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Abstract
The effect of grid coarsening on the predicted total drag force and heat exchange rate in dense gas–particle flows is investigated
using Euler–Lagrange (EL) approach. We demonstrate that grid coarsening may reduce the predicted total drag force and
exchange rate. Surprisingly, exchange coefficients predicted by the EL approach deviate more significantly from the exact
value compared to results of Euler–Euler (EE)-based calculations. The voidage gradient is identified as the root cause of
this peculiar behavior. Consequently, we propose a correction algorithm based on a sigmoidal function to predict the voidage
experienced by individual particles. Our correction algorithm can significantly improve the prediction of exchange coefficients
in EL models, which is tested for simulations involving Euler grid cell sizes between 2dp and 12dp. It is most relevant in
simulations of dense polydisperse particle suspensions featuring steep voidage profiles. For these suspensions, classical
approaches may result in an error of the total exchange rate of up to 30%.

Keywords Euler-Lagrange approach · Voidage correction · Drag force · Gas-particle flows

1 Introduction

Particle–gas systems are extensively used in various pro-
cesses such as chemical, petrochemical and pharmaceutical
industries. Due to the complexity of such systems, as well
as their opaqueness, numerical tools have been widely
exploited. This includes simulations to better understanding
phenomena originating from (i) particle–particle interactions
(e.g., cohesive forces), as well as (ii) particles and the inter-
stitial flow (e.g., elutriation of fines from fluidized beds).
This insight can be achieved through detailed local informa-
tion from two- or three-dimensional simulations, which have
become valuable tools for engineers and researchers.

In simulations of particle–gas flow, usually two method-
ologies can be used to calculate interphase coupling forces:
(i) a direct calculation of the coupling force via a particle-
resolve (PR) flow simulation or (ii) using a drag closure that
relies on average flow information only (i.e., the so-called
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particle unresolved method, PU). In the first methodology,
the boundary between particles and fluid is discretized, and
fluid flow is simulated in all detail. The PR method neces-
sitates a comparably fine computational mesh to capture the
boundaries and the flow accurately. Consequently, the com-
putation time is high, and the application is typically limited
to small particle ensembles in the order of O(103) to O(106)
particles. Studies that have adopted the PR method are, for
example, Avci andWriggers [1], or the earlywork of Johnson
and Tezduyar [2].

For numerical investigations of gas–particle flowusing the
PU approach, i.e., employing a closure for the drag force,
generally two approaches can be employed: (i) the Euler–
Euler (EE) approach, in which gas and particles are treated as
interpenetrating continua. The kinetic theory of granular flow
(KTGF), together with stress closures for enduring particle–
particle contacts, is typically applied in order to close the set
of equations when using the EE approach; or (ii) the Euler–
Lagrange (EL) approach, in which gas phase is considered
as continuous phase, while particles are treated individually
by solving Newton’s equation of motion. Attractive for a
number of engineering applications is the so-called parti-
cle unresolved EL approach (PU-EL), in which flow details
around individual particles are not resolved. PU-EL avoids
the need for the often prohibitively substantial number of
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fluid grids and offers comparably fast predictions that can
account for, for example, intra-particle effects (e.g., diffu-
sion and chemical reactions within porous particles).

It should be noted that when using a PU-EL approach, the
CFD cell size (on which the transport equations for the fluid
phase are solved) varies between approximately 2 and 15
times the particle diameter. Most importantly, the CFD cell
size typically cannot be strictly enforced, since a complex-
shaped unstructured fluid grid has to be used. Nowadays,
such grids are built with fully automated gridding techniques
and commonly used in many industrial applications of PU-
EL. Thus, the voidage (i.e., the relative amount of void space)
reconstructed on a typical fluid grid is blurred,with the degree
of blurring depending on the local CFD cell size. As we
will show, this blurring results in substantial errors when
predicting fluid–particle transfer coefficients, and hence it is
unwanted.

To obtain accurate distribution of key quantities in such
gas–particle systems, both the EE approach and the (PU-)EL
approach require a suitable CFD cell size to reduce blurring.
Dependingon the spatial distributionof the particles,which is
dictated by the underlying flow physics, this size is typically
in the order of a fewparticle diameters. The root cause for this
need is that the relative void space between the particles can
have nonlinear effect on exchange coefficients ofmomentum,
heat and mass. This is especially true for moderately dense
to dense gas–particle flows frequently encountered in chem-
ical engineering applications. Hence, EE and ELmodels that
claim to resolve all flow phenomena in this field necessitate
so-called fine-grid simulations to resolve the voidage field.

Despite the fast increase in the availability of compu-
tational resources, such a fine-grid simulation makes the
numerical investigation of industrial scales system compu-
tationally very expensive or sometimes impossible. This is
especially the case when using the (PU-)EL approach. To
overcome such a limitation, a large number of research stud-
ies have been devoted to improving the reliability of so-called
coarse-grid simulations in predicting the system behavior
and performance. To provide a better understanding of such
“coarse-grid” simulations, a typical schematic representa-
tion of a packed bed with fine and coarse grids is depicted in
Fig. 1. It can be easily discerned from this figure that coars-
ening the CFD (fluid) grid leads the voidage being blurred
over a larger region. We note in passing that this blurring is
different from numerical diffusion caused by discretization
schemes that are employed in solving the governing equa-
tions. In contrast, blurring has its origin in the mapping of
particle-related information to a finite fluid grid.

1.1 Classical closures for coarse-grid simulations

In a pragmatic approach, as extensively performed by Sun-
daresan’s research group [3–7], the results of fine-grid

simulations are filtered considering various grid sizes to
obtain so-called filtered models. More precisely, these mod-
els are closures that focus on adjusting exchange coefficients
(e.g., for the drag), or define a new constitutive model that
is needed for coarse-grid simulations (e.g., for the particle-
phase stress). For example, via this filtering approach, an
average correction factor between zero and unity is devel-
oped to establish a “filtered” drag coefficient. This average
filtered counterpart is hence predicted to be always smaller
than the original drag coefficient, i.e., the one would use in
a fine-grid simulation (see Schneiderbauer [8]). Note that
average here refers to a particle ensemble average. This is
important since none of the approaches for coarse-grid sim-
ulations presented above is currently able to predict the true
distribution of filtered exchange coefficients.

An alternative concept is that of Parmentier et al. [9],
who introduced an (average) subgrid drift velocity to reduce
the fluid–particle relative velocity. This drift velocity is
defined as the difference between the filtered gas–particle–
fluid velocity seen by the particle phase and the resolved
filtered gas velocity. In effect, the drift velocity concept leads
to a similar modification of the filtered drag coefficient that
is smaller than one in fine-grid counterpart. Yet another alter-
native is to consider the effect of unresolved structures in a
more analytical fashion as done by Schneiderbauer [8]. One
more example of analytically based coarse-grid corrections
uses the energy minimization multi-scale (EMMS) method,
originally developed by Li [10]. In this approach, the local
heterogeneity is described in terms of decomposed dense
and dilute phases. This method was integrated by Wang et
al. [11] into an Euler description of gas–solid flow to include
subgrid-scale model for drag force. Although the application
of such a methodology is rather limited, e.g., by the fact that
it is limited to a certain type of fluid–particle systems, it has
attracted a significant research [12,13].

