
Structuring the Scope:

Enabling Adaptive and Multilateral 
Authorization Management

This work is supported by A-SIT Secure Information Technology Center Austria and EU H2020 Programme under the SUNFISH project, grant No. 644666.

Bojan Suzic, Andreas Reiter and Alexander Marsalek

Graz University of Technology, Austria



2 SPC @ IEEE Conference on Communications and Network Security ◦ Las Vegas, USA ◦ October 11th 2017

Overview

 Introduction and Motivation
 Properties of Access Scopes
 Integrated Authorization Management
 Application in Use Scenario
 Conclusion



3 Introduction

Introduction

Cloud services expose their resources and operations using Web APIs
Web APIs are applied to support core business of service providers
How can be security aspects of service use and resource sharing be managed?

Some issues:
o Obstacles due to proprietary interfaces and hard-wiring
o Interoperability of security controls across diverse organizations
o Provider-centric management of security in the cloud 
o Capability of security controls

Managing and coordinating security of our assets hosted at other providers?



4 Motivational Scenario

Motivational Scenario

eXample Inc. uses Zapier to automate its tasks
Zapier connects data sources from Gmail and MailChimp on behalf of a customer
Web APIs (REST) typically applied to expose and share resources

Task:
o Periodically retrieve and extract email senders from recent emails at Gmail
o Add them as subscribers to a list at MailChimp

on behalf of



5 Motivational Scenario

Authorization in the Cloud

Authorization: Zapier needs access to resources at both providers
Typical case relies on OAuth 2.0 Web Authorization Framework – RFC 6749

Primary concepts in OAuth 2.0:
o Resource owner, resource server, authorization server, client

o Initiate authorization flow to obtain access credentials

o Access token – most commonly used access credential

o Access scope – determines the  extent of permissions given to the agent



6 Motivational Scenario

Authorization Flows

Obtaining access token (initially)

Retrieving resource or performing operations (repetitive)

The same flow is applied in the case of MailChimp as well

Access token

Protected resource

Authorization
Server

Resource
Server



7 Motivational Scenario

Obtaining Consent - Zapier

Resource owner is presented with the interface to 
review and allow the permissions given to the client

Permissions are abstracted as a scope

Scopes requested by Zapier:

o gmail.compose
o gmail.modify

Both scopes provide broad range of operations 
over all instances of subsumed resources



8 Motivational Scenario

Obtaining Consent - MailChimp

MailChimp does not apply scopes

The given permissions include 
all operations over every resource

No compartmentalization applied



9 Motivational Scenario

Broad Permissions
Requirements from use cases:
o Gmail: (1) retrieving a list of recent messages and (2) the value of 

From: field from the header of these messages needed
o MailChimp: (3) adding an entity to a particular subscriber list

The problem with broad permissions:
o Zapier allowed to retrieve and manage all messages in an account 
o This includes managing drafts, sending or temporarily deleting messages
o Can execute any API operation at MailChimp

Potentially leads to numerous security and privacy risks
Applies to most integrations



10 Scope properties

Properties of Access Scopes

Unilateral definition

Invariable

Unstructured

Out-of-the-band

Coupled

Context insensitive

Established by the service provider

Designated as a predefined set

Imposed to other entities

Excluding resource owners and clients



11 Scope properties

Properties of Access Scopes

Unilateral definition

Invariable

Unstructured

Out-of-the-band

Coupled

Context insensitive

Statically determined

Immutable sets of permissions

Typically do not change in production



12 Scope properties

Properties of Access Scopes

Unilateral definition

Invariable

Unstructured

Out-of-the-band

Coupled

Context insensitive

Defined as opaque strings

Cannot be decomposed

Authorization extent cannot be derived

Discovery of supported or provided 
authorizations not possible

Dynamic definition not supported



13 Scope properties

Properties of Access Scopes

Unilateral definition

Invariable

Unstructured

Out-of-the-band

Coupled

Context insensitive

The scope extent communicated non-transparently

Described in service documentation (for developers)

Applications cannot interpret the scope



14 Scope properties

Properties of Access Scopes

Unilateral definition

Invariable

Unstructured

Out-of-the-band

Coupled

Context insensitive

Specific to the service

May reflect business model or view of SP

Cannot be decomposed

Predefined set with built-in properties



15 Scope properties

Properties of Access Scopes

Unilateral definition

Invariable

Unstructured

Out-of-the-band

Coupled

Context insensitive Cannot express attributes of resources, 
environment or involved parties

The same parameters apply to all contexts 
(end-users, resources, target environment)



16 Integrated Authorization Management

Integrated Authorization Management

Supporting integrated authorization management:
Granular specification of authorizations

Claiming acceptable constraints

Context-dependent enforcement

Selective and transformational sharing

Scalable management



17 Integrated Authorization Management

Contribution

Defining management flows 
o Supporting cooperative and adaptive authorization management

Defining supporting vocabularies
o Describing requests, responses, contextual properties and resource restrictions

o Describing access control and OAuth 2.0 entities

Establishing authorization descriptor 
o Relies on vocabularies

o Supports granular, instructive and expressive specification

o Structuring authorization requirements and grants

o Applicable beyond single organization



18 Integrated Authorization Management

Management Flows

Defining management flows:
(1) Exposing the service descriptor
(2) Determining the request scope
(3) Requesting authorization
(4) Refining authorization extent
(5) Transforming into security policy
(6) Inspecting authorization descriptor

