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Resistive wall modes (RWMs) are studied within the kinetic model proposed by Heyn et al. [Nucl.

Fusion 46, S159 (2006); Phys. Plasmas 18, 022501 (2011)], which accounts for Landau damping,

transit-time magnetic pumping, and Coulomb collisions in cylindrical geometry. Results for the

reversed field pinch plasma are compared to the magnetohydrodynamic results obtained by Guo et al.,
[Phys. Plasmas 6, 3868 (1999)]. Stabilization of the external kink mode by an ideal wall as well as

stabilization of the resistive wall mode by toroidal plasma rotation is obtained. In contrast to MHD

modelling, which predicts a stability window for the resistive wall position, kinetic modelling predicts a

one sided window only, i.e., the resistive wall must be sufficiently close to plasma to achieve rotational

stabilization of the mode but there is no lower limit on the wall position. Stabilizing rotation speeds are

found somewhat smaller when compared to MHD results. In addition, for the present plasma

configuration, the kinetic model predicts resistive wall mode stabilization only in one direction of

toroidal rotation. In the opposite direction, a destabilizing effect is observed. This is in contrast

to MHD where mode stabilization is symmetric with respect to the direction of the toroidal

plasma rotation. [http://dx.doi.org/10.1063/1.3691653]

I. INTRODUCTION

The physics underlying the stabilization of the resistive

wall mode (RWM) is an important issue in current fusion

research. High beta plasmas in tokamaks require stabilization

if the plasma beta is above the no-wall limit. Also, for long

duration discharges in a reversed field pinch (RFP), the

RWM is potentially disruptive. A comprehensive overview

on existing modelling and experiments of the stabilization of

the external kink and the resistive wall mode is given in

Ref. 1. One of the first studies on the stabilization of external

modes in tokamaks by resistive wall and the plasma rotation2

addressed already the important question on the role of

Landau damping of sound waves excited by plasma motion

and propagating along the field lines. Different modifications

of the ideal MHD equations have been suggested to account

for this effect which is, however, kinetic in nature.3,4 The

stabilization mechanism with or without rational surfaces in

the plasma are expected to be different.5,6

In recent studies of the interaction of low frequency

resonant magnetic field perturbations (RMPs), it has been

demonstrated that MHD theory has strong limitations in its

applicability for modern tokamak parameter range.7 Namely,

the radial scale of resonant layers in plasma is comparable to

the ion Larmor radius (FLR). Therefore, it is interesting to

compare MHD results for various instabilities like kink

modes and RWMs with results using the kinetic approach.

In Refs. 8 and 9, the linearized collisionless drift kinetic

equation has been solved in toroidal geometry using guiding

center variables to analyze plasma stability by means of

quadratic forms obtained from the momentum balance equa-

tion. This approach allows to derive approximate analytical

estimates of the plasma stability taking into account various

effects like finite orbit widths and electrostatic potential per-

turbations. In Ref. 10, the magnetic drift kinetic damping of

the resistive wall mode is studied based on the thermal parti-

cle resonance at magnetic drift and electron collision fre-

quencies. Advanced mode damping beyond the ideal MHD

description in connection with resistive wall mode control is

discussed in Ref. 11.

In the present paper, a different straightforward method

is used. It is based on a numerical solution of the full set of

Maxwell equations in cylindrical geometry with the plasma

current density taken from a kinetic model. We discuss

briefly the approximations and basic steps of the method

developed in Refs. 12 and 13. Following Mahajan-Chen,14

action-angle variables are used to solve analytically the line-

arized Vlasov equation (no gyroaveraging) with a simplified

one-dimensional Fokker-Planck collision operator (Ornstein-

Uhlenbeck approximation). The background distribution

function is taken in the form of an inhomogeneous drifting

Maxwellian with parameters derived from the plasma and

magnetic field profiles that satisfy the MHD equilibrium.