1.2 The need to account for coherent structures

Most of the filtered models discussed in the previous para-
graph depend on the relative grid size, the filtered particle
concentration, as well as sometimes a third marker (e.g., the
filtered slip velocity or a subgrid-scale particle agitation [8]).
Most importantly, these corrections can only account for a
certain phenomenon in an average sense (e.g., the sponta-
neous clustering of particles [14]) and use a primitive [8]
or no information on the heterogeneous structure of the
suspension. Consequently, regions featuring large voidage
gradients, e.g., structures near the interface of particle clus-
ters, are expected to be a problem for these filtered models.
This is simply because these structures are averaged out in the
above-discussed approaches, but certainly cause extrema in
filtered exchange coefficients. Hence, they are inadequately
modeled by currently available models that rely on average
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Fig. 1 Schematic representation
of fluid coarsening and
distribution of the voidage
distribution in a packed bed. The
bed interface was zoomed in to
depict smearing the voidage
clearly

exchange coefficients. This is also supported by the study of
Fullmer and Hrenya [15] that probed the effect of the local
voidage on the mean-slip velocity in a comparably dilute
fluidized bed (ϕp,max = 0.25) using the EE approach. The
predicted slip velocity was in a good agreement with the cor-
responding values from the EL-based simulations of Radl
and Sundaresan [16]. However, Fullmer and Hrenya [15]
demonstrated that themain reason for the deviation of the slip
velocity in coarse-grid simulation of cluster can be associated
with the voidage gradient at the boundary of the cluster[17–
19]. Specifically, Fullmer and Hrenya [15] conclude that
higher (mean) particle concentrations induce sharper voidage
gradients, which necessitate a higher spatial grid resolution
to capture these gradients.

To include the effect of coherent structures that lead to
extrema in filtered exchange coefficients, new parameters,
e.g., the gradient of flow variable, are required. The work of
ten Cate and Sundaresan [20] followed such a thought and
systematically analyzed the effect of voidage gradients on the
momentum exchange coefficients. Similarly, corrections to
the drag coefficient based on the “structure of the flow“ were
proposed by Yang et al. [21]. They modified the drag coef-
ficient through correlating the structure parameters with the
solids concentration only, though. Only recently their work
was followed by Zhou et al. [22] through direct numerical
simulation of heterogeneous gas–solid flow. The results of
their simulation proved the dependency of the drag force on
the local heterogeneity. The latter was quantified in terms
of solid concentration and, most importantly, by the magni-
tude and the angle of the voidage gradient. The latest work
following such a chain of thoughts is that of Li et al. [23]
who investigated the effect of the local heterogeneity in the

particle distribution using an EE approach. They obtained a
correction factor for this local heterogeneity with reference
to homogenous distribution of particle in a cell as a pre-
tabulated correction factor. The local heterogeneity in their
study has been defined based on a linear voidage distribution
in a computational cell. The model of Li et al. [23] has some
limitations, e.g., it is only valid for the Euler–Euler approach
and assumes a linear variation of the voidage. Furthermore, it
was assumed that the velocity component normal to the flow
is zero. This is problematic, since in case that a voidage gradi-
ent is present in a computational (Eulerian) cell, the velocity
field can deviate from the main direction. The gas prefers to
flow in the region with higher voidage, drastically changing
the effective drag force in this computational cell.

1.3 Decoupling the effect of nonresolved structures
and insufficient grid resolution

The above-mentioned studies focus on the correction of
exchange coefficients which lump the effect of (i) nonre-
solved structures and (ii) numerical parameters (e.g., the grid
resolution) into a single correction factor. In our present
study, we follow the thought that the correction of the
exchange coefficients must be split based on the source of
the deviation. For instance, coarsening the grid size artifi-
cially introduces a more homogeneous voidage distribution,
as depicted in Fig. 1, which drastically reduces the voidage
gradient (see the left panel). As it will be explained later, the
voidage distribution can be fitted to the sigmoidal function
with model parameter a. In fact, as demonstrated by Fullmer
and Hrenya [15] as well as Ozel et al. [4], the (Eulerian)
grid size mainly influences the exchange coefficient through
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its effect on the particle volume fraction calculated in the
cell. Thus, even in case one would be able to resolve het-
erogeneous structures in an EL-based simulation, the local
particle concentration at each particle’s position cannot be
probed accurately on a finite-sized Eulerian grid in gen-
eral.

1.4 Goals

Hence, it is clear that classical (PU-)EL approaches mainly
suffer from the inability in the reliable prediction of the local
voidage as also reported by Lu et al. [24] through direct
numerical simulation (DNS) of gas–solid flow. Since the
voidage is the most important contributor—next to the fluid–
particle relative speed—to predict exchange coefficients, we
expect that even minute mispredictions of the local voidage
lead to significant errors in the exchange coefficients. It is
clear that the effect of afinite grid size on the voidageprofile is
not related to discretization schemes used for approximating,
e.g., convective terms in the governing transport equations.
The misprediction of the voidage distribution is associated
with the mapping procedure and the subsequent interpola-
tion of the voidage at the particle position. Specifically, when
using coarse grids, a larger number of particles reside in a
specific fluid cell. Consequently, particles in the same fluid
cell will experience a similar voidage, followed by a similar
flow speed. Therefore, in the present study, the main effort
will be put on the correction of the voidage to eradicate the
effect of voidage misprediction due to mapping and inter-
polation. It is worth mentioning that the corrected voidage
will be only used for computing per-particle exchange coef-
ficients (e.g., for drag and heat exchange)—the voidage on
the fluid grid will be not modified. Hence, our proposed cor-
rection algorithm does not interfere with the conservation of
total mass or volume on the fluid grid.

While our correction algorithm is novel in the field
of PU-EL simulation models, one may compare it with
“interface-sharpening” algorithms [25,26]. The latter are fre-
quently used in the so-called volume of fluid (VoF) method
for modeling two phase flows of incompressible fluids and
similar in spirit to our algorithm. However, there is a substan-
tial difference between them: In the VoF method blurring of
the phase fraction (a quantity that is similar to the voidage in
our work) is related to the numerical diffusion introduced via
discretization schemes. In contrast, in the gas–particle flows,
blurring is connected to mapping the data from particles to
fluid grid cells and subsequent interpolation at the particle
position. Also, in interface-sharpening algorithms an addi-
tional transport equation (i.e., some kind of an anti-diffusion
equation) needs to be solved [25,26]. This is computation-
ally expensive and in contrast to our study which relies on a
pure algebraic correction approach (i.e., not transport equa-
tion needs to be solved).

In the present study, the correction model will be devel-
oped specifically for dense gas–particle flows that feature
large voidage gradients. Typical examples of such flows
include bubbling fluidized beds, packed bed reactors or
clustered suspensions (e.g., flows of cohesive powders and
granular materials).

One can criticize the approach adopted in our present study
by the fact that subfluid cell information (i.e., the arrange-
ment of particles) is ignored. However, using information
on the arrangement of particles which would enable, for
example, Voronoi tessellation [27] is avoided on purpose
in our present study, using such particle-based information
typically greatly increases the computational expense for
computing the voidage. Thus, the main motivation behind
our study is using information available on the fluid grid for
the sake of computational efficiency.

The main goals of our present study can be summarized
as follows:

1. Examining the influence of fluid coarsening on the total
drag force and heat exchange rate in dense gas–particle
flows.

2. Improving the prediction of hydrodynamics and heat
transfer rates in bubblingfluidized beds, aswell as packed
beds. Here our focus is on systems that feature large
voidage gradients.

3. Developing a straight-forward, easy-to-implement
method to correct the voidage (for the calculation of
exchange coefficients) and consequently a source of error
in PU-EL.

