. It can be computed with the so-called transformation method (e.g. Press et al., 1992
[98]) according to

e = F−1(x), (4.47)

where,F−1(x) denotes the inverse ofF (e).

For the following numerical simulation a stochastic description of the initial void ratio with
respect to a initial mean void ratio ofem0 = 0.6 and a standard deviation of1.3% is assumed.
The distribution of the initial void ratio varies betweene0 = 0.5812 − 0.6205 as shown in
Fig. 4.39. In the following the results obtained for the initially homogeneous void ratio are
compared with that of the initially heterogeneous for both the frictionless interface and the
interlocked interface.

For the frictionless interface Fig. 4.40 and Fig. 4.41 show the contour plots of the void ratioe
and the norm of the deviatoric strain rate‖ε̇d‖ of granular soil after the vertical displacements
of u2 = 0.2, 0.5 and1.9 cm, respectively. From Fig. 4.40 zig-zag patterns of the shear band can
be observed after the vertical displacement ofu2 = 0.5 cm for the initially heterogeneous void
ratio. For the initially homogeneous void ratio, shear bands are observed for longer compres-
sion. Furthermore, foru2 = 1.9 cm only one pattern of the shear band is pronounced for the
initially heterogeneous void ratio while additional ’smeared’ shear band patterns are observed
for the initially homogeneous void ratio (Fig. 4.40). However, the contour plot for‖ε̇d‖ shows
that the pattern of the shear band for the case of initially heterogeneous void ratio is similar to
that obtained for the initially homogeneous void ratio (Fig. 4.41).

For the case of interlocked interface, it can clearly be seenthat neither initially homogeneous
void ratio nor initially heterogeneous void ratio shows a localization in the granular soil. More-
over, both, the initially homogeneous void ratio and the initially heterogeneous void ratio show
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Figure 4.40: Frictionless interface: contour plot of the void ratio e resulting from (a, c, e) the
initially homogeneous void ratio, (b, d, f) the initially heterogeneous void ratio for
different vertical displacementsu2.
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Figure 4.41: Frictionless interface: contour plot of the norm of the deviatoric strain rate‖ε̇d‖
resulting from (a, c, e) the initially homogeneous void ratio, (b, d, f) the initially
heterogeneous void ratio for different vertical displacementsu2.
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Figure 4.42: Interlocked interface: contour plot of the void ratioe resulting from (a, c, e) the
initially homogeneous void ratio, (b, d, f) the initially heterogeneous void ratio for
different vertical displacementsu2.
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Figure 4.43: Interlocked interface: contour plot of the norm of the deviatoric strain rate‖ε̇d‖
resulting from (a, c, e) the initially homogeneous void ratio, (b, d, f) the initially
heterogeneous void ratio for different vertical displacementsu2.
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(a)

∆L

L0

u2 [cm]

(b)

σbag [MPa]

u2 [cm]

Figure 4.44: Comparison between the frictionless interfaceand the interlocked interface for the
evolution of (a) ∆L/L0, (b) σbag at Bag.0.

similar distribution for the void ratioe (Fig. 4.42) and for the deviatoric strain rate‖ε̇d‖ (Fig.
4.43).

4.2.5 Interpretation of the numerical results

In the following the numerical results obtained for the frictionless interface is compared with
the interlocked interface for the vertical displacement ofu2 = 0.2 cm and0.5 cm and for the
state when the bag reaches the limit stressσbag = σlimit, i.e. u2 = 1.9 cm for the frictionless
interface andu2 = 1.4 cm for the interlocked interface.

While the change of the perimeter∆L with u2 is almost independent of the assumed interface
behavior (Fig. 4.44(a)), the evolution of the tensile stress is not (Fig. 4.44(b)). In particular, for
the interlocked interface, the limit stressσlimit in the wrapping material is already reached for a
lower vertical displacement than that for the frictionlessinterface. Moreover, Fig. 4.45 shows
that in contrast to the frictionless interface, the distribution of the tensile stress in the wrapping
material along the circumference of the soilbag is not uniform for the case of the interlocked
interface. The limit stress is first reached at the middle part of the soilbag. Fig. 4.46(a) shows
that for both, the frictionless interface and the interlocked interface,∆V/V0 is less than1%.
The mean vertical stresspv for the interlocked interface is higher than that for the frictionless
interface(Figs. 4.46(b)).
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Frictionless

Interlocked

Frictionless

Interlocked

(a)

(b)

(c)

(d)

Figure 4.45: Comparison between the frictionless interfaceand the interlocked interface for
the contour plot of the tensile stress in the wrapping material at (a, b) the vertical
displacement ofu2 = 0.5 cm, (c, d) the state whenσbag = σlimit .
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(a)

∆V

V0
[%]

u2 [cm]

(b)

pv [kPa]

u2 [cm]

Figure 4.46: Comparison between the frictionless interfaceand the interlocked interface for the
evolution of (a) ∆V/V0, (b) pv.

