
Demiurge 1.2.0: A SAT-Based Synthesis Tool
Robert Könighofer1 and Martina Seidl2

1Institute for Applied Information Processing and Communications, Graz University of Technology, Austria
2Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria.

Abstract—This document describes the synthesis tool Demi-
urge, version 1.2.0, as submitted to SyntComp 2015. Demiurge
is an open-source tool for synthesizing reactive systems from
safety specifications using decision procedures for the satisfiability
of quantified and unquantified Boolean formulas. Demiurge can
also be seen as an extendable framework: New synthesis algo-
rithms and optimizations can easily be integrated in new back-
ends, reusing existing infrastructure like the parser, interfaces
to SAT- and QBF solvers, existing procedures to extract circuits
from strategies, etc. We describe the basic architecture and sketch
the working principle of the existing back-ends. Details to the
algorithms, optimizations, and first experiments can be found
in [2], [1]. More extensive experiments on the SyntComp 2014
benchmarks can be found in the downloadable archive.

I. INTRODUCTION

Demiurge follows the traditional game-based approach to
the synthesis of reactive systems from safety specifications.
The specification is seen as a game between two players: the
environment player controls the inputs, and the system player
controls the outputs of the system. The goal of the system
player is to satisfy the specification, i.e., visit only safe states,
independent of the environment behavior. In a first step, a so-
called winning region is computed. The winning region is the
set of all states from which the system player can enforce to
satisfy the specification. In a second step, a winning strategy
is derived from the winning region. For every (current) state
and input, the winning strategy defines a set of outputs that
are okay for satisfying the specification. The last step is to
implement this strategy in a circuit, where a concrete choice
for the outputs has to be made for every state and input.

In order to achieve acceptable scalability, it is important to
implement synthesis algorithms symbolically, i.e., by manip-
ulating formulas instead of enumerating states. In synthesis,
these symbolic algorithms are, in turn, usually implemented
with Binary Decision Diagrams (BDDs). One reason is that
solving games inherently involves dealing with quantifier
alternations, and BDDs offer both kinds of quantification.
However, BDDs also have their scalability issues. On the other
hand, there have been enormous performance improvements in
decision procedures for the satisfiability of formulas over the
last years and decades. This has lead to efficient tools like
SAT- and QBF (Quantified Boolean Formulas) solvers. Demi-
urge leverages this development by implementing symbolic
synthesis algorithms using such SAT- and QBF solvers.

This work was supported in part by the Austrian Science Fund (FWF)
through projects RiSE (S11406-N23 and S11408-N23) and QUAINT (I774-
N23), and by the European Commission through project STANCE (317753)
and IMMORTAL (644905).

Demiurge implements various synthesis algorithms in dif-
ferent back-ends. Back-ends can be run in different modes
(optimizations and heuristics enabled or disabled) and with
various solvers. The learning-based back-end computes the
winning region with computational learning using either a
QBF- or a SAT solver. It also implements heuristics to exploit
reachability information and to expand quantifiers partially.
The template-based back-end uses a QBF- or a SAT solver
to compute the winning region as instantiation of a template
for a CNF formula over the state variables. Further back-ends
include a re-implementation of [5] and an approach based on
a reduction to Effectively Propositional Logic (EPR) [2]. A
parallel back-end runs different methods with different solvers
and optimizations in different threads. Details to the back-ends
can be found in [2]. All back-ends can be used with several
methods to extract circuits from the computed winning region.
This includes methods based on QBF certification as well as
computational learning using SAT- or QBF solvers. ABC [3]
is used in a post-processing step to reduce the circuit size.
Details to our circuit synthesis methods can be found in [1].

The modular architecture makes Demiurge easily extend-
able with new algorithms and optimizations. A lot of in-
frastructure like interfaces to solvers and entire steps of the
synthesis procedure (like extracting a circuit from a winning
region) can be reused. At the moment, Demiurge contains
uniform interfaces to the APIs of Minisat, Lingeling, Pi-
coSat, and DepQBF (with and without the QBF preproces-
sor Bloqqer [6]). The interface to DepQBF also supports
incremental QBF solving [4]. Interfaces to SAT- and QBF
solvers supporting the (Q)DIMACS format are available as
well. Furthermore, Demiurge interfaces ABC [3] for circuit
minimization. Demiurge is written in C++. The source code
is available1 under the GNU Lesser General Public License
version 3. The downloadable archive also contains extensive
experimental results on the SyntComp 2014 benchmarks and
scripts to reproduce them.

In the following, we outline the architecture of Demiurge
and then briefly explain the different back-ends.

II. ARCHITECTURE

The architecture of Demiurge is outlined in Fig. 1. The in-
put is a safety specification in AIGER format. The AIG2CNF
module parses it into CNF formulas representing the transition
relation and the set of safe states. Next, the back-end selected
by the user is executed. The back-ends mostly differ in

1http://www.iaik.tugraz.at/content/research/design verification/demiurge/

http://www.iaik.tugraz.at/content/research/design_verification/demiurge/


AIGER
Specification

AIG2CNF

Back-End 1

Back-End N

MinisatApi DepQBFApi etc.

AIGER
Circuitetc.