1.5 Outline

The main objective of the present work is developing a
voidage correction model based on the local heterogeneity
for PU-EL simulations of dense particulate systems. Specif-
ically, we follow a chain of thoughts that is summarized
by the following structure of our study: First, the validity
of the filtered drag model developed by Radl and Sundare-
san [16] is examined in a packed bed (Sect. 3.1). Second,
the influence of fluid coarsening on the total predicted drag
force, as well as the heat exchange rate, is investigated in
a packed and a fluidized bed (Sect. 3.2). In addition, based
on an assumed particle distribution the contribution of the
voidage distribution on the deviation of drag force in coarse-
grid simulation for both the EE approach and EL approach
is revealed. An analysis of this deviation is then used to
postulate an algorithm that maps the voidage distribution in
a coarse-grid PU-EL simulation to the corresponding local
value that would be obtained in a hypothetical fine-grid sim-
ulation (Sect. 3.3). Afterward, the reliability of the developed
correction function is examined for the prediction of the total
drag force through analytical considerations, as well as CFD-
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DEM simulations (see Sect. 3.4). Furthermore, the accuracy
of this voidage correction function is assessed for predictions
of the fluid–particle heat exchange rate. Afterward, the pro-
posedmodel is extended to cover different regimes of voidage
gradients. Finally, a brief discussion will be performed to
take the effect of different angles between the velocity and
the voidage gradient field into account for future study.

2 Mathematical modeling

In the present study, simulations were performed utilizing an
extended version of the CFDEM� code [28]. This code is
based on an open-source CFD–DEM framework to simulate
coupled fluid–particle systems. The motion of the parti-
cles is resolved by means of the DEM and simulated using
the LIGGGHTS� code [29]. The interstitial fluid flow is
predicted via a classical (unresolved)CFDapproach and sim-
ulated using the OpenFOAM� software package [30].

2.1 Flow

The equation of motion for fluid phase and individual par-
ticles can be derived based on Navier–Stokes equation and
Newton’s equation of motion, respectively.

2.1.1 Fluid phase

Momentum equation for the fluid phase is solved based on
the well-known Navier–Stokes equation:

∂

∂t

(
u f ϕ f ρ f

) + ∇ · (u f u f ϕ f ρ f
) = −ϕ f ∇ · τ f − ϕ f ∇Pf

+Φd + ϕ f ρ f g (1)

The term Φd is the force exerted by particles on fluid phase
per unit volume, excluding buoyancy effects. As generally
accepted, we assume that the drag force is the main force
contributing to the momentum exchange rate between gas
and particles. These drag forces can be computed using the
correlation developed by Beetstra et al. [31] as follows:

Φd = −βs f
(
u f − up

)
(2)

βs f = 18ρ f ν f ϕ f
(
1 − ϕ f

) F
(
ϕ f , Re

)

d2p
(3)

F
(
ϕ f , Re

) = 10
1 − ϕ f

ϕ2
f

+ ϕ2
f

(
1 + 1.5

√
1 − ϕ f

)

+ 0.413 Re

24ϕ2
f

(
1

ϕ f
+ 3ϕ f

(
1 − ϕ f

) + 8.4Re−0.343
)

(
1 + 103(1−ϕ f )Re

−1
2 (1+4(1−ϕ f ))

) (4)

Table 1 Physical properties and simulation parameters

Parameter Studied range

Bed geometry

Hbed (m) 72dp–144dp
Lbed (m) 24dp–96dp
wbed (m) 24dp–96dp
Particle properties

ρs
(
kg/m3

]
1000

dp (m) 2 × 10−4 − 2 × 10−2

Contact model Hertzian, inelastic, with
friction and tangential history

Y
(
N/m2

)
2 × 105

ν (–) 0.45

μc,p (–) 1

epp (–) 1

μc,w (–) 0.5

ewp (–) 0.3

Tp0 (K) 330

Cp,p(J/K) 385

Gas phase properties

ρg(kg/m3) 1.188

μg (Pa s) 1.79 × 10−5

Tg0 (K) 335

Tgi (K) 335

u (m/s) 0.1–1

Wall boundary condition Slip

Simulation parameters

�tCFD(s) 1.25 × 10−3 − 2 × 10−2

�tDEM(s) 5 × 10−5 − 1 × 10−4

t∼(s) 10

Simulation parameters

Interpolation scheme Linear

Discretization scheme Gauss-limited linear second
order

where Re is the particle Reynolds number, which is calcu-
lated based on the superficial fluid velocity and the particle
individual speed. The equations for the filtered drag model
are reported in “Appendix A”. The adopted discretization and
interpolation schemes are reported in Table 1.

2.1.2 Particles

The motion of individual spherical particles is predicted
using Newton’s equation of translational and rotational
motion:

ρp,i Vp,i
∂up,i

∂t
= f cont,i + βs f Vp,i

(
u f − up,i

)

− Vp,i∇Pf ,i + ρp,i Vp,i g (5)
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Ip,i
d

dt
ωp,i = t i (6)

where the forces exerted on each particle, shown on the
right-hand side of Eq. (5), include (i) contact, (ii) drag, (iii)
far-field pressure and (iv) gravity contributions, respectively.
The contact law is based on a Hertzian interaction model
with tangential history tracking tomodel stick-slip transitions
correctly. The contact forces in the normal and tangential
direction are given by

f cont,i,n = −knδp + ηn�ui,n (7)

f cont,i,t = min

⎧
⎪⎨

⎪⎩

∣∣∣∣∣∣
∣
kt

t∫

tc,0

�ui,t dt + ηt�ui,t

∣∣∣∣∣∣
∣
, μcf cont,i,n

⎫
⎪⎬

⎪⎭

(8)

Here δp denotes the particles overlap; k and η represent
the stiffness coefficient and damping factor, respectively.
These parameters can be calculated as a function of the
Youngmodulus, the Poisson ratio and the coefficient of resti-
tution. The values of these parameters, as well as of the
friction coefficient, are reported in Table 1. The torque on
the right-hand side of Eq. (6), ti , denotes the torques due
to (i) particle–particle collisions (i.e., the tangential force
component calculated viaEq. (8)) and (ii) fluid–particle inter-
actions. It should be noted that the latter was assumed to be
negligible in the present study. This is in line with the com-
mon assumption in the literature that only accounts for fluid
flow-induced torque in case of nonspherical particles (e.g.,
the work of Ouchene et al. [32]).

To calculate the voidage in each fluid grid cell, particle
data were mapped to the CFD cell via the “divided scheme.”
This scheme is basedon the division of eachparticle’s volume
to 14 satellite points. The contribution of a specific particle
to the voidage of fluid cells nearby the particle center is then
defined based on a weighting factor. The latter is defined as
the number fraction of satellite points (for each particle) in the
fluid cell. As reported byRadl et al. [33] this algorithm is very
robust—even for the case of particles residing near walls,
or complex unstructured fluid grids with polyhedral cells.
More details regarding the adopted models are available on
the LIGGGHTS� online documentation [34] (http://www.
cfdem.com/media/DEM/docu/Manual.html)

2.2 Heat transfer

The conservation equation for the thermal energy of the fluid
phase can be derived as:

ϕ f ρ f Cp, f
∂T f

∂t
+ ∇ · (

u f ϕ f ρ f Cp, f T f
)

−∇ · (
λe f f ∇

(
ϕ f T f

)) = −hap
(
T f − Tp

)
(9)

The term on the right-hand side of Eq. (9) is the volume-
specific rate of heat exchange between the gas phase and the
particles.

