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Abstract. Masking provides a high level of resistance against side-channel anal-
ysis. However, in practice there are many possible pitfalls when masking schemes
are applied, and implementation flaws are easily overlooked. Over the recent
years, the formal verification of masked software implementations has made sub-
stantial progress. In contrast to software implementations, hardware implementa-
tions are inherently susceptible to glitches. Therefore, the same methods tailored
for software implementations are not readily applicable.
In this work, we introduce a method to formally verify the security of masked
hardware implementations that takes glitches into account. Our approach does
not require any intermediate modeling steps of the targeted implementation. The
verification is performed directly on the circuit’s netlist in the probing model
with glitches and covers also higher-order flaws. For this purpose, a sound but
conservative estimation of the Fourier coefficients of each gate in the netlist is
calculated, which characterize statistical dependence of the gates on the inputs
and thus allow to predict possible leakages. In contrast to existing practical eval-
uations, like t-tests, this formal verification approach makes security statements
beyond specific measurement methods, the number of evaluated leakage traces,
and the evaluated devices. Furthermore, flaws detected by the verifier are auto-
matically localized. We have implemented our method on the basis of a SAT
solver and demonstrate the suitability on a range of correctly and incorrectly pro-
tected circuits of different masking schemes and for different protection orders.
Our verifier is efficient enough to prove the security of a full masked first-order
AES S-box, and of the Keccak S-box up to the third protection order.

Keywords: masking, formal verification, threshold implementations, hardware
security, side-channel analysis, private circuits

1 Introduction

Security critical embedded systems rely on the protection of sensitive information
against exposure. While the transmission of sensitive information over conventional
communication channels can be protected by means of strong cryptography, the pro-
tection against unintentionally created side channels, like power consumption [28] or
electromagnetic emanation [33], requires additional countermeasures.



Since the risk of side-channel analysis (SCA) is inevitable in many applications,
different countermeasures have been proposed in the past. One of the best researched
and most effective countermeasures against SCA is masking. Many different masking
schemes have been introduced [24, 26, 31, 35, 37] over the years. The history of mask-
ing, however, is also a history of failure and learning. Some of the first masking schemes
were shown to be insecure in practical implementations because glitches in the combi-
natorial logic (temporary logic states caused by propagation time differences of the
driving signals) were not considered in the formal models [26, 37]. The first provably
secure masking scheme with inherent resistance to glitches was the threshold imple-
mentation (TI) scheme of Nikova et al. [31]. Over the last years the TI scheme has been
extended further by Bilgin et al. [12], and other schemes have been proposed like the
consolidated masking scheme (CMS) of Reparaz et al. [35], and the domain-oriented
masking scheme (DOM and the low-randomness variant UMA) of Gross et al. [23, 24].

Even if the used masking scheme is secure, this is not automatically true for the
implementations that rely on this scheme. One problem that thus still remains is the
verification of masked implementations. There are basically two approaches that are
used in practice to verify the resistance against SCA, namely formal verification and
empirical leakage assessment. The predominant approach for the verification of masked
hardware implementations is still the empirical leakage assessment in form of statistical
significance tests [21] or by attacking the devices by using state-of-the-art side-channel
analysis techniques. However, such practical evaluations are never complete, in a sense
that if no flaw is found it remains uncertain whether or not the implementation could be
broken with a better measurement setup or more leakage traces.

Recently there has been some substantial development towards the formal verifica-
tion for masked software implementations [3, 7, 17]. However, these verification meth-
ods are tailored to software and do not take glitches into account. Therefore, they cannot
readily be applied to hardware implementations. In terms of non-empirical verification
of hardware implementations, there exist tools to test for leakage by either modeling
of the circuit in software [34] or approaches that simulate possible leakages by assum-
ing a specific power model [9]. To the best of our knowledge there exist no formal
tools that take glitches into account and directly prove the security of masked hardware
implementations on its netlist.

Our contribution. In this work, we introduce a method to formally prove the security
of masked hardware implementations in the presence of glitches. In contrast to existing
formal or non-empirical verification approaches for hardware designs, the introduced
approach does not require any additional modeling of the circuit or the leakage source
and proves the security of a circuit directly on its netlist. Compared to empirical verifi-
cation methods based on the statistical analysis of leakage traces, our formal approach
allows direct localization of the detected flaws, and gives conclusive security statements
that are independent of device- or measurement-specific conditions, or the amount of
gathered leakage information.

We base our approach on the probing model of Ishai et al. [26] and take the effects
of glitches into account. We introduce a circuit verification method that performs a con-
servative estimate of the data that an attacker can learn by probing different gates and
wires. The verification works directly on the gate-level representation of the circuit. It
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uses the Fourier expansion (or Walsh expansion) of the functions that are computed and
uses the fact that a non-zero Fourier coefficient for a linear combination of variables
indicates a correlation between the function and these variables (cf. [10]). A correlation
with a linear combination of variables that contains secrets but no uniformly distributed
masking variables corresponds to an information leak. By only keeping track of whether
coefficients are zero or not, we circumvent the complexity of a full Fourier representa-
tion of all functions computed by all gates of the circuit, at the cost of a loss of precision
that may lead to false alarms. The information of whether a coefficient is zero or not
can be encoded as a propositional logic formula whose size is linear in the size of the
circuit and vulnerability can be computed efficiently by a SAT solver.

To show the practicality of this approach, we check a variety of masked circuits
that originate from different masking schemes. We focus on acyclic (feedback free)
pipelined masked circuits, like the S-boxes of symmetric primitives which are usually
the parts of a circuit that are the hardest to protect in practice and therefore most sus-
ceptible to flaws. The security of the linear circuits parts, on the other hand, can be
established and verified more easily in practice, for instance by ensuring that only one
masked value or mask of one variable is used inside each of the linear circuit parts [24].
For the same reason multiple cipher rounds and S-box lookups can be analyzed sepa-
rately, as long as it is ensured that the masked outputs of the nonlinear parts are always
independently and freshly masked (which is the case for most masking schemes).

We ran our tool on a set of example circuits including the S-boxes of Keccak, Fides
and AES. Our verifier is efficient enough to formally prove the resistance of a full
first-order masked AES S-box. Because of the circuit size of the AES S-box, which
consumes about 40% of the entire AES area [24], the parallelized evaluation takes about
10 hours. We also prove a Keccak S-box up to order three, and theGF (2) multipliers of
DOM up to order four. Furthermore, we show that our approach correctly detects flaws
in masked circuits that are known to be flawed in the presence of glitches e.g. [26, 37].
The implementation of our tool and some example circuits are available on github [27].

This paper is organized as follows. In Section 2 we give a short overview of exist-
ing verification approaches and discuss the differences to our approach. In Section 3,
we introduce the used notation and the Fourier expansion. We give an introduction to
masked circuits and the probing model in Section 4, and show how to leverage the
Fourier expansion to test for probing security. We start the introduction of our verifica-
tion approach in Section 5, at first without taking signal timings into account. Before
we complete the description of our general verification approach in Section 7, we first
discuss in Section 6 how we model timing effects i.e. glitches. A concrete instantia-
tion of our verification approach based on a SAT solver is then introduced in Section 8.
Evaluation results for various masked circuits are discussed in Section 9. We conclude
this work in Section 10.

2 Related Work

Automated verification of masked implementations has been intensively researched
over the last years and recently many works targeting this topic have been published [1,
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6, 7, 9, 16–18, 30]. Most of the existing work, however, targets software based masking
which does not include the effects of glitches.

Verification of masked software. One of the most groundbreaking works towards the
efficient verification of masked software implementations is the work of Barthe et
al. [3]. Instead of proving the security of a whole implementation at once, this work
introduces the notion of strong non-interference (SNI). SNI is an extension to the more
general non-interference (NI) notion introduced in [2]. The SNI notion allows to prove
the security of smaller code sequences (called gadgets) in terms of composability with
other code parts. Gadgets fulfilling this SNI notion can be freely composed with other
gadgets without interfering with their SCA resistance.

Verification of algorithms that fulfill this notion scale much better than other ap-
proaches but, on the other hand, not all masking algorithms that are secure are also
directly composable. As a matter of fact the most efficient software masking algorithms
in terms of randomness of Belaid et al. [7, 8], Barthe et al. [4], and Gross et al. [23], for
example, do not achieve SNI directly.

In contrast to Barthe et al.’s work on SNI [3], our approach does not check for com-
posability and is therefore less restrictive to the circuits and masking schemes that can
be proven (similar to the NI approach of Barthe et al.’ [2]). Since Barthe et al.’s work
is designed to prove masked software implementations it does not cover glitches. In
our work we introduce the necessary formal groundwork for the verification of masked
circuits and in particular the propagation of glitches. Our approach is thereby not bound
to our SAT realization but is also compatible with existing tools like easycrypt which is
developed by Barthe et al. [5].

