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Abstract
ELM mitigation by resonant magnetic field perturbations (RMPs) is presently a subject of
intensive experimental and theoretical studies. As shown in Ref. [1] and other references,
RMPs are strongly shielded by plasma currents if the perpendicular electron fluid velocity
V⊥e is finite. As a result, plasma shielding prevents the formation of ergodic layers which
were originally thought to be responsible for ELM mitigation. Recently in Ref. [2] it has
been found that in one of the successful ELM mitigation experiments on DIII-D, the point
V⊥e = 0 where the field is not shielded, is located at the top of the pedestal. Based on this
finding, in Ref. [3] significant quasilinear effects of RMPs on the pedestal plasma have been
demonstrated. On the other hand, in this discharge, not only a V⊥e = 0 point but also a
reversal point of the radial electric field Er = 0 is present in the pedestal region as shown
in Fig. 1 of Ref. [2]. The substantial effect of Er = 0 points on RMP penetration and RMP
driven plasma transport is studied in the present contribution.

Kinetic Plasma Response Model
• Linear plasma response model
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• Green’s function for linearised kinetic equation
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• Energy conserving Ornstein-Uhlenbeck type collision operator
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• Perturbed distribution function
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• finite Larmor radius expansion [1, 4, 5]
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• Quasilinear particle and energy fluxes
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Here, a1 = 1, a2 = m(v2⊥ + v2‖)/(2T ), and the thermodynamic forces A1, A2 are
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• Diffusion coefficients Dkl are expressed through the perturbed radial guiding center ve-
locity vrm
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• Torque and force-flux relation
Tϕ = −e
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√
gBϑ0 Γ, (12)

where
√
g and Bϑ0 are the unperturbed metric determinant and the contra-variant

poloidal magnetic field component.
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Fig. 1. Plasma parameter profiles and safety factor.

Electric Resonance in the Pedestal Region
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Fig. 2. Scaling with Vz of the radial magnetic field Br at the resonance surface for mode (-10,2).
Electron diamagnetic (blue), electric (black) and total (red) velocity for scaling factors 1.9 and 3.6.
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Fig. 3. Torque acting on electrons (blue) and ions (red) and total torque (black) for linear-parabolic
tokamak-like profiles. Magnetic and electric equipotential surfaces as well as electron (solid) and ion
(dashed) D11 diffusion coefficients for different Vz scalings (A), (B) and (C).

Conclusions
• The model is applied to a low temperature discharge in a mid-size tokamak with linear

temperature and parabolic density profiles shown in Fig. 1.
• Perturbation mode (m=-10, n=2) is resonant at the plasma edge. Scaling Vz places either

the zero of total perpendicular electron fluid velocity V⊥e = 0 or the zero of the radial
electric field Er = 0 to the resonant surface. In both cases, plasma shielding of the pertur-
bation is highly reduced and the radial component B̃r at the resonant surface increases
almost to its vacuum value.

• The behaviour of ion and electron torques is different around those resonances (Fig. 3).
At the electron fluid velocity zero the electron torque is increased. This follows from
the increased perturbation field in a plasma with density and temperature gradients. In
this case, the total torque is basically the electron torque and particle fluxes are non-
ambipolar. The increase in particle transport is accompanied by a change in the plasma
toroidal rotation.

• Near the Er = 0 point both torques increase strongly but balance each other and the
total torque stays small. Thus, the increased particle transport is almost ambipolar and
the toroidal rotation changes little. The origin of the increased ambipolar transport near
Er = 0 is seen from looking at the perturbed magnetic (blue) and perturbed equipotential
surfaces (red) in Fig. 3. The unperturbed potential has an extremum at Er = 0 and
equipotentials are much more perturbed around this resonance than anywhere else.

• Convective cells are formed due to the ambipolar E ×B drift of the plasma along those
equipotentials. This leads to a strong increase of the ambipolar particle transport. The
increased transport might be responsible for the density pump-out usually observed in
ELM mitigation experiments. The Er = 0 resonance region is fairly slim and, therefore,
the parameter window where it can affect the pedestal is rather narrow.
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