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SUMMARY

Digital predistortion of nonlinear systems is an important topic in many practical applications. This paper
considers direct predistortion of a Volterra system by connecting in tandem an adaptive Volterra predis-
torter. The coefficients of the predistorter can be recursively estimated using the nonlinear filtered-x least
mean squares (NFxLMS) algorithm. In this paper, the prediction error method (PEM) is used to derive a
novel nonlinear filtered-x PEM (NFxPEM) algorithm. A simulation study on Volterra systems shows that
the NFxPEM algorithm more significantly suppresses spectral regrowth and converges much faster than
the NFxLMS algorithm. Also, the NFxPEM algorithm is used in this paper to design more efficient digi-
tal predistorter—as compared with the NFxLMS algorithm—for digital subscriber line systems. Copyright
© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many cases, canceling or reducing the effects of nonlinear distortion is an essential requirement.
In wireless communication systems, the nonlinearity of high-power amplifiers is an obstacle in
increasing the transfer data rate and mobility. In high-fidelity systems, small distortion produced
by nonlinear components dominates the overall performance. Further examples can be found in
communication systems, speech processing, and control engineering [1–4].

In [1], three adaptive linearization schemes for weakly nonlinear systems described using Volterra
series were proposed. The first linearization scheme estimates the linear and nonlinear subsystems
of the physical nonlinear system. Hence, the output of the nonlinear subsystem is evaluated and
then subtracted from the output of the physical system. The second and third schemes use a post-
processor/preprocessor to postdistort/predistort the signals, respectively. In these cases, necessary
estimates of linear and nonlinear operators are provided by adaptive linear and nonlinear filters. The
drawback of the first linearization scheme of [1] is that it is hard to perform signal substraction in
many practical cases. Also, the second and third schemes require the existence of the inverse of the
linear subsystem, which cannot be always guaranteed to be causal and stable.

In [3], a linearization scheme for nonlinear systems was introduced as shown in Figure 1. The
idea of the approach is to connect a nonlinear pth-order Volterra predistorter C .p/ in tandem with
the nonlinear systemH .q/ that can be described by qth-order Volterra series with M -tap memories
and then adaptively adjusting the coefficients of the predistorter in order to reduce the error between
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Adaptive algorithm

Figure 1. Compensation of nonlinear distortion using nonlinear filtered-x algorithm.

the input and desired signals. These coefficients were estimated recursively using the nonlinear
filtered-x least mean squares (NFxLMS) algorithm, which was shown to be reduceable to the linear
filtered-x least mean squares (LMS) [5–7], for only the first-order Volterra systems. The approach of
[3], like the one introduced in this paper, requires an estimate for the nonlinear systemH .q/, which
is denoted as QH .q/ in Figure 1 and assumed to be known. Otherwise, a kernel estimation technique
for the nonlinear systemH .q/ based on the adaptive Volterra filter should be considered [8].

In [5], it was shown that the steady-state mean square error of the filtered-x LMS algorithm highly
depends on the degree of nonlinearity of the system cascaded with the adaptive filter. Also, the
steady-state error increases monotonically with the degree of nonlinearity. Therefore, the NFxLMS
algorithm of [3] is expected to provide biased estimates. Also, LMS-type algorithms usually have
slow convergence because increasing the step-size parameter leads to instability problems [9].

In this paper, the coefficients of the predistorter are estimated recursively using the recursive
prediction error method (RPEM) algorithm [10, 11]. The RPEM algorithm gives consistent param-
eter estimates under weak conditions in case the asymptotic loss function has a unique stationary
point, which represents the true parameter vector [10–12]. Therefore, using the RPEM algorithm
is expected to reduce the steady-state mean square error and hence to minimize the total nonlinear
distortion at the output of the nonlinear system. Moreover, the RPEM algorithm is known for its
high convergence speed.