Most recently another formal verification approach by Coron [14] was introduced
that builds on the work of Barthe et al.. Essentially two approaches are discussed in
this work. The first approach is basically the same as the approach in [2] but written
in Common Lisp language. The second approach is quite different and works by using
elementary transformations in order to make the targeted program verifiable using the
NI and SNI properties. The work of Coron targets again only software based masking
and does not take glitches into account.

Eldib et al. [17] present an approach to verify masked software implementations.
Similar to our approach, the verification problem is encoded into SMT and verified by
checking the constraints for individual nodes (operations) inside the program. This ap-
proach allows direct localization of the vulnerable code parts. However, their approach
targets software and therefore does not cover glitches. It also produces SMT formulas
that are exponential in the number of secret variables, whereas the formulas that are
produced by our approach are only linear.

Bhasin et al. [10] also use Fourier transforms to estimate the side channel attack re-
sistance of circuits. Their approach uses a SAT solver to construct low-weight functions
of a certain resistance order. They have not used their approach to evaluate existing im-
plementations of cryptographic functions, and they do not take glitching behavior into
account.

Verification of masked hardware. Similar to our approach, Bertoni et al. [9] address
verification of masked hardware implementations in the presence of glitches. In this
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work all possible transients at the input of a circuit are considered and all resulting
glitches that could occur at the gates are modeled. However, this approach focuses
on first-order masking of purely combinatorial logic and uses a rather simple power
model to measure the impact (transitions from 0 to 1 result in the same power con-
sumption as transitions from 1 to 0). We note that focusing on combinatorial logic only,
leaves out most of the existing hardware-based masking schemes such as [23, 24, 31,
35]. Bertoni et al. demonstrated their approach on a masked implementation of Keccak
based on a masking scheme that is known to be insecure in the presence of glitches.

In contrast to Bertoni et al.’s work, our approach considers combinatorial logic
as well as sequential gates (registers), covers also higher-order leakages, and is not
restricted to circuits with only one output bit.

In the work of Reparaz [34], a leakage assessment approach is introduced that works
by simulating leakages of a targeted hardware implementation in software. At first, a
high-level model of the hardware implementation is created, and the verification then
works by simulating the model with different inputs and extracting leakage traces. The
verification result is gathered by applying statistical significance tests (t-tests) to the
simulated leakage traces. Compared to our approach, the leakage detection approach
of Reparaz does not perform a formal verification but an empirical leakage assessment.
Furthermore, the verification is not directly performed on the targeted hardware imple-
mentation but requires to model its (leakage) behavior in software.

Most recently a paper by Faust et al. [19] was published that introduces the so-
called robust-probing model as extension to the original probing model with regard to
glitches. They build upon the work of Barthe et al. [3] and target the verification of the
SNI notion in their extended probing model. In contrast to Faust et al.’s approach, our
formal verification approach does not strife for the verification of the SNI notion which
trades higher randomness and implementations costs against faster verification. Further-
more, to the best of our knowledge, there exists no implementation of their verification
approach in form of a tool to check real hardware circuits.

3 Preliminaries

In the following we make extensive use of the usual set notation, where S 4 T =
S \ T ∪ T \ S denotes the symmetric difference of S and T and for two sets of sets S
and T , we define S 44T = {S4T | S ∈ S, T ∈ T } to be the pointwise set difference
of all elements. We write B = {true, false} for the set of Booleans. For a set X of
Boolean variables, we identify an assignment f : X → B with the set of variables x
for which f(x) = true. For a Boolean function f(X,Y ) and an assignment x ⊆ X , we
write f |x to denote the function f |x(y) = f(x, y).

Fourier expansion of Boolean functions. There is a close connection between sta-
tistical dependence and the Fourier expansion of Boolean functions. First we formally
define statistical independence.

Definition 1 (Statistical independence) LetX , Y , and Z be sets of Boolean variables
and let f : 2X × 2Y → 2Z . We say that f is statistically independent of X if for all z
there is a c such that for all x we have |{y | f(x, y) = z}| = c.
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Lemma 2 Let F : BX × BY → BZ . Function F is statistically independent of X iff
for all functions f : BZ → B we have that f ◦ F is statistically independent of X .

Please find the proof in Appendix A. To define Fourier expansions, we follow the
exposition of [32] and associate true with −1 and false with 1. We can then represent a
Boolean function as a multilinear polynomial over the rationals.

Definition 3 (Fourier expansion) A Boolean function f : {−1, 1}n → {−1, 1} can
be uniquely expressed as a multilinear polynomial in the n-tuple of variables X =
(x1, x2, . . . , xn) with xi ∈ {±1}, i.e., the multilinear polynomial of f is a linear com-
bination of monomials, called Fourier characters, of the form χT (X) =

∏
xi∈T xi for

every subset T ⊆ X . The coefficient of χT ∈ Q is called the Fourier coefficient f̂(T )
of the subset T . Thus we have the Fourier representation of f :

f(X) =
∑
T⊆X

f̂(T )χT (X) =
∑
T⊆X

f̂(T )
∏
xi∈T

xi.

The Fourier characters χT : {−1, 1}n → {−1, 1} form an orthonormal ba-
sis for the vector space of functions in f : {−1, 1}n → {−1, 1}. The Fourier
coefficients are given by the projection of the function to its basis, i.e., for
f : {−1, 1}n → {−1, 1} and T ⊆ X = (x1, x2, . . . , xn), the coefficient f̂(T ) is given
by f̂(T ) = 1/2n ·

∑
X∈{±1}n(f(X) · χT (X)). In order to prevent confusion between

multiplication and addition on rationals and conjuction and XOR on Booleans, we write
· and + for the former and ∧ and ⊕ for the latter.

As an example, the Fourier expansion of x ∧ y is

1/2 + 1/2 · x+ 1/2 · y − 1/2 · x · y. (1)

If x = false = 1 and y = true = −1, for example, the polynomial evaluates to
1/2 + 1/2− 1/2 + 1/2 = 1 = false as expected for an AND function.

Let us note some simple facts. (1) the Fourier expansion uses the exclusive or of
variables as the basis: x⊕y = x·y. (2) f2 = 1 for the Fourier expansion of any Boolean
function f [32]. (3) there are two linear functions of two arguments: f = x · y (XOR)
and f = −(x · y) (XNOR). All other functions f are nonlinear and for them, each of
f̂(∅), f̂({x}), f̂({y}), and f̂({x, y}) is nonzero. (We are ignoring the constant and
unary functions.) (4) the statistical dependence of the functions can be read off directly
from the Fourier expansion: the conjunction has a constant bias, positively correlates
with x and y, and negatively with its x ⊕ y. This last fact can be generalized to the
following lemma.

Lemma 4 (Xiao-Massey [39]) A Boolean function f : {−1, 1}n → {−1, 1} is stati-
stically independent of a set of variables X ′ ⊆ X iff ∀T ⊆ X ′ it holds that if T 6= ∅
then f̂(T ) = 0.
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4 Masking and the Probing Model

The intention of masking is to harden side-channel analysis attacks (like differential
power analysis or electromagnetic emanation analysis) by making side-channel infor-
mation independent of the underlying security sensitive information. This independence
is achieved through the randomization of the representation of security sensitive vari-
ables inside the circuit. For this purpose, randomly produced and uniformly distributed
masks are added (XOR) to the security sensitive variables on beforehand of a security
critical computation. The number of used masks depends on the used masking scheme
and is a function of the security order.

As a simple example, we consider the security sensitive 1-bit variable s in Equa-
tion 2 that is protected by adding a uniformly random maskms, resulting in the masked
representation sm.

sm = s⊕ms. (2)

The masked value sm is again uniformly distributed and statistically independent of
s, i.e., it has the same probability to be 0 or 1 regardless of the value of s. Any operation
that is performed only on sm is statistically independent of s and thus also the produced
side-channel information. Since the mask ms is randomly produced, operations on the
mask are uncritical. However, the combination of side-channel information on sm and
ms can reveal information on s. The independence achieved through masking is thus
only given up to a certain degree (the number of fresh masks used for masking s), and
it is important to ensure this degree of independence throughout the entire circuit. The
degree of independence is usually refereed to as the protection order d.

Masked circuits. For the remainder of the paper, let us fix an ordered set X =
{x0, . . . , xn} of input variables. We partition the input variables X into three cate-
gories:

– S = {s1, . . . sj} are security sensitive variables such as key material and interme-
diate values of cryptographic algorithms that must be protected against an attacker
by means of masking.

– M = {m1, . . .mk} are masks that are used to break the statistical dependency
between the secrets S and the information carried on the wires and gates. Masks
are assumed to be fresh random variables with uniform distribution and with no
statistical dependency to any other variable of the circuit.

