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Discussion of ‘Methods for planning repeated
measures accelerated degradation tests’

1. Introduction

The article Methods For Planning Repeated Measures Accelerated Degradation Tests written by B. P. Weaver and
W. Q. Meeker provides an interesting extension in the area of optimal accelerated test planning. From the point of view of
traditional accelerated design approaches where the lifetime is modeled as a function of stress parameters, it can be seen
as a motivation to measure and model the degradation instead of waiting for a life-terminating event and analysing heav-
ily censored data. Further, the applicability is limited to cases where the genesis of a failure can be reliably observed and
reasonably measured.

The paper guides the reader in a structured way throughout the course. After introducing degradation models with mixed
effects as linear functions of the acceleration variables, the authors derive a failure-time distribution, which allows one
to estimate the quantile of interest of the time to failure distribution. In alignment with the classical design theory, the
optimal design is based on the Fisher information matrix and takes practical boundaries into account considering design
restrictions. The applicability of this planning procedure is demonstrated by two industrial examples.

2. The model

Usually, acceleration is applied to increase the effectivity of testing or (may be able) to assess stress-life relations. In
particular, if the sample size is small—which is frequently the case in industrial applications—results may be heavily
influenced by single observations. In such cases, the consideration of random effects allows to quantify the amount of
dispersion caused by unit-to-unit variation.

The theoretical concepts applied in Weaver and Meeker’s paper are well established (asymptotic normal theory, Fisher
information, etc.). However, it’s originality lies in the model approach, which considers the unit-to-unit variation by random
effects. Another elegant aspect is the model formulation of the degradation Y as

Y = x1𝛾1 + x2𝛾2𝜏 + b0 + b1𝜏 + 𝜖

with 𝜖
iid∼ N

(
0, 𝜎2

)
. The unit-to-unit variability of the degradation is described by b0 and b1 where

(
b0, b1

)T ∼ N (𝜷,𝐕)
with mean vector 𝜷 =

(
𝛽0, 𝛽1

)T
and covariance matrix 𝐕 where 𝐕 contains the parameters 𝜎b0

, 𝜎b1
and 𝜌. Moreover,

(
b0, b1

)T
is independent of 𝜖 and the 𝜖 values are independent over time. In the model, x1 and x2 can be occupied with the

same variable, which is relevant for the frequent case of one stress variable, but also allows in principle the flexibility to
consider two stress variables without increasing model complexity. Another aspect is the variance estimation based on the
Fisher information matrix 𝐈. The convenient way of composing the information of a design by adding the contributions of
the tests has already been used in papers of Nelson and Kielpinski [1], Nelson and Meeker [2], Escobar and Meeker [3],
and Escobar and Meeker [4].

3. The Objective

The objective of the test plan is to estimate the p−quantile of the time until the degradation measure exceeds a given
degradation limit as precisely as possible. The authors present optimal designs and compromise designs in the style of
Nelson [5], where the asymptotic variance AVar

(
t̂p
)

of the interesting quantile estimate t̂p is minimized. Here, using the
delta method, AVar

(
t̂p
)
= 𝐚T�̂�𝐚, with �̂� as large sample approximation of the covariance matrix of the maximum likelihood
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estimators and ai = 𝜕tp∕𝜕𝜃i where vector 𝜽 contains the unknown parameters of the degradation model. The authors apply
a directional derivative according to Whittle’s (1973) general equivalence theorem as Λ(𝜂, 𝜈) = 𝐚T (𝐈(𝜂))−1 𝐈(𝜈) (𝐈(𝜂))−1 𝐚−
𝐚T (𝐈(𝜂))−1 𝐚. A design 𝜂 provides smaller AVar

(
t̂p
)

than a design 𝜈 if Λ (𝜂, 𝜈) > 0.

