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Abstract Convolution Quadrature Method (CQM)-
based Boundary Element formulations are up to now
used only in dynamic formulations. The main difference
to usual time-stepping BE formulations is the way to
solve the convolution integral appearing in most time-
dependent integral equations. In the CQM formulation,
this convolution integral is approximated by a quadra-
ture rule whose weights are determined by the Laplace
transformed fundamental solutions and a linear multi-
step method.

In principle, for quasi-static poroelasticity there is no
need to apply the CQM because time-dependent fun-
damental solutions are available. However, these fun-
damental solutions are highly complicated yielding very
sensitive algorithms. On the contrary, the CQM based
BE formulation proposed here is very robust and yields
comparable results to other methodologies. This for-
mulation is tested in 2-d in comparison with a Finite
Element Method and analytical results.

1 Introduction

Convolution  Quadrature  Method (CQM)-based
Boundary Element (BE) formulations are first published
in 1997 [19, 20] with applications in elasto- or viscoel-
astodynamics. The main difference to usual time-step-
ping BE formulations is the way to solve the convolution
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integral appearing in most time-dependent integral
equations. In the CQM formulation, this convolution
integral is approximated by a quadrature rule whose
weights are determined by the Laplace transformed
fundamental solutions and a multi-step method [13, 14].
An overview of this BE formulation is given in [18].

There are mainly two reasons to use a CQM-based
BEM instead of usual time-stepping procedures. One
reason is to improve the stability of the time-stepping
procedure [19, 1]. The other reason is to tackle problems
where no time-dependent fundamental solutions are
available, e.g., for inelastic material behavior in vis-
coelastodynamics [16], in poroelastodynamics [17], or
for functional graded materials [25]. Also, this method is
used to avoid highly complicated fundamental solutions
in time domain [2, 23, 24].

However, up to now, the CQM-based BEM is used
only in dynamic formulations. Clearly, for quasi-static
problems in poroelasticity there is no need to apply the
CQM because time-dependent fundamental solutions
are available [7]. However, these fundamental solutions
are highly complicated yielding very sensitive algo-
rithms. Therefore, it is promising to apply the CQM also
to the quasi-static integral equations in poroelasticity.
This approach is presented for quasi-static viscoelastic-
ity and poroelasticity for 3-dimensional continua in [21].
Here, the 2-d case for poroelasticity is discussed.

Here, at first, poroelastic constitutive equations are
recalled based on Biot’s theory [3]. It should be mentioned
that the proposed method can also be applied to mixture
theory based theories as the Theory of Porous Media [8]
because the mathematical operator of the governing
equations is equal to that of Biot’s theory, as shown for
the dynamic case by Schanz and Diebels [22]. The singular
behavior of the 2-d fundamental solutions in Laplace
domain is discussed. The explicit expressions of these
quasi-static fundamental solutions in Laplace domain
may be found in [5] or the respective time domain solu-
tions in the survey article by Cheng and Detournay [6].

Subsequent to the formulation of the constitutive and
governing equations, the respective integral equations



are presented. Applying the usual spatial discretization
and using the CQM for the temporal discretization
yields the final time-stepping algorithm. The proposed
methodology is tested for consolidation processes in
comparison with analytical solutions and a FE formu-
lation for the example of a soil column and the borehole
problem.

Throughout this paper, the summation convention is
applied over repeated indices and Latin indices receive
the values 1 and 2 in two-dimensions (2-d). Commas (),
denote spatial derivatives and, as usual, the Kronecker
delta is denoted by §;;.

2 Governing equations and fundamental solutions

In the following, the constitutive equations and the
governing equations for a poroelastic continuum are
given in a short form. The intention is only to point out
the notation and to state the basic assumptions. For a
more detailed description on poroelasticity the reader is
referred to Biot’s original work [3] or to the quite
comprehensive article of Detournay and Cheng [10].
Further, as the CQM uses fundamental solutions only
in Laplace domain, it is sufficient to give the governing
equations and their fundamental solutions in Laplace
domain.

Following Biot’s approach to model the behavior of

porous media, the constitutive equations can be
expressed as
2Gv
gij = G(szj + uj,i) + E(Sijuk,k — 0dyp
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in which ¢;; denotes the total stress, p the pore pressure,
u; the displacements of the solid frame, and { the vari-
ation of fluid volume per unit reference volume. The sign
convention for stress and strain follows that of elasticity,
namely, tensile stress and strain is denoted positive. The
bulk material is defined by the shear modulus G and
Poisson ratio v, known from elasticity. The porosity ¢,
Biot’s effective stress coefficient «, and the undrained
Poisson’s ratio v, complete the set of material parame-
ters. Further, a linear strain-displacement relation
& = 1/2(uz; + u;;) is used, i.e., small deformation gra-
dients are assumed.