For the small vertical displacement the distribution of thevoid ratio for the interlocked interface
is more homogeneous than that for frictionless interface (Fig. 4.47(a)). Furthermore, when the
wrapping material reaches the limit stress, higher values of the void ratio are concentrated in a
zig-zag pattern for the case of frictionless interface (Fig. 4.47(b)). For the interlocked interface,
mainly the granular soil at the left and right sides of the soilbag experience dilatancy. With an
inhomogeneous distribution of the void ratio the onset of the shear band is more pronounced
for the case of frictionless interface, as outlined in Section 4.2.4.
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Frictionless

Interlocked

Frictionless

Interlocked

(a)

(b)

(c)

(d)

Figure 4.47: Comparison between the frictionless interfaceand the interlocked interface for the
contour plot of the void ratioe at (a, b) the vertical displacement ofu2 = 0.5 cm,
(c, d) the state whenσbag = σlimit.
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5 CONCLUSIONS

Analytical and numerical investigations on the mechanicalbehavior of a soilbag under verti-
cal compression and plane strain condition have been conducted. Particular attention is paid
to the influence of the interface behavior between the granular soil and the wrapping bag on
the stress-strain behavior of the soilbag structure. Two different interface behaviors are in-
vestigated: a frictionless interface (no slide and rotation resistance along the interface) and an
interlocked interface (motion of the soil particles at the interface coincides with the motion of
the bag). For the analytical study several simplifications are made, e.g. the granular material
inside the soilbag is assumed to be in the limit state and the contact between the soil and the bag
is frictionless. In order to evaluate the simplified analytical model numerical simulations with
a more sophisticated description for the soil behavior and the interface are carried out. Further-
more, the soil behavior close to the interface is separatelystudied for the case of shearing of an
infinite granular soil strip under constant vertical pressure. In this study, the attention is paid
to the influences of the initial density of the granular soil,the mean grains size and the rotation
resistance of the particles at the interface on the evolution of the mobilized friction angle and
the occurrence of strain localization in form of shear bands.

In particular, for the soil behavior closed to the interfaceunder shearing the following results
are obtained:

• Shear strain localization takes place from the beginning ofshearing where the location
and the thickness of shear band strongly depends on the prescribed boundary conditions,
the mean grain size, the initial void ratio and the vertical pressure. The results are in
agreement with the numerical simulations of other authors.

• For a lower rotation resistance at the interface the shear band is located closer to the
surface of the bounding structure.

• The predicted thickness of the shear band is higher for an initially looser material, a
higher vertical pressure, a larger mean grain size and for a higher rotation resistance of
the soil grains along the interface area. The results are in agreement with the numerical
simulation other authors.

• In accordance with experimental observations the peak value of the mobilized friction
angle is higher for initially dense granular soil. With advanced shearing the mobilized
friction angle decreases and it tends towards a stationary value which is close to the crit-
ical friction angle of the granular soil. The deviation fromthe critical friction angle de-
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pends on the specific formulation of the constitutive model,i.e. on the described coupling
between the stress and the couple stress at stationary state.

• For the case of a fluctuation of the Cosserat rotation at the interface the mobilized friction
angle also varies. However, the mean value is almost equal tothe critical friction angle of
the granular soil.

For the vertically compressed soilbag under plane strain condition, the following results are
obtained:

(a) for the simplified analytical models

– The tensile stress in the wrapping material and the verticalpressure on the top of
the soilbag are a function of the prescribed vertical displacement, the initial width-
to-height ratio, the elasto-plastic properties of the wrapping material and the limit
stress ratio of the filling material.

– With the increase of the prescribed vertical displacement the perimeter of the soil-
bag, the tensile stress in the wrapping material, and the mean vertical pressure on
the top of the soilbag nonlinearly increase.