This paper is organized as follows. In Section 2, a review for the NFxLMS algorithm is
given. The nonlinear filtered-x prediction error method (NFxPEM) algorithm is presented in
Section 3. The computation complexity (CC) of the NFxPEM algorithm is discussed in Section 4.
In Section 5, comparative simulation examples between the NFxPEM and NFxLMS algorithms are
given. Conclusions are given in Section 5

2. THE NONLINEAR FILTERED-X LEAST MEAN SQUARES ALGORITHM

The NFxLMS algorithm, introduced in [3] and shown in Figure 1, assumes that the nonlinear system
H .q/ to be compensated is a discrete time-invariant causal system. The block diagram in Figure 1
consists of the nonlinear physical system H .q/ to be compensated using a nonlinear predistorter
C .p/ and an adaptive algorithm to estimate the proper coefficients of the predistorter. The output of
the nonlinear physical system ´.n/ is compared with the desired output d.n/ in order to construct
an error signal to be used in the adaptive algorithm in addition to a filtered version from the predis-
torter’s output signal denoted as g.r ,n/. In Figure 1, the filter used to generate g.r ,n/ is denoted
as QH .q/ and represents an estimate of the nonlinear physical system H .q/. In case the nonlinear
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physical system is already known, QH .q/ D H .q/. In case the nonlinear system is unknown, a sys-
tem identification method should be used first to identify the system in order to be able to generate
g.r ,n/.

In this paper, the system H .q/ with input and output signals y.n/ and ´.n/ can be modeled by
qth-order Volterra series with M -tap memories. Hence, the output ´.n/ is given by

´.n/D

qX
kD1

0@M�1X
i1D0

� � �

M�1X
ikD0

hk.i1, � � � , ik/y.n� i1/ � � �y.n� ik/

1A , (1)

where hk.i1, � � � , ik/ are the kth-order kernels of the nonlinear system.
Similarly, the relation between the input and the output of the adaptive Volterra filterC .p/ is given

by

y.n/D

pX
kD1

0@N�1X
i1D0

� � �

N�1X
ikD0

ck.i1, � � � , ikIn/x.n� i1/ � � � x.n� ik/

1A , (2)

where N is the number of memories in the adaptive Volterra filter and ck.i1, � � � , ikIn/ are the kth-
order kernels of this filter. According to the pth-order Volterra theorem [13], the Volterra filter C .p/
can remove nonlinearities up to the pth-order provided that the inverse of the first-order Volterra
system is causal and stable.

The kernels of the adaptive Volterra filter can be estimated by minimizing the mean square
distortion defined as

Efe2.n/g D EfŒd.n/� ´.n/�2g, (3)

where E denotes the expectation and d.n/ is the desired signal defined as

d.n/D x.n� �/C v.n/. (4)

Here, � is the time delay necessary to have a causal Volterra predistorter, and v.n/ is the zero-mean
additive white Gaussian noise.

Remark 1
The delay time � equals 0 in case the system to be compensated is in minimum phase [3].

The NFxLMS algorithm is obtained by applying the stochastic gradient algorithm [10, 11] as

Ck.nC 1/D Ck.n/�
�k

2
�k.n/, (5)

where �k is a small positive constant that controls stability and rate of convergence of the adaptive
algorithm and usually is defined as the step-size parameter. Also,

Ck.n/D

0B@ ck.0, � � � , 0In/
...

ck.N � 1, � � � ,N � 1In/

1CA , (6)

and the gradient vector�k.n/ is defined as

�k.n/D

0BB@
@e2.n/

@ck.0,��� ,0In/
...