– P = {p1, . . . pl} are all other variables including publicly known constants, control
signals, et cetera. Unlike secret variables, these signals do not need to be protected
by masks and are unsuitable to protect secret variables.

We define a circuit C = (G,W, R, f, I), where (G,W) is an acyclic directed graph
with vertices G (gates) and edges W ⊆ G × G (wires). Gates with indegree zero are
called inputs I , gates with outdegree zero are called outputs O. Furthermore, R ⊆ G is
a set of registers, f is a function that associates with any gate g ∈ G \ I with indegree k
a function f(g) : Bk → B, and I : I → (2X → B) associates an externally computed
Boolean function over X to each input. We require that registers have indegree one and
that the associated function is the identity. In the following, we assume, wlog, that all
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Fig. 1. Circuit graph of circuit in Figure 2

gates, except inputs and registers, have indegree 2 and we partition these gates into a
set L of linear gates (XOR, XNOR) and a set N of nonlinear gates (AND, NAND, OR,
NOR, the two implications and their negations). We also require that for any gate g, any
path from some input to g has the same number of registers.

The intuitive meaning of f is the local function computed by a gate. For instance, if
g is an AND gate, f(g)(x, y) = x ∧ y. We associate with every gate another func-
tion F (g) : 2X → B, which defines the function computed by the output of the
gates in terms of the circuit inputs. The function F (g) is defined by the functions
of the predecessor gates and f(g) in the obvious way. Given a sequence of gates
(g1, . . . , gd), we extend F pointwise to F (g1, . . . , gd) : 2X → Bd: F (g1, . . . , gd)(x) =
(g1(x), . . . , gd(x)). We often identify a gate with its function.

As an example, consider the circuit graph in Figure 1 (which corresponds to the
circuit depicted in Figure 2). We have f(g3)(a, b) = a⊕ b and F (g3) = (sm ⊕m1)⊕
(ms ∧ p1).

For a circuit C, a sequence of gates G = (g1, . . . , gn), and a sequence of functions
F = (f1, . . . , fn) with fi ∈ B2 → B, we write C[G 7→ F ] for the circuit C in which
gate gi is replaced by a gate with the Boolean function fi.

Security of masked circuits. The security of various masking schemes is often analyzed
in the so-called probing model that was introduced by Ishai et al. [26]. It was shown
by Faust et al. [20] and Rivain et al. [36] that the probing model is indeed suitable
to model side-channel attacks and to describe the resistance of an implementation in
relation to the protection order d. As it was shown by Chari et al. [13], there is an
exponential relation between d and the number of leakage traces required to exploit the
side-channel information.

In the probing model, an attacker is bound to d probing needles which can be freely
placed on arbitrary circuit gates (or wires). Probes are placed permanently on these gates
and monitor all signals states and signal transitions that occur at the probed circuit gate
from the circuit reset onwards. Thus one probe records the probed signals at all time
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instances. The probing model quantifies the level of side-channel resistance of a circuit
over the minimum number of probing needles an attacker requires to extract any secret
information. More specifically, a circuit is secure in the probing model if an attacker
cannot combine the information gathered from d probes over all points in time in an
arbitrary function F such that F statistically depends on any of the secret variables in
S. We model a probe as the ability to read the Boolean function produced by the probed
gate or its associated wire. Since we assume that the masking variables are uniformly
distributed, and the public variables are known, the circuit leaks information iff F is
statistically dependent on S regardless of the values that the public variables take.

Definition 5 (secure functions) A function f : 2X → Bd is secure if f is for any
assignment p ⊆ P to the public variables, f |p is statistically independent of S.

Definition 6 (d-probing security [26]) A circuit C = (G,W, f, I) is order d probing
secure (d-probing secure) iff for any gates g1, . . . , gd ∈ G, F (g1, . . . , gd) is secure.

Verification example using the Fourier expansion. According to Lemma 4, we can
decide whether the values computed by a circuit are secure by computing the Fourier
expansion of all its gates and checking whether there is a coefficient that contains only
secret variables without a mask (and with or without public variables). Formally we
check that ∅ 6= S′ ⊆ S ∪P such that F̂ (g)(S′) 6= 0. The first-order security of a circuit
can thus be verified using the probing model by calculating the Fourier expansion of the
whole circuit. As an example consider the Fourier expansion of the circuit in Figure 2
for which we have:

F (g1) = sm ·m1,

F (g2) = 1/2 + 1/2 ·ms + 1/2 · p1 − 1/2 ·msp1, and
F (g3) = F (g1) · F (g2)

= 1/2 · smm1 + 1/2 ·mssmm1 + 1/2 · p1smm1 − 1/2 ·msp1smm1.

Assuming that sm = s ⊕ ms and using the properties of the Fourier expansion this
implies that

F (g3) = 1/2 · smsm1 + 1/2 · sm1 + 1/2 · sp1msm1 − 1/2 · sp1m1. (3)

For the example circuit in Figure 2, if s is a secret and m1 is a uniformly distributed
random mask, then g3 in Equation 3 computes a function that does not reveal any secret
information. This follows from the fact that in F (g3) there are only (non-zero) Fourier
coefficients for terms that contain s and at least one masked value.

Since the exact computation of Fourier coefficients is very expensive and the exten-
sion to higher-order probing security nontrivial, in the following we develop a method
to estimate the Fourier coefficients of each gate and to check for higher-order security.

5 Our Verification Approach for Stable Signals

In this section, we present a sound verification method for (d-)probing security for the
steady-state of a digital circuit. It is assumed that the signals at the circuit input are fixed
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to a certain value and that all intermediate signals at the gates and the circuit output have
reached their final (stable) state. This approach is later on extended in Sections 6 and 7
to cover transient signals and glitches.

Since the formal verification of the security order of masked circuits has proven to
be a non-trivial problem in practice, the intuition behind a circuit verifier is to have a
method that correctly classifies a wide range of practically relevant and securely masked
circuits but rejects all insecure circuits. Any circuit that is not secure according to Defi-
nition 6 is rejected. Our verification approach can be subdivided into three parts: (1) the
labeling system, (2) the propagation rules, and (3) the actual verification.

5.1 Labeling

In order to check the security of a circuit we introduce a labeling over the set of input
variables X for the stable signals S : G → 22

X

that associates a set of sets of variables
to every gate. This labeling system is based on the Fourier representation of Boolean
functions (see Section 3) and intuitively, a label contains at least those sets X ′ ⊆ X for
which f̂(X ′) 6= 0 (the sets that correlate with the Boolean functions).

The initial labeling is derived from I. For an input g which is fed by function fg =

I(g), we have S(g) = {X ′ ⊂ X | f̂g(X ′) 6= 0}. In practice, the initial labeling of
the circuits is easy to determine as inputs are typically provided with either a single
variablem or a masked secret x⊕m. An example for the labeling of an example circuit
is shown in Figure 2 (blue). Inputs containing security sensitive variables contain a
single set listing all security sensitive variables and masks that protect this sensitive
variables. For the masked signal sm = s⊕ms, for example, the initial label is S(sm) =
{{s,ms}}. The meaning of the label is that by probing this input the attacker does not
learn anything about s. In order to reveal any information on s, also some information
on ms needs to be combined with this wire in, either by the circuit itself (which would
be a first-order flaw) or by the attacker by probing an according wire. If the attacker
is assumed to be restricted to a single probing needle (d = 1) the signal sm is secure
against first-order attacks. Finally, the masked inputs ms and m1 in Figure 2 contain
only the mask variables. Formally, for inputs g ∈ I with function I(g) = f(X), we set
S(g) = {X ′|X ′ = X}.

5.2 Propagation rules

To estimate the information that an attacker can learn by probing the output of a gate,
we propagate the input labels through the circuit. For the verification we conservatively
estimate which coefficients of the Fourier representation are different from zero and
correlate with the variables. We prove at the end of this section that our estimation is
sufficient to point out all security relevant information.

Nonlinear gates. To generate the labels for the outputs of each gate of the circuit, we
introduce the nonlinear gate rule. The nonlinear gate rule corresponds to a worst-case
estimation of the concrete Fourier spectrum of the signals and trivially catches all flaws.
The labeling for the output of the nonlinear gate g ∈ N , with inputs ga and gb is :
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Fig. 2. Masked circuit example with according labels after the propagation step

S(g) = {∅} ∪ S(ga) ∪ S(gb) ∪ S(ga)44S(gb).

See gate g2 in Figure 2 for a simple example of an AND gate calculating ms ∧ p1.
The resulting labels denote the information that can be learned by probing this gate
which could be either ms or p1 alone, or together. The labeling reflects the Fourier
spectrum of the AND gate (see Equation 1). In particular the labeling shows all terms
of the Fourier polynomial which coefficients are different from zero and are therefore
statistical dependent.