– The tensile stress in the wrapping material reaches the limit tensile stress earlier for
a higher initial width-to-height ratio of the soilbag. The vertical pressure on the top
of the soilbag is also higher for higher initial width-to-height ratio.

– While for the model by Matsuoka & Liu only the global equilibrium in the section of
the soilbag is fulfilled, also the local equilibrium is fulfilled in the proposed extended
model.

(b) for the numerical model with frictionless interface between the granular soil and the wrap-
ping bag

– The tensile stress in the wrapping material uniformly increases while the stress ratio
of the granular soil inside the bag inhomogeneously develops.

– Dilatancy of the granular soil firstly appears at the side parts of the soilbag.

– The pattern of zones with intense shear strain which is reflected by the soilbag
boundaries can be detected with the advance of the compression.

– With an inhomogeneous distribution of the initial void ratio, the onset of the strain
localization in the granular body appears for a lower vertical compression.

(c) for the numerical model with interlocked interface between the granular soil and the wrap-
ping bag

– The distribution of the tensile stress in the wrapping membrane is not uniform as it
is for the frictionless interface. The tensile stress in thewrapping material is higher
in the middle of the soilbag than at the sides of the soilbag.
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– The filling material in the middle of the soilbag mainly experiences compression.
Dilatancy occurs at the sides of the soilbag.

– No significant strain localization is observed up to the limit stress reached in the
wrapping material.

– The mean vertical pressure on the top of the soilbag is higherthan that obtained with
the frictionless interface.

(d) for the comparison between the analytical and numericalmodel with the frictionless in-
terface

– The tensile stress in the wrapping material obtained from the analytical model is
slightly higher than that from the numerical one.

– The mean vertical pressure on the top of the soilbag shows a rather good agreement.

In general it can be concluded that the soilbag can resist high compression provided that the
volume change of the granular body is small. The vertical load capacity depends on the type
of wrapping material, the critical friction angle of granular material and the interface properties
between the filling material and the wrapping bag. With the simplified analytical model the
vertical pressure on the top of the soilbag can be well predicted as far as the assumed critical
friction angle of the filling material is closed to the real value and the interface is frictionless.
With an increase of the interface friction between the granular soil and the wrapping bag, the
vertical pressure increases for the same vertical compression. However, the vertical load capac-
ity is smaller if friction between the soil and the wrapping material appears. This is because
the limit stress in the wrapping material is reached for a lower vertical compression. Finally, it
should be noted that the present conclusions are only related to the case of a vertical compres-
sion of the soilbag. Thus, more general load conditions including shear loads applied on the top
of the soilbags need additional investigations.
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A SYMBOLS

Throughout this thesis, symbolic notations are used for vectors and tensors with bold lower and
bold upper case letters, respectively. For vector and tensor components, indical notation with
respect to a rectangular Cartesian basisei (i = 1, 2, 3). Herein, the summation convention over
repeated indices is used. Operations are defined as:

a · b = ai bi,

a ⊗ b = ai bj ei ⊗ ej,

Ab = Aij bj ei,

AB = Aik Bkj ei ⊗ ej,

A :B = Aij Bij,

C :B = Cijkl Bkl ei ⊗ ej,

grad(a) =
∂a

∂x
,

div(a) = grad(a) · I,
‖a‖ =

√
a . a =

√
ai ai,

‖A‖ =
√

A : A =
√

Aij Aij

All notations and symbols are defined where they first appear in the text. For easy reference,
the most frequently used symbols and their meaning are presented here.
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ei : base vector