4. Sensitivity and robustness of the optimal design

The optimal and (at least to some extent) the compromise design generated that way depend both on the model as well
as on the input data. Among several properties, which could have been investigated, we focused on two aspects: at first,
we investigated the sensitivity by comparing a grid of candidate designs with the design chosen by Weaver and Meeker.
In a second step, we evaluated the robustness of the optimal solutions regarding the influence of the input data in using
bootstrap simulations. For both tasks, we examined the examples of Weaver and Meeker’s paper by using a collection of
continuous designs 𝜈 = (𝐱,𝝅). With fixed boundary stress levels xL (low-stress level) and xH (high-stress level) as well as
fixed proportions at the bounds, 𝜋L and 𝜋H , we varied the inner level xM so that xL ⩽ xM ⩽ xH and

∑
j∈{L,M,H} 𝜋j = 1 with

𝜋j > 0 ∀ j.

4.1. Sensitivity analysis of example 1

Example 1 from Weaver and Meeker’s paper deals with an example of carbon resistors used in Shiomi and Yanagisawa
(1979). Here, the degradation model for unit i measured at time point j for acceleration level k is the resistance in Ohms
yijk = 𝛾2xk𝜏ij + b0i + b1i𝜏ij + 𝜖ijk with 𝜏 =

√
Time in hours, and stress variable x = −11605∕ (T in oC + 273.15) and

eij
iid∼ N

(
0, 𝜎2

)
motivated by the Arrhenius temperature model.

With the correspondingly given original data, the maximum likelihood estimation has been carried out with theR function
lme() and leads to the following output where 𝜏 is denoted by sqrt(tme) and x as xTmp2:

Linear mixed-effects model fit by maximum likelihood
Data: d_D1

AIC BIC logLik
449.0865 469.9236 -217.5433

Random effects:
Formula: ˜I(sqrt(tme)) | as.factor(unitNb)
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 1.89720371 (Intr)
I(sqrt(tme)) 0.03815121 0.544
Residual 0.52305075

Fixed effects: yRes ˜ I(sqrt(tme)) + I(sqrt(tme) * xTmp2)
Value Std.Error DF t-value p-value

(Intercept) 218.51308 0.3632262 114 601.5896 0
I(sqrt(tme)) 0.65548 0.0690617 114 9.4912 0
I(sqrt(tme) * xTmp2) 0.02032 0.0023735 114 8.5626 0
Correlation:

(Intr) I(s())
I(sqrt(tme)) 0.052
I(sqrt(tme) * xTmp2) 0.000 0.994

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-4.1537723 -0.2613070 0.1079996 0.3532090 2.8586171

Number of Observations: 145
Number of Groups: 29

This result shows highly significant fixed effects and the correlation between the second and the third parameter esti-
mator, the effects of 𝜏 and 𝜏∶x, is 0.994. Here, the discussion arises whether both terms would be required in the model,
respectively, whether the effect of 𝜏 should be modeled as a random effect. Hence, we discussed different linear alterna-
tives where we observed either a high correlation between two parameter estimators or a substantial lack of fit, if one of
the parameters is excluded.

We are now interested in the sensitivity of Weaver and Meeker’s optimal 3-level design 𝜂 with 𝐱 = (50, 83, 173) and
𝝅 = (0.05, 0.711, 0.239) when varying xM and 𝜋M . Considering of the boundary conditions stated in the example, we
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investigated the 3-level design where 𝜈 = (𝐱,𝝅) =
((

50, xM , 173
)
,
(
0.05, 𝜋M , 1 − 0.05 − 𝜋M

))
with x ∈ [50, 173] and

𝜋x ∈ [0.05, 0.9].
The black dot shows Weaver and Meeker’s optimal design with xM = 83 and 𝜋M = 0.711. Figure 1 exhibits

that their optimal design has the highest stress level xM of all designs on the isoline Λ(𝜂, 𝜈) = 0. An interesting
aspect is that for all xM ∈ [63, 83], two different optimal designs exist with different 𝜋M , that is, the two designs
𝐱 = (50, 70, 173), 𝝅 = (0.05, 0.459, 0.491) and 𝐱 = (50, 70, 173), 𝝅 = (0.05, 0.855, 0.095) appear equal with respect
to Λ, although from a practical perspective, the second solution is more unbalanced and would probably require more
execution time due to the reciprocal relation between stress time to failure. Following the isoline towards lower 𝜋M ,
we end up at xM = 50 with 𝜋M = 0.316, which shows in fact the equivalent 2-level design 𝐱 = (50, 173),𝝅 =
(0.366, 0.634). Again, practical reasons may call for a 3-level design and thus avoid the 2-level design solution.
Therefore, Weaver and Meeker’s optimal design for example 1 seems to be adequate from a theoretical as well as a
practical perspective.