2.2.1 Closure for the heat transfer rate

Parameter h in Eq. (9) is the heat transfer coefficient, which
can be evaluated from Nu = (

h dp
)
/λ f . Nu is the Nusselt

number, which was obtained using the correlation developed
by Deen et al. [35] for the fluidized beds:

Nu =
(
7 − 10ϕ f + 5ϕ2

f

) (
1 + 0.7Re0.2Pr1/3

)

+
(
1.33 − 2.4ϕ f + 1.2ϕ2

f

)
Re0.7Pr1/3 (10)

More details about the implementation and verification of
heat transfer equations in CFDEM can be found somewhere
else [36].

3 Results and discussion

3.1 Assessment of filtered dragmodel for dense
gas–particle flows

The validity of the filtered drag model developed by Radl
and Sundaresan [16] was examined for a packed bed setup
(see Fig. 2a) having a minimum voidage of 0.5. An array
of Eulerian grid resolutions was probed to investigate grid
effects. The packed bed setup features two regions charac-
terized by steep voidage profiles and hence is ideally suited
to investigate voidage gradient effects.

As shown in Fig. 2b, application of the filteredmodel dete-
riorates the prediction of the total drag force. Specifically,
enlarging the grid size reduces the total drag force in a dense
gas–particle flow that features voidage gradients. However,
in all classical filtered drag closure models (e.g., that of Radl
and Sundaresan [16]) the correction factor for the drag coeffi-
cient is smaller than unity. Therefore, employing the filtered
model brings about even more reduction of the filtered drag
coefficients. We note in passing that the closure of Radl and
Sundaresan [16] ensures no correction in the dense packing
limit. However, in regions featuring steep voidage profiles,
the voidage is somewhat larger than that in the close packing
limit. This causes the erroneous reduction of the drag cor-
rection in classical filtered drag models if applied to packed
beds.

As a consequence, the total drag force is drastically
underpredicted by classical filtered models, even though a
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Fig. 2 a Schematic view of the packed bed used for simulation and b examination of filtered drag model and grid size on predicted total drag force
in the packed bed with periodic boundary condition in lateral directions

correction of the exchange coefficients has been considered.
Specifically, in the fine-grid simulation of comparably dilute
flows, i.e., the ones used to establish classical filteredmodels,
the clusters are sufficiently resolved. Gas prefers to bypass
dense particle regions that are chaotically oriented for the
sake of lower flow resistance. This fact enforces a correction
factor smaller than unity for the drag coefficient in compara-
bly dilute flow of chaotically oriented particle clusters.

Note that it is difficult to quantify the orientation of clus-
ters in clustered suspensions, and that a significant level of
anisotropy might be present. We have adopted the wording
“chaotically” to reflect that the cluster orientation originates
from a fluid mechanical instability that leads to a chaotic
system behavior as discussed by Fullmer and Hrenya [37].

Clearly, a correction for chaotically oriented particle
clusters cannot account for the effect of regions with a
well-defined voidage gradient or suspensions with distinctly
oriented particle clusters. The latter are suspensions that fea-
ture a large voidage gradient into one direction, e.g., as this
in the packed bed depicted in Fig. 2a. For suspensions with
distinctly oriented particle clusters a finitely sized Eulerian
grid smears out the voidage distribution. Thus, particles are
predicted to experience a (on average) higher voidage, and
consequently a smaller drag forcewhenusing coarseEulerian
grids would be predicted. Hence, a correction factor larger
than unity would be required for the exchange coefficients to
correct for this error.

An alternative view on the difference between chaotically
and distinctly oriented particle clusters is obtainedwhen con-
sidering the angle between the main flow direction and the
voidage gradient. Particularly, in a clustered suspension, the
main flow direction has in general a certain angle relative to

the local voidage gradient direction. This necessitates a cor-
rection factor of smaller than unity for the drag coefficient,
as suggested by Li et al. [23]. However, in a packed bed, i.e.,
a prototype of a distinctly oriented particle suspension, fluid
always flows parallel to the voidage gradient. Thus, a correc-
tion factor of larger than unity is needed. In short, utilization
of a classical filtered model decreases the exchange coeffi-
cient even more, which is due to the incorrect assumption of
a chaotically oriented particle suspension.

3.2 Systematic evaluation of the effect of fluid
coarsening

We now aim on proving that smearing out the voidage dis-
tribution in a dense gas–particle flow is responsible for the
deviation of the total drag force in coarse-grid simulations.
Specifically, a calculation of the total drag force was per-
formed for a packed bed considering the three situations
depicted in Fig. 3:

(i) A fine grid, in which the grid is aligned with the jump
in the voidage profile. This case reflects the “perfect”
solution, i.e., the analytically correct drag force (Fig. 3a).

(ii) A “coarse Eulerian grid” with the same particle popu-
lation as in case (i), but the jump in voidage profile is
located at the center of the interface cell (Fig. 3b), as
shown as dashed line in Fig. 3a for base case;

(iii) A “coarse Lagrangian grid” with the same particle pop-
ulation and grid as in case (ii), but the voidage is linearly
interpolated at each particle position (Fig. 3c). This corre-
sponds to methodology which is typically used in PU-EL
simulations.
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(a) (b) (c)

Fig. 3 Schematic representation of voidage distribution in the packed
bed for a an extremely fine grid and for which the grid cell is aligned
with the voidage jump, b a coarse Euler grid and c coarse Lagrangian
grid. Gray circles indicate particles that are influenced by the voidage
gradient in the interface cell

The profiles for the voidage and the drag force correspond-
ing to these three situations are presented in Fig. 4. As shown
in Fig. 4a, the drag force follows the same qualitative trend
of the voidage distribution along the bed. Hence, the predic-
tion of the total drag force can be improved if the voidage
is corrected to the corresponding value in the fine-grid one.
Upon increasing the cell size/bed length ratio, i.e., decreas-
ing the mesh resolution or considering thinner packed beds,
the total drag force calculated in Euler and Lagrangian grid
drops. Surprisingly, for the latter the deviation from fine-grid
results is higher (see Fig. 4b). This is since the sharp gradient
of voidage cannot be accurately captured due to interpolation
at the particle position. As discerned from Fig. 4b, the devi-
ation of the total drag force will be drastically increased in
case the maximum packing limit increases from 0.5 to 0.8
due to particle concentration effect on the drag force. Thus,
themaximumparticle volume fraction has a significant effect
on the error in the predicted drag force. Such extremely dense
beds are observed for strongly polydisperse granular materi-
als, for which the calculated error can, in extreme cases, be
as high as 60%.

As mentioned before, coarsening the grid size reduces
the voidage experienced by individual particles on average.
This is followed by a reduction of the drag coefficient, which
is especially pronounced for densely packed systems. This
effect is strong when using a PU-EL approach due to the
linear interpolation of the voidage at particle position. In
contrast, in the EE approach the porosity is lower, but the
region that is used for the calculation of drag force is larger
than that when using a fine grid. As shown in Fig. 3c, in
the PU-EL approach a larger number of particles (shown in
gray color) are influenced by the blurred voidage profile that

occurs near the interface cell. Hence, the deviation of the
total drag force when using the EE approach is lower than
the one for a PU-EL approach.

In summary, it can be concluded that unreliable prediction
of voidage distribution and its gradient is responsible for
the failure of coarse-grid simulation in accurately predicting
the drag force. Therefore, it is clear that a correction of the
voidage can eradicate the main source of such deviations to
some extent.