Conservation of the linecar momentum yields the
static equilibrium

(2)
formulated for the mixture, i.e., for the solid and the
interstitial fluid. In Eq. (2), F; denotes the bulk body

forces. The mass conservation is governed by the con-
tinuity equation

0ijj = —Fi

0
&C +4qii = a, (3)
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with the specific flux of the fluid ¢; and a source term a(¢).
Finally, the interstitial flow is modeled with Darcy’s law
qi = —KP,i (4)

where x denotes the permeability.

As shown in [4], it is sufficient to use the solid dis-
placement and the pore pressure as basic variables to
describe a poroelastic continuum. Therefore, the above
equations are reduced to these three unknowns. Clearly,
contrary to the dynamic case, this can be achieved even
in time domain by eliminating the flux in the above given
equations. However, because in the following only the
Laplace transformed equations are necessary, equations
(1) — (4) are transformed to Laplace domain. Subse-
quently, eliminating the flux yields the final set of dif-
ferential equations for the displacements #; and the pore
pressure p

. G . . A

Gltijj + 75, Wi — Wi = —Fi (5a)
o soA(=2v,)(1 =2v) | . .

KD i — ( 2G(v )(V> )p - asu; = —a, (5b)

where /(s) denotes the Laplace transform of a function
f(¢) with the complex Laplace variable s. It must be
mentioned that vanishing initial conditions for all state
variables are assumed.

The fundamental solutions for the system of govern-
ing equations (5) are solutions due to single forces in the
solid in all two spatial directions F;e; = 6(x —y)Jd;; de-

noted by Ui and 13;9 as well due to a single source in the
fluid d¢ = 6(x —y) denoted by 0" and ﬁF, i.e., in total

four functions. These solutions clan be found in the lit-
erature, e.g., in [5], and are presented for convenience in
the Appendix A. For developing a BE formulation the
corresponding integral equation to the system (5) is used.
There, an essential feature is the singular behavior of the
fundamental solutions and their derivatives, i.e., the flux
and the traction fundamental solution. Simple series
expansion with respect to the variable » = |x — y| shows
that these solutions behave in the limit » — 0 like the

elastic or the acoustic fundamental solutions, i.e.,

~S 1
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= e 0208+ 20
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In Egs. (6), r,, = rni denotes the normal derivative and
the fundamental solutions U} = sP; = O(r°) are regu-
lar. Further, TA*;, Q;S and f’iF, QF in (6) are traction or flux
fundamental solutions due to a single force in the solid
(superscript S) or a source in the fluid (superscript F),
respectively.

3 Quasi-static Boundary Element formulation

To establish a BE formulation an integral equation
corresponding to the governing equations must be
derived. Starting from a weighted residual statement
defined on the domain Q with boundary I' using fun-
damental solutions as weighting functions an integral
equation is achieved. Next, performing two partial
integrations with respect to the spatial variable yields the
boundary integral equations. With careful regard to the
singular behavior of the fundamental solutions, the load
point y is shifted to the boundary. Based on the system
of Egs. (5), the integral equations for poroelasticity
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are achieved. The integral free terms ¢;; and c are due to
the strongly singular behavior of the second integral in
(7) where ¢ denotes the Cauchy principal value of the
integral. As seen from the singular parts of the traction
fundamental solutions (6¢) and the flux fundamental
solution (6f), the integral free terms c¢;; are equal to
elastostatics and acoustics, i.e., ¢;; = 1/20;; and ¢ = 1/2
for a smooth boundary. For corners or edges the pro-
cedure proposed by Mantic [15] to determine these terms
can be used. Further, the expressions 7, T/, 0}, and 0"
are introduced during the derivation of the integral Eq.
(7) (see appendix A). The time domain representation is
obtained by a formal inverse Laplace transform where
all products between two Laplace parameter dependent

functions are transformed into convolution integrals

Tr

f»gzjka—ﬂMﬂm. (8)
0

Next, a boundary element formulation is achieved
following the usual procedure, i.e., introducing spatial
and temporal discretization.

