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Abstract Electric Resonance in the Pedestal Region

ELM mitigation by resonant magnetic field perturbations (RMPs) is presently a subject of Radial Magnetic Field at resonant surface (-10,2)

6 Perpendicular electron fluid velocity
intensive experimental and theoretical studies. As shown in Ref. [1] and other references, S ' — oloctric 10 - = =
: : : : : C eleclric resonance d == \/perp_diamagnetic
RMPs are strongly shielded by plasma currents if the perpendicular electron fluid velocity O electron resonance - - -Vperp_ExB
V. is finite. As a result, plasma shielding prevents the formation of ergodic layers which 090 — Vperp _tot
were originally thought to be responsible for ELM mitigation. Recently in Ref. [2] it has T A A.B 8

been found that in one of the successful ELM mitigation experiments on DIII-D, the point S §
V1. = 0 where the field is not shielded, is located at the top of the pedestal. Based on this =)
finding, in Ref. [3] significant quasilinear effects of RMPs on the pedestal plasma have been
demonstrated. On the other hand, in this discharge, not only a V. = 0 point but also a
reversal point of the radial electric field E;, = 0 is present in the pedestal region as shown
in Fig. 1 of Ret. [2]. The substantial effect of £, = 0 points on RMP penetration and RMP o |
driven plasma transport is studied in the present contribution. o L . 2
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Kinetic Plasma RESPOHSE Model Fig. 2. Scaling with V,, of the radial magnetic field B, at the resonance surface for mode (-10,2).
Electron diamagnetic (blue), electric (black) and total (red) velocity for scaling factors 1.9 and 3.6.
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1 2 . Fig. 3. Torque acting on electrons (blue) and ions (red) and total torque (black) for linear-parabolic
r = §Re Z / d°p a1 fm U = —1 (D1141 + Di2ds), )| | tokamak-like profiles. Magnetic and electric equipotential surfaces as well as electron (solid) and ion
o (dashed) D1 diffusion coefficients for different V., scalings (A), (B) and (C).

Conclusions

e The model is applied to a low temperature discharge in a mid-size tokamak with linear
temperature and parabolic density profiles shown in Fig. 1.
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Here, a1 = 1, az = m(v} +vj)/(2T), and the thermodynamic forces A4, A, are
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Ay =—— —ZE — : Az = =—. ) e Perturbation mode (m=-10, n=2) is resonant at the plasma edge. Scaling V, places either
nor T 2T Or T Or . . . .
the zero of total perpendicular electron fluid velocity V. = 0 or the zero of the radial
e Diffusion coefficients Dy; are expressed through the perturbed radial guiding center ve- electric field E,. = 0 to the resonant surface. In both cases, plasma shielding of the pertur-
locity vy, bation is highly reduced and the radial component B, at the resonant surface increases
- - - almost to its vacuum value.
Tms e The behaviour of ion and electron torques is different around those resonances (Fig. 3)
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il n y ; / oL UL / I / 7 () v”) At the electron fluid velocity zero the electron torque is increased. This follows from
) y T , / the increased perturbation field in a plasma with density and temperature gradients. In
X Upy (UL, U)))Up (VL U||)0fk(ULa vy )ar (v, U||)f o(vL, U||)- (10) this case, the total torque is basically the electron torque and particle fluxes are non-
- 7.2 ik 02 ambipolar. The increase in particle transport is accompanied by a change in the plasma
o = dpr g o vip o Tlp 1 (11) toroidal rotation
o By ™ By ™ 2weBy ™ weBy M '

e Near the I/, = 0 point both torques increase strongly but balance each other and the
e Torque and force-flux relation total torque stays small. Thus, the increased particle transport is almost ambipolar and
T, =— E\/g Bg I, (12) the toroidal rotation changes little. The origin of the increased ambipolar transport near
¢ E,. = 01is seen from looking at the perturbed magnetic (blue) and perturbed equipotential
where /g and B} are the unperturbed metric determinant and the contra-variant surfaces (red) in Fig. 3. The unperturbed potential has an extremum at £, = 0 and

poloidal magnetic field component. equipotentials are much more perturbed around this resonance than anywhere else.

e Convective cells are formed due to the ambipolar E x B drift of the plasma along those

Plasma Parameters equipotentials. This leads to a strong increase of the ambipolar particle transport. The
increased transport might be responsible for the density pump-out usually observed in

Density, electron and ion temperature 0 Safety factor and toroidal velocity ELM mitigation experiments. The Er — ( resonance region 1S fa1rly slim and, therefore,
) —n[10%em™ b —q 1 the parameter window where it can affect the pedestal is rather narrow.
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Fig. 1. Plasma parameter profiles and safety factor.