To generalize this finding to heat transfer and more com-
plex flow situations, a set of simulations was performed
to examine the effect of fluid coarsening on the total heat
exchange rate in a bubbling fluidized bed. The corresponding
results are summarized in Fig. 5, which illustrate the effect of
CFD cell coarsening on the predicted thermal performance
of the fluidized bed. As shown in this figure, coarsening the
grid underpredicts the total heat exchange rate. Therefore, the
time evolution of temperature is slowed down in the fluidized
bed.

3.3 Voidage correctionmodel

As demonstrated in the previous section, to improve the pre-
diction of the drag force, a correction of the voidage before
computing the exchange coefficients is required. To do so,
the typical flowchart for CFD-DEM coupling was slightly
modified to take the correction of the voidage for the cal-
culation of drag force into account, as depicted in Fig. 6.
It should be highlighted that in the modified approach (i.e.,
when using the voidage correction), the voidage experienced
by each particle is only corrected for calculation of the drag
force. This means that the voidage distribution in the fluid
grid cells is not corrected. Therefore, the conservation of the
voidage is not problematic. This can be also supported by the
fact that the voidage experienced by each particle is individ-
ually calculated and corrected.

3.3.1 Simple algorithm for voidage jumps

We next aim on correcting for grid size effects in a situa-
tion in which the voidage changes within one computational
(Eulerian) cell from unity to some minimum values. Thus,
we consider a situation near the front row of particles in a
packed bed or near the interface of a dense particle cluster.
Specifically, we seek a correction function that has the inter-
polated voidage ϕ f from a coarse grid as input and yields
the correct voidage jump once a particle is outside of the
dense region (i.e., the packed bed or the cluster). The latter
is denoted as the corrected voidage ϕ f ,corr in what follows.
In such a way, regions with voidage jumps can be correctly
handled, even when using comparably coarse grids.

It is clear from geometrical arguments that the correction
functionmust be a step function at ϕ f = 1−ϕp,max/2 in case
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Fig. 4 a Distribution of particle volume fraction and drag force for Lagrangian and Euler cases (the forces have been normalized with the
corresponding values in infinitely fine-grid one), b effect of grid size on normalized total drag for Lagrangian and Euler cases

Fig. 5 Effect of the grid size on the variation of a the total particle heat exchange rate (the time-averaged deviation for a cell size of �cell/dp of 6
and 10 is −7.8% and −10.8%, respectively), as well as b the mean particle temperature versus time in the fluidized bed

Fig. 6 CFD-DEM coupling flowchart including the correction of the
voidage for the calculation of drag force (the section has been shown in
dash line)

a linear interpolation of the voidage to the particle location
is used (see Fig. 4 for an illustration). Unfortunately, the
stability of the overall numerical algorithm is deteriorated in
case a step function is used. Similarly, relying on cell-based
values of the voidage, i.e., not using a linear interpolation to
the particle position, is problematic when using the PU-EL
approach due to stability reasons. As a compromise, we find
that a piecewise function, such as the one shown in Fig. 7a,
improves the prediction of the voidage jump without leading
to a significant loss in stability.

ϕ f ,corr =

⎧
⎪⎨

⎪⎩

1 − ϕp,max ϕ f ≤ ϕ f ,l

ϕp,max

(
ϕ f −ϕ f ,u
ϕ f ,u−ϕ f ,l

)
+ 1 ϕ f ,l < ϕ f < ϕ f ,u

1 ϕ f ,u ≤ ϕ f

(11)

As shown in Fig. 7b, employing this correction function
can improve the prediction of the total drag force by 15%
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Fig. 7 a Correction function for gas volume fraction, as well as b the effect of the correction function on the total drag force in a packed bed
(“standard model” refers to using no correction, i.e., setting ϕ f ,corr = ϕ f )

Fig. 8 Voidage profile and fitted sigmoidal distribution in a packed bed
with a �cell,fine = 2dp,�cell,coarse = 6dp , b dp = 20mm,�cell,fine =
2dp

for �cell/dp = 12. Another point discerned from this figure
is a 5% overprediction observed for a fine-grid simulation
when using the simple correction model detailed in Eq. (11).
This is due to the way that voidage has been corrected in
the range 0.4 < ϕ f < 0.6. In detail, based on the correc-
tion function, particles experience a lower corrected voidage
(see Fig. 7a) and consequently a higher drag force, in this
range. However, the particle volume fraction should remain
unchanged for highly resolved simulation even after cor-
rection. This deficiency proves that the correction function
should be developed in such a way that the voidage distri-
bution does not change upon using fine grids. Clearly, grid
size must be accounted for in the correction function, which
is not the case in the simply algorithm detailed in the previ-
ous paragraph. Furthermore, the overprediction observed in
Fig. 7b can be partially attributed to the inability to obtain the

correct superficial fluid speed in CFDEM�. This is due to
the fact that in the underlying CFD tool (i.e., OpenFOAM�)
the voidage is discretized at the cell centroid, while the fluid
velocity is discretized at the face center.While the error asso-
ciated with this problem of obtaining consistent superficial
speeds appears to be fundamental, it is small and hence not
discussed in greater detail.

It can be concluded that the robustness of the above sim-
ple algorithmdepends on the lower and upper threshold value
chosen for voidage. In addition, the implemented correction
model can overpredict the total drag force in fine-grid simula-
tion that may resolve a finite voidage gradient. Consequently,
we next seek a more systematic development that can be
applied for wide range of grid sizes.

3.3.2 Generalized algorithm for high voidage gradients

The voidage distribution in the packed bed, as well as near
the bubble interphase in a bubbling fluidized bed, was inves-
tigated next. Therefore, different cases with a wide range of
particle sizes, grid resolutions and bed geometries were con-
sidered. It should be noted that near the bubble interphase,
the voidage profile was probed in the direction aligned with
the voidage gradient. As shown in Fig. 8, our preliminary
results for the voidage distribution prove that in the regions
with a high voidage gradient, the voidage distribution can
be approximated using a sigmoidal function. This is true for
both packed and fluidized beds, as shown in Figs. 8 and 9.
Therefore, a scaled voidage can be introduced, which is most
naturally represented by

ϕ′
f = ϕ f − ϕ f ,min

ϕ f ,max − ϕ f ,min
= 1

1 + e−a(x/dp)
(12)

where x represents the distance from the interface position
x0.
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Fig. 9 a Voidage profile and b
fitted sigmoidal distribution in
the fluidized bed for different
bubbles at the line plotted
aligned with the voidage
gradient in the bubble

Fig. 10 Comparison of a the voidage distribution and b the fitted sigmoidal distribution in a packed bed with dimension of 54dp × 54dp × 96dp

for various grid sizes and c dependency of the scaled exponent aδ on grid size
(
aδ = a

�cell/dp

)

To generalize the function fitted to the voidage distribu-
tion, a set of simulations was performed for a wide range
of particle diameters, cell sizes and bed dimensions for the
packed bed. As shown in Fig. 10a, b, the voidage distribu-
tion can be well approximated with a sigmoidal function for
various cell sizes. As shown in Fig. 10c, the scaled model
parameter aδ , i.e., a

�cell/dp
, can be fitted using a harmonic

function with the three parameters a0 = 0.57, a1 = 0.033
and a2 = − 0.041.

aδ = a

�cell/dp
= a0

�cell/dp − a1
+ a2 (13)

Consequently, the scaled voidage distribution in a coarse-
grid simulation can be mapped to the corresponding distri-
bution in a fine-grid simulation. The corresponding mapping
function is shown in Fig. 11 and is given by

ϕ′
f , f =

⎡

⎢
⎣

(
1

ϕ′
f ,c

− 1

)(
δ f aδ f

)
/(δcaδc)

+ 1

⎤

⎥
⎦

−1

(14)

where aδ f and aδc are the scaled model parameters for the
fine- and coarse-grid simulations, respectively, which can be
evaluated from Eq. (13). Note, in most practical situations,
it is reasonable to use δ f = 1, i.e., correct the voidage to a
fluid grid with a cell spacing that equals the particle diameter.
Also, it will be necessary to limit aδc to some positive nonzero
value for very large cell sizes �cell/dp to avoid division by
zero in Eq. (14).