Linear gate rule. By following the Definition 3 of the Fourier expansions further we
can also model linear gates which have a reduced spectrum compared to nonlinear gates.
We model this circumstance by introducing a new rule for labeling a linear gate g ∈ L
with inputs ga and gb:

S(g) = S(ga)44S(gb).

Combined example. To demonstrate how the propagation step works in practice, we
applied the propagation rules (summarized in Table 1) to an example circuit. The result
is shown in Figure 2. The AND gate g2 is a nonlinear gate, and the propagation rules
are then iteratively applied to the gates g1 to g3. The output labeling of g1 indicates that
the security critical variable s is here not only protected by ms but also by the mask
m1. Combining the public signal p1 with the mask ms in the nonlinear gate results in a
nonuniform output signal which is indicated by the {∅} label at the output of g2. For the
calculation of the labels of g3, the linear rule is used on the output labels of g1 and g2
which results in a labeling that indicates that s is even in the worst-case still protected
by ms, or m1, or both.

5.3 Verification

For the verification step, in the first-order case, the circuit verifier checks if any of the
sublabels created in the propagation step contains one or more secret variables without

11



Table 1. Propagation rules for the stable set S(g) connected to the gates ga and gb

Gate Type of g Stable set rule

Input I(g) = f(X) S(g) = {X ′ | X ′ = X}
Nonlinear gate S(g) = {∅} ∪ S(ga) ∪ S(gb) ∪ S(ga)44S(gb)
Linear gate S(g) = S(ga)44S(gb)
Register S(g) = S(ga)

any masking variables (public variables are ignored since they are unable to mask secret
data). If this is the case, the verifier rejects the circuit. In the example circuit in Figure 2,
all of the labels that contain s also containm1 orms and therefore the circuit is accepted
by the verifier.

Higher-order verification. For the generalization to d-order verification it is quite
tempting to model the attackers abilities by letting the attacker pick multiple labels
from any gate and combining them in an arbitrary manner. However, we note that the
labeling does not reflect the relation of the probed information among each other and
thus does not give a suitable approximation of what can be learned when multiple gates
are probed. As a trivial example consider a circuit that calculates q = (a∧ b)⊕ c where
all inputs are uniformly distributed. The labeling of the output q after the propagation
step consists of the labels {c}, {a, c}, {b, c}, and {a, b, c} for all of which an attacker
probing q would indeed see a correlation. If an attacker restricted to two probes would
probe q with the first probe, she obviously would not learn anything more by probing q
a second time. In other words, if we would model a higher-order attacker by the ability
to combine multiple labels, she could combine the label {c} with any other label of q,
e.g. {a, b, c}, in order to get information on a or b which is of course not the case.

Instead of modeling higher-order verification by the straight-forward combination
of labels, we instead check the nonlinear combination of any tuple of d gates. An at-
tacker can thus pick any number of up to d gates and combines them in an arbitrary
function. We then need to check that even the worst case function over the gates could
never contain a secret variable without a mask. This causes an obvious combinatorial
blowup. In Section 8, we show how to harness a SAT solver to combat this problem. A
proof for the correctness of the verification without glitches is provided in Appendix B.

In the next two sections we extend the verifier to cover glitches which shows that
the example circuit is actually insecure.

6 Modeling Transient Timing Effects

So far, we have only considered the circuit’s stable signals. We now discuss signal ti-
ming effects inside one clock cycle i.e. glitches and formalize how we model glitches
in the probing model. Subsequently, we discuss how we model information that is col-
lected from multiple clock cycles.

12
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6.1 Glitches

As an example of what can go wrong when differences in the signal propagation times
are not taken into account [29], consider the circuit in Figure 3. The depicted circuit is
secure in the original probing model as introduced in [26].

The information on the outputs of the XOR gates is (sm = s⊕ms):

g1 = sm ⊕m1 = s⊕ms ⊕m1 and
g3 = sm ⊕m1 ⊕ms = s⊕m1.

Since the other circuit gates (input terminals are modeled as gates) only carry infor-
mation on the masked value sm or the masks ms and m1, a single probe on any parts
of the circuit does not reveal s and the circuit is thus first-order secure in the original
probing model.

However, if we assume that in a subsequent clock cycle (Cycle 2 in Figure 4) a
different secret s′ is processed, the circuit inputs change accordingly from sm, ms,
and m1 to s′m, m′s, and m′1, respectively. Figure 4 shows an example on how these
changes propagate through the circuit. Due to signal timing variance caused by physical
circumstances, like different wire lengths or different driving strengths of transistors,
so-called glitches arise. As a result of this timing variance m1 changes its value later
(t2) than the other inputs (t1) thus creating a temporary information leak (glitch). An
attacker who places one probe on the output of g3 firsts observes the original value
s⊕m1 (at time t0) and then s′⊕m1 (between t1 and t2). By combining the information
the attacker obtains the information (s⊕m1)⊕ (s′⊕m1) which is equivalent to s⊕ s′.
Thus, she learns the relation of two secret bits. This information could not be obtained
by combining the stable signals in the two clock cycles. Indeed, the leakage critically
depends on the temporary information provided by the glitch in the circuit. To verify the
security of a circuit in the probing model with glitches, all possible signal combinations
that could arise because of propagation delays of signals need to be considered.

6.2 Formalization of Probing Security with Glitches

To formalize the probing model with glitches in the first-order case, the attacker’s abi-
lities are extended as follows: The attacker can first replace any number of gates (ex-
cept for registers) by a gate that computes an arbitrary Boolean function from the gate’s
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original inputs, and may then place one probe on any wire such that there is no register
between any replaced gate and the probe.

For higher-order attacks with d > 1, the formalization is a little more cumbersome.
Intuitively, the attacker should be able to modify the behavior of arbitrary gates, but
this effect should disappear when the signal passes through a register. We model this by
copying the combinational parts of the circuit and allowing the attacker to change gates
in the copy, whereas the original, unmodified signals are propagated by the unmodified
gates. Figure 5 illustrates an example for the modeling of the glitches. The copied gates,
which the attacker may modify, are drawn in blue. Note in particular that gate g7 feeds
into register g8, but the copy g′7 becomes a new primary output.

Formally, given a circuit C = (G,W, R, f, I), we do the following.
(1) We define a circuit C ′ = (G′,W ′, R, f ′, I). We copy all the gates except inputs

and registers: G′ = G ∪ {g′ | g ∈ G \ R \ I}. We introduce wires from the inputs and
registers to the copied gates and introduce wires between the copied gates:W ′ =W ∪
{(g, h′) | (g, h) ∈ W, g ∈ I ∪R}∪{(g′, h′) | (g, h) ∈ W, g /∈ I ∪R, h /∈ R}. Finally,
the functions of the copied gates are the same as those of the originals: f ′(g′) = f(g)
for g ∈ G′ \ G.

(2) The attacker may replace any gate copy g′ by a gate that computes an arbitrary
Boolean function. We model this by defining a set of circuits, one for any set of gates
that the attacker may modify:

Cglitch(C) = {C ′[(g′1, . . . , g′n) 7→ (f1, . . . , fn)] | (g1, . . . , gn) ∈ Gn,∀i.fi : B2 → B}.

Definition 7 (d-probing security with glitches) A circuit C is order d probing secure
with glitches iff for any Cglitch = (G′,W ′, R, f ′, I) ∈ Cglitch and any gates g1, . . . , gd ∈
G′, F (g1, . . . , gd) is secure.
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6.3 Modeling Information from Multiple Clock Cycles

The verification of higher-order probing security requires to model information that is
obtained and combined over different clock cycles. In our verification approach we con-
sider dependencies between variables rather than concrete instantiation of these vari-
ables. The way we model glitches allows an attacker to exploit the worst case dependen-
cies between the variables in between two register stages. We now state assumptions on
masked circuit that ensure that the worst case dependencies are the same in each clock
cycle.

Assumptions on masked circuits. Without loss of relevance for masked circuits we
make the following assumptions which are inspired by practical masked circuits: (1) We
assume that the values on the inputs remain the same throughout a clock cycle, they
toggle only once at the beginning of a new clock cycle (registered inputs). (2) The class
of the variables that are used in the input functions and the functions themselves do
not change over time. For the circuit in Figure 3, for example, the input sm always
contains a variable s ∈ S and the associated mask ms ∈ M even though in each clock
cycle the variables may change (e.g. from s to s′). (3) Mask variables are fresh random
and uniform distributed at each clock cycle. (4) The circuits are feedback free and loop
free, except the inherent feedback loops of registers. (5) The register depth (number of
registers passed, counting from the input of the circuit) for each variable combined in a
gate function is the same. No information resulting from different clock cycles is thus
combined apart from the effects of delays and glitches which may temporarily combine
information from two successive clock cycles. This assumption is motivated by the fact
that most of the masked hardware designs, e.g. common S-box designs, are designed in
a pipelined way.