ǫ : permutation tensor

I : second order unit tensor

δij : Kronecker delta

x : position vector in the current configuration

X : position vector in the reference configuration

u : displacement vector

u̇ : velocity vector

F : deformation gradient

L : velocity gradient

ε̇ : symmetric part of velocity gradient

W : macro-spin tensor, the skew symmetric part of velocity gradient

ω : macro rotation vector

ω̇ : rate of the macro rotation vector

Ω̄ : micro-polar gyration tensor

ωc : Cosserat rotation vector

ω̇c : rate of the Cosserat rotation vector

ε̇c : Cosserat strain rate tensor

ε̇c
kk : volumetric strain rate

ε̇d : deviatoric part of strain rate tensor,

κ̇ : rate of curvature

σ : Cauchy stress tensor

t : surface traction vector

σ̇ : time derivative of the stress tensor

σ̊ : objective stress rate tensor

µ : couple stress tensor

m : surface couple vector

µ̇ : time derivative of the couple stress tensor

µ̊ : objective couple stress rate tensor



105

e : current void ratio

ė : rate of void ratio

ei : maximum void ratio, at which the grains are still in contact

ei0 : maximum void ratio at nearly stress free state

ec : critical void ratio

ec0 : critical void ratio at nearly stress free state

ed : minimum void ratio

ed0 : minimum void ratio at nearly stress free state

α : positive hypoplastic constitutive constant

β : hypoplastic constitutive constant,β > 1

n : hypoplastic constitutive constant

hs : hypoplastic constitutive constant

d50 : mean grain diameter

ϕc : critical friction angle

ϕm : mobilized friction angle

K : stress ratio in the granular material inside the soilbag

pv : mean value of resulting vertical pressure on top of a soilbag

T : tensile force in the wrapping material

σbag : tensile stress in the wrapping material

σlimit
bag : limit tensile stress in the wrapping material

E : elastic modulus of the wrapping material

B0, H0 : initial width and initial height of the soilbag

B, H : current width and current height of the soilbag

L0, L : initial and current perimeter of the soilbag

V0, V0 : initial and current volume of the soilbag
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B MICRO-POLAR HYPOPLASTIC MODELING OF STATIONARY
STATES

Concerning stationary states the following four different versions of polar hypoplastic constitu-
tive models are discussed:

• Version A (Tejchman & Gudehus, 2001 [114]; Tejchman, 2004 [110]; Tejchman & Bauer,
2005 [113]):

σ̊ij = fs

[

â2 ε̇c
ij + (σ̂klε̇

c
kl + µ̂klκ̇

∗

kl) σ̂ij + fd â
(

σ̂ij + σ̂d
ij

)

√

‖ε̇c
kl‖2 + ‖κ̇∗

kl‖2

]

, (B.1)

µ̊ij = d50fs

[

â2 κ̇∗

ij + (σ̂klε̇
c
kl + µ̂klκ̇

∗

kl) â2 µ̂ij + fd â2 am µ̂ij

√

‖ε̇c
kl‖2 + ‖κ̇∗

kl‖2

]

, (B.2)

with

â−1 = c1 + c2

√

σ̂d
kl σ̂

d
kl [1 + cos(3θ)] , cos(3θ) = −

√
6

σ̂d
klσ̂

d
lmσ̂d

mk

(σ̂d
pq σ̂d

pq)
3/2

,

c1 =

√

3

8

(3 − sin ϕc)

sin ϕc

, c2 =
3

8

(3 + sin ϕc)

sin ϕc

.

• Version B (Huang et al., 2002 [63]):

σ̊ij = fs

[

â2 ε̇c
ij + (σ̂klε̇

c
kl + µ̂3lκ̇

∗

kl) σ̂ij + fd

(

σ̂ij + σ̂d
ij

)

√

â2‖ε̇c
kl‖2 + a2

m‖κ̇∗

kl‖2

]

, (B.3)

µ̊ij = d50 fs

[

a2
m κ̇∗

ij + (σ̂klε̇
c
kl + µ̂klκ̇

∗

kl) µ̂ij + fd 2 µ̂ij

√

â2‖ε̇c
kl‖2 + a2

m‖κ̇∗

kl‖2

]

, (B.4)

with

â =
sin ϕc

3 − sin ϕc

[
√

8/3 − 3c +
√

3/2 c3/2 cos(3θ)

1 +
√

3/2 c1/2 cos(3θ)
−
√

c

]

, c = σ̂sd
pq σ̂sd

pq ,

cos(3θ) = −
√

6
σ̂sd

kl σ̂
sd
lmσ̂sd

mk

c3/2
, σ̂sd

kl =
(σ̂d

kl + σ̂d
kl)

2
.
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• Version C (Bauer & Huang, 1999 [11]; Huang & Bauer, 2003 [61]):

σ̊ij = fs

[

â2 ε̇c
ij + (σ̂klε̇

c
kl + µ̂klκ̇

∗

kl) σ̂ij + fd â
(

σ̂ij + σ̂d
ij

)

√

‖ε̇c
kl‖2 + ‖κ̇∗

kl‖2

]

, (B.5)

µ̊ij = d50fs

[

a2
m κ̇∗

ij + (σ̂klε̇
c
kl + µ̂klκ̇

∗

kl) µ̂ij + fd 2 amµ̂ij

√

‖ε̇c
kl‖2 + ‖κ̇∗

kl‖2

]

, (B.6)

with

â =
sin ϕc

3 − sin ϕc

[
√

8/3 − 3c +
√

3/2 c3/2 cos(3θ)

1 +
√

3/2 c1/2 cos(3θ)
−
√

c

]

, c = σ̂sd
pq σ̂sd

pq ,

cos(3θ) = −
√

6
σ̂sd

kl σ̂
sd
lmσ̂sd

mk

c3/2
, σ̂sd

kl =
(σ̂d

kl + σ̂d
kl)

2
.