After finding the correlation for the model parameters, the
remaining challenge is calculating the minimum and maxi-
mum value of the voidage in the neighboring grid cells. This
is necessary to calculate the voidage from the scaled voidage
via Eq. (12). A straight-forward, but not necessarily the most
efficient, algorithm would simply loop over the neighboring
cells and calculate these limiting values for the voidage. Such
a loop is generally computationally expensive, especially in
case of multi-processor simulations where mesh information
is residing on a distributed memory. Therefore, we propose
an alternative approach in which we compute the minima
as follows (more details about the method of calculation of
these quantities can be found in “Appendix B”):
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Fig. 11 Correction function for the scaled voidage for different nor-
malized grid sizes �cell/dp

ϕ f ,min = ϕ f −
∣∣∇ϕ f

∣∣

aδδ/dp
(γ + 1) (15)

ϕ f ,max =
(
1 + 1

γ

) [
ϕ f − ϕ f ,min

] + ϕ f ,min (16)

where γ is given by

γ =
aδδ
dp

−
∣
∣∇2ϕ f

∣
∣

|∇ϕ f |
aδδ
dp

+ |∇2ϕ f ||∇ϕ f |
(17)

These equations necessitate a calculation of the voidage gra-
dient when correcting the voidage at the particle position,
which is typically computationally more affordable. Further-
more, we note that the curvature of the voidage field can be
considered when calculating γ , meaning that the proposed
correction is valid even on coarse grids for which the voidage
profile is no longer linear.

3.3.3 Weighted generalized algorithm for arbitrary voidage
gradients

The generalized sigmoidal correction function discussed in
the previous section is strictly valid only for situations that
feature highvoidagegradients.Our preliminarywork showed
that utilizing such a correction for voidage fields that are
characterized by relatively low gradients yields an artificial
increase in the total drag force. For such fields, the scaling
shown in Eq. (12) is no longer meaningful, since ϕ f ,max–
ϕ f ,min approaches zero. Consequently, our assumption of a
distinctly oriented particle cluster, which forms the basis of
our correction, is no longer valid.

To enable our generalized algorithm to also handle low
voidage gradients, we next propose a weighted correction

algorithm. This algorithm is based on a degree of hetero-
geneity factor Dh that quantifieswhether a distinctly oriented
particle cluster is present or not in a computational cell. In
case the voidage gradient is close to the maximum value pos-
sible in a computational cell, the contributionof the sigmoidal
correction function outweighs. In contrast, in case the distri-
bution of particles is almost uniform, no correction is needed
and the sigmoidal distribution has a marginal contribution.
The postulated weighted correction function is

ϕ′
f , f i = ϕ′

f ,sigm Dh + ϕ′
f ,c (1 − Dh) (18)

Here the value for ϕ′
f ,sigm is determined via the generalized

sigmoidal correction function shown in Eq. (14). We will
show in the section that the simple expression in Eq. (18)
is indeed suitable to account for situations with low to high
voidage gradients. The degree of heterogeneity is calculated
based on the ratio of the local voidage gradient to the corre-

sponding maximum possible value
(

ϕp,max
�cell

)
in the cell. It is

hence defined by

Dh =
∣∣∇ϕ f

∣∣
ϕp,max
�cell

. (19)

3.4 Benchmarking the voidage correction
algorithms

3.4.1 Drag force in case of voidage jumps

The fidelity of the proposed correction algorithms for pre-
dicting the total drag force is examined next. To do so,
after successful implementation of the proposed voidage
correction model in CFDEM�, a set of simulations was
performed for various grid sizes, i.e., 2dp–10dp, for the
generalized algorithm (denoted as “generalized algorithm,”
see Sect. 3.3.2). In a fluidized bed the angle between the
flow field and voidage gradient contributes to the exchange
coefficients [23]. As discussed in Sect. 3.4.4, our correction
algorithm will be evaluated for packed beds in the present
work—the evaluation for fluidized bed (and hence arbitrary
angles between flow field and the voidage gradient) will be
left for future work. The benchmark case is a packed bed
with a length of 72dp that features two voidage jumps at the
inlet and outlet of the particle packing. (More details can be
found in Table 1.)

The main criterion for the reliability of the simulation
resultswas that the total drag force in a coarse-grid simulation
compared favorablywith that in a highly resolved simulation.
As shown in Fig. 12a, upon employing the correction model,
the voidage distribution can be more accurately predicted in
the packed bed at the studied range of cell size and for the
region with a sharp gradient of the voidage. As discerned in
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Fig. 12 Effect of employing the correction algorithm for a packed bed
with a length of 72dp a voidage distribution versus bed height for the
uncorrected case, as we as the case with generalized voidage correction;

b total drag for different mesh resolutions; c total drag force analyti-
cally calculated for the voidage distribution predicted by CFDEM�;
“standard model” refers to using no correction

Fig. 13 Effect of employing the correction algorithm for the system shown in Fig. 2c a voidage distribution versus bed height for the uncorrected
case, as we as the case with generalized voidage correction; b total drag for different mesh resolutions

Fig. 12b, the improved prediction of the voidage distribution
through the proposed correction function reduces the effect
of a coarse computational grid on the total predicted drag
force. However, due to the interpolation of the velocity field
at the particle positions (note that the fluid velocity is eval-
uated at the cell faces), there is still a remaining error when
using the generalized algorithm. Unfortunately, this amount
of deviation (typically up to 7%) is inevitable since the used
interpolation scheme cannot guarantee a correct superficial
fluid speed at the particle location. To quantify the effect of
this incorrect superficial speed, the total drag force was ana-
lytically calculated based on a corrected velocity field and
the generalized sigmoidal voidage distribution. As depicted
in Fig. 12c, when using a correct velocity field, the total drag
force can be accurately predicted with less than 2 % relative
error when using the generalized algorithm.

The proposed voidage correction function was also exam-
ined for situations with a linear decrease in the voidage in the
interface cell as schematically illustrated in Lagrangian case
of Fig. 3. The results are depicted in Fig. 13a and show that

the voidage correction improves the predicted value for the
voidage in the bed to a great extent. However, small devia-
tions from the corresponding value in the fine-grid simulation
can be still observed. Therefore, it is expected that the pre-
dicted total drag force shows some deviations even after the
voidage correction. As shown in Fig. 13b, by correction of
the voidage, the total drag force in the bed will be improved
by 7.7% for an Eulerian cell size of 10 dp. The maximum
error in case the corrected voidage is used is below 5% for
all grid resolutions studied.