From these assumptions it follows that all variables change in each cycle (e.g. from
s to s′, and so on), however, at varying times and in an arbitrary order. The variable
classes and functions remain the same, and as a result from the assumptions 4 and 5
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it is ensured that only variables that are fed into the circuit at the same cycle or from
the cycle before are combined. It is therefore enough to consider the propagation of
dependencies instead of concrete instantiation of variables.

7 Extending the Verification Approach to Transient Signals

In this section we use the modeling of the transient timing effects from the previous sec-
tion to complete our verification approach. We take glitches into account by extending
the propagation rules accordingly. The modeling of information from different clock
cycles, on the other hand, does not require any changes in the verification approach
from Section 5.

The nonlinear gate rule in Table 1 already inherently covers glitches by propaga-
ting the labels of the inputs and all possible combinations of these labels directly to the
output. To hinder the propagation of glitches, circuit designers use registers that propa-
gate their input only on a specific clock event, and thus isolate the register input from
the output during the evaluation phase. We model the glitching behavior of a circuit
by introducing an additional transient set of labels T per gate. Each gate thus has two
associated sets: S carries the information of the stable state of the circuit as before, and
the transient set T describes the transient information that is only accessible to an at-
tacker in between two registers (or an input and a register, or a register and an output).
In between two registers we also apply the nonlinear gate rule to linear gates to ensure
we cover all possible effects of glitches.

Figure 6 illustrates the new linear gate rule for the stable (blue) and the transient
(red) set of labels. The stable and transient sets of the inputs are equal at the beginning
because the inputs are either circuit inputs or outputs of a register. When the signals
propagate through the linear XOR gate, the transient set is calculated by applying the
linear rule from Table 2 and the stable set with the linear rule from Table 1. After
the signal passes the register, only the stable information remains and the transient
set carries thus the same information as the stable set. Table 2 summarizes the rules
for creating the transient-set labels T (g). Please note that introducing the transient set
and the transient gate rules corresponds to the modeling of glitches from Section 6 as
depicted in Figure 5 (blue), where the gates in between two registers are copied and
their function can be changed in an arbitrary manner by the attacker. Replacing the
transient labels with the stable labels at a register corresponds to connecting the copied
gates to the circuit output to hinder the propagation of glitches.

Aside from the introduction of the transient set and the according propagation rules,
the verification work as described in Section 5. The circuit inputs are initially labeled
according to their input variables where both the stable and transient sets hold the same
labels. Then for all possible combinations of up to d gates the propagation of the labels
is performed according to the stable and transient propagation rules. The circuit is order-
d probing secure if for no combination of gates produces a label that only consists of
secrets and public variable without masks. A proof for the verification approach for
transient signals is provided in Appendix C.

Example. The transient labels T of the circuit in Figure 2 are shown in Figure 7 (the
stable sets are omitted since they do not carry any additional information). Due to the
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Table 2. Propagation rules for the transient set T (g) fed by the gates ga and gb

Gate Type of g Transient set rule

Input T (g) = S(g)
Nonlinear gate T (g) = {∅} ∪ T (ga) ∪ T (gb) ∪ T (ga)44 T (gb)
Linear gate T (g) = {∅} ∪ T (ga) ∪ T (gb) ∪ T (ga)44 T (gb)
Register T (g) = S(ga)

a
b

{{a}}{{a}}

{{b}}{{b}} g
xor

FF

g
ff

q

{{a,b}}{{a,b}}

{{a,b}}{Â,{a},{b},{a,b}}

Fig. 6. XOR gate rules for stable (blue) and transient (red) signal sets

transient set propagation rules, the functionality of the gates g1 and g3, which are linear
gates in the underlying circuit in Figure 2, are replaced with nonlinear gates. As can be
observed at the output of the circuit, the verification under the consideration of glitches
leads to a rejection of the circuit because the s variable (black labels) is in the output
labeling without being masked by either ms or m1.

To make it clear that the circuit is indeed insecure, we assume that p1 = true and
that sm and ms change their values to s′m and m′s, resp., but the value of m1 and p1
temporarily remains unchanged. Then, g1 transitions from s⊕ms⊕m1 to s′⊕m′s⊕m1

and as a result g3 transitions from s⊕m1 to s′⊕m1, thus leaking information about the
relation of s and s′. (Cf. Figure 4). The flaw can be easily repaired by adding a register
after g1 which ensures that sm is always remasked before ms is combined with sm in
g3, and the same labels as in Figure 2 for g1 would thus be propagated.

8 SAT Based Circuit Verification

In this section, we introduce one concrete instantiation of our verification approach
based on a SAT solver. The verification approach introduced in the previous sections is
thus encoded as formulas in propositional logic. We start with the stable set rules and
verification before we extend the encoding to the transient set rules.

Verification of stable signals. The SAT based verification works as follows. Intuitively,
for every gate g, we pick one set X ′ ⊆ S(g), i.e., we pick one Fourier character with
a possibly nonempty coefficient. We then encode the rules for the linear and nonlinear
gates of Table 2 and Table 1, respectively. To check for higher-order security we connect
an XOR gate (checking gate) to any possible subset of up to d gates and check that the
label of this gate does not contain a label with just secrets and no masks.
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Fig. 7. Masked circuit example from Figure 2 reevaluated with the transient rules (red) which
leads to a flaw due to glitches (black labels)

Let C = (G,W, R, f, I) be a circuit. For each gate g we introduce a set of Boolean
variables Xg = {xg | x ∈ X} and a Boolean activation variable ag . For a checking
gate gc we introduce a set of Boolean variables Xgc . We define a formula Ψ to check
whether the masking scheme is secure. Recall that L and N are the sets of linear gates
and nonlinear gates, resp. Formula Ψ consist of multiple parts:

Ψ = Ψgates ∧ Ψunsafe, where

Ψgates =
∧
g∈I

Ψinp(g) ∧
∧
g∈N

Ψnl(g) ∧
∧
g∈L

Ψlin(g) ∧
∧
g∈R

Ψreg(g).

The labeling of the inputs is determined by I. For X ′ ⊆ X , we define

ψg(X
′) =

∧
x∈X

{
xg(X

′) if x ∈ X ′,
¬xg(X ′) if x /∈ X ′, and

Ψinp(g) =
∨

X′⊆X:Î(g)(X′) 6=0

ψg(X
′).

To define the behavior of linear and nonlinear gates we define the following auxil-
iary formulas using the rules from Table 1, where T = (t1, . . . , tn), U = (u1, . . . , un),
and V = (v1, . . . , vn) are ordered sets of variables, and define↔ to denote equality.

Ψempty(T ) =
∧
i

¬ti,

Ψcopy(T,U) =
∧
i

(ti ↔ ui), and

Ψlin(T,U, V ) =
∧
i

(ti ↔ (ui ⊕ vi)).
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For a linear gate g with inputs g′ and g′′, we use the formula

Ψlin(g) = Ψlin(Xg, Xg′ , Xg′′),

for a nonlinear gate g with inputs g′ and g′′, we use the formula

Ψnl(g) = Ψempty(Xg)∨ Ψcopy(Xg, Xg′)∨ Ψcopy(Xg, Xg′′)∨ Ψlin(Xg, Xg′ , Xg′′), and

for a register g with input g′, we simply have Ψreg(g) = Ψcopy(Xg, X
′
g). Also we

introduce an integer variable asum, and bound it to the attack order d:

asum =
∑
g

ite(ag, 1, 0)

asum ≤ d.

The function Ite(ag, 1, 0) (if-then-else) converts a Boolean variable to Integer.
For the checking gate we xor the corresponding inputs:

Ψ(gc) =
∧
x∈X

xgc ↔⊕g∈Gag ∧ xg.

Finally, for the checking gate gc we define a constraint to check whether security is
violated, that is, whether there is a non-zero Fourier coefficient which contains secrets
and no masks:

Ψunsafe(gc) =
∨
s∈S

sg ∧
∧

m∈M
¬mg.

Formula Ψ contains |X| · |G| propositional variables and O(|X| · |G|) constraints.
An example for the SAT encoding is provided in Appendix F along with a proof for

its correctness in Appendix D.

Extension to transient signals. The encoding for the transient rules follows the expo-
sition in Section 7 and in particular the rules from Table 2. We introduce a second set of
variables X ′g = {x′g | x ∈ X}, which represent the Fourier characters on the “copied”
gates in Definition 7. We introduce a slightly modified set of constraints, where we
write Φ′ to denote a formula Φ in which each variable xg has been replaced by x′g .