Provider exposes service description

Includes available resources, their structure and organization



19 Integrated Authorization Management

Management Flows

Defining management flows:
(1) Exposing the service descriptor
(2) Determining the request scope
(3) Requesting authorization
(4) Refining authorization extent
(5) Transforming into security policy
(6) Inspecting authorization descriptor

Client retrieves service model and decides the extent of required permissions

Finding intersection between security and functional goals

Considers exposed resources, applicable constraints and supported operations



20 Integrated Authorization Management

Management Flows

Defining management flows:
(1) Exposing the service descriptor
(2) Determining the request scope
(3) Requesting authorization
(4) Refining authorization extent
(5) Transforming into security policy
(6) Inspecting authorization descriptor

Client generates authorization request 

Expresses its acceptable range of permissions and constraints

Deliver request interactively or asynchronously



21 Integrated Authorization Management

Management Flows

Defining management flows:
(1) Exposing the service descriptor
(2) Determining the request scope
(3) Requesting authorization
(4) Refining authorization extent
(5) Transforming into security policy
(6) Inspecting authorization descriptor

Resource owner inspects and refines the request

Interactive request: inspected using owner’s client involved in the flow

Asynchronous request: on the side of service provider



22 Integrated Authorization Management

Management Flows

Defining management flows:
(1) Exposing the service descriptor
(2) Determining the request scope
(3) Requesting authorization
(4) Refining authorization extent
(5) Transforming into security policy
(6) Inspecting authorization descriptor

After consent by resource owner is obtained

Server-side transformation into security policy

Considers target system and environment



23 Integrated Authorization Management

Management Flows

Defining management flows:
(1) Exposing the service descriptor
(2) Determining the request scope
(3) Requesting authorization
(4) Refining authorization extent
(5) Transforming into security policy
(6) Inspecting authorization descriptor

Optionally providing authorization descriptor back to the client

Allows the client to determine the degree of provided (redacted) permissions



24 Integrated Authorization Management

Vocabularies

Uses semantic vocabulary as a building block, establishing a 
formal, explicit specification of a shared conceptualization

Ω = (C, R, E, I)

C – classes (unary predicates)

R – relations (binary or higher predicates)

E – explicit instances of classes and relations

A - axioms 

Explicitly defined concepts, properties, 
relations, functions, constraints, axioms

Consensual knowledge

Abstract model and simplified 
view of some phenomenon 

Machine-
understandable



25 Integrated Authorization Management

Vocabularies

Organizing vocabularies in layers according to their role in the process

Concepts in vocabularies serve as terminological knowledge (T-Box)

To describe services or interactions we instantiate them as assertions (A-Box)

Authorization descriptor – a graph-based structure, instantiates concepts from vocabularies 

Conforms to descriptions and capabilities announced by services

Roles: AuthorizationRequest, AuthorizationResponse, ErrorResponse

Service Layer

Interaction Layer

Authorization Layer



27 Application – Use Scenario

Exposing Service Description

Given a service vocabulary Ω(s) = {C, R, ε, I}

Service provider exposes a service description

M= {CM, RM, EM, IM} | CM C, RM R, IM I and e EM, e CM  e RM

Provided as RDF, JSON-LD or Turtle

Service description typically includes:
o Exposed resources and intents (actions)

o Relations between resources and actions

o Parameters and URL mappings for entities

o Organization of resources (consisting elements)

o Supported operations in the service (transformative)

o Extraction rules for resources or their elements



28 Application – Use Scenario

Exposing Service Description

Example in Turtle:
(1) References vocabularies
(2) Initializes service and exposes

its resources and intents
(3) Refining hierarchy of resources
(4) Specifying extraction rules

(semantic lifting)



29 Application – Use Scenario

Consuming Service Description

Accessing agent consumes service descriptions to structure authorization request:
o Retrieve service descriptor

o Derive exposed services

o Retrieve exposed resources of a service (optionally)

o Retrieve supported actions (optionally)

o For actions: derive affected resources, their elements and exposed operations

o Determine  requested actions/resources and applicable operations
and initialize a new scope

D  <remote service>

S  sdD sd.instanceOf(DASP-Service:Service)

R  resD s                          reshasResource

A  actD res                          acthasAction

act res, res                 el, act                   opaffectsResource hasElement hasOperation



30 Application – Use Scenario

Structuring Authorization Request
Structured scopes for three cases (accessing agent):

o Partially cooperative client – provides focused, but non-optimally constrained request

o Gmail: (1) retrieving a list of recent messages and (2) the value of 
From: field from the header of these messages needed

o MailChimp: (3) possibility to add an entity to a particular subscriber list



31 Application – Use Scenario

Structuring Authorization Request
Structured scopes for three cases (redacted by the resource owner):

o Redaction can be done in interactive or asynchronous flow



32 Annex

Deployment Models

Data-security Gateway - provider-centric and user-centric deployment models
Implements security evaluation and enforcement using provided vocabularies

Related work: https://demo.a-sit.at/am/



33 Conclusion

Integration with Other Frameworks

Aim – protocol-agnostic approach that scales beyond a single environment
Integration into OAuth 2.0 – additional steps (0 and 2b)
Authorization descriptor provided as Base64 encoded string



34 Conclusion

Conclusion

Observed issues:
o Under-specification leading to low management capability

o Semantic vs syntactic interoperability

Goal:
o Advancing manageability of security controls

o End-to-end integration and reuse of security controls

o Application beyond a single protocol (OAuth)

Approach:
o Introducing lightweight interoperability layer to connect 

different environments

o Decoupling security controls from service providers and 
associating them with service models

o Providing self-dereferenceable and transparent structures 
for resource- and context-aware management of authorizations



Any questions?

Thanks for your attention!