3.4.2 Drag force in case of finite voidage gradients

In order to check the generality of the proposed voidage cor-
rection model to situations with different voidage gradients
∇ϕ f , an additional array of simulations was performed. To
generate a defined voidage gradient, and as proposed by ten
Cate and Sundaresan [20], an original particle bed (indicated
with the subscript 0) having a uniform volume fraction ϕp,0
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Fig. 14 Schematic distribution of particle with constant voidage gradi-
ent in the packed bed

was stretched. Thus, the original particle positions xp,0 were
stretched to new particle position xp,new as follows:

�xp,new
�xp,0

= ϕp,0

ϕp,new
(20)

Here we require ϕp,new = Cϕx + b, i.e., we realize a linear
voidage distribution. Consequently,∇ϕp,new = Cϕ . Particles
were initialized in LIGGGHTS�, compacted to form a ran-
dom bed, and then the position of each particle was modified
based on Eq. (20). An illustration of the resulting particle bed
is shown in Fig. 14.

As shown in Fig. 15a, application of the sigmoidal correc-
tion model (i.e., the generalized correction algorithm) for a
constant voidage gradient of 0.3ϕp,max

�cell
worsens the prediction

of total drag force. This is due to the artificial underprediction
of the voidage as already discussed in “Sect. 3.3.3.”

However, as shown in Fig. 15a, b, using the weighted
generalized correction algorithm significantly improves the
prediction of the total drag force. This is true for various
values of the voidage gradient and cell sizes up to 10dp.
While the need for a correction is not justified for low values
of the voidage gradient (see Fig. 15a), the weighted general-
ized algorithm greatly improves the predictions for the larger
value of 0.5ϕp,max/�cell as shown in Fig. 15b.

3.4.3 Validity of the algorithm for heat transfer predictions

The rate of heat transfer in the gas–particle flow is mainly
influenced by the particle volume fraction via the heat
transfer coefficient and the slip velocity. Hence, unreliable
predictionof voidage can influence the accuracyof heat trans-
fer rate and temperature distribution as well. Consequently,
the application of the voidage correction, as suggested in the
present work for particle–fluid momentum exchange, can be
extended to PU-EL simulation of heat and/or mass trans-
fer in gas–solid flows. To assess the fidelity of the proposed
voidage correction algorithms for prediction of heat transfer,
a set of simulations of gas–solid system with fixed particles
and sharp voidage gradient was performed considering vari-
ous cell sizes. It should be noted that the simulation setup is
the same as one used for Fig. 12. To compare the total rate of
heat transfer in a steady-state condition, the particles’ tem-
perature was kept constant, and the length of the bed chosen

in such a way that the gas experiences insignificant heating
when flowing through the bed.

The results of simulation for standard (i.e., no correc-
tion) and the generalized sigmoidal model are depicted in
Fig. 16. As discerned from this figure, increasing the grid size
reduces the total heat transfer rate in the system. Similar to
its effect on the drag force, coarsening the grid smears out the
voidage and consequently decreases the average heat transfer
coefficient. This trend demonstrates the role of the voidage
in prediction of system thermal performance. However, as
depicted in Fig. 16, employing the voidage correction model
can only partially improve the prediction of the total heat
transfer rate in coarse-grid simulations. This is surprising,
since the correction factor for the Nusselt number, Nup,corr

Nup
,

at a cell/particle size ratio of 8 falls into the range of 0.86–
1.28 (see Fig. 16c). This is a lower degree of correction in
comparison with the drag coefficient (0.71 <

βcorr
β

< 1.4,
see Fig. 17a in the following paragraph). The observed more
significant deviation for the heat transfer rate can hence be
related to the interpolation of fluid quantities in the CFD cell.
In other words, the fluid–particle heat exchange rate is influ-
enced not only by the interpolation of the voidage and the
fluid velocity field, but also by the fluid temperature inter-
polation. The predicted deviation can be associated with the
weak sensitivity of the Nusselt number to the particle vol-
ume fraction and the strong influence of the fluid–particle
relative speed which is analyzed. Indeed, the used drag law
[31] features a more significant dependency on the voidage,
but a lower sensitivity to the relative speed when compared
to the used Nusselt number correlation [35]. Therefore, the
fidelity of the proposed voidage correction function is eroded
by the interpolated fluid velocity and temperature. This is
since fluid velocity and temperature affect the heat transfer
coefficient and the heat transfer rate. To isolate the effect of
these two sources of error (i.e., interpolation of velocity and
temperature), two sets of simulation were performed with
constant values of: (i) gas–particle relative velocity and (ii)
gas and particle temperatures + relative velocity. Comparing
Fig. 16a, b demonstrated that upon using constant relative
velocity, the deviation of total exchange rate in the standard
model decreases to around six percent. The prediction of
the corrected model improves to approximately five percent.
When using a constant gas–particle temperature difference
the deviation decreases especially for the generalized correc-
tion model. Therefore, it can be concluded that the fidelity
of the proposed voidage correction function is mainly gov-
erned by the relative contribution of flow quantities, such as
temperature and velocity field compared to that of the solid
volume fraction on the predicted exchange rate. In short, the
closure law employed for the computation of exchange coef-
ficients must be considered. For instance, when applying the
correlation of Deen et al. [35], the dependency of exchange
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Fig. 15 Assessment of developed correction model for situations with a voidage gradient of a 0.3ϕp,max/�cell and b 0.5ϕp,max/�cell

Fig. 16 Assessment of developed voidage correction algorithm for pre-
dicting heat transfer rates in a packed bed for a generalized correction
model and b enforcing constant relative velocity and/or temperature dif-

ference and c dependency of correction factor for the Nusselt number
on solid particle volume fraction

coefficient is dominated by the flow speed rather than the
solid concentration.

As it can be concluded from this section, the correction
model presented in this study is not limited to the hydrody-
namics and can be used for heat and mass transfer without
modification.

3.4.4 Discussion on the future extension of the algorithm to
consider the relative voidage gradient angle

The proposed algorithms have been tested for situations in
which the voidage gradient is aligned with the flow field.
Also, our algorithm can be potentially useful for more com-
plex situations in which the angle θ between the voidage
gradient and the main flow direction is nonzero, e.g., as
encountered in fluidized beds. With “main flow” we hereby
refer to the fluid–particle relative speed. To do so, the fol-
lowing approach was adopted

(i) The correction function proposed in the current workwas
used for situations in which the fluid–particle relative
speed is aligned with the voidage gradient (see Fig. 17a).

Thus, based on the corrected voidage a corrected drag
coefficient βcorr can be calculated, and one can define:

βcorr

β
(θ = 0) = Cε (21)

(ii) Thefiltereddragmodel proposedbyRadl andSundaresan
[16] for clustered flows, i.e., chaotically oriented particle
clusters, was used for situations inwhich the voidage gra-
dient is perpendicular to the fluid–particle relative speed
(see Fig. 17b):

βcorr

β

(
θ = π

2

)
= C f (22)

(iii) Following the work of Li et al. [23], and as shown in
Fig. 17c, a cosine function was fitted to calculate the
correction factor for the drag coefficient for intermediate
angles:

βcorr

β
= Cε + C f

2
+ Cε − C f

2
cos (2θ) (23)
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Fig. 17 Dependency of the drag correction factor
(

βcorr
β

)
versus the coarse-grid voidage for a the generalized correction algorithm, b the filtered

drag model proposed by Radl and Sundaresan 14 and c for different values of the voidage gradient angle

As shown in Fig. 17c, the proposed algorithm will hence
account for the voidage, the Eulerian grid cell size, as well
as the orientation of the voidage gradient when correcting
for the drag coefficient. While the magnitude of the voidage
gradient is accounted for in the limit of θ = 0, it is not con-
sidered when blending between distinctly and chaotically
oriented particle clusters. Most importantly, for particle vol-
ume fractions ϕp near the close-packing limit, the proposed
algorithm would suggest a much stronger positive drag cor-
rection compared to the negative correction proposed byRadl
and Sundaresan [16]. This remarkable finding may explain
the nonmonotonic behavior of the data for ϕp > 0.5 in Fig. 3
of Radl and Sundaresan [16], i.e., the strong increase in the
drag correction near the close-packing limit.