• Version D (Bauer, 2005 [8]):

σ̊ij = fs

[

â2 ε̇c
ij + (σ̂klε̇

c
kl) σ̂ij + fd â

(

σ̂ij + σ̂d
ij

)

‖ε̇c
kl‖

]

, (B.7)

µ̊ij = d50 fs

[

a2
m κ̇∗

ij + (µ̂klκ̇
∗

kl) µ̂ij + fd 2 amµ̂ij ‖κ̇∗

kl‖
]

, (B.8)

with

â =

√

8 sin2 ϕc

9(3 + sin2 ϕc)
.

A stationary states is defined as a state in which there is no changes ofσij, µij and e for a
constant rate of deformatioṅεc

ij and or a constant rate of curvatureκ̇∗

ij, i.e.

σ̊ij = 0 ∧ µ̊ij = 0 ∧ ė = 0. (B.9)

With the assumption of incompressible grains, the requirement ė = 0 is equivalent to the van-
ishing of the volumetric strain, i.e.̇εc

kk = 0. Thereby, the following relations at the stationary
state can be drawn

ε̇c
kk = 0, ε̇cd

ij = ε̇c
ij.

Applying the criterion for stationary states, i.e. Eq. B.9, to the evolution equations of the stress
and the couple stress leads to the following relations for the normalized deviatoric stressσ̂d

ij and
the normalized couple stressµ̂ij:
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• Version A

σ̂d
ij =

−â ε̇c
ij

fd

√

‖ε̇c
kl‖2 + ‖κ̇∗

kl‖2
, µ̂ij =

−κ̇∗

ij

(am − â) fd

√

‖ε̇c
kl‖2 + ‖κ̇∗

kl‖2
, (B.10)

and
(

‖σ̂d
ij‖
â

)2

+

(‖µ̂ij‖
λac

)2

= 1 , λ =
1

am (am − â)
, (B.11)

with:

fd =

√

‖ε̇c
kl‖2 + λ ‖κ̇∗

kl‖2

‖ε̇c
kl‖2 + ‖κ̇∗

kl‖2
, λ =

1

â (am − â)
. (B.12)

• Version B

σ̂d
ij =

−â2 ε̇c
ij

fd

√

â2‖ε̇c
kl‖2 + a2

m‖κ̇∗

kl‖2
, µ̂ij =

−a2
m κ̇∗

ij

fd

√

â2‖ε̇c
kl‖2 + a2

m‖κ̇∗

kl‖2
, (B.13)

and
(

‖σ̂d
ij‖
â

)2

+

(‖µ̂ij‖
am

)2

= 1 , (B.14)

with:

fd =

√

â2‖ε̇c
kl‖2 + a2

m ‖κ̇∗

kl‖2

â2‖ε̇c
kl‖2 + a2

m‖κ̇∗

kl‖2
= 1. (B.15)

• Version C

σ̂d
ij =

−â ε̇c
ij

fd

√

‖ε̇c
kl‖2 + ‖κ̇∗

kl‖2
, µ̂ij =

−a2
m κ̇∗

ij

(2am − â) fd

√

‖ε̇c
kl‖2 + ‖κ̇∗

kl‖2
, (B.16)

and
(

‖σ̂d
ij‖
â

)2

+

(‖µ̂ij‖
λam

)2

= 1 , λ =
am

2am − â
, (B.17)

with:

fd =

√

‖ε̇c
kl‖2 + λ ‖κ̇∗

kl‖2

‖ε̇c
kl‖2 + ‖κ̇∗

kl‖2
, λ =

am

â

am

(2am − â)
. (B.18)
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• Version D
σ̂d

ij =
−â ε̇c

ij

fd ‖ε̇c
kl‖

, µ̂ij =
−a2

m κ̇∗

ij

µ̂klκ̇∗

kl + fd 2 am ‖κ̇∗

kl‖
, (B.19)

and

‖σ̂d
ij‖ = â, ‖µ̂ij‖ =

a2
m ‖κ̇∗

kl‖
µ̂klκ̇∗

kl + 2 am ‖κ̇∗

kl‖
, (B.20)

with:

fd =

√

â ‖ε̇c
kl‖2

â ‖ε̇c
kl‖2

= 1. (B.21)