Φ = Φgates ∧ Φ′unsafe, where

Φgates =
∧
g∈I

(Ψinp(g) ∧ Ψ ′inp(g)) ∧
∧
g∈N

(Ψnl(g) ∧ Ψ ′nl(g))∧∧
g∈L

(Ψlin(g) ∧ Ψ ′nl(g)) ∧
∧
g∈R

Φreg(g),

where for a register g with input g′, we copy only the original (glitch-free) signals:

Φreg(g) = Ψcopy(Xg, Xg′) ∧ Ψcopy(Xg, X
′
g′).
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Note the use of the constraint for nonlinear gates for the copy of linear gates, which
corresponds to the attacker’s ability to replace such a gate by any other gate in Cglitch(C).
Finally, we check for leakage only on the gate copies:

Φ′unsafe(gc) =
∨
s∈S

s′gc ∧
∧

m∈M
¬m′gc .

Formula Φ contains 2 · |X| · |G| propositional variables and O(|X| · |G|) constraints. A
proof for the correctness of the encoding for transient signals is given in Appendix E.

9 Practical Results

Figure 8 illustrates the implemented verification flow that is used to gather the results
presented in this section. At first the circuit description is parsed using Yosys 0.7 [38]
open synthesis suite. The resulting circuit tree is stored in JavaScript Object Notation
(JSON). The user then needs to provide the circuit’s input labels by telling the JSON
parser (written in Python) which signals are secrets (S), masks (M), or other signals (P),
and for which security order (d) the circuit needs to be tested. The construction of the
SAT formulas is then performed in about 1,000 lines of Python code, and checked by
the Z3 Theorem Prover 4.5.1 [15] (initial experiments with other SAT solvers, including
CryptoMinisat 5.0.1 were not encouraging). All results are gathered on a Intel Xeon
E5-2699v4 CPU with a clock frequency of 3.6 GHz and 512 GB of RAM running in a
64-bit Linux OS environment (Debian 9).

Optimizations. There are a two simple optimizations that we use to speed up the ver-
ification. First, we can treat public variables at the inputs as constants. We can easily
prove by induction that if P ′ ∪ S′ ∪M ′ ∈ S(q) for some gate g and P ′ ⊆ P , S′ ⊆ S,
and M ′ ⊆ M and we compute a new labeling S ′ by treating the public variables as
constants, then S′ ∪M ′ ∈ S ′(q) and thus, if S(q) is insecure, so is S ′(q). A similar
argument holds for T and for combinations of signals.

Second, we can treat secret bits one at a time, treating the other secret bits as con-
stants. The argument is much the same as for the first optimization, if a function is
insecure then it has a label with at least one secret bit and no masks. Removing any
other secret bits from the label does not affect whether the label is seen as secure or not.
This optimization allows for a significant speedup on larger examples as it allows us to
run the checks for each of the secret bits in parallel.
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Table 3. Overview of masked circuits the first order verification results

Name Gates Variables Part w/o glitches w/ glitches

linear nonlin reg secret mask pub time result time result

Trichina gate [37] 4 4 0 2 3 1 ≤ 1 s 7 ≤ 2 s 7

ISW AND [26] 4 4 0 2 3 0 ≤ 1 s 3 ≤ 2 s 7

TI AND [31] 6 9 0 2 4 0 ≤ 1 s 3 ≤ 3 s 3

DOM AND [24] 4 4 2 2 3 1 ≤ 1 s 3 ≤ 2 s 3

DOM Keccak S-box [25] 30 20 10 5 10 1 ≤ 1 s 3 ≤ 20 s 3

DOM AES S-box [24] 392 144 208 8 26 1 1-8 ≤ 30 s 3 ≤ 5-10 h 3

TI Fides-160 S-box [11] 128 60 0 5 15 0 1-4 ≤ 1-2 s 3 ≤ 1-3 s 3

TI Fides-192 APN [11] 4,035 3,046 0 6 24 0
134 44 0 0 24 0 1 ≤ 2 s 3 ≤ 5 s 3

649 314 0 6 24 0 2 ≤ 1 m 3 ≤ 15 m 3

1,697 1,098 0 6 24 0 3 ≤ 20 m 3 ≤ 2 h 3

1,186 1,086 0 6 24 0 4 ≤ 10 m 3 ≤ 40 m 3

369 504 0 6 24 0 5 ≤ 2 m 3 ≤ 3 m 3

Evaluation. An overview of the experiments is given in Table 3. The table states the
number of linear and nonlinear gates of the circuits as well as the number of variables
classified as secret, mask, and public, resp. Furthermore, the verification results are
given for the stable set (without glitches) and transient set (with glitches) verification
separately. The table states whether the circuit is secure in the given model (3 for secure
and 7 for insecure) and the time needed for checking and generation of the constraints.

The selection of masked circuits cover different masked GF (2) multiplier con-
structions (masked AND gates) of the Trichina gate [37], the ISW scheme [26], the
threshold implementation (TI) scheme [31], and the domain-oriented masking scheme
(DOM) [24]. We also check larger circuits including the AES S-box constructions of
Gross et al. [24] using the domain-oriented masking (DOM) scheme. Furthermore, we
verify a FIDES S-box implementation by Bilgin et al. [11], and a Keccak S-box by
Gross et al. [25].

9.1 Verification of First-Order Masked Implementations

Table 3 shows the verification results of the first-order masked hardware implementa-
tions. For larger circuits, like the AES S-box, we checked each of the secret bits sepa-
rately. If multiple CPU’s are available, these verifications can run simultaneously and
we thus split the verification up into multiple parts.

Masked AND gates. The first masked AND we verify is the so-called Trichina gate
which was originally designed to resist first-order attacks. Equation 4 shows the under-
lying logic function. The Trichina gate was designed without considering the effect of
glitches. As a result, if the inputs are correctly and independently masked (am = a⊕ma

and bm = b⊕mb), the stable state of the output of the circuit is also correctly masked.

q = am ∧ bm ⊕ am ∧mb ⊕ma ∧ bm ⊕ma ∧mb ⊕mq (4)
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However, due to timing differences in the propagation of the signals, glitches may
occur in one of the XOR gates. This makes the design vulnerable unless additional
measures are taken which is also indicated by our verification results. Interestingly also
the result of the stable verification already shows the vulnerability of the Trichina gate.
This is due to timing optimizations of the synthesizer that change the sequence in which
the AND gate outputs are XORed together which is a common problem in masked
circuit designs and is easily overseen.

The masked AND gate from the ISW scheme is similar to the Trichina gate but
scalable to any protection order. This gate suffers from the same vulnerability to
glitches, which makes any straightforward implementation of the original proposed cir-
cuit construction insecure against first-order attacks. This time the flaw is not detected in
the stable set because the gates are arranged in a way that the secrets are always masked
in the stable analysis of the circuit. However, the circuit is nevertheless vulnerable to
glitches which is shown in the transient analysis of the circuit.

To overcome the issue of glitches, the threshold implementation (TI) scheme pro-
posed a masking with two fresh masks per sensitive variable (e.g., am = a ⊕ma0 ⊕
ma1). The resistance to glitches is then achieved by ensuring that in no part of the circuit
the masked value and all its masks come together.

A different approach, which requires fewer masks is provided e.g. by the domain-
oriented masking AND. For the security of this masked AND a separation of the terms
is required by using a register for the combination of the terms with a fresh random
mask.The verifier also correctly labels the DOM AND to be secure for the stable and
in the transient verification. The verification without glitches takes less than a second
for all masked AND gate constructions, and less than three seconds for the verification
with glitches.

Verification of masked S-box circuits and permutations. For the remaining circuits, we
either used the source code which is available online [22] for the DOM Keccak S-box
and the DOM AES S-box, or in case of Fides kindly received the circuit design from the
designers. In order to check the circuits in a more efficient manner, we used different
optimizations. For the TI S-box of the Fides-160 design, we checked the individual
S-box functions in parallel but for a fixed assignment of the secrets and masks. The
result for all Fides-160 TI functions is computed in less than three seconds with and
without glitches. For the TI Fides-192 design not only the S-Box but the whole APN
permutation is split into five functions. Again we assumed a fixed masking and checked
the functions individually, which makes the verification of the first TI function very fast
(because no secrets are fed into this part). For the other circuit parts, the verification
takes between 20 minutes for the verification without glitches verification and 2 hours
for the verification with glitches. Please note that the differences in the verification
timings for the different parts of Fides-192 result from the varying gate counts. All
circuit parts are labeled to be secure. Finally, we also checked a DOM AES S-box design
for which we checked the whole circuit for the eight individual secret bits separately.
The stable set verification takes less than 30 seconds, and the verification of the transient
sets between 5 and 10 hours for each part. Again the verification result indicates a
securely masked first-order protected circuit.
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9.2 Verification of Higher-Order Masked Implementations

To evaluate the performance of our verification approach for higher-order masked cir-
cuits, we run our tool on the generically masked DOM AND gate [24] and the Keccak
S-box [25]. The results are shown in Table 4 where the protection order of the circuit
and the verification order are always set equal and are summarized in a single column
(order).