4.2. Sensitivity analysis of example 2

Example 2 from Weaver and Meeker’s paper shows the wear resistance of metal plates encountered load situations with
different weights, known from Meeker and Escobar (1998). The degradation model for unit i (i = 1,… , 12) measured at
time point j (j = 1,… , 8) for acceleration level k (k = 1, 2, 3) is the log of the scar width in microns: yijk = 𝛾1x1k +𝛾2x2k𝜏ij+
b0i + b1i𝜏ij + 𝜖ijk with 𝜏 = log (Time in kilocycles), stress variable x1 = x2 as weight in grams and 𝜖ijk

iid∼ N
(
0, 𝜎2

)
.

The correlation between time and interaction between time and weight is here −0.823, which is strong, but compared
with the corresponding effect of example 1, somewhat weaker. We investigated again the sensitivity, but this time, of
Weaver and Meeker’s optimal 2-level design 𝜂 with 𝐱 = (10, 100) and 𝝅 = (0.95, 0.05) when varying xM and 𝜋M . Although
the lower bound of the testing weight was given with 10g, for comparison, we additionally investigated candidate designs
(𝐱,𝝅) =

((
xM ⩾ 5, 100

)
,
(
𝜋M ⩾ 0.05, 1 − 𝜋M

))
with 𝜋L = 0.
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Figure 1. Directional derivative Λ(𝜂, 𝜈) for designs 𝜈 with xM ∈ [50, 173] and 𝜋M ∈ [0.05, 0.9] compared with 𝜂 as Weaver and
Meeker’s optimal design for example 1.
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Figure 2. Directional derivative Λ(𝜂, 𝜈) for designs 𝜈 with xM ∈ [5, 100] and 𝜋M ∈ [0.05, 0.95] compared to 𝜂 as Weaver and Meeker’s
optimal design for example 2.
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The black dot in Figure 2 shows again Weaver and Meeker’s optimal design with xM = 10 and 𝜋M = 0.95
(
𝜋L = 0

)
.

Compared with example 1, the range of designs, which appear statistically equivalent to the optimal design, is smaller here.
Considering the given lower bound for the test of 10g in Weaver and Meeker’s paper, the optimum is indeed the unique
solution with xM = 10 and 𝜋M = 0.95. If the lower bound for testing is extended down to the use weight of 5g, alternative
optimal designs can be found. These lie between 𝐱 = (5, 100),𝝅 = (0.853, 0.147) and 𝐱 = (10, 100),𝝅 = (0.95, 0.05). In
particular, the solution with xM = 5 provides the least unbalance and the biggest proportion at xH among the competitive
optimal designs.

5. Robustness of the designs

The quantile estimator’s variance is a function of the Fisher information, which is evaluated at the maximum likelihood
estimate of the model parameters. Thus, AVar

(
t̂p
)

strongly depends on the input data. By using a blocked bootstrap sim-
ulation, we wanted to see how strongly the parameter estimators and consequently the optimal test plan depend on the
variability in the input data. The following steps have been executed per simulation replicate:

• Select randomly mk data records with replication on each stress level k where mk is the number of specimens tested at
stress level k in the original data set. To avoid an artificial bias concerning degradation, a data record is the complete
measurement series of one specimen. E.g., for example 2 of Weaver and Meeker’s paper, data record i contains the
eight corresponding design points including the measurements of the response of item i, i = 1,… , 12.

• Carry out the maximum likelihood estimation for the generated data set according to the model described in Weaver
and Meeker’s paper

• Estimate AVar
(
tp
)

for each candidate design (𝐱,𝝅) on the grid as initialized earlier in the sensitivity analysis
• Check the directional derivative on the grid with respect to Weaver and Meeker’s optimal design.

The simulation study has been carried out again for both examples presented in Weaver and Meeker’s paper.