Options

Circuit 
Extractor

Demiurge

Solver Interfaces

Fig. 1. The architecture of Demiurge.

their method for computing the winning region, and can be
parameterized with a method for computing a circuit from the
winning region. Both the computation of the winning region
and the extraction of circuits rely on external solvers like SAT-
and QBF solvers. The resulting circuits are optimized with
ABC [3] and dumped in AIGER format again.

III. BACK-ENDS

A. Learning-Based Back-End

The learning-based back-end computes a CNF representa-
tion of the winning region W in an iterative manner. It starts
with the set of all safe states. In each iteration, it computes a
state within the current version F of the winning region from
which the environment can enforce to leave F . Obviously, such
a state cannot be part of the final winning region W . Hence,
the algorithm refines F by removing this state. The state is
represented as a cube over the state variables, so removing
it from F amounts to adding a clause. By dropping literals
from the cube as long as it only contains states that must be
excluded from the winning region, the algorithm generalizes
the state into a larger region before removing it from the
winning region. The detailed algorithm can be found in [2].

For SyntComp 2015, we use the following configuration.
Instead of a QBF solver, we use two competing SAT solvers to
compute and generalize states to be removed from the winning
region (algorithm LEARNSAT from [2] with optimization RG
enabled, but optimization RC disabled). As a difference to the
SyntComp 2014 submission (version 1.1.0), we also apply
partial universal quantifier expansion to reduce the number of
iterations. Minisat version 2.2.0 is the underlying SAT solver.

B. Template-Based Back-End

In order to obtain a winning region, this back-end constructs
a parameterized CNF formula over the state variables: different
concrete values for the (Boolean) parameters induce a different
concrete CNF formula over the state variables. This way, the
search for a formula over the state variables (the winning
region) is reduced to a search for Boolean constants (the
template parameter values) [2]. While Demiurge 1.1.0 could
only use a QBF solver for finding a template instantiation,
version 1.2.0 can also use a SAT solver in a Counterexample-
Guided Inductive Synthesis (CEGIS) approach.

For SyntComp 2015, this back-end is not run separately,
but only as one thread in our parallelization.

C. Parallel Back-End

The parallel back-end is a playground for combining differ-
ent methods that refine a CNF representation of the winning
region iteratively with additional clauses. Several threads com-
pute and add additional clauses in parallel.

For SyntComp 2015, we use 3 threads: One thread executes
the learning-based back-end, one the template-based back-end
(alternating between QBF- and SAT solving in 20 second
turns), and one our re-implementation of [5]. Minisat 2.2.0
is used as SAT solver. DepQBF 3.04 with our extension of
the QBF preprocessor Bloqqer [6] is used for QBF solving in
the template-based thread. Note that our parallelization is not
just a portfolio approach. The different threads share clauses
of the winning region as soon as they are discovered such that
other threads can immediately benefit from this information.

D. Circuit Extraction

Demiurge provides several methods for computing circuits
from the winning region [1]. One uses QBFCert to compute
Skolem functions for the output signals in a QBF that asserts
completeness of the strategy relation. The second one uses
computational learning to compute circuits for one output after
the other. A third method is based on interpolation.

For SyntComp 2015, we use the learning approach (method
SL from [1]) with Lingeling ayv as SAT solver. In our
parallelization, we use 3 threads. The first two execute the
learning approach in two variants (SL and SLN from [1]) . The
third thread executes the learning approach using incremental
QBF solving (method QL from [1]) with DepQBF 3.04.

E. Other Back-Ends

Demiurge contains more back-ends that are either experi-
mental or did not turn out to be particularly competitive. The
EPR back-end [2] reduces the synthesis problem to Effectively
Propositional Logic (EPR) and uses iProver to solve the
formulas. It suffers from high memory consumption. The IFM
back-end is a re-implementation of [5]. It performs well on
certain benchmarks, but is outperformed on many others [2].

IV. CONCLUSION

Demiurge is an open-source synthesis tool for safety spec-
ifications. It implements several synthesis algorithms based on
SAT- and QBF solving [2], [1]. Demiurge is also an extend-
able framework for implementing new synthesis algorithms,
thereby reducing the entry barrier for new research on SAT-
and QBF-based synthesis algorithms and optimizations.

REFERENCES

[1] R. Bloem, U. Egly, P. Klampfl, R. Könighofer, and F. Lonsing. SAT-based
methods for circuit synthesis. In FMCAD’14. IEEE, 2014.

[2] R. Bloem, R. Könighofer, and M. Seidl. SAT-based synthesis methods
for safety specs. In VMCAI’14. Springer, 2014.

[3] R. K. Brayton and A. Mishchenko. ABC: An academic industrial-strength
verification tool. In CAV’10. Springer, 2010.

[4] F. Lonsing and U. Egly. Incremental QBF solving. In CP’14, 2014.
[5] A. Morgenstern, M. Gesell, and K. Schneider. Solving games using

incremental induction. In IFM’13. Springer, 2013.
[6] M. Seidl and R. Könighofer. Partial witnesses from preprocessed

quantified boolean formulas. In DATE’14, pages 1–6. IEEE, 2014.


	Introduction
	Architecture
	Back-Ends
	Learning-Based Back-End
	Template-Based Back-End
	Parallel Back-End
	Circuit Extraction
	Other Back-Ends

	Conclusion
	References