3.1 Spatial discretization

First, the boundary surface I' is discretized by E iso-
parametric elements I'. where F polynomial shape

functions N/ (x) are defined. Hence, the following ansatz
functions with the time-dependent nodal values u%/ (7),
(1), p (1), and ¢ (¢) are used to approximate the
boundary states

=1 f=1
w0 =3 SN 0 ),
e;l ./:1
p(x,0) => Y N/ (x)p? (1),
=1 f=1
E F
g(x,1) =Y Y N/ (x)g* (1). )
=1 f=1

In Eq. (9), the shape functions of all four variables are
denoted by the same function N/ (x) indicating the same
approximation level for all variables. This is not man-
datory but usual. Inserting these ansatz functions (9) in
the time dependent integral Eq. (7) yields

E F

»afl

3.2 Temporal discretization

Next, a time discretization has to be introduced. Instead
of using the time-dependent fundamental solutions, here,
the convolution quadrature method (briefly summarized
in Appendix B) is used as a promising alternative.

Hence, after dividing time period ¢ in N time steps of
equal duration Af, so that ¢t = NAt¢, the convolution
integrals between the fundamental solutions and the
nodal values in (10) are approximated by the convolu-
tion quadrature method, i.e., the quadrature formula
(21) is applied to the integral equation Eq. (10). This
results in the following boundary element time stepping
procedure (n =0,1,...,N)

(11)



Table 1 Material data of a soil (coarse sand)

G (%) v ) o Yy
9.8 - 107
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3.55-107°

0.298 0.48 0.980918 0.49

with the integration weights corresponding to (23), e.g.,

nL 1 As g?elh)
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(12)

Note, the calculation of the integration weights is only
based on the Laplace transformed fundamental solu-
tions. Therefore, with this time stepping procedure (11),
a boundary element formulation for quasi-static poro-
elasticity is given without time-dependent fundamental
solutions. .

To calculate the integration weights wf/_ , in (11),
spatial integration over the boundary I' has to be per-
formed. The regular integrals are evaluated by standard
Gaussian quadrature rule. The weakly and strongly
singular parts of the integrals in (11) are solved analyt-
ically for linear elements. Moreover, to obtain a system
of algebraic equations, collocation is used at every node
of the shape functions N/ (x).

According to t—1=(n—k)Az, the integration
weights wi’: . are only dependent on the difference n — k.
This property is analogous to elastodynamic time do-
main BE formulations (see, e.g., [11]) and can be used to
establish a recursion formula for n=1,2,...,N
(m=n-—k)

() (C)dn = (D)ﬁ"

+ D (@u(U)E™" — o, (Thu" ™).

m=1

(13)

with the time dependent integration weights w,, con-
taining the Laplace transformed fundamental solutions.
Similarly, wo(C) and wy(D) are the corresponding inte-
gration weights of the first time step related to the
unknown boundary data d” and the known boundary
data d” in the time step n, respectively. Finally, a direct
equation solver is applied.

4 Example: Poroelastic column and borehole

To show the accuracy and the robustness of the proposed
formulation, the displacement response and the pore
pressure distribution of a 2-d bar is compared with an
analytical solution [10] and a Finite Element (FEM)'
calculation. Further, the displacement and pressure re-
sults from a borehole are compared with the analytical
result [9]. The used material data in both test examples are

'"The FEM code DIANA-SWANDYNE 1I from http://www.bha-
m.ac.uk/CivEng/swandyne is used
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Fig. 1 Geometry, loading, and discretization of the 2-d bar

those of a soil (see Table 1) which can be found in the
literature [12].

Poroelastic column First, a bounded domain is chosen
as test example to have the possibility not only to co-
mpare with an analytical solution but also with the other
competitive method, the FEM. For this purpose, a 2-d
bar (3 m x 1 m) is considered (see Fig. 1). This bar is
fixed at one end and loaded with , = —1 N/m? H(¢)
over the whole time period on the other end. At the
other surfaces the normal displacements are blocked and
in tangential directions free sliding, i.e., zero traction, is
modeled. Further, the free surface where the load as
total stress function is applied is assumed to be perme-
able, i.e., the prescribed pore pressure vanishes. All other
surfaces including the fixed end are impermeable, i.c.,
the flux vanishes there. The geometry and the meshes of
the FEM and BEM calculation are shown in Fig. 1.
There, the bullets on the boundary indicate the 32 linear
elements used for the BEM, and the thin lines the 48
linear elements for the FEM.

In Fig. 2, the calculated vertical displacements at the
middle point of the free and loaded surface are plotted
versus time for the analytical solution, the proposed BE
formulation, and the FE formulation. The poroelastic
analytical 1-d solution is taken from the literature [10].
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Fig. 2 Displacement at the free end of the bar versus time: BEM
results compared with FEM results and the analytical solution (log-
scale in time)
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The time axis is divided in a logarithmic scale to present
a large range of observation time.