The verification of the second-order masked DOM AND takes less than a second.
For the fourth-order protected AND the verification time increases to about 7 min-
utes. The influence of the protection order at varying verification orders is depicted in
Figure 9. We evaluated each masked DOM AND from first-order up to its claimed pro-
tection order plus one additional order. This figure underlines the intuition that finding
a flaw takes less time than ensuring that the circuit is free from flaws.

For the Keccak S-box circuit we again split the verification for the five secrets into
five separate verificaiton runs. The verification for the second order than takes about
10 seconds per verification run without glitches and about 40 seconds when glitches
are considered. For the third-order verification the times increase to 4 minutes and 25
minutes, respectively.

Table 4. Overview of masked circuits and the higher order verification results

Name Order Gates Variables w/o glitches w/ glitches

linear nonlin reg secret mask pub time result time result

DOM AND [24] 2 12 9 9 2 11 1 ≤ 1 s 3 ≤ 1 s 3

3 24 16 16 2 17 1 ≤ 4 s 3 ≤ 20 s 3

4 40 25 25 2 24 1 ≤ 2 m 3 ≤ 7 m 3

Keccak S-box*) [25] 2 75 45 45 5 35 7 ≤ 10 s 3 ≤ 40 s 3

3 140 80 80 5 60 7 ≤ 4 m 3 ≤ 25 m 3

*) For the Keccak S-box we performed the verification for the five secrets separately.

10 Conclusions

In this paper we introduced the formal groundwork for the verification of masked hard-
ware implementations in the presence of glitches. We built upon the probing model of
Ishai et al. and presented a method to conservatively estimate the security of circuits
under this model for the worst case signal timings. Our approach is based on an esti-
mation of the non-zero Fourier coefficients of the functions computed by the circuit,
and we have provided a proof of its correctness. To demonstrate the practicality, we
have implemented our formal approach on top of the Z3 theorem prover to verify the
masking properties of a side-channel protected hardware implementation directly on
the gate-level netlist. We have shown the suitability of our approach to verify masked
circuits on practical examples from different masking schemes and different sources.
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Fig. 9. Verification time for the DOM ANDs with varying protection and verification order

The advantages of this approach are evident. Circuits deemed secure do not leak se-
cret information under any possible signal timings, which includes the effects of glitches
in the combinatorial logic of the circuit, and even for higher-order attacks. If a circuit is
rejected, we can pinpoint the gate that causes the potential leakage, which makes check-
ing and fixing of the flaw much easier than by conventional approaches. Furthermore,
the verifier can be used at different development stages of the masked circuit or for test-
ing new masking schemes. This makes it a useful method for both practical applications
as well as for research purposes.
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A Proof of Lemma 2

1. Suppose that f ◦ F is statistically dependent on X . Then by Definition 1 there are
x, x′ ∈ 2X such that |{y | (f ◦ F )(x, y) = 1}| 6= |{y | (f ◦ F )(x′, y) = 1}|.
Let Z ′ = f−1(1) be the assignments of Z that are mapped to true. Since |{y |
(f ◦ F )(x, y) = 1}| =

∑
z∈Z |{y | F (x, y) = z}|, there must be at least one

z ∈ Z ′ such that |{y | F (x, y) = z}| 6= |{y | F (x′, y) = z}|.
2. Suppose F is statistically dependent on X . Then there is a z ∈ 2Z and x, x′ ∈ 2X

such that |{y | F (x, y) = z}| 6= |{y | F (x′, y) = z}|. Let f(z′) = 1 iff z′ = z,
then f ◦ F is statistically dependent on X .

ut
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B Proof of the Stable Verification Approach

Lemma 8 For any circuit C, any gate g and any T ⊆ X , if the Fourier coefficient
ĝ(T ) 6= 0, then T ∈ S(g).

Proof. We prove the lemma by induction on the depth k of the circuit.

Base. k = 0. For an input g the lemma holds by the definition of the initial label.

Inductive step. Let k ≥ 1 and suppose that a gate g at depth k is the output of a gate with
two input gates u and v, with Fourier representations u(X) =

∑
T⊆X û(T )χT (X), and

v(X) =
∑

T⊆X v̂(T )χT (X).
We distinguish two cases: (1) g is linear or (2) g is nonlinear. (The case of registers

is trivial when we do not consider glitching.)
Case 1: g = u⊕ v. The Fourier representation of g is

g(X) = u(X) · v(X) =
∑
T⊆X

ĝ(T ) · χT (X),

where

ĝ(T ) =
∑

T1⊆X

û(T1) · v̂(T 4 T1).

Assume that ĝ(T ) 6= 0. If ĝ(T ) 6= 0, then there exists a set T1 ⊆ X such that û(T1) ·
v̂(T4T1) 6= 0. Therefore, û(T1) 6= 0 and v̂(T4T1) 6= 0. By the inductive hypothesis,
it holds that T1 ∈ S(u) and T 4 T1 ∈ S(v), which, by the linear rule means that
T1 4 (T 4 T1) = T ∈ S(g).

Case 2: g is a nonlinear gate. In this case, the Fourier representation of g is

g(X) = α00 + α01 · u(X) + α10 · v(X) + α11 · u(X) · v(X)

for some αij . Consequently, ĝ(T ) 6= 0 implies that either (1) û(T ) 6= 0, (2) v̂(T ) 6= 0,
or (3) ∃T ′ ⊆ X.û(T ) 6= 0 and v̂(T ′ 4 T ) 6= 0. (The converse does not hold.) In each
of these three conditions, T ∈ S(w). ut

The next lemma shows that an arbitrary function fo d gates corresponds to a gene-
ralization of the non-linear rule from Table 1. (Note the use of 4d∈DTd to denote the
symmetric set difference of all Tds.)

Lemma 9 Let F1, . . . , Fd : BX → B, let f : Bd → B, and let F (x) =

f(F1(x), . . . , Fd(x)). For any T ⊆ X , we have that F̂ (T ) 6= 0 implies that there is a
D ⊆ {1, . . . , d} and T1 . . . Td ⊆ X such that T = 4i∈DTi and for all i, F̂i(Ti) 6= 0.
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Proof. Let f(a1, . . . , ad) =
∑

D⊆{1,...,d} αD

∏
i∈D ai be the Fourier expansion of f .

We have that

F (x) =
∑

D⊆{1,...,d}

αD

∏
i∈D

Fi(x)

=
∑

D⊆{1,...,d}

αD

∏
i∈D

∑
T⊆X

F̂i(T )χT (X)

=
∑

D⊆{1,...,d}

αD

∑
T1⊆X

...
Td⊆X

∏
i∈D

F̂i(Ti)χTi(X)

=
∑

D⊆{1,...,d}

αD

∑
T1⊆X

...
Td⊆X

χ4i∈DTi
(X)

∏
i∈D

F̂i(Ti).

Consequently, if F̂ (T ) 6= 0, then there is a D ⊆ {1, . . . , d} and T1 . . . Td ⊆ X such
that for all i ∈ D F̂i(Ti) 6= 0 and T = 4i∈KTi. ut

Note that for d = 2, the lemma specializes to F̂ (T ) 6= 0 implies T = ∅, F̂1(T ) 6= 0,
F̂2(T ) 6= 0, or T = T14T2, F̂1(T1) 6= 0, and F̂2(T2) 6= 0, which reflects the nonlinear
rule.

Theorem 10 Let C be a circuit. If for all S′ ⊆ S ∪ P such that S′ ∩ S 6= ∅, for
all sets g1, . . . , gd of gates, for all D ⊆ {1, . . . , d}, for all T1 . . . Td ⊆ X such that
4d∈DTd = S′, and for all i ∈ D, we have that Ti /∈ S(gi), then C is order d secure.

Proof. (By contradiction.) Suppose that C is not order d secure. By Definition 5 and 6,
and Lemma 2, this implies that there are gates g1, . . . , gd, a functionf and an assignment
p ⊆ P such that f ◦ F |p(g1, . . . , gd) is statistically dependent on S. By Lemma 4, this
implies that for some S′ ⊆ S, S′ 6= ∅, ̂f ◦ F |p(g)(S′) 6= ∅. The Fourier expansion of
F |p is obtained from the expansion of p by substituting−1 or 1 for each public variable,
so if F̂ |p(S′) 6= 0, then F̂ (S′∪p′) 6= 0 for some p′ ⊆ p. By Lemma 8 and 9, this means
that there is a D ⊆ {1, . . . , d}, T1 . . . Td ⊆ X such that 4d∈DTk = S′, and i ∈ K,
such that that Ti ∈ S(gi). ut

Note that for the first order attacks, we just need to consider the labels of all gates
(see Lemma 8. For order d attacks, conceptually we connect a d-ary AND gate to any
set of d gates and check that the label of this gate does not contain a label with secrets
and no masks.