@e2.n/
@ck.N�1,��� ,N�1In/

1CCA . (7)

It is taken into consideration that (cf. Equation (3))

@e2.n/

@ck.i1, � � � , ikIn/
D�2e.n/

@´.n/

@ck.i1, � � � , ikIn/
, (8)
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where @´.n/=@ck.i1, � � � , ikIn/ can be written as (cf. Equation (1))

@´.n/

@ck.i1, � � � , ikIn/
D

M�1X
rD0

g.r In/
@y.n� r/

@ck.i1, � � � , ikIn/
. (9)

Here, g.r In/ is given as

g.r In/D
@´.n/

@y.n� r/
D h1.r/C 2

M�1X
iD0

h2.r , i/y.n� i/

C 3

M�1X
i1D0

M�1X
i2D0

h3.r , i1, i2/y.n� i1/y.n� i2/C � � � (10)

Assuming that the �k chosen is sufficiently small, @y.n� r/=@ck.i1, � � � , ikIn/ can be approxi-
mated as (cf. Equation (2))

@y.n� r/

@ck.i1, � � � , ikIn/
�

@y.n� r/

@ck.i1, � � � , ikIn� r/
D x.n� r � i1/ � � � x.n� r � ik/. (11)

Substituting Equations (9)–(11) in Equation (8), we have

@e2.n/

@ck.i1, � � � , ikIn/
D�2e.n/

M�1X
rD0

g.r In/x.n� r � i1/ � � � x.n� r � ik/. (12)

Remark 2
In Equation (10), it is assumed that the correct kernels of the nonlinear system H .q/ are known or
have been estimated. The problem of estimating Volterra kernels for nonlinear systems is discussed,
for example, in [8].

3. THE NONLINEAR FILTERED-X PREDICTION ERROR METHOD ALGORITHM

Prediction error methods (PEMs) are a family of parameter estimation methods that can be
applied to a wide spectrum of model parameterizations. PEM has a close relationship with the
maximum likelihood method . Therefore, it gives models with excellent asymptotic properties
([11, Chapter 7], [12, Section 4.4 and Chapter 5], [14, 15]).

The basic idea behind the prediction error approach is to describe the model as a predictor of
the next output. Then, this predictor is parameterized in terms of a finite-dimensional parameter
vector � . Hence, a consistent estimate of � is determined from the model parameterization and the
observed data set. In case the model has a different structure from the process, � is determined such
that the prediction error is minimized under its structural constraints.

The Gauss–Newton algorithm [11,12,14] is a method used to solve nonlinear least squares prob-
lems. It can be seen as a modification of Newton’s method for finding a minimum of a function.
Unlike Newton’s method, the Gauss–Newton algorithm has the advantage of the second derivatives
of the cost function, which can be challenging to compute, not being required. The Gauss–Newton
PEM algorithm has been used in [15, 16] for identification of nonlinear systems modeled using a
Wiener model structure.

In this paper, the Gauss–Newton PEM algorithm is modified and applied on Figure 1 in order to
estimate the predistorter coefficients. The modified algorithm, denoted as the Gauss–Newton NFx-
PEM algorithm because of its similarity with the NFxLMS algorithm of Section 2, is derived by the
minimization of the cost function [12]

V.C/D lim
N!1

1

N

NX
nD1

E
�
e2.n, C/

�
, (13)
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where e.n, C/ is the prediction error, which is defined as

e.n, C/D d.n/� ´.n, C/, (14)

and C defined as

CD

0B@ C1.n/
...

Cp.n/

1CA , (15)

where Ck.n/ is given by Equation (6).
The formulation of the NFxPEM algorithm requires the negative gradient of e.n, C/ with respect

to C, which is defined as

 D�
de.n, C/

dC
D

0B@  1.n/
...

 p.n/

1CA , (16)

where

 k.n/D

0BB@
@´.n/

@ck.0,��� ,0In/
...

@´.n/
@ck.N�1,��� ,N�1In/

1CCA . (17)

A straightforward analysis similar to Section 2 gives

@´.n/

@ck.i1, � � � , ikIn/
D

M�1X
rD0

g.r In/x.n� r � i1/ � � � x.n� r � ik/, (18)

where g.r In/ is given by Equation (10). Hence, the NFxPEM algorithm follows as (cf. [11, 12])

e.n, C/D d.n/� ´.n, C/

�.n/D �o�.n� 1/C 1� �o

S.n/D T.n/P.n� 1/ .n/C �.n/ (19)

P.n/D
�
P.n� 1/� P.n� 1/ .n/S�1.n/ T.n/P.n� 1/

�
=�.n/

C.n/D C.n� 1/C P.n/ .n/e.n, C/.