Additionally to the poroelastic results, as upper and
lower bounds two elastostatic solutions are presented,
i.e., the drained and undrained elastostatic solution are
given for comparison. Both numerical solutions agree
well with the analytical result and coincide with the
undrained solutions for small times and with the drained
solution for large times. However, for small times the
BEM results come a bit closer to the analytical result
than the FEM solution. Overall, both numerical meth-
ods are suitable to treat this problem even with the
chosen coarse meshes. It should be mentioned that the
time step size in the BE formulation has nearly no
influence on the results and no stability problems occur
if the time step size is chosen large enough to resolve the
physical phenomenon.

Next, in Fig. 3 the pressure solution for both methods
and the analytical result is plotted along the mid-line of
the bar for three different times (r = 0.1 s, = 1s, and
t = 10 s).

Some deviations between the FEM and BEM results
are observed but only for smaller times and there only
close to the support. The BEM is even closer to the
analytical solution than the FEM solution. Even, the
steep descent at the free surface is captured well.

Borehole problem Next, an unbounded domain is con-
sidered where a borehole is drilled. Clearly, for such a
task only the BEM is suitable and no longer the FEM
due to the necessity of mesh truncation. Therefore, here,
only the comparison with the analytical solution [9] is
presented. Further, as discussed in [5], this problem can
be analyzed by assuming plain strain conditions, pro-
vided that one of the principal stress axes is parallel to
the borehole axis, and the time needed to drill the dist-
ance of about five times the radius a of the borehole is
much smaller than the characteristic time a®/c.

Here, the so-called third mode is tackled, i.e., the
loading of the borehole is a far-field deviatoric stress (see
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Fig. 3 Pressure distribution along the mid-line of the bar: BEM results
compared with FEM results and the analytical solution for different
times

Fig. 4). It is assumed that the borehole is drilled
instantaneously at ¢ = 0 s and that the shear stress and
the pore pressure are brought to zero at the borehole
wall for ¢+ > 0 s. This loading scenario is realized by
solving a problem for the boundary conditions at the
borehole wall

o =8%c0s20 0,9 =—S"sin20 p= ()N/m2 (14)

with the polar coordinates » and 0. The magnitude of the
in-plane far-field deviator stress is chosen S° = 1 N/m?.
Afterwards the background stresses are superposed.

In the BEM solution the borehole perimeter is sub-
divided in 64 linear elements. The radius of the borehole
is set to @ = 1 m. The material is, as before, a soil (see
table 1). Together with the displacement solution at the
point P the original and deformed geometry is given in
Fig. 4. The deformed geometry (the dashed line) is as
expected an ellipse corresponding to the pressure and
tensile parts of the load. Further, in Fig. 4 the time
history of the displacement at the borehole wall is de-
picted versus time. The time axis is given in a logarithmic
scale to present a large time range. The BEM result
agrees very well with the analytical solution indepen-
dently whether small or large times are considered.

Next, in Fig. 5 the pressure distribution is given along
a line heading at point P and going along the radial
direction (0 = 0°) up to a distance of » = 2 m for four
different times¢ = 0.01s,7 = 0.1s,¢ = 1s,and ¢ = 10s.
A perfect agreement with the analytical results is
observed.

5 Conclusions

An application of the CQM to quasi-static problems in
poroelasticity is presented. Following the procedure
known from the corresponding dynamic BE formula-

tions, a time stepping BE formulation based on the
Laplace transformed fundamental solutions and on a
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Fig. 4 Displacement at point P of the borehole versus time: BEM
results compared with the analytical solution (log-scale in time)
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Fig. 5 Pressure distribution along a line starting from point P radial
to the borehole: BEM results compared with the analytical solution

linear multi-step method is established. Hence, only the
Laplace domain fundamental solutions are necessary
which can be derived much easier than in time domain.

Numerical studies have shown that the proposed
poroelastic BE formulation is very robust and accurate.
Studies concerning spatial and temporal discretization
were presented in a former paper [21] which have shown
that the proposed formulation is nearly independent of
the chosen time step size if, especially in 3-d, a satisfactory
spatial discretization is chosen. Here, the numerical
studies are restricted to the 2-d case where the numerical
results can be checked with analytical solutions. The
comparison of results achieved for a soil column and a
borehole under mode 3 loading show a very good agree-
ment. Further, these calculations are compared for the
column with a FEM calculation also showing good
agreement. It should be remarked that no dependence on
the time step size or any instabilities are observed in the
proposed formulation.
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Appendix
A Poroelastic fundamental solutions

In the following, the explicit expressions of the poro-
elastic quasi-static fundamental solutions in 2-d are gi-
ven. A collection of all types of time-dependent
fundamental solutions caused by different loads for a
quasi-static poroelastic modeled continuum can be
found in [6]. The Laplace transformed solutions pre-
sented here are taken from [5].