It is worth pointing out that the converse of the theorem does not hold. As an exam-
ple of imprecision, one can construct a ⊕ b as a combination of three nonlinear gates.
In this case, the output would be labeled {∅, {a}, {b}, {a, b}} although the Fourier ex-
pansion of the circuit is a · b.
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C Proof of the Transient Verification Approach

Lemma 11 For any gate g of C and any T ⊆ X , if for any Cglitch ∈ Cglitch, either
ĝ(T ) 6= 0 or ĝ′(T ) 6= 0, then T ∈ T (g).

Proof. The proof follows that of Lemma 8 with the modification that regardless of the
function of a gate g′, if g′ has inputs g1 and g2, then ĝ′(T ) 6= 0 implies that either (1)
ĝ1(T ) 6= 0, (2) ĝ2(T ) 6= 0, or (3) ∃T ′ ⊆ X.ĝ1(T ′) 6= 0 and ĝ2(T ′ 4 T ) 6= 0. Thus, we
can overapproximate the set of non-zero Fourier coefficients for a copied gate g′ with
inputs g1 and g2 by the set that consists of the union of the nonzero coefficients T (g1)
of g1, the nonzero coefficients T (g2) of g2, and the set T (g1)44 T (g2). ut

Theorem 12 Let C be a circuit. If for all S′ ⊆ S ∪ P such that S′ ∩ S 6= ∅, for
all sets g1, . . . , gd of gates, for all D ⊆ {1, . . . , d}, for all T1 . . . Td ⊆ X such that
4d∈DTd = S′, and for all i ∈ D, we have that Ti /∈ T (gi), then C is order d secure.

Proof. The proof proceeds along the lines Theorem 12 by using Lemma 11 instead of
Lemma 8. ut

D Proof of the SAT Based Verification for Stable Signals

Lemma 13 For any gate g ∈ G and any X ′ ⊆ X , if F̂ (g)(X ′) 6= 0 then there is a
satisfying assignment χ of Ψgates with χ(xg) = true iff x ∈ X ′.

Proof. The Fourier expansion of any gate g can be obtained recursively from the Fourier
expansion of its inputs, where the coefficient of every Fourier character is obtained
by multiplying out the coefficients of the inputs. For a linear gate, this is a simple
multiplication. A nonlinear gate results in more Fourier coefficients: those for each
input separately, and those that result from the multiplication of the inputs. We can
represent the way that each Fourier character is derived as a subgraph of the circuit.

Suppose that a coefficient f̂(g)(X ′) is nonzero. Then there is a set of wires W ′ and
a set of gates G′ that fulfills the following constraints. (1) g ∈ G′. (2) If g ∈ G′ and g
is a linear gate, then both incoming wires are in W ′; if g′ in nonlinear, than 0, 1, or 2 of
the incoming wires are in W ′. (3) if w ∈ W ′ then the gate g′ that feeds w is in G′. (4)
X ′ is the symmetric set difference of the nonzero Fourier coefficients of the inputs that
feed into an odd number of paths to g. The latter observation follows from the fact that
in Fourier representation f2 = 1 for any Boolean function f .

The choice of W ′ and G′ is dictated by the choices made at the nonlinear gates,
which corresponds to the disjuncts in the definition of Ψnl(g). The satisfying assign-
ments of the formula then follow the paths described above, where the cancellation of
coefficients that occur an even number of times is ensured by the XORs in the formulas
for linear and nonlinear gates. ut

Theorem 14 If C is not order d secure without glitches then Ψ is satisfiable.

Proof. The theorem follows easily from the Lemma 13 by the fact that information
leakage occurs iff there is a gate which is statistically dependent on a set of secret
variables (Lemma 4, Definition 6). ut
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Note if the formula Ψ is satisfiable, i.e. the circuit is not secure, we can easily see what
gates the solver picked for the probes. The activation variables for those gates are equal
to true.

E Proof of the SAT Based Approach for Transient Signals

Lemma 15 For any circuit C ′ ∈ Cglitch(C), gate g in C ′, and X ′ ⊆ X , if F̂ (g)(X ′) 6=
0, then there is a satisfying assignment χ of Φgates with χ(x′g) = true iff x ∈ X ′.

Proof. The proof follows that of Lemma 13 with the modification that for a gate g,
an assignment to the variables {x′g | x ∈ X} is part of a satisfying assignment if
the corresponding Fourier coefficient is non-zero for any C ′ ∈ Cglitch(G). Intuitively,
a nonlinear gate presents the “worst-case” scenario that subsumes the behavior of an
arbitrary gate. ut

Theorem 16 If C is not order d secure with glitches then Φ is satisfiable.

Proof. The proof follows from Lemmas 4, 15, and Definition 7. ut

F Example for the SAT Encoding

To illustrate the encoding let us consider the example on the Figure 2. For this circuit
we have one secret variable s and two mask variables ms and m1. Since input sm is
driven by the function I(sm) = s⊕ms = s ·ms, we have the constraint

ψinp(sm) = ssm ∧ms,sm ∧ ¬m1,sm ∧ ¬p1,sm .

For the other inputs we have:

ψinp(m1) = ¬sm1
∧ ¬ms,m1

∧m1,m1
∧ ¬p1,m1

ψinp(ms) = ¬sms
∧ms,ms

∧ ¬m1,ms
∧ ¬p1,ms

ψinp(p1) = ¬sp1 ∧ ¬ms,p1 ∧ ¬m1,p1 ∧ p1,p1 .

For the linear gates g1 and g3 we use the linear rule

Ψlin(g1) = (sg1 ↔ (ssm ⊕ sm1)) ∧ (ms,g1 ↔ (ms,sm ⊕ms,m1))

∧ (m1,g1 ↔ (m1,sm ⊕m1,m1) ∧ (p1,g1 ↔ (p1,sm ⊕ p1,m1))

Ψlin(g3) = (sg3 ↔ (sg2 ⊕ sg1)) ∧ (ms,g3 ↔ (ms,g1 ⊕ms,g2))

∧ (m1,g3 ↔ (m1,g1 ⊕m1,g2) ∧ (p1,g3 ↔ (p1,g1 ⊕ p1,g2)).
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For the non-linear gate g2 we use the non-linear rule:

Ψnl(g2) = (¬sg2 ∧ ¬ms,g2 ∧ ¬m1,g2 ∧ ¬p1,g2)
∨ (sg2 ↔ sms

∧ms,g2 ↔ ms,ms
∧m1,g2 ↔ m1,ms

∧ p1,g2 ∧ p1,ms
)

∨ (sg2 ↔ sp1
∧ms,g2 ↔ ms,p1

∧m1,g2 ↔ m1,p1
∧ p1,g2 ∧ p1,p1

)

∨ (sg2 ↔ (sms
⊕ sp1

)) ∧ (ms,g2 ↔ (ms,ms
⊕ms,p1

))

∧ (m1,g2 ↔ (m1,ms
⊕m1,p1

) ∧ (p1,g2 ↔ (p1,ms
⊕ p1,p1

)).

For the checking gate we have:

Ψ(gc) = (sgc ↔ (asm ∧ ssm ⊕ am1
∧ sm1

⊕ ams
∧ sms

⊕ ap1
∧ sp1

))

∧ (m1,gc ↔ (asm ∧m1,sm ⊕ am1
∧m1,m1

⊕ ams
∧m1,ms

⊕ ap1
∧m1,p1

))

∧ (ms,gc ↔ (asm ∧ms,sm ⊕ am1
∧ms,m1

⊕ ams
∧ms,ms

⊕ ap1
∧ms,p1

))

∧ (p1,gc ↔ (asm ∧ p1,sm ⊕ am1
∧ p1,m1

⊕ ams
∧ p1,ms

⊕ ap1
∧ pm,p1

)).

To check first order security we bound asum to 1:

asum = Ite(asm , 1, 0) + Ite(am1 , 1, 0) + Ite(ams , 1, 0) + Ite(ap1 , 1, 0)

+ Ite(ag1 , 1, 0) + Ite(ag2 , 1, 0) + Ite(ag3 , 1, 0)

The unsafety constraint is

Ψunsafe(gc) = sgc ∧ ¬ms,gc ∧ ¬m1,gc .

In this example the formula Ψ for the entire circuit is unsatisfiable meaning that it
is first secure in the probing model without glitches.
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