Here, �.n/ is a forgetting factor that grows exponentially to 1 as n ! 1, where the rate �o and
the initial value �.0/ are design variables. The numerical values �o D 0.99 and �.0/ D 0.95 have
proven to be useful in many applications [12]. Also, P.n/ D nR�1.n/, where R.n/ is the Hessian
approximation in the Gauss–Newton algorithm [11, 12]. The most common choice for the initial
condition of P.n/ is P.0/ D �I, where I is the identity matrix and � is a constant that reflects our
trust in the initial parameter vector C.0/. In case of no prior knowledge, C.0/D 0, and � is large to
speed up convergence to the true parameter vector.

4. COMPUTATION COMPLEXITY OF THE NONLINEAR FILTERED-X PREDICTION
ERROR METHOD ALGORITHM

The CC of the NFxPEM algorithm (19) is higher than that of the NFxLMS algorithm because
of the fact that the NFxPEM algorithm requires the recursive computation of the matrix P.n/ in
addition to the parameter vector C.n/. See [17] for a detailed discussion on the computational
complexities of these algorithms. In this section, the CC per sample or iteration is given by compar-
ing the NFxPEM and NFxLMS algorithms in the case of predistortion of Volterra systems. As in
Section 2, for a Volterra systemH of order q with memory lengthM , the number of the parameters
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is
Pq
iD1M

i . Also, the predistorter C is chosen as a pth-order Volterra system with memory N andPp
iD1N

i parameters. The approximated addition per sample (C/sample) and multiplication per
sample (�/sample) for these two online adaptation algorithms are given in Table I. Note that here
we assume that the nonlinear physical system has been identified; otherwise, an extra CC should be
added for identifying the Volterra system.

For us to have a direct feeling of the CC comparison, let us consider the predistortion of a second-
order Volterra system and assume the following: p D q D 2 and M D N D 4. We can conclude
that the CC of the adaptation algorithms in Table II and the overall CC represent the total additions
and multiplications required for the convergence of the adaptation algorithm. Although the CC per
iteration of the NFxLMS algorithm is lower than that of the NFxPEM algorithm, the overall CC of
the NFxLMS algorithm is higher because of its slow convergence.

5. SIMULATION STUDY

In this section, a comparative simulation study between the NFxLMS algorithm and the NFxPEM
algorithm is given. In Example 1, the nonlinear system is assumed to be a second-order Volterra sys-
tem. In Example 2, the simulated platform of the digital subscriber line (DSL) system—provided
by Infineon Technologies—is considered, taking into account all elements in the transmitter and
receiver paths. The nonlinear system in this case is the model of the line driver (LD), which is
selected as a fifth-order Volterra system. See [16–20] for more details on modeling the LD in DSL
systems. In these simulations, it is assumed that QH .q/ DH .q/ (cf. Remark 1 and Figure 1).

Example 1
The nonlinear systemH .q/ is a known second-order Volterra system. The adaptive predistorterC .p/
is also assumed to be a second-order Volterra filter. This means that q D p D 2. Also, the number
of memories in the adaptive Volterra predistorter is chosen as N D 3. The input–output relation of
the nonlinear systemH .2/ is chosen to be

´.n/DH .2/Œy.n/�DH 1Œy.n/�CH 2Œ.y.n/�, (20)

Table I. Computation complexity per sample of the NFxLMS and NFxPEM algorithms for
predistortion of qth-order Volterra systems.