5.1. Robustness of example 1

The simulation shows different variability in the parameters as exhibited in Figure 3. Although b0 can be estimated very
precisely, the coefficients of variation CV for the other model parameters vary between 10% and 30%. In this context,
we define the CV of a parameter estimator by 100% ∗ standard error∕estimate. What is remarkable is that each single
simulation run leads exactly to the same optimal design, that is, in fact, CV = 0 for xM and 𝜋M .
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Figure 3. Distribution of parameter estimates and optimal designs for example 1 checked by directional derivative.
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Not only the optimum is identical but also the isolines for Λ(𝜂, 𝜈) = 0 are identical, which is shown in Figure 4. There,
isolines out of 1000 simulations coincide in one solution. Thus, for example 1 the optimal test plan appears robust against
the variability of the input data. A technical reason for this result is that the Fisher information is composed of elements
𝐗T𝐕𝐗 where 𝐗 contains the design aspects and 𝐕 the covariance structure of the model. Because the t-test statistics of all
fixed effects are > 8, the residual sum of squares is very small compared to the regression sum of squares in each replicate
of the blocked bootstrap simulation. Thus, the design aspect is dominating over the aspect of stochastic uncertainty, which
justifies the approach proposed by Weaver and Meeker.

5.2. Robustness of Example 2

The simulation shows for example 2 even more different variability in the parameters as for example 1. Whereas here the
fixed effects 𝛾1 and 𝛾2 as well as b0 can be estimated very precisely (CV ≈ 2%), the coefficients of variation for the variance
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Figure 4. Directional derivative Λ(𝜂, 𝜈) for 1000 bootstrap-simulated designs 𝜈 with xM ∈ [10, 173] and 𝜋M ∈ [0.05, 0.95] compared
with 𝜂 as Weaver and Meeker’s optimal design for example 1, which is represented by the black dot.

CV = 1.78 %

D
en

si
ty

2.05 2.15

0
5

10
15

γ2

CV = 1.77 %

D
en

si
ty

0.180 0.190

0
20

40
60

80
12

0

CV = 2.4 %

D
en

si
ty

0.0165 0.0180

0
20

0
60

0
10

00

b1

CV = 35.4 %

D
en

si
ty

0.00005 0.00020

0
20

00
40

00
60

00
80

00

CV = 13.89 %

D
en

si
ty

0.08 0.12

0
5

10
15

20
25

σb1

CV = 18.22 %

D
en

si
ty

0.010 0.020

0
50

10
0

15
0

20
0

CV = 72.1 %

D
en

si
ty

−1.0 −0.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

σ

CV = 5.28 %

D
en

si
ty

0.040 0.048

0
50

10
0

15
0

20
0

CV = 0.02 %

D
en

si
ty

9.995 9.998

0
20

0
60

0
10

00
14

00

πM

CV = 0 %

D
en

si
ty

0e
+

00
4e

+
14

8e
+

14

0.95 0.95

Figure 5. Distribution of parameter estimators and optimal designs for example 2 checked by directional derivative.
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Figure 6. Directional derivative Λ(𝜂, 𝜈) for 1000 bootstrap-simulated designs 𝜈 with xM ∈ [10, 173] and 𝜋M ∈ [0.05, 0.95] compared
with 𝜂 as Weaver and Meeker’s optimal design for example 2, which is represented by the black dots.

related parameters vary between 5% and 72% for the correlation 𝜌 between b0 and b1. What is remarkable in this case is
the rather large variability of the estimator of b1 as well as a bimodal shape of the simulation distributions of b0, 𝜎b1

and 𝜌

which is shown in Figure 5.
Although the estimates of 𝜎b1

and 𝜌 correlate they do not explain the small variation in xM . Among all simulation runs, we
only found two different optimal designs, which are located very closely to each other

(
𝜋M1

= 𝜋M2
= 0.95 and xM1

= 9.995,
xM2

= 10
)

as Figure 6 indicates. Thus, the planning procedure also for example 2 provides an optimal design, which is
robust against the variability in the input data.

6. Conclusion

The planning of accelerated tests based on random effect models is a process that shows various advantages such as a
sensitive optimization and robustness against the variability of the input data. The model properties are not perfect because
we observed high correlations between some effect estimates, which might indicate a potential for simplification. Finally,
we congratulate B. Weaver and W. Meeker on their stimulating paper.
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