Herein the relations for̂σd
ij, µ̂ij andfd are derived in a similar way as first shown by Huang et

al. (2002) [63]. From Eq. B.11, Eq. B.14 and Eq. B.17, it follows that for stationary states
‖σ̂d

ij‖ and‖µ̂ij‖ are coupled while it is not in Eq. B.20. Furthermore, unlike Version A and
Version C, for Version B and Version D factoram can be unique related to‖µ̂ij‖ for ‖σ̂d

ij‖ = 0.
From Eq. B.15 and Eq. B.21, it can be concluded that the density factorfd generally fulfils the
requirement for the void ratio in critical state only for theVersion B and the Version D, i.e. for
fd = 1 the void ratioe is equal to the critical void ratioec according to Eq. 2.40. For these
versions, the critical void ratioec is reached at stationary state independent of the initial state
and the value ofam. On the other hand, from Eq. B.12 and Eq. B.18 it follows thatfd can be
higher than one, thus, the void ratio can also be higher than the critical void ratio. For Version
A and Version C, the relation 2.41 between the void ratio in thestationary state and the mean
pressure can only be fulfilled for special cases. In particular, one of the following conditions
should be fulfilled to obtainfd = 1 at the stationary state:

(i) ‖κ̇∗

ij‖ = 0,

(ii) ‖κ̇∗

ij‖ 6= 0 andλ = 1.

With the condition (i), the parameteram has no influence onfd. Moreover, from Eq. B.10
and Eq. B.16 the couple stress becomes zero and the norm of the normalized deviatoric stress
‖σ̂d

ij‖ = â. The latter is also obtained for the non-polar version of thehypoplastic model (Bauer,
2000a [6]).

For the condition (ii), one can conclude that for

Version A : am = â + 1/â,

Version C : am = â.

It should also be noted that for the condition (ii), couplingbetweenσ̂d
ij and µ̂ij still exist in

Version A, Version B and Version C. Therefore, at stationary state, the influence of couple stress
may exist, and, consequently, the mobilized friction angleϕm may deviate from the critical
friction angle defined from the limit condition by Matsuoka-Nakai.



C REQUIREMENT FOR THE PROBABILITY DENSITY FUNCTION

In order to proof the requirement 4.41, i.e.

∞
∫

−∞

f(e) de = 1 (C.1)

for the chosen density functionf(e) in 4.42, i.e.

f(e) =
1

B (p, q) (b − a)p+q−1
(e − a)p−1 (b − e)q−1 , (C.2)

the integral in Eq.C.1 can be represented as

∞
∫

−∞

f(e) de =

a
∫

−∞

f(e) de +

b
∫

a

f(e) de +

∞
∫

b

f(e) de

= 0 +

b
∫

a

f(e) de + 0

=

b
∫

a

1

B (p, q) (b − a)p+q−1
(e − a)p−1 (b − e)q−1 de.

With the substitution:u = e − a → de = du, e = u + a,

b
∫

a

f(e) de =
1

B (p, q)

b−a
∫

0

up−1(b − u − a)q−1

(b − a)p+q−1
du.
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With the substitution:
u

b − a
= v → du = (b − a)dv,

(b − u − a)q−1 =

(

1 − u

b − a

)q−1

(b − a)q−1,

b
∫

a

f(e) de =
1

B(p, q)

1
∫

0

(v(b − a))p−1(1 − v)q−1(b − a)q−1(b − a)

(b − a)p+q−1
dv

=
1

B(p, q)

1
∫

0

vp−1(1 − v)q−1 (b − a)p−1(b − a)q−1(b − a)

(b − a)p (b − a)q−1
dv

=
1

B(p, q)

1
∫

0

vp−1(1 − v)q−1 dv.

According to Eq. 4.44 the integral

1
∫

0

vp−1(1 − v)q−1 dv = B(p, q), thus

b
∫

a

f(e) de =
1

B(p, q)
B(p, q) = 1.
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