Algorithm C/sample �/sample

NFxLMS M
Pq�1
iD1M

i C .M C 1/
Pp
iD1N

i .M C 1/
Pp
iD1Œi �M

i �CM
Pq�1
iD1 Œi �M

i �

C3
Pp
iD1N

i

NFxPEM .M C 2/
Pp
iD1N

i C 5.
Pp
iD1N

i /2 6.
Pp
iD1N

i /2C .M C 1/
Pp
iD1Œi �N

i �

CM
Pq�1
iD1M

i CM
Pq�1
iD1 Œi �M

i �

NFxLMS, nonlinear filtered-x least mean squares; NFxPEM, nonlinear filtered-x prediction error
method.

Table II. CC of the NFxLMS and NFxPEM algorithms for predistortion of
a second-order Volterra system.

Algorithm C/sample �/sample Convergence (samples) Overall CC

NFxLMS 180 384 >1.2� 104 >6.78� 106

NFxPEM 2200 2724 800 3.94� 106

CC, computation complexity; NFxLMS, nonlinear filtered-x least mean
squares; NFxPEM, nonlinear filtered-x prediction error method.
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where the first-order kernel vectorH 1 is given as

H 1 D
�
0.5625 0.4810 0.1124 �0.1669

�
(21)

and the second-order kernel matrixH 2 is

H 2 D

0@ 0.0175 0 0

0 0 �0.0088
0 �0.0088 0

1A . (22)

The input signal to the predistorter is chosen as a random signal with uniform distribution over
.�1, 1/ with data length 2 � 104, and the frequency band is limited as performed in [3] to prevent
aliasing. Because the nonlinear systems that are considered in this study are minimum-phase sys-
tems, the time delay � in Equation (4) is set equal to 0 (cf. Remark 1). Hence, the desired signal
d.n/ is chosen to be equal to the input signal x.n/ in an additive white Gaussian noise such that a
signal-to-noise ratio of 40 dB is achieved.

As a measure of performance, the mean square distortion (MSD) of the system consisting of the
predistorter plus the nonlinear system is defined as

MSDD 10 log10

 bEfe2.n/gbEfd2.n/g
!

, (23)

wherebEf.g is the mean obtained by 103 independent experiments.
The MSD comparison between the NFxLMS and NFxPEM algorithms is given in Figure 2. The

step size of the NFxLMS algorithm is � D 0.1, and the matrix is P.0/ D 10I for the NFxPEM
algorithm. The distortion of the nonlinear system without predistorter was �16.04 dB. The NFx-
PEM algorithm gives a lower distortion than the NFxLMS algorithm. On average, the NFxPEM
algorithm achieves about �39.69 dB, and the NFxLMS algorithm achieves around �31.93 dB. On
the other hand, the NFxPEM algorithm converges much faster than the NFxLMS algorithm.

Figure 3 shows power spectral densities of the output signals of the nonlinear system with
and without predistorter. From this figure, we can see that as compared with using the NFxLMS
algorithm, the predistorter using the NFxPEM algorithm can reduce the spectral regrowth more
effectively.
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x 104
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Figure 2. Distortion comparison between the nonlinear filtered-x least mean squares (NFxLMS) and
nonlinear filtered-x prediction error method (NFxPEM) algorithms. MSD, mean square distortion.
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Figure 3. Power spectral densities (PSDs) for signal-to-noise ratioD 40 dB. NFxLMS, nonlinear filtered-x
least mean squares; NFxPEM, nonlinear filtered-x prediction error method.
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+
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Figure 4. Block diagram of the application of nonlinear predistortion xDSL systems.

Example 2
The block diagram in Figure (4) shows an application of nonlinear predistortion in a DSL simulation
platform provided by Infineon Technologies . A nonlinear predistorter is used to precompensate the
LD circuit, which is the main source of nonlinear distortion. During the start-up phase of the DSL
system, a predetermined discrete multitone (DMT) signal can be sent as a training sequence in order
to estimate the coefficients of the nonlinear predistorter.

In this simulation, a real LD model for the next-generation DSL systems is considered. It is a
fifth-order Volterra system. The memory lengths of the first-order to fifth-order kernels are 15, 0,
5, 0, and 2, respectively. The total number of nonzero parameters is 50. The nonlinear predistorter
is also assumed to be a fifth-order Volterra system with the same memory lengths. The training
sequence u.n/ is a DMT signal, which is defined as

u.n/D

KX
kD0

2jUkjexp

�
j

�
2�
fmax

K
knC 'k

�	
, (24)

where Uk are user-defined amplitudes and 'k are random phases with uniform distribution and
Efej'k g D 0. The number of tones is K D 64 and fmax D 4312.5 Hz. The data length is 213
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Figure 5. Mean multitone power ratio (MMTPR) values. NFxLMS, nonlinear filtered-x least mean squares;
NFxPEM, nonlinear filtered-x prediction error method.

samples. Here, the random phases generate training sequences with different properties in each of
the experiments, that is, the crest factor and root mean square value. In this simulation, the crest
factor and root mean square value of our training sequences are regulated to 1 and 0.5, respectively.
The upsampling and downsampling factor is LD 5. The transmit and receive paths are simply mod-
eled as low-pass filters using eighth-order Butterworth filters with a normalized corner frequency of
0.5� because they are not the main concern of this study (see [17] for more details).

The step size of the NFxLMS algorithm � is chosen as 1� 10�4 because a larger step-size value
could cause instability of the simulation. The matrix P.0/ for the NFxPEM algorithm is chosen as
1� 10�3I.

The mean multitone power ratio (MMTPR) [21] is used to evaluate performance. The MMTPR
for each tone of the output signal o.n/ is defined as

MMTPRk D
bEfTkgbEfSk CPj ,j¤k Ij g

, k D 1, 2, � � � ,K, (25)

wherebEf.g is the mean obtained by 100 independent experiments, Tk and Sk stand for the transmit-
ted and noise powers of the kth tone, respectively, and

P
j ,j¤k Ij is the inter-modulation power of

the kth tone from the other K � 1 tones.

Remark 3
In the start-up phase (off-line case) of the DSL system, the DMT signal is used as an input, and
the output o.n/ is measured and used to generate the error signal required for the design of the
algorithms. Here, we do not measure the analog output of the LD in order to avoid using an extra
analog to digital converter.

Remark 4
The basic idea used to evaluate the MMTPR is to transmit the DMT signal by missing or removing
the kth tone and measure the received power at this tone frequency. Because of the nonlinear effect,
this measured power represents the inter-modulation and noise power, that is, Sk C

P
j ,j¤k Ij .

Figure 5 shows the MMTPR values of the system output with and without predistorter. The
MMTPR values of the tones with index fkjk D 7, 17, 27, 37, 47g were measured. From this figure,
we can see that the predistorter using the NFxPEM algorithm can achieve much better MMTPR
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values as compared with the NFxLMS algorithm and hence more effectively compensates the
nonlinear distortion than the NFxLMS algorithm for DSL systems.

6. CONCLUSIONS

Predistortion of nonlinear systems using a nonlinear Volterra predistorter is considered in this paper.
A novel NFxPEM algorithm for estimating the kernels of the predistorter has been introduced. The
NFxPEM algorithm is compared with the NFxLMS algorithm using numerical simulations and
application on the DSL simulation platform developed by Infineon Technologies. The simulation
results show that the new NFxPEM algorithm achieves much higher convergence speed, more sig-
nificant reduction in nonlinear distortion, and more suppression of spectral regrowth as compared
with the NFxLMS algorithm.
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In this paper, the prediction error method (PEM) is used to derive a novel nonlinear filtered-x
prediction error method (NFxPEM) algorithm. A simulation study on Volterra systems shows
that the NFxPEM algorithm more significantly suppress spectral regrowth and converges much
faster than the NFxLMS algorithm. Also, the NFxPEM algorithm is used in this paper to design
more efficient digital predistorter as compared to the NFxLMS algorithm for digital subscriber
line systems.