The displacement and the pressure due to a single
source in the solid are

75

s 1 3—4y, 5o Tnr+ |
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T 2m | 4G(1—v,) Y 4G(1 —v,) " Y
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+r,ir,; (Ka(€) —25_2)]} (15)
N 1 V, —V
PS=_— “ Ay (K (&) — &1 16
C T 2sa(1 — 2v) (1 —v) ri (K1) = <) (16)
and due to a source in the fluid are
A F 1 Vy —V
= T~ 4 )\. i K - -1 1
P 2ma(l = 2v)(1 —vy,) ri (K1 (6) = ¢7) (17)
. 1
P =_—_K 18
S Ko(?) (18)
2 | _9y)2
with 72 = 5020 — < and ¢ = 7/, Further, the K's

denote the modified Bessel functions of second kind.

During derivation of the boundary integral equation
from the weighted residual statement two integrations by
part have to be performed. For convenience and also
with a physical interpretation of an ‘adjoint’ traction or
flux the following abbreviations are introduced

. 2Gv - N
S _ S S
5= [(—1 — Ui + 5P, >5,»4

(19a)
+G(05,+ Uf/’[)] ne

AS _ .pS

O = kP (19b)

. 2Gv A R

I = KE Ui + sozPF) i

(19¢)

+ G(Uf; + Ugi)} n

O = kPfn;. (19d)

The explicit expression of these ‘adjoint’ tractions and
fluxes are

AS_L
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1 — 2\)“ I/lﬂ",j —njr,j —(5,:/‘7',,,
2(1 =) r

_ 1 vy raj Vsn
1—v, r

Vg —V

(I=v)(1—v,) 4
X [n,»r,j (K3(&) =3¢ 1Ky (&) — 2877

+ (e +0570 ) (E7 K () — 2877

g (87 1@(5))} } (20a)
) 1-2
TiF = %H {’li(Kz(f) + Ko(&) — 2572>

i, (4872 — 21@(5))} (20b)



76

1 ol —2v) _
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0" =~ ik, (20d)

Note that r, = rin; denotes the normal derivative.

B Convolution Quadrature Method

The ‘CQM’ developed by Lubich numerically approxi-
mates a convolution integral forn =0,1 ... N

0= | (e - Dg(e)de

an (A g (KAL),

k=0

y(nAt) = (21)

by a quadrature rule whose weights are determined by
the Laplace transformed function f and a linear multi-
step method. This method was originally published in
[13] and [14]. Application to the boundary element
method may be found in [20]. Here, a brief overview of
the method is given.

In formula (21), the time ¢ is divided in N equal steps
At. The weights w, (At) are the co-efficients of the power
series

f(vg)) _ g‘”"< A

with the complex variable z. The coefficients of a power
series are usually calculated with Cauchy’s integral for-
mula. After a polar coordinate transformation, this
integral is approximated by a trapezodial rule with L
equal steps . This leads to

1 ; V(Z) —n—
2mi / f(At)Z dz

lzZ|=2

(22)

wi(At) =

Zl (ze"—) o-in (23)

R
~7

where Z is the radius of a circle in the domain of ana-
lyticaly of f(z).

The function y(z) is the quotient of the characteristic
polynominals of the underlying multi-step method, e.g.,
for a BDF 2, y(z) = 3/2 — 2z + 1/222. The used linear
multi-step method must be A4(x)-stable at infinity [14].
Experience shows that the BDF 2 is the best choice
[16]. Therefore, it is used in all calculations in this
paper.

If one assumes that the values of f(z) in (23) are
computed with an error bounded by ¢, then the choice
L=N and #" = /e yeilds an error in w, of size

O(\/¢) [13]. Several tests conducted by the first author
lead to the conclusion that the parameter e = 10710 is
the best choice for the kind of functions dealt with in this
paper [19]. The assumption L = N leads to a order of
complexity @(N?) for calculating the N coefficients
w,(A?). Due to the exponential function at the end of
formula (23) this can be reduced to O(N log N) using the
technique of the Fas Fourier Transformation (FFT).
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