4 Conclusion

In the present work, the effect of grid coarsening and hence
that of unresolved property profiles on the predicted flow
and thermal behavior of dense fluid–particle systems were
investigated. Initially, the validity of filtered drag models
developed for dilute flow was evaluated; it was shown that
these filteredmodels cannot be reliably used for dense partic-
ulate flowswith a coherent particle ordering. Specifically, we
presented that available filteredmodelsworsen the prediction
for such systems on comparably coarse computational grids.
In fact, while chaotically oriented particle clusters result in a
reduction of the effective drag coefficient, the opposite is true
for distinctly oriented particle clusters: Due to the nonlinear
dependency of the drag coefficient on the voidage, distinctly
oriented particle clusters necessitate a positive drag correc-
tion when performing coarse-grid simulations.

To systematically evaluate the influence of unresolved
voidage fluctuations in dense flows, a set of simulations
was performed considering packed and fluidized beds using
the software CFDEM�. The result of PU-EL simulations
demonstrated that coarsening the CFD grid size reduces not
only the total drag force, but also the total heat exchange rate

in these flows. Therefore, in contrast to comparably dilute
flows, a correction factor of larger than unity is required for all
exchange coefficients, i.e., the drag and heat or mass transfer
coefficients. Another interesting finding is that the deviation
of the total drag force when using the EE approach is lower
than the one when using a PU-EL approach. This is in con-
tradiction with the results of simulations presented by Cloete
et al. [38]. Specifically, these authors claimed that a discrete
phase method (similar to the PU-EL approach considered
in our present work) provides a better prediction of solid
fluxes in coarse-grid simulation of a circulating fluidized
bed. This disagreement can be explained by the compari-
son of the fluidization regime and the criterion chosen for
judging the reliability of the simulation approach. In detail,
in the case simulated by Cloete et al. [38], i.e., risers, the par-
ticles flow in form of clusters. Thus, the flow is comparably
dilute, and as mentioned before, the effect of the grid size
on the drag force arises due to unresolved voidage fluctua-
tions and chaotically oriented particle clusters. In addition,
Cloete et al. [38] used macroscopic bed characteristics as the
measure for judging the reliability of the simulation. Particu-
larly, they compared solid fluxes, while—as reported in their
publication—the granular temperature could not be held con-
stant. Since the latter has a fundamental effect on the voidage
distribution, the peculiar behavior of the discrete simulation
could not be fully revealed. The latter was the case in our
present study, and hence we were able to identify this impor-
tant shortcoming of the PU-EL approach.

We ultimately demonstrate that when adopting an algo-
rithm to map the voidage in a coarse-grid simulation to
the corresponding value in a fine-grid simulation, one can
improve the prediction of exchange coefficients. Specifically,
the voidage distribution in a particle system with voidage
jumps was approximated using a sigmoidal function for dif-
ferent grid sizes. This allowed us constructing a voidage
correction function that yields stable and accurate results.
This correction of the voidage is of high importance to
exclude the numerical artifacts from CFD-DEM predictions
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as reported by Lu et al. [24]. Considering DNS results as
a reference, they proved that the coarse-grid simulation of
gas–particle flow using EE and EL approach fails to predict
the voidage distribution accurately. After successful imple-
mentation of the voidage correction function in CFDEM�,
a grid resolution study considering a packed bed proved the
fidelity of the proposed correction function. To generalize
the proposed correction function for various voidage gradi-
ents, the correction model was extended through a weighting
function. Our simulation results prove the validity of such an
approach for various values of the voidage gradient. Finally,
the proposed correction function was applied for the predic-
tion of heat transfer rates in a packed bed. An improvement
of the total predicted heat transfer rate could be demon-
strated for coarse-grid simulations. However, we show that
this improvement is small compared to that for the drag
force. This indicates that the functional form of the closure
employed, specifically the relevance of the fluid–particle rel-
ative speed compared to that of the voidage, affects the overall
fidelity of the proposed correction concept. Thus, while a
voidage correction helps to improve the prediction of heat
and mass transfer rates, more work is needed to account for
grid effects on the fluid speed and temperature (or concen-
tration) seen by individual particles.

Ultimately, an algorithmwas proposed that blends the cor-
rection developed in this study with classical filtered drag
models for chaotically oriented particle clusters. The remain-
ing challenge is to systematically investigate whether the
proposed blending function, inspired by the work of Li et
al. [23], is indeed suitable for a wide range of applications.
Along the same line of thoughts, themagnitude of the voidage
gradient may be a suitable candidate to further improve the
proposed blending between distinctly and chaotically ori-
ented particle clusters. However, such an improvement first
necessitates a more profound understanding of the role of
voidage gradients on the drag in chaotically oriented particle
clusters.
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Appendix A

Filtered drag model equations

βs f ,filtered

βs f
= 1 − f

(
�filter

Lc
, ϕp,c

)
h

(
ϕp,c

)
(A.1)

f

(
�filter

Lc
, ϕp,c

)
= 1

a
(
ϕp,c

) (
�filter
Lc

)
+ 1

(A.2)

Lc = u2t
g
Fr−2/3

p (A.3)

Functions a and f in Eq. (A.1) are piece continuous algebraic
functions having the form in Eq. (A.4) and can be obtained
through filtering the data from highly resolved CFD-DEM
simulation. More details about the model can be found in
Ref. [16]

a
(
ϕp,c

) =
3∑

n=0

an
(
ϕp,c − ϕp,m

)n

f or ϕp,m−1 < ϕp,c < ϕp,m (A.4)

Appendix B

The scaled voidage distribution can be approximated by cal-
culation of minimum and maximum voidage in neighboring
cells

ϕ′
f = ϕ f − ϕ f ,min

ϕ f ,max − ϕ f ,min
= 1

1 + e−a(x/dp)
(B.1)

Thefirst and secondderivative of this functionwith respect
to the position x can be obtained as follows:

∣∣∇ϕ f
∣∣

ϕ f ,max − ϕ f ,min
= a

dp

e−a(x/dp)

(
1 + e−a(x/dp)

)2 (B.2)

∣
∣∇2ϕ f

∣
∣

ϕ f ,max − ϕ f ,min
= −

(
a

dp

)2 ea(x/dp)
[
ea(x/dp) − 1

]

[
1 + ea(x/dp)

]3

(B.3)

After dividing Eq. (B.3) by Eq. (B.2), we arrive at

∣∣∇2ϕ f
∣∣

∣∣∇ϕ f
∣∣ = − a

dp

γ − 1

1 + γ
(B.4)

where γ = ea(x/dp). Rearranging Eq. (B.4) leads to the
expression for the parameter γ that reads:
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γ =
a
dp

−
∣
∣∇2ϕ f

∣
∣

|∇ϕ f |
a
dp

+ |∇2ϕ f ||∇ϕ f |
(B.5)

By dividing Eq. (B.1) with (B.2) an expression for ϕ f ,min is
obtained:

ϕ f ,min = ϕ f −
∣∣∇ϕ f

∣∣

a/dp
(γ + 1) (B.6)

Finally, after substitution of Eq. (B.6) in Eq. (B.1), the param-
eter ϕ f ,max can be calculated:

ϕ f ,max =
(
1 + 1

γ

) [
ϕ f − ϕ f ,min

] + ϕ f ,min. (B.7)
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