Unperturbed particle orbits are used in the lowest order with

respect to the thermal motion where all particle drifts related

to the inhomogeneity of the background magnetic field are

neglected and only the electric E� B drift is taken into

account. A finite Larmor radius expansion is applied to eval-

uate the current density induced in the plasma by the rotating

helical perturbations. In cylindrical geometry, the perturba-

tion of the plasma current density depends on the electric

field and also, due to the Larmor gyration effect, on the ra-

dial derivatives of the electric field. A particular finite Lar-

mor radius expansion scheme (of arbitrary order) has been

developed13 such that the current density is covariant (up to
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this order) with respect to Galilean transformations to a mov-

ing frame and the total power absorption for the case of a

Boltzmann distribution of the background particles is non-

negative. This is important in order not to create fake modes,

i.e., artificial modes created by the expansion and not having

a physical basis. Maxwell equations with displacement and

plasma current densities together with the appropriate

boundary conditions for an ideal or a resistive wall are

solved numerically to find the eigenmodes existing in the

system by a direct complex root search procedure.

The code KiLCA (kinetic linear cylindrical approxi-

mation) is a wave code based on the described kinetic

model of the tokamak plasma in a periodic cylinder geom-

etry.12,13 The code has been successfully used7,15 to study

kinetic effects of the interaction of resonant magnetic per-

turbations and the plasma in particular near resonant mag-

netic surfaces. The present report describes results of the

adaption of this code to study the resistive wall mode in a

reversed field pinch plasma with a proper account of

kinetic effects including Landau damping, transit-time

magnetic pumping (TTMP) and particle collisions. In the

general case, there are four different regions to be consid-

ered with increasing radius: the plasma region followed by

a vacuum region followed by the ideal (or resistive) wall

region followed by the outer vacuum region. The vacuum

as well as the resistive wall region solutions are obtained

analytically (Eq. (24)). Inside the plasma region, Max-

well’s equations with the current density obtained from

either the fluid model or the kinetic model are solved. The

linear system of matching equations is assembled and

solved to determine the superposition coefficients for the

fundamental solutions in each region. Finite nonzero solu-

tions that correspond to stable or unstable eigenmodes

(depending on a sign of imaginary part of the eigenfre-

quency) are possible only when the determinant of the

system is zero.

The results of the present study are to be compared to

existing MHD results in particular to the results of the MHD

calculations in Ref. 16. In this paper, the RFP configuration

is based on the a� h0 model17,18 with a constant density pro-

file. The stability of the resistive wall mode is studied in a

(periodic) cylindrical MHD model in which the effects of

plasma pressure, compressibility, plasma inertia, longitudi-

nal rotation, and parallel viscosity have been taken into

account. The resistive wall is modelled in the above men-

tioned paper as well as in the present study with finite thick-

ness and constant conductivity. In a recent paper,19 the

results of this model have been used for a comparison

between cylindrical model and experimental observation on

the study of resistive wall mode in reversed field pinch

plasmas.

The paper is organized as follows. In Sec. II, the MHD

equilibrium is discussed. In Sec. III, the eigenmode equa-

tions of ideal MHD including toroidal flows are described. In

Sec. IV, the kinetic model is explained and in Sec. V analytic

solutions for the resistive wall of finite thickness are

discussed. Matching conditions are discussed in Sec. VI. A

comparison of the results is done in Sec. VII and conclusions

are given in Sec. VIII.

II. EQUILIBRIUM

An ideal MHD-equilibrium

rp0 ¼
1

c
j0 � B0; r� B0 ¼

4p
c

j0 (1)

is considered in cylindrical geometry, i.e., B0 ¼
ð0;B0hðrÞ;B0zðrÞÞ is the equilibrium magnetic field, p0ðrÞ is

the equilibrium pressure, j0ðrÞ is the equilibrium current den-

sity, and c is the speed of light. The a�H0 equilibrium

model used in Ref. 16 is given by the following equations:

dB0z

dr
¼ �lB0h �

4pB0z

B2
0

dp0

dr
; (2)

1

r

d

dr
ðrB0hÞ ¼ lB0z �

4pB0h

B2
0

dp0

dr
; (3)

dp0

dr
¼ �v

r

8p
lB2

0

2B0z
� B0z

r

� �2

; (4)

l ¼ 2

a
H0 1� r

a

� �ah i
: (5)

Here, lðrÞ models the amount of parallel current density and

a is the plasma radius. Equation (4) gives Suydam’s neces-

sary condition for stability when v < 1, and qð0Þ ¼ a=ðRH0Þ
is the on-axis safety factor.

Derived parameters describing this model are the poloidal

beta bp, the reversal parameter F, and the pinch parameter H,

bp ¼
8p

B2
0hðaÞ

hp0i ¼
8p

B2
0hðaÞ

1

pa2

ða

0

dr2prp0ðrÞ; (6)

F ¼ B0zðaÞ
hB0zi

; H ¼ B0hðaÞ
hB0zi

: (7)

III. MHD MODELLING

After Fourier transformation in time, the linearized com-

pressible ideal MHD equations with finite equilibrium flows

v0 can be written with the help of the Lagrangian displace-

ment vector n as (see, e.g., Ref. 20),

�x2q0n ¼ FðnÞ; (8)

F nð Þ ¼ r n � rp0 þ cp0 r � nð Þð Þ þ 1

4p

�
r� B0ð Þ

�B1 þ r� B1ð Þ � B0

�
þr �

�
q0n v0 � rð Þv0

�q0v0 v0 � rð Þn
�
þ 2ixq0 v0 � rð Þn; (9)

where x is the frequency, c the adiabatic index, q0 the equi-

librium density, and B1 the magnetic field perturbation.

Introducing the variable

p� ¼ �cp0r � n� n � rp0 þ
B0 � B1

4p
; (10)
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in cylindrical geometry, the system reduces to two (complex)

first order ordinary differential equations for ðrnrÞ and p�

(see Refs. 21 and 22),

AS

r

d

dr
ðrnrÞ ¼ C11ðrnrÞ � C12p�;

AS
d

dr
p� ¼ C21ðrnrÞ � C22p�; (11)

with

A¼ q0 ~x2�F2

4p
; S¼ B2

0

4p
þ cp0

� �
q0 ~x2� cp0

F2

4p
; (12)

C11 ¼ q0 ~x2 Q

r2
� 2m

ST

r3
; C12 ¼ q2

0 ~x4 � k2 þ m2

r2

� �
S;

(13)

C21 ¼
AS

r
C4 � 4

ST2

r3
þ Q2

r3
; C22 ¼ rC11; (14)

T ¼ FBh

4p
þ q0 ~xVh; C4 ¼ Aþ r

d

dr

B2
h � 4pq0V2

h

4pr2

� �
; (15)

Q ¼ q0 ~x2 B2
h

4p
� q0v2

h

� �
þ q0

4p
ðBh ~x þ FVhÞ2: (16)

Here, F ¼ k�B0, ~x is the Doppler shifted frequency

~x ¼ x� mVh

r
� kVz; (17)

m is the poloidal mode number and k the “toroidal” wave

number, Bh, Bz and Vh, Vz are the respective components of

background magnetic field and plasma velocity.

IV. KINETIC MODELLING

Following the linear kinetic model of a cylindrical inho-

mogeneous screw pinch plasma introduced in Ref. 12 and

recently upgraded in Ref. 13, the wave fields ð~E; ~BÞ with fre-

quency x are obtained from Maxwell’s equations,

r� ~E ¼ ix
c

~B; r� ~B ¼ � ix
c

~E þ 4p
c

~j; (18)

solved numerically together with an appropriate set of

boundary conditions.

The plasma response current density in Eq. (18) is eval-

uated as

~j ¼
X

a¼fe;ig
ea

ð
d3pv~f a; (19)

where ea is a charge of species a, v is the velocity variable

and the perturbed distribution function ~f a satisfies the linear-

ized Vlasov equation with Fokker-Planck type collision term

(in the following, we omit index a for brevity)

@~f

@t
þ v � r~f þ e �rU0 þ

1

c
v� B0

� �
� @

~f

@p
� L̂C

~f

¼ �e ~E þ 1

c
v� ~B

� �
� @f0
@p

: (20)

Here, f0 is the equilibrium distribution function consistent

with plasma and magnetic field equilibrium profiles includ-

ing the toroidal plasma rotation (the poloidal rotation is

assumed to be zero), U0 is the equilibrium electrostatic

potential, and L̂C models Coulomb collisions. For the

description of particle collisions, we use a one-dimensional

Fokker-Planck collision operator (Ornstein-Uhlenbeck

approximation, see Ref. 23)

L̂c
~f ¼ @

@uk
D

@

@uk
þ

uk � Vk

v2
T

� �
~f ; (21)

where uk is a particle parallel velocity, D is a constant diffu-

sion coefficient in velocity space, vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=m0

p
is the ther-

mal velocity, and Vk is a bulk parallel velocity of the given

species. Following the procedure outlined in Mahajan-Chen,14

Eq. (20) is solved analytically in action-angle variables.12,13

Generally, the current density Eq. (19) is an integral

functional of the perturbation field and, due to finite FLR

effect, it remains to be so even in cylindrical geometry x ¼
ðr; #; zÞ where Fourier analysis over poloidal and toroidal

angles transforms the integral nonlocality with respect to

these angles into an algebraic dependence.

We apply a finite Larmor radius expansion procedure to

evaluate the perturbation of the current density induced in

the plasma by a single harmonic perturbation of the vector

potential with the frequency x

~Aðx; tÞ ¼ Re~AðrÞeik##þikzz�ixt; (22)

where k# ¼ m, kz ¼ n=R, and ðm; nÞ are poloidal and toroidal

numbers of the helical perturbation. For the perturbation

field, we use the radiation gauge ~U ¼ 0 such that the electric

field is defined solely by the vector potential ~E ¼ ix
c

~A. Static

perturbations with x ¼ 0 can be treated by transforming to a

moving frame where the perturbation frequency is finite.

Due to the special finite Larmor radius expansion

scheme (of arbitrary order), the following fundamental prop-

erties of the exact current density are preserved: (1) covari-

ance with respect to Galilean transformations to a moving

frame (approximate) and (2) nonnegative total power absorp-

tion for the case of a Boltzmann distribution of the back-

ground particles (no fake modes).

For the analytical evaluation of the current density, the

unperturbed particle orbits are used in lowest order with

respect to the thermal motion. All particle drifts related to

the inhomogeneity of the background magnetic field are

neglected and only the electric E� B drift is taken into

account.

In cylindrical geometry, contravariant components of

the perturbation of plasma current density ~j
k

ðNÞ depend on co-

variant components of the electric field ~Ej and, due to the

Larmor gyration effect, also on the derivatives of the electric

field,

032502-3 Kinetic versus ideal MHD modelling Phys. Plasmas 19, 032502 (2012)
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~j
k

ðNÞ ¼
1

r

XN

n;n0¼0

ð�Þn @
n

@rn
rrkj

nn0 ðr; kÞ
@n0

@rn0
~Ej

� �
: (23)

Here, N is the order of Larmor radius expansion and the con-

ductivity matrices rkj
nn0 are defined as integrals over the parti-

cle actions space.

V. VACUUM AND RESISTIVE WALL REGIONS

The solutions of Maxwell’s equations for cylinder ge-

ometry and constant conductivity r can be expressed like the

corresponding vacuum solutions by a linear combination of

modified Bessel functions

C1Imða�rÞ þ C2Kmða�rÞ (24)

with C1 and C2 constant coefficients, and derivatives of this

combination where

ða�Þ2 ¼ k2 � xx�

c2
; (25)

x� ¼ xþ 4pir: (26)

VI. MATCHING CONDITIONS

There are four different regions to be considered with

increasing radius: the plasma region followed by a vacuum

region followed by the ideal (or resistive) wall region fol-

lowed by the outer vacuum region. The vacuum as well as

the resistive wall region solutions is obtained analytically

(24). Inside the plasma region, Maxwell’s equations with the

current density obtained from either the fluid model or the

kinetic model are solved. Fourier transforming with respect

to time as well as poloidal and toroidal angles yields a set of

ordinary differential equations. The various modes have very

different spatial scales and, therefore, an appropriate solver

for the stiff boundary value problem is used.

The linear system of matching equations is assembled

and solved to determine the superposition coefficients for

the fundamental solutions in each region. For each type of

interface (e.g., kinetic plasma—vacuum or MHD plasma—

vacuum, wall—vacuum, etc.), an appropriate set of matching

conditions on the wave field components is applied. For an

arbitrary complex mode frequency x, the system determi-

nant detðxÞ is nonzero and, therefore, the solution (all super-

position coefficients) is zero since there are no sources (rhs

equals zero) in the system. Finite nonzero solutions that cor-

respond to stable or unstable eigenmodes (depending on a

sign of imaginary part of the eigenfrequency) are possible

only when the determinant is zero. A complex root solver is

used to find all roots of the dispersion equation detðxÞ ¼ 0

numerically.

VII. COMPARISON AND DISCUSSION
OF THE RESULTS

In the kinetic model, there exist several additional

plasma parameters which are not present in the concurrent

MHD model. In particular, we can choose both the ion and

the electron temperature profiles as well as different particle

collision frequencies. Depending on the values of these

“free” parameters, better or worse agreement with MHD

results can be achieved. In the present work, we have chosen

values for plasma parameters representative for typical

experimental setups. In addition, since kink and resistive wall

mode properties are very sensitive to the plasma profiles, it

seems not to be appropriate to make direct predictions about

experimental situations. For this purpose, a detailed simula-

tion with a complete set of experimental settings is needed.

Figure 1 shows the profiles of density and temperatures,

Figure 2 the profiles of safety factor, poloidal, and toroidal

magnetic fields used in the calculations. These profiles

correspond to parameter values a ¼ 8:16, H0 ¼ 1:5, v ¼ 1,

resulting in F ¼ �0:59, bp ¼ 0:081, and H ¼ 1:93.

For the dimensional quantities shown in Figures 1 and 2

and taking a ¼ 50 cm, one gets

xA ¼
VA

a
¼ B0hðaÞ=

ffiffiffiffiffiffiffiffi
4pq
p

a
¼ 2:34� 106 s�1; (27)

sA ¼
1

xA
¼ 4:27� 10�7 s (28)

FIG. 1. (Color online) Background profiles for density n0, electron tempera-

ture T0e, and ion temperature T0i.

FIG. 2. (Color online) Background profiles for safety factor q, poloidal

magnetic field B0p, and toroidal magnetic field B0z.
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as the typical Alfvén rotation frequency xA and the ideal

time scale sA. The resistive wall time scale sw for wall posi-

tion b ¼ 50 cm, wall thickness h ¼ 5 cm, and wall conduc-

tivity r ¼ 4:5� 1014 s�1 is then

sw ¼
4pbhr

c2
¼ 0:0016 s ¼ 3:7� 103 sA: (29)

Toroidal and poloidal mode numbers are chosen n ¼ 3,

m ¼ 1, i.e., k ¼ n=R. For a big radius R ¼ 200 cm, the val-

ues agree with values in Ref. 16, namely ka ¼ 0:75.

For the ideal wall positioned at b=a ¼ 2, the radial mag-

netic field jBrj for the kink instability is shown in Figure 3.

Figure 4 shows the normalized jBrj profile for modes with

the resistive wall positioned at b=a ¼ 1:4. In this case, two

kinetic roots have been found whose growth rates are shown

in Figure 5 below. The jBrj profiles for the MHD and the

kinetic model are seen in good qualitative agreement.

Figure 5 shows the normalized growth rates of the ideal

wall mode and the resistive wall mode as a function of the

wall position. The MHD result is the same as shown in

Figures 5 and 6 of Ref. 16. The kinetic description of the

kink type mode (ideal wall) shows a slightly smaller growth

rate for 1:6 < b=a < 2. More remarkably, one can observe a

significant smaller wall minor radius for mode stabilization

about b=a � 1:3 compared to b=a � 1:6 for MHD. Never-

theless, the mode can be still stabilized by an ideal wall close

enough to the plasma.

If the wall is resistive, the resistive wall mode appears.

In the MHD case, there exists now a mode even for values of

b=a < 1:6 with growth rates three orders of magnitude

smaller, i.e., on the resistive time scale. In the kinetic case,

the situation is somewhat different. For values above the

FIG. 4. (Color online) Profiles of the modulus of the radial magnetic field

jBr j for the resistive wall at b=a ¼ 1:4 (resistive wall mode) without toroidal

plasma rotation. Mode numbers are the same as in Figure 3. The ratio of

resistive to Alfvénic (ideal) time scale is sw=sA ¼ 3:7� 103. Blue

(dashed)—MHD model and red (solid and dotted)—kinetic model.

FIG. 5. (Color online) Normalized growth rates without any plasma rotation

for the “kink” and the “resistive” mode plotted over the ideal/resistive wall

position. Mode numbers are m ¼ 1 and n ¼ 3. The resistive time scale is

sw=sA ¼ 3:7� 103. Solid lines (square—MHD and diamond—kinetic) for

the ideal wall and dashed and dot-dashed lines for the resistive wall. The ki-

netic model shows the slightly modified ideal kink mode for a resistive wall

labeled kin-rw 1 and a new branch for 1:35 < b=a < 1:52, the resistive

mode labeled kin-rw 2.

FIG. 6. (Color online) The stability window 1:4 < b=a < 1:55 for the

RWM predicted by the MHD model with toroidal rotation velocity

Vz=VA ¼ 0:5.

FIG. 3. (Color online) Profiles of the modulus of the radial magnetic field

jBr j for the ideal wall at b=a ¼ 2 (ideal kink mode) without toroidal plasma

rotation. Toroidal and poloidal ode numbers are n ¼ 3 and m ¼ 1 such that

the toroidal wave number normalized to the small radius a is ka ¼ 0:75.

Blue (dashed)—MHD model and red (solid)—kinetic model.
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ideal stabilization values of b=a < 1:3, there is, similar to

MHD, not much difference to the ideal wall. For small val-

ues of the wall position, 1 < b=a < 1:52, there appears now

a new mode, the kinetic resistive wall mode. Again, the

growths rates found by the kinetic model are in good qualita-

tive agreement with the MHD results.

The next point to be addressed is the role of mode stabi-

lization by toroidal rotation of the plasma. For this case,

MHD predicts a stability window16 which is shown in Figure

6. Figure 7 shows the growth rates over toroidal rotation for

different positions of the resistive wall. On the left, the

results for negative Vz are shown, on the right, the results for

positive Vz (plasma current is positive). The first thing one

can realize is that for MHD, the mode stabilization is sym-

metric with respect to the sign of Vz. This can be also seen

from the formulae in the MHD modelling section if the

poloidal velocity is zero. In contrast, kinetic modelling

shows stabilization only for Vz < 0 values, whereas for

Vz > 0, the growth rates slightly increase instead. In the

kinetic model, the toroidal plasma rotation velocity influen-

ces the background electric field and the parallel bulk veloc-

ity parameter of the ion and electron background distribution

functions. In the expressions that define those quantities,

there is no symmetry that may lead to an asymmetric behav-

ior of the instability growth rates with respect to direction of

toroidal plasma rotation.

Another difference is seen for wall position b=a ¼ 1:1.

MHD predicts instability whereas kinetic theory does not.

That means instead of the stability window shown in Figure

6, in the kinetic model, there is an upper threshold, b=a �
1:68 for the wall position only: if the wall is too far away the

RWM is not stabilized even for large toroidal rotation veloc-

ities. In MHD, there is also a lower threshold, b=a � 1:4,

FIG. 7. (Color online) Normalized

growth rates of the RWM for different

wall positions 1:1 < b=a < 2 as a func-

tion of the normalized toroidal plasma

velocity Vz=VA. Solid curve labeled

b=a ¼ 1:1 corresponds to kin-rw 2, all

other solid curves correspond to kin-rw

1 as shown for zero plasma rotation in

Figure 5. Mode numbers are m ¼ 1 and

n ¼ 3. The resistive time scale is

sw=sA ¼ 3:7� 103. Dashed lines—

MHD model and solid lines—kinetic

model. Left—toroidal plasma rotation

against and right—toroidal plasma rota-

tion with the toroidal plasma current.

FIG. 8. Three different profiles for the toroidal plasma rotation velocity

used in the calculations for Figure 9.

FIG. 9. (Color online) Normalized growth rates for the RWM at b=a ¼ 1:4
as a function of the normalized toroidal plasma velocity Vz=VA for different

profiles of the toroidal background plasma velocity shown in Figure 8:

V1 solid, V2 dashed, and V3 dashed-dotted. Left curves—MHD model and

right curves—kinetic model.
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and the RWM is not stabilized for the resistive wall too close

to the plasma.

For the case b=a ¼ 1:4, one concludes from Figure 7

that in the kinetic model, toroidal velocities of about 3% of

the Alfvén velocity stabilize the RWM whereas in the MHD

model this value is about 30%. Small rotation speeds of a

few percent of the Alfvén velocity have also been found in

Ref. 24 to be sufficient for stabilization of resistive wall

modes in ITER by toroidal rotation. For a better understand-

ing, three different rotation profiles shown in Figure 8 have

been tested. The results in Figure 9 show that for smaller

rotations speeds at the plasma edge, the stabilization value

for the case b=a ¼ 1:4 increases up to 10% of the Alfvén

speed. It is concluded that a high enough plasma rotation at

the edge is important for stabilization, whereas differential

rotation seems to have no significant impact.

Also, different density profiles with smooth behavior at

the plasma edge have been tested. But, this did not lead to

any significant changes of the results.

An important question is where the energy goes during

RWM stabilization. For the frequency range typical to

RWM, only Cerenkov resonance will contribute to the inter-

action between the electromagnetic field and particles that in

the present cylindrical model are all passing particles. How-

ever, it is most likely that magnetic perturbation along the

magnetic field lines acting via the grad B force on the par-

ticles will add up to the parallel electric perturbation field

and thus to the work of the electric field on the parallel

current. The relative impact of different sorts of particles on

the mode stability can be analyzed by looking at the electro-

magnetic power dissipated to the respective species. If total

power dissipated to the electrons and ions together is

positive, the mode will damp. Vice versa, if it is negative,

the mode will obtain energy from the plasma particles and

will grow, i.e., become unstable.

In Figure 10 shown are power densities dissipated to

electrons and ions for the case of a stable (plasma rotates

with Vz ¼ �0:04VA) and an unstable (Vz ¼ �0:03VA) RWM

mode with resistive wall position at b=a ¼ 1:4 cm. While the

power densities dissipated on both species have the same

sign (positive for the stable and negative for the unstable

mode), it is the electrons which are responsible for the RWM

stability since the energy dissipated to the ions is three orders

of magnitude less.

VIII. CONCLUSIONS

Resistive wall mode stabilization has been investigated in

a RFP plasma configuration within the kinetic model of a

cylindrical plasma which accounts for Landau damping,

TTMP, and Coulomb collisions. For this purpose, the code

KiLCA, originally developed for treating the plasma response

due to external RMPs, has been adapted to deal with stable

and unstable global eigenmodes that are determined by

plasma, vacuum, and vessel parameters. This code can now be

used to study resistive wall modes in reversed field pinch and

tokamak plasmas.

The external kink mode stabilized in ideal MHD by an

ideal wall has been found also in the kinetic description with

comparable growth rates. The wall position for complete sta-

bilization of the ideal mode is less than predicted by MHD.

A resistive wall mode with growth rate on the resistive

time scale is also seen in the kinetic description. In analogy to

MHD, this mode was found to be stabilized by toroidal plasma

FIG. 10. (Color online) Power densities (normalized to the maximum value of jBrj2) dissipated to electrons (left) and to ions (right) for a stable

(Vz=VA ¼ �0:04) and an unstable (Vz=VA ¼ �0:03) RWM and resistive wall position at b=a ¼ 1:4.
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motion. However, stabilization in the kinetic modelling is sensi-

tive to the direction of the rotation and, in the present case, only

negative Vz values have led to mode stabilization. Stabilizing

rotation velocities are found somewhat smaller when compared

to MHD. Finally, we did not see the complete stabilizing win-

dow predicted by MHD, which means we did not find instabil-

ity for very close positions of the resistive wall.

In the kinetic model proposed in the present paper,

mode damping is essentially associated with dissipation of

wave energy to passing electrons. Dissipation is intermedi-

ated by Landau damping, TTMP, and collisions. Estimates

show that within the presented model, Landau damping con-

tributes at least one order of magnitude more than TTMP to

wave damping. In particular, collisionless Landau damping

is seen to be the prime mechanism, whereas TTMP and colli-

sions play a minor role in mode